DETERMINANTAL AND EIGENVALUE INEQUALITIES FOR MATRICES WITH NUMERICAL RANGES IN A SECTOR

CHI-KWONG LI* AND NUNG-SING SZE[†]

Abstract. Let $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in M_n$, where $A_{11} \in M_m$ with $m \le n/2$, be such that the numerical range of A lies in the set $\{e^{i\varphi}z \in \mathbb{C} : |\Im z| \le (\Re z)\tan\alpha\}$, for some $\varphi \in [0, 2\pi)$ and $\alpha \in [0, \pi/2)$. We obtain the optimal containment region for the generalized eigenvalue λ satisfying

$$\lambda \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} x = \begin{pmatrix} 0 & A_{12} \\ A_{21} & 0 \end{pmatrix} x \quad \text{ for some nonzero } x \in \mathbb{C}^n,$$

and the optimal eigenvalue containment region of the matrix $I_m - A_{11}^{-1}A_{12}A_{22}^{-1}A_{21}$ in case A_{11} and A_{22} are invertible. From this result, one can show $|\det(A)| \leq \sec^{2m}(\alpha)|\det(A_{11})\det(A_{22})|$. In particular, if A is a accretive-dissipative matrix, then $|\det(A)| \leq 2^m |\det(A_{11})\det(A_{22})|$. These affirm some conjectures of Drury and Lin.

AMS subject classifications. 15A45.

Key words. Numerical ranges, eigenvalues, determinantal inequality, accretive-dissipative matrix.

1. Introduction. Let M_n be the set of $n \times n$ complex matrices. Suppose

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in M_n \quad \text{with } A_{11} \in M_m, \quad m \le n/2.$$
 (1.1)

In connection to the study of the growth factor in Gaussian elimination, researchers considered optimal (smallest) $\gamma > 0$ such that

$$|\det(A)| \le \gamma |\det(A_{11}) \det(A_{22})|;$$

see [1, 3, 4, 6, 7, 8] and their references. The well-known Fischer inequality asserts that

$$\det(A) \leq \det(A_{11}) \det(A_{22})$$
 if A is positive semi-definite.

In [7], it was shown that if A is accretive and dissipative, i.e., $A + A^*$ and $i(A^* - A)$ are positive semi-definite, then

$$|\det(A)| < \gamma |\det(A_{11}) \det(A_{22})|$$
 with $\gamma = 3^m$;

in [8], the bound was improved to

$$\gamma = \begin{cases} 2^{3m/2} & \text{if } m \le n/3, \\ 2^{n/2} & \text{if } n/3 < m \le n/2. \end{cases}$$

The author in [8] further proposed the following.

^{*} Department of Mathematics, College of William and Mary, Williamsburg, VA 23187, USA (Email: ckli@math.wm.edu). Li is an honorary professor of the Taiyuan University of Technology (100 talents program), the University of Hong Kong, and also the Shanghai University. His research was partially supported by a USA NSF grant DMS 1007768 and a HK RGC grant.

[†] Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (Email: raymond.sze@polyu.edu.hk). Research of Sze was partially supported by a HK RGC grant PolyU 502512.

Conjecture 1 Suppose A is accretive-dissipative. Then

$$|\det(A)| \le 2^m |\det(A_{11}) \det(A_{22})|.$$
 (1.2)

The numerical range of a matrix $L \in M_n$ is defined by

$$W(L) = \{x^*Lx : x \in \mathbb{C}^n, \ x^*x = 1\}.$$

For any $\alpha \in [0, \pi/2)$, let

$$S_{\alpha} = \{ z \in \mathbb{C} : |\Im z| \le (\Re z) \tan \alpha \}. \tag{1.3}$$

A subset of \mathbb{C} is a sector of half angle α if it is of the form $\{e^{i\varphi}z:z\in S_{\alpha}\}$ for some $\varphi\in[0,2\pi)$.

In [1], the author proved that if W(A) is a subset of a sector of half angle $\alpha \in [0, \pi/(2m))$, then

$$|\det(A)| \le \sec^2(m\alpha)|\det(A_{11})\det(A_{22})|.$$

He further proposed the following.

Conjecture 2 If W(A) is a subset of a sector of half angle $\alpha \in [0, \pi/2)$, then

$$|\det(A)| \le \sec^{2m}(\alpha)|\det(A_{11})\det(A_{22})|.$$
 (1.4)

Moreover, if $A_{11} \in M_1$ is nonzero and $A_{22} \in M_{n-1}$ is invertible, then

$$\det(A)/(\det(A_{11})\det(A_{22})) \in \{re^{i2\phi} : 0 \le r \le 2(\cos(2\phi) - \cos(2\alpha))/\sin^2(2\alpha), -\alpha \le \phi \le \alpha\}.$$
 (1.5)

We will affirm Conjectures 1 and 2 via the study of the following generalized eigenvalue problem

$$\lambda \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} x = \begin{pmatrix} 0 & A_{12} \\ A_{21} & 0 \end{pmatrix} x \quad \text{for some nonzero } x \in \mathbb{C}^n.$$
 (1.6)

In Section 2, we prove Theorem 2.4 providing the optimal eigenvalue containment region for those λ satisfying (1.6), and the optimal eigenvalue containment region of the matrix

$$A_{11}^{-1}A_{12}A_{22}^{-1}A_{21}$$

in case A_{11} and A_{22} are invertible. Using the theorem, one can readily verify Conjectures 1 and 2; see Corollaries 2.6 and 2.7.

2. Results, proofs, and remarks. In this section, we will always assume that A has the form in (1.1), and refer to a subset of \mathbb{C} as a sector of half angle α if it is of the form $\{e^{i\varphi}z:z\in S_{\alpha}\}$ for some $\varphi\in[0,2\pi)$ and S_{α} defined in (1.3).

We begin with several lemmas.

LEMMA 2.1. For any $\phi \in [-\pi/2, \pi/2]$, the function $f:(0,\pi/2) \to \mathbb{R}$ defined by

$$f(\theta) = (\cos(2\phi) - \cos(2\theta)) / \sin^2(2\theta)$$

is increasing.

Proof. By direct verification.

LEMMA 2.2. Suppose $z_1 = r_1 e^{i\theta_1}$, $z_2 = r_2 e^{i\theta_2} \in \mathbb{C}$ with $r_1, r_2 \in (0, \infty)$, $\pi/2 > \theta_1 \ge \theta_2 > -\pi/2$, and $(z_1 + z_2)/2 = e^{i\psi}$. Let $2\theta = \theta_1 - \theta_2$ and $2\phi = \theta_1 + \theta_2 - 2\psi$. Then

$$r_1 r_2 = 2(\cos(2\phi) - \cos(2\theta)) / \sin^2(2\theta).$$

Proof. Consider the triangle T with vertices $0, z_1, z_2$. Because $e^{i\psi}$ is the midpoint of the side joining the vertices z_1 and z_2 , T can be divided into two triangles T_1 and T_2 with equal areas, where T_1 has vertices $0, e^{i\psi}, r_1e^{i\theta_1}$, and T_2 has vertices $0, e^{i\psi}, r_2e^{i\theta_2}$. Thus,

$$r_1 r_2 \sin(2\theta) = r_1 \sin(\theta_1 - \psi) + r_2 \sin(\psi - \theta_2)$$
 and $r_1 \sin(\theta_1 - \psi) = r_2 \sin(\psi - \theta_2)$.

It follows that

$$(r_1 r_2 \sin(2\theta))^2 = (r_1 \sin(\theta_1 - \psi) + r_2 \sin(\psi - \theta_2))^2$$

= $4r_1 r_2 \sin(\theta_1 - \psi) \sin(\psi - \theta_2)$
= $2r_1 r_2 (\cos(2\phi) - \cos(2\theta)).$

Hence, $r_1 r_2 = 2(\cos(2\phi) - \cos(2\theta)) / \sin^2(2\theta)$.

We will also use some basic facts about the numerical range; for example, see [5, Chapter 1]. LEMMA 2.3. Let $L \in M_n$.

- 1. If $U \in M_n$ is unitary, then $W(L) = W(U^*LU)$.
- 2. The set W(L) is compact and convex.
- 3. If \tilde{L} is a principal submatrix of L, then $W(\tilde{L}) \subseteq W(L)$.
- 4. If $L = L_1 \oplus L_2$, then $W(L) = \text{conv}(W(L_1) \cup W(L_2))$, where conv(S) denotes the convex hull of the set S.
- 5. If L is normal, then W(L) is the convex hull of its eigenvalues.
- 6. If $x \in \mathbb{C}^n$ is a unit vector such that $\mu = x^*Lx$ is a boundary point of W(L) with more than one support line, then $Lx = \mu x$ and $L^*x = \overline{\mu}x$.

THEOREM 2.4. Let $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in M_n$ with $A_{11} \in M_m$ be such that $m \leq n/2$, and W(A) be a subset of a sector of half angle $\alpha \in [0, \pi/2)$.

- (a) Suppose $A_{11} \oplus A_{22}$ is singular, and $x \in \mathbb{C}^n$ is a nonzero vector in its kernel. Then Ax = 0 and (1.6) holds for every $\lambda \in \mathbb{C}$ with this nonzero vector x.
- (b) Suppose A_{11} and A_{22} are invertible. If $\lambda \in \mathbb{C}$ satisfies (1.6), then

$$\lambda^2 \in \mathcal{R} = \begin{cases} \left\{ 1 - re^{i2\phi} : 0 \le r \le \frac{2(\cos(2\phi) - \cos(2\alpha))}{\sin^2(2\alpha)}, -\alpha \le \phi \le \alpha \right\} & \text{if } \alpha > 0, \\ [0, 1] & \text{if } \alpha = 0. \end{cases}$$

Moreover, for every eigenvalue μ of the matrix $A_{11}^{-1}A_{12}A_{22}^{-1}A_{21}$, there is $\lambda \in \mathbb{C}$ satisfying (1.6) so that $\mu = \lambda^2$ lies in the region \mathcal{R} .

Proof. Without loss of generality, we may assume that $W(A) \subseteq S_{\alpha}$. Let

$$B_1 = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}$$
 and $B_2 = \begin{pmatrix} 0 & A_{12} \\ A_{21} & 0 \end{pmatrix}$.

(a) Suppose B_1 is singular and $x \in \mathbb{C}^n$ is nonzero such that $B_1x = 0$. By Lemma 2.3, for y = x/||x||,

$$0 = y^* B_1 y \in \text{conv}(W(A_{11} \oplus A_{22})) \subseteq W(A)$$

so that 0 is a boundary point of W(A) with more than one support line. Thus, Ax = 0, and $\lambda B_1 x = 0 = (A - B_1)x = B_2 x$ for any $\lambda \in \mathbb{C}$.

(b) Assume A_{11} and A_{22} are invertible. Suppose $\lambda B_1 x = B_2 x$ for some nonzero unit vector $x \in \mathbb{C}^n$. Let $\xi_1 = x^* B_1 x$ and $\xi_2 = x^* B_2 x$. Then $\xi_1 \in W(B_1)$ and $\xi_2 \in W(B_2)$. We see that $\xi_1 + \xi_2 \in W(B_1 + B_2) = W(A)$ and $\lambda \xi_1 = \xi_2$. Note that $A = B_1 + B_2 = Q^*(B_1 - B_2)Q$ with $Q = I_m \oplus (-I_{n-m})$, and hence $W(A) = W(B_1 - B_2)$ contains $x^*(B_1 - B_2)x = \xi_1 - \xi_2$. So, $\xi_1 \pm \xi_2 \in W(A)$, which is a subset of S_α by our assumption.

Observe that $\xi_1 \neq 0$. Otherwise, by Lemma 2.3

$$0 \in W(B_1) = \text{conv}(W(A_{11}) \cup W(A_{22})) \subseteq W(A)$$

so that 0 is a boundary point of $W(B_1)$ with more than one support line implying that B_1 is singular, which contradicts our assumption.

Without loss of generality, assume that $\Im(\lambda) = \Im(1 + \xi_2/\xi_1) \ge 0$. Let

$$z_{\pm} = r_{\pm}e^{i\theta_{\pm}} = 1 \pm \xi_2/\xi_1 = 1 \pm \lambda$$
 with $r_{\pm} \ge 0$, $\theta = \frac{1}{2}(\theta_+ - \theta_-)$ and $\phi = \frac{1}{2}(\theta_+ + \theta_-)$.

If $\xi_1 = |\xi_1|e^{i\omega}$, then $(\xi_1 \pm \xi_2) = \xi_1(1 \pm \xi_2/\xi_1)$ has arguments $\theta_{\pm} + \omega \in [-\alpha, \alpha]$ as $\xi_1 \pm \xi_2 \in W(A) \subseteq S_{\alpha}$. Note also that $(z_1 + z_2)/2 = 1$ has argument 0. It follows that $-\alpha - \omega \le \theta_- \le 0 \le \theta_+ \le \alpha - \omega$. So $0 \le \theta \le \alpha$. Applying Lemma 2.2 with $(r_1e^{i\theta_1}, r_2e^{i\theta_2}) = (r_+e^{i\theta_+}, r_-e^{i\theta_-})$ and $\psi = 0$, we have

$$r_{+}r_{-} = \frac{2(\cos(2\phi) - \cos(2\theta))}{\sin^{2}(2\theta)} \le \frac{2(\cos(2\phi) - \cos(2\alpha))}{\sin^{2}(2\alpha)},$$

where the inequality follows from Lemma 2.1. As a result,

$$1 - \lambda^2 = z_+ z_- = r_+ r_- e^{i(\theta_+ + \theta_-)} = r_+ r_- e^{i2\phi}$$

lies in the region

$$\tilde{R} = \left\{ re^{i2\phi} : 0 \le r \le \frac{2(\cos(2\phi) - \cos(2\alpha))}{\sin^2(2\alpha)}, -\alpha \le \phi \le \alpha \right\}.$$

Suppose $B = B_1^{-1}B_2$. Then

$$B^2 = \begin{pmatrix} A_{11}^{-1}A_{12}A_{22}^{-1}A_{21} & 0 \\ 0 & A_{22}^{-1}A_{21}A_{11}^{-1}A_{12} \end{pmatrix}.$$

If $A_{11}^{-1}A_{12}A_{22}^{-1}A_{21}$ has eigenvalues μ_1, \ldots, μ_m , then $A_{22}^{-1}A_{21}A_{11}^{-1}A_{12}$ has eigenvalues μ_1, \ldots, μ_m together with n-m zeros. So, we may assume that B has eigenvalues $\lambda_1, \ldots, \lambda_n$ such that $\lambda_j^2 = \lambda_{m+j}^2 = \mu_j$ for $j = 1, \ldots, m$ and $\lambda_\ell = 0$ for $\ell = 2m+1, \ldots, n$. Note that λ is an eigenvalue of B if and only if λ satisfies (1.6) for some nonzero $x \in \mathbb{C}^n$. The second assertion of (b) follows.

The containment region in Theorem 2.4(b) is optimal as shown in the following.

EXAMPLE 2.5. Let $\lambda \in \mathbb{C}$ be such that $\lambda^2 \in \mathcal{R}$ in Theorem 2.4, i.e., $1 - \lambda^2 = re^{i2\phi}$ with $r \in [0, 2(\cos(2\phi) - \cos(2\alpha))/\sin^2(2\alpha)]$ for some $\alpha \in [0, \pi/2)$.

Suppose r > 0. By Lemma 2.1, there is $\theta \in (|\phi|, \alpha]$ satisfying $r = 2(\cos(2\phi) - \cos(2\theta))/\sin^2(2\theta)$, here we set $2(\cos(2\phi) - \cos(2\theta))/\sin^2(2\theta) = 1$ if $\theta = 0$ which will imply $\phi = 0$. Let

$$A = \left(I_m \otimes \begin{pmatrix} e^{-i\phi} & a+ib \\ a+ib & e^{-i\phi} \end{pmatrix}\right) \oplus \left(e^{-i\phi}I_{n-2m}\right)$$

with $a = -\cot\theta\sin\phi$ and $b = \tan\theta\cos\phi$ so that

 $|a| \le |\cot \phi \sin \phi| = \cos \phi, \quad b \ge |\tan \phi \cos \phi| = |\sin \phi|,$

$$\frac{-\sin\phi + b}{\cos\phi + a} = \tan\theta, \quad \text{and} \quad \frac{-\sin\phi - b}{\cos\phi - a} = -\tan\theta. \tag{2.1}$$

Then A is normal, and by (2.1) the eigenvalues of A has the form $e^{-i\phi} + (a+ib) = r_1 e^{i\theta}$, $r_1 \ge 0$, with multiplicity m, $e^{-i\phi} - (a+ib) = r_2 e^{-i\theta}$, $r_2 \ge 0$, with multiplicity m, and $e^{-i\phi}$ with multiplicity n - 2m, all in S_{α} . By Lemma 2.3, $W(A) \subseteq S_{\alpha}$. Moreover, $\lambda = \pm (a+ib)e^{i\phi}$ satisfy (1.6), and

$$1 - \lambda^2 = \det \begin{pmatrix} 1 & (a+ib)e^{i\phi} \\ (a+ib)e^{i\phi} & 1 \end{pmatrix} = e^{2i\phi} \det \begin{pmatrix} e^{-i\phi} & a+ib \\ a+ib & e^{-i\phi} \end{pmatrix} = e^{2i\phi}r_1e^{i\theta}r_2e^{-i\theta} = r_1r_2e^{2i\phi}.$$

Applying Lemma 2.2 to $r_1e^{i\theta}$, $r_2e^{-i\theta}$ so that $\theta_1 = -\theta_2 = \theta$ and $\psi = -\phi$, and using the fact that $e^{-i\phi}$ is the midpoint of the line segment joining $r_1e^{i\theta}$, $r_2e^{-i\theta}$, we have

$$r_1 r_2 = 2(\cos(2\phi) - \cos(2\theta)) / \sin^2(2\theta) = r.$$

Suppose r = 0. One can verify directly that the matrix

$$A = \begin{pmatrix} I_m \otimes \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \end{pmatrix} \oplus I_{n-2m}$$

satisfies $W(A) = [0,2] \subseteq S_{\alpha}$ and has generalized eigenvalues $\lambda \in \{1,-1\}$ so that $1 - \lambda^2 = 0 = r$. \square

Using the notation of Theorem 2.4, we see that if A_{11} and A_{22} are invertible, then all eigenvalues of the matrix $C = I_m - A_{11}^{-1} A_{12} A_{22}^{-1} A_{21}$ lie in the set $\left\{ re^{i2\phi} : 0 \le r \le \frac{2(\cos(2\phi) - \cos(2\alpha))}{\sin^2(2\alpha)}, |\phi| \le \alpha \right\}$. Thus, the spectral radius of C is bounded by

$$\max_{|\phi| \le \alpha} \left\{ \frac{2(\cos(2\phi) - \cos(2\alpha))}{\sin^2(2\alpha)} \right\} = \frac{2(1 - \cos(2\alpha))}{\sin^2(2\alpha)} = \sec^2(\alpha),$$

and hence

$$|\det(A)| = |\det(A_{11})\det(A_{22})\det(C)| \le \sec^{2m}(\alpha)|\det(A_{11})\det(A_{22})|.$$

By continuity, one can remove the invertibility assumption on A_{11} and A_{22} . We have the following corollary affirming Conjecture 2.

COROLLARY 2.6. Let $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in M_n$ with $A_{11} \in M_m$ such that $m \leq n/2$, and W(A) be a subset of a sector of half angle $\alpha \in [0, \pi/2)$. Then

$$|\det(A)| \le \sec^{2m}(\alpha) |\det(A_{11}) \det(A_{22})|.$$

If A_{11} and A_{22} are invertible, then the eigenvalues of the matrix $C = I_m - A_{11}^{-1}A_{12}A_{22}^{-1}A_{21} \in M_m$ lies in the region

$$\tilde{\mathcal{R}} = \left\{ re^{i2\phi} : 0 \le r \le \frac{2(\cos(2\phi) - \cos(2\alpha))}{\sin^2(2\alpha)}, -\alpha \le \phi \le \alpha \right\}.$$

Suppose A is accretive-dissipative. Then $W(e^{-i\pi/4}A) \subseteq S_{\pi/4}$. Applying Corollary 2.6 with $\alpha = \pi/4$, we have the following result affirming Conjecture 1 and verifying a comment in [1] (after Conjecture 0.2).

COROLLARY 2.7. Let $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in M_n$ be accretive-dissipative with $A_{11} \in M_m$ such that $m \le n/2$. Then

$$|\det(A)| \le 2^m |\det(A_{11}) \det(A_{22})|.$$

If A_{11} and A_{22} are invertible, then the eigenvalues of the matrix $C = I_m - A_{11}^{-1}A_{12}A_{22}^{-1}A_{21} \in M_m$ lies in the set

$$\{z \in \mathbb{C} : |z - 1| \le 1\}.$$

The bound in Corollary 2.6 is best possible by Example 2.5 with $(\phi, \theta) = (0, \alpha)$. In such a case, $(e^{-i\phi}, a + bi) = (1, i \tan \alpha)$, $\det(A) = (1 + \tan^2 \alpha)^m = \sec^{2m}(\alpha)$ and $1 = \det(A_{11}) = \det(A_{22})$. Furthermore, letting $\alpha = \pi/4$, we see that the bound in Corollary 2.7 is also best possible.

Acknowledgment

We thank Dr. Minghua Lin for drawing our attention to this interesting topic, and Professor S.W. Drury for his preprint [1]. Upon the completion of our note, we learned that Professor Drury had verified conjecture 2 for the case when $\alpha \in [0, \pi/4]$ by a different method in [2].

Thanks are also due to Dr. Zejun Huang for some helpful discussion.

REFERENCES

- [1] S.W. Drury, Fischer determinantal inequalities and Higham's Conjecture, preprint.
- [2] S.W. Drury, A Fischer type determinantal inequality, Linear and Multilinear Algebra, to appear.
- [3] A. George and Kh.D. Ikramov, On the growth factor in Gaussian elimination for matrices with sharp angular field of values, Calcolo 41 (2004), 27-36.
- [4] A. George, Kh.D. Ikramov, and A.B. Kucherov, On the growth factor in Gaussian elimination for generalized Higham matrices, Numer. Linear Algebra Appl. 9 (2002), 107-114.
- [5] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
- [6] N.J. Higham, Factorizing complex symmetric matrices with positive real and imaginary parts, Math. Comp. 67 (1998), 1591-1599.
- [7] Kh.D. Ikramov, Determinantal inequalities for accretive dissipative matrices, J. Math. Sci. (New York) 121 (2004), 2458-2464.
- [8] M. Lin, Fischer type determinantal inequalities for accretive-dissipative matrices, Linear Algebra Appl. 438 (2013), 2808-2812.