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Abstract. A survey is given to some recent results on how generalized nu-

merical ranges relate to the study dilation and perturbation of operators. The

connection to the study quantum error correction, and unital completely pos-

itive linear maps from a Calkin algebra to a matrix space is also discussed.

1. Introduction

Let B(H) be the set of bounded linear operators on a Hilbert space H equipped

with the inner product 〈x, y〉. If H has dimension n, then it is identified as Cn with

the usual inner product 〈x, y〉 = y∗x, and B(H) is identified as Mn, the algebra

of n × n complex matrices. The study of quadratic forms and their applications

appear in many areas of mathematics and other branches of sciences. One such

form is the numerical range (a.k.a. the field of values), defined as follows.

Definition 1.1. The numerical range of an operator A ∈ B(H) is the set

W (A) = {〈Ax, x〉 : x ∈ B(H) and 〈x, x〉 = 1}

Example 1.2. Here are some simple examples, which will appear again in our

subsequent discussion.

• If A =

(
1 0
0 0

)
, then W (A) is the line segment joining 0 and 1.

• If A =

(
0 2
0 0

)
, then W (A) = {µ ∈ C : |µ| ≤ 1}, the unit disk centered

at the origin.

• If A = diag (a1, a2, a3), then W (A) is the triangular disk with vertices

a1, a2, a3.

Informally, the numerical range of an operator A can be viewed as a “picture”

of A, and every point 〈Ax, x〉 in W (A) can be viewed as a “pixel” of the picture.

The “picture” can provide useful information of the operator. In fact, the numerical

range of an operator A can be used to deduce algebraic or analytic properties, locate
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the spectrum σ(A), and obtain norm bounds of A. The information can then be

used to study useful properties such as the invertibility, stability, and convergence

of the sequence {Am : m = 1, . . . } of the operator.

In this paper, we survey some results concerning the use of numerical range

and generalized numerical ranges to study dilation and compression of operators.

The connection of these results to the study quantum error correction, and unital

completely positive linear maps from a Calkin algebra to a matrix space will be

discussed.

We first present some basic results in Section 2. In Section 3 we describe some

ideas on how one can use the inclusion relation of W (B) ⊆ W (A) to ensure that

B has a dilation of the I ⊗ A. Section 4 concerns the joint numerical ranges of

several operators and the joint dilation problem. In Sections 5 and 6, we discuss

different kinds of generalized numerical ranges arising in the study of quantum error

correction codes. The non-emptyness of such general numerical ranges associated

with the error operators of a noisy quantum channel will ensure the existence of

different types of quantum error correction codes. In such a case, the element in the

generalized numerical range will be useful for the construction of a quantum error

correction code for the given channel. It turns out that the results and insights

developed in the study of quantum error correction is useful in the study of joint

essential matricial ranges, and also the images of unital completely positive linear

maps from the Calkin algebra associated with a Hilbert space to matrix spaces.

These results will be described in Section 7.

For most results we will present the statements without proofs. Nevertheless,

we will present three short proofs for the convexity of the numerical range. Also,

we give several short new proofs for a few selected results that are different from

those in the literature.

2. Basic results

We begin with some results which can be readily deduced from the definition.

Proposition 2.1. Let A = H + iG ∈ B(H), where H = H∗ and G = G∗.

a) W (aH + ibG) = {ah+ ibg : h+ ig ∈W (A)} for any a, b ∈ R.

b) W (aA+ bI) = aW (A) + b for any a, b ∈ C.

c) W (A) = W (AT ) and W (A∗) = W (A) = {µ̄ : µ ∈W (A)}.
d) W (X∗AX) ⊆ W (A) for any subspace K of H and X : K → H satisfies

X∗X = IK. The equality holds if K = H and X is unitary.

A fundamental and useful result on the numerical range is the celebrated

Töplitz-Hausdorff theorem [18, 33], proved 100 years ago, asserting that the nu-

merical range of an operator is always convex. There have been many different

proofs of this result; see [4]. Here we present three short proofs.
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Proof 1. Let a = 〈Ax, x〉 and b = 〈Ay, y〉 be two different elements in W (A).

By Proposition 2.1, we may replace A by 1
b−a (A−aI) and assume that (a, b) = (0, 1).

We will show that [a, b] ⊆ W (A). Because 〈Ax, x〉 6= 〈Ay, y〉, the vectors x and y

are linearly independent. Consider the family of unit vectors z(t) = (1−t)x+teiθy
‖(1−t)x+teiθy‖ ,

where θ ∈ [0, 2π) satisfies 〈Ax, eiθy〉 ≥ 0. Then by our choice of θ,

t 7→ µ(t) = 〈Az(t), z(t)〉 = (1− t)2〈Ax, x〉+ 2t(1− t)〈Ax, eiθy〉+ t2〈Ay, y〉,

is a continuous real-valued function on [0, 1] with µ(0) = 0 and µ(1) = 1. Hence,

[0, 1] ⊆ {µ(t) : t ∈ [0, 1]} ⊆W (A). �

Proof 2. Let a = 〈Ax, x〉 and b = 〈Ay, y〉 be two different elements in W (A).

Suppose K = span {x, y} ⊆ H, and X : K → H satisfying X∗X = IK. We may

identify B = X∗AX ∈M2 and span {x, y} = C2. Then

W (B) = {u∗Bu : u ∈ C2, u∗u = 1} = {tr (Buu∗) : u∗u = 1}

can be viewed as the image of the “sphere”

{uu∗ : u ∈ C2, u∗u = 1} =

{
1

2

(
1 + a b− ic
b+ ic 1− a

)
: a, b, c ∈ R, a2 + b2 + c2 = 1

}
in R3 under the real linear map X 7→ tr (BX) ∈ C ≡ R2. Thus, W (B) is an

elliptical disk containing the two points a = tr (Bxx∗) and b = tr (Byy∗). By

Proposition 2.1, W (B) ⊆W (A). The result follows. �

Proof 3. We refine the second part of Proof 2, and show that for B ∈M2 with

eigenvalues λ1, λ2 ∈ C and b =
√

tr (BB∗ − |λ1|2 − |λ2|2, W (B) is an elliptical disk

with foci λ1, λ2 and length of minor axis b. Replacing B by B − trB
2 I2, we may

assume that tr (B) = 0 and B =

(
λ b
0 −λ

)
. If b = 0, then

W (B) = {|u1|2λ− |u2|2λ : u1, u2 ∈ C, |u1|2 + |u2|2 = 1}

is a line segment joining λ and −λ. Suppose b > 0. If λ = 0, then

W (B) = {bu2ū1 : u1, u2 ∈ C, |u1|2 + |u2|2 = 1}

with diameter b. If λ 6= 0, we may further replace B by D∗BD/λ, where D =

diag (1, eiθ) satisfies eiθb/λ = c > 0. Let γ =
√

(2/c)2 + 1, and B = H + iG with

H = H∗, G = G∗. Then B̂ = H + iγG is rank one nilpotent and is unitarily

similar to

(
0
√

4 + c2

0 0

)
so that W (B̂) = {µ ∈ C : |µ| ≤

√
1 + (c/2)2}. Since

W (B̂) = W (H + iγG) = {h + iγg : h + ig ∈ W (B)} by Proposition 2.1, W (B)

is an elliptical disk with major axis [−
√

1 + (c/2)2,
√

1 + (c/2)2] and minor axis

{ir : r ∈ [−c/2, c/2]}. �

Note that Proof 1 is quite standard, and used in many textbooks, e.g., see [35].

Proof 2 is based on [14] and Proof 3 is based on [23]. We summarize the above

results into the following.
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Theorem 2.2. The numerical range of A ∈ B(H) is convex. In particular, if

A ∈M2 has eigenvalues λ1, λ2, then W (A) is an elliptical disk with foci λ1, λ2, and

minor axis with length
√

trA∗A− |λ1|2 − |λ2|2. Consequently, if A =

(
λ1 b
0 λ2

)
,

then the minor axis of the elliptical disk W (A) has length |b|.

Next, we list some results showing that there is an interesting interplay between

the algebraic and analytic properties of A ∈ B(H) and the geometrical properties

of W (A). We use convS and cl(S) to denote the convex hull and closure of the set

S ⊆ C.

Proposition 2.3. Let A ∈ B(H). Then

a) A = µI if and only if W (A) = {µ}
b) A = A∗ if and only if W (A) ⊆ R.

c) A is positive semi-definite if and only if W (A) ⊆ [0,∞)

d) A is unitary if and only if W (A) and W (A−1) lie in the disk.

e) conv σ(A) ⊆ cl(W (A)); the set equality holds if A is normal.

f) If H = H1 ⊕H2 and A1 ⊕A2 ∈ B(H1)⊕ B(H2), then

W (A) = conv {W (A1) ∪W (A2)}.

g) W (I ⊗A) = W (A).

The proof of (a) – (c) and (e) – (f) can be verified readily. The proof of (d) is

more tricky, especially for the infinite dimensional case. One may see [2] for details.

3. Dilation and numerical range inclusion

A useful technique in studying an operator T is to dilate T to a “larger” operator

A ∈ B(H) with “nice” structure so that one can obtain information about T using

the properties of A. Formally, we have the following definition.

Definition 3.1. Let T ∈ B(K) and A ∈ B(H). We say that A is a dilation of

T , equivalently, T is a compression of A, if K can be embedded in H, and A has

operator matrix

(
T ?
? ?

)
with respect to an orthonormal basis using the vectors

in K and K⊥.

The following example illustrates how one can dilate an operator to one with

nice structure.

Example 3.2. Every contraction T ∈ B(K), i.e., T ∈ B(K) with ‖T‖ ≤ 1,

admits a unitary dilation of the form

A =

(
T

√
I − TT ∗√

I − TT ∗ −T ∗
)
∈ B(K ⊕K).
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It turns out that the numerical range can be used in studying dilation. Evi-

dently, A ∈ B(H) is a dilation of T ∈ B(K) with K ⊆ H if there exists X : K → H
with X∗X = IK such that X∗AX = T . By Proposition 2.1 (d), we have W (T ) ⊆
W (A). But the converse may not hold, i.e., W (T ) ⊆W (A) does not ensure that A

is a dilation of T as shown in the following.

Example 3.3. Let A =

(
0 2
0 0

)
∈M2 and T = 03 ∈M3, then

W (T ) = {0} ⊂ {µ ∈ C : |µ| ≤ 1} = W (A),

but A is not a dilation of T as the dimension of A is too low.

By Proposition 2.3 (g), W (I ⊗A) = W (A). This inspires the following.

Problem 3.4. Identify “good” operators A ∈ B(H) such that T ∈ B(K) has a

dilation of the form I ⊗A whenever W (T ) ⊆W (A).

The following theorem was obtained in [31]; see also [32].

Theorem 3.5. Let A ∈M3 be a normal matrix with eigenvalues a1, a2, a3 ∈ C.

Then T ∈ B(K) satisfies W (T ) ⊆ W (A) = conv {a1, a2, a3} if and only if T has a

dilation of the form I ⊗A.

Note that in applying the above theorem, one does not need to fix the matrix

A in advance. For a given operator T , one may choose any triangle with vertices

a1, a2, a3 such that W (T ) lies inside the triangle. Then T will admit a dilation of

the form I ⊗ diag (a1, a2, a3).

Here we give a new short proof for Theorem 3.5 using the following observation,

which can be extended to prove some later results in our discussion.

Lemma 3.6. Let A = H+iG with (H,G) = (H∗, G∗). Suppose a1, a2, b1, b2, c1, c2

are real numbers such that

(
a1 b1
a2 b2

)
is invertible, and

Ã = (a1H + b1G+ c1I) + i(a2H + b2G+ c2I).

Then T = T1 + iT2 with (T1, T2) = (T ∗1 , T
∗
2 ) has a dilation of the form I ⊗A if and

only if T̃ = (a1T1 + b1T2 + c1I) + i(a2T1 + b2T2 + c2I) has a dilation of the form

I ⊗ Ã.

Proof of Theorem 3.5. If T ∈ B(K) is a compression of an operator of the form

I ⊗ A, then W (T ) ⊆ W (A). To prove the converse, we consider three cases. If

a1 = a2 = a3, then W (A) = {a1} and W (T ) ⊆ W (A) implies that T = a1IK. The

result follows.

Suppose A is not a scalar matrix, and a1, a2, a3 are collinear so that W (A)

is a line segment, say, with end points a1, a3. By Lemma 3.6, we can replace A

by 1
a1−a3 (A − a3I) and assume that (a1, a2, a3) = (0, r, 1) for some r ∈ [0, 1]. If
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W (T ) ⊆W (A) then T is a positive operator with T ≤ IK. Then, T is a compression

of the operator( √
T√

I − T

)(√
T
√
I − T

)
=

(
T

√
T − T 2

√
T − T 2 I − T

)
,

which is unitarily similar to IK ⊗ diag (0, 1). So, T is a compression of a matrix of

the form IK ⊗ diag (0, r, 1).

Finally, suppose a1, a2, a3 are three non-collinear points in C. We may replace

A by 1
a2−a1 (A − a1I) and assume that (a1, a2) = (1, 0). Up to unitary similarity,

we may assume that A = diag (0, 1, r + is) = H + iG with (H,G) = (H∗, G∗). We

may further replace A by (H − r
sG) + i 1sG, and assume that A = diag (0, 1, i). If

T = T1 + iT2 with (T1, T2) = (T ∗1 , T
∗
2 ) satisfies W (T ) ⊆ W (A), then for any unit

vector x, the point 〈Tx, x〉 lies inside the triangle with vertices 0, 1, i. Hence,

〈T1x, x〉 ≥ 0, 〈T2x, x〉 ≥ 0, 〈(T1 + T2)x, x〉 ≤ 1 for all x ∈ K with ‖x‖ = 1.

Thus, T1, T2 are positive operators such that T1 + T2 ≤ IK. Let X be such that

X = [
√
IK − T1 − T2

√
T1
√
T2] satisfies X∗X = IK and T = X∗(A⊗ IK)X. Hence

T is a compression of an operator of the form IK ⊗A. �

The following result was obtained in [11] extending a result in [1] (see also [3])

corresponding to the special case when A =

(
0 2
0 0

)
.

Theorem 3.7. Let A ∈M2 so that W (A) is the elliptical disk with eigenvalues

a1, a2 as foci and minor axis of length b =
√

trA∗A− |a1|2 − |a2|2. Then T ∈ B(H)

satisfies W (T ) ⊆W (A) if and only if T has a dilation of the form I ⊗A.

In Theorem 3.7, if A ∈ M2 is normal, then one can use the proof of Theorem

3.5 to get the conclusion. If A is not normal, one can use Lemma 3.6 to reduce the

problem to the case treated in [1] (and also [3]) as follows. Replace A by aA+bI and

assume that W (A) is a standard ellipse with major axis equal to [−1, 1] and minor

axis {ri : r ∈ [−b, b]}. Then we can further replace A by Ã = 1
2 (A+A∗)+ 1

2b (A−A
∗)

so that W (Ã) is the unit disk centered at origin.

Note that in the application of Theorem 3.7, one needs not specify the matrix

A in advance. For a given operator T , one may consider an ellipse E such that

W (T ) ⊆ E . One can then construct A =

(
a1 b
0 a2

)
∈M2, where a1, a2 are the foci

of E and b is the length of the minor axis of E . Then T will admit a dilation of the

form I ⊗A.

Theorems 3.5 and 3.7 were further extended in [12] to the following.

Theorem 3.8. Let A ∈ M3 have a reducing eigenvalue so that A is unitarily

similar to [α] ⊕ A1, with A1 ∈ M2, so that W (A) is the convex hull of α and the

elliptical disk W (A1). Then T ∈ B(H) satisfies W (T ) ⊆W (A) if and only if T has

a dilation of the form I ⊗A.
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Theorem 3.8 may fail for general matrices A ∈M3 or normal matrices A ∈M4

as shown in the following.

Example 3.9. (a) Let A =

0 1 0
0 0 1
0 0 0

 and T =

(
0
√

2
0 0

)
, then

W (A) = W (T ) = {µ ∈ C : |µ| ≤ 1/
√

2}.

However ‖T‖ =
√

2 > 1 = ‖A‖, therefore T has no dilation of the form I ⊗A.

(b) Let T be as in the previous example and A = diag (1, i,−1,−i), then

note W (T ) ⊆ conv {1, i,−1,−i} = W (A). As in the previous example, ‖A‖ = 1

therefore T has no dilation of the form I ⊗A.

In connection to Example 3.9 (b), we have the following; see [11, Theorem 2.5].

Theorem 3.10. Let A = diag (1, i,−1,−i). Then T ∈ B(H) has a dilation of

the form T ⊗A if and only if W (T̃ ) lies inside the unit disk, where

T̃ =

(
0 T + T ∗

i(T ∗ − T ) 0

)
.

It is interesting to note that the proof of Theorem 3.8 in [12] relies on results

of completely positive linear maps and the following theorem, which is the key to

affirm a conjecture of Halmos [17] that we will state as Corollary 3.12.

Theorem 3.11. Suppose T ∈ B(H) is a contraction with

W (T ) ⊆ S = {µ : |µ| ≤ 1, µ+ µ ≤ r},

then T has a unitary dilation A ∈ B(H⊕H) with W (A) ⊆ S.

Denote by cl(R) the closure of a set R ⊆ C.

Corollary 3.12. Let T ∈ B(H) be a contraction. Then

cl(W (T )) = ∩{cl(W (U)) : U ∈ B(H⊕H) is a unitary dilation of T}.

There are many open problems concerning dilation and numerical range inclu-

sion. We list a few in the following.

1. Determine A ∈ B(H) such that an operator B ∈ B(K) has a dilation of

the form I ⊗A whenever W (B) ⊆W (A).

2. Determine B ∈ B(K) such that B has a dilation of the form I ⊗A for an

operator A ∈ B(H) whenever W (B) ⊆W (A).

3. One may also consider a special region R in C such that W (B) ⊆ R will

ensure that B has a dilation of the form I ⊗ A for some A ∈ B(H) with

simple structure.



8 SARA BOTELHO-ANDRADE AND CHI-KWONG LI

In connection to Problem 1, by Theorem 3.8 if A ∈ M3 has a reducing eigen-

value, then for any T ∈ B(H) satisfying W (T ) ⊆ W (A) will ensure that T has

dilation of the form I ⊗ A. In a forthcoming paper, C.K. Li and Y.T. Poon show

that if a matrix A ∈M3 is such that the boundary of W (A) contains a line segment,

then any operator T satisfying W (T ) ⊆W (A) will have a dilation of the form I⊗A.

This will further extend Theorem 3.8. For Problem 2, it is clear that all normal

operators B satisfy the said property. It would be nice to determine whether the

converse is true. For Problem 3, it was shown in [11] that if R is a trapezoidal

region in R2 ≡ C and B ∈ Mn satisfies W (B) ⊆ R, then B has a dilation of the

form A1 ⊕ · · · ⊕An with A1, . . . , An ∈M2.

4. Joint numerical ranges and joint dilation

Definition 4.1. For A1, ..., Ak ∈ B(H), define their joint numerical range by

W (A1, ..., Ak) = {(〈A1x, x〉, ..., 〈Akx, x〉) : x ∈ H and 〈x, x〉 = 1}

Identifying C with R2, we have W (A) = W (A1, A2) if A = A1 + iA2 with

(A1, A2) = (A∗1, A
∗
2). So we can focus on A1, . . . , Am lying in S(H), the real linear

space of self-adjoint operators in B(H).

A natural property to consider is the convexity of the joint numerical range.

The following result was obtained in [25]; see also [4].

Theorem 4.2. Let A = (A1, . . . , Am) ∈ S(H)
m

.

a) If the span of {I, A1, . . . , Am} has dimension not larger than 3, then W (A)

is convex.

b) If dimH ≥ 3 and the span of {I, A1, . . . , Am} has dimension 4, then W (A)

is convex.

c) Let B1 =

(
0 1
1 0

)
, B2 =

(
0 i
−i 0

)
, B3 =

(
1 0
0 −1

)
. Then

W (B1, B2, B3) = {(b1, b2, b3) : b1, b2, b3 ∈ R, b21 + b22 + b23 = 1}

is not convex.

d) If {I, A1, A2, A3} are linearly independent, then there is a rank-2 orthog-

onal projection A0 ∈ B(H) such that W (A0, A1, A2, A3) is not convex.

One can extend the result by Mirman to the joint numerical range setting.

Suppose W (B1, B2, B3) has interior points and lies inside a simplex S in R3 with

vertices

v1 =


a1
a2
a3
a4

 v2 =


b1
b2
b3
b4

 v3 =


c1
c2
c3
c4

 v4 =


d1
d2
d3
d4


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Then (B1, B2, B3) has a joint dilation (D1, D2, D3) with Dj = I⊗diag (aj , bj , cj , dj)

for j = 1, 2, 3. In other words, there exists a unitary U such that

U∗DjU =

(
Bj ?
? ?

)
for j = 1, 2, 3.

More generally, we have the following result proved in [5].

Theorem 4.3. Let B = (B1, . . . , Bm) ∈ S(H)
m

be such that W (B) has non-

empty interior in Rm. That is, {I,B1, . . . , Bm} is linearly independent. Suppose

S ⊆ Rm is a simplex with vertices

v1 =

 v1,1
...

v1,m

 , . . . , vm+1 =

 vm+1,1

...
vm+1,m

 ∈ Rm.

Then W (B1, . . . , Bm) ⊆ S if and only if B1, . . . , Bm has a joint dilation to the

diagonal operators

IN ⊗Dj with Dj = diag (v1j , . . . , vm+1,j) ∈Mm+1, for j = 1, . . . ,m.

One can extend the idea of Lemma 3.6 and give a short proof for Theorem 4.3.

Proof of Theorem 4.3. We first reduce the problem to the special case for S to

the standard simplex with vertices 0, e1, . . . , em, where {e1, . . . , em} is the standard

basis for R1×m. To this end, consider the inveritble affine map f : R1×m → R1×m

defined by

(b1, . . . , bm) 7→ (b1, . . . , bm)R+ v,

where R ∈ Mm is a real invertible matrix and v = (v1, . . . , vm) ∈ R1×m. One may

extend the affine map to f : B(H)
m → B(H)

m
defined by

(B1, . . . , Bm) 7→ (B1, . . . , Bm)(R⊗ I) + (v1I, . . . , vmI).

Then the conclusion of the theorem holds for (B, S) if and only if it holds for

(f(B), f(S)). Thus, one may apply a suitable invertible affine map to transform S

to the standard simplex, and prove the result for this special case.

Now, suppose S is the standard simplex. Then W (B) ⊆ S if and only if

B1, . . . , Bm are positive operators such that B1 + · · · + Bm ≤ I. Let X be such

that X∗ = [
√
B0 · · ·

√
Bm], where B0 = I − (B1 + · · · + Bm). Then X∗X = I

and X∗(Aj ⊗ I)X = Bj for Aj = Aj0 ⊕ · · · ⊕ Ajm, where Ajj = IH and Aj` = 0H

otherwise. �

Similar to the remark after Theorem 3.5, instead of fixing a simplex in advance,

one may choose any simplex S such that W (B) ⊆ S and use the vertices of S to get

an m-tuple of diagonal matrices (D1, . . . , Dm) such that (B1, . . . , Bm) has a joint

dilation of the form (I ⊗D1, . . . , I ⊗Dm). Thus, we have the following.

Corollary 4.4. Let A ∈ S(H)
m

. Then the closure of conv (W (A)) equals the

intersection of W (D1, . . . , Dn), where D1, . . . , Dm ∈ S(H) are mutually commuting

operators such that D is a joint dilation of A.
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In [5], the authors use Theorem 4.3 (or the above corollary) to define a norm

on A = (A1, . . . , Am) ∈ B(H)
m

by

‖A‖ = inf{‖(Ã1, . . . , Ãm)‖ : Ã ∈ D(A)},

where D(A) consists of (Ã1, . . . , Ãm) such that {Ã1, . . . , Ãm} is a set of mutually

commuting normal operators and there is X satisfying X∗X = I, X∗ÃjX = Aj for

j = 1, . . . ,m. Such a norm is invariant under any permutation of the components

of A, and the change of any of the component Aj to Atj , A
∗
j , etc.

Recall that an operator system of B(H) is a subspace spanned by some self-

adjoint operators and the identity operator. Let A ⊆ B(H) and B ⊆ B(K) be

operators systems. A map φ : A → B is positive if Φ(A) ∈ B is positive semidefinite

whenever A ∈ A is positive semidefinite. For a positive integer k, the map φ is k-

positive if (φ(Aij)) ∈ Mk(B) is positive whenever (Aij) ∈ Mk(A) is positive. If φ

is k-positive for all positive integers k, then φ is completely positive. The following

results connect the notion of unital positive maps and unital completely positive

maps with the inclusion relation of numerical ranges and joint dilation of operators;

see [11].

Theorem 4.5. Let B1, . . . , Bm ∈ S(H) and A1, . . . , Am ∈ Mn be Hermitian

matrices. Consider the map φ : Mn → B(H) defined by

φ(µ0I+µ1A1 + . . .+µmAm) = µ0I+µ1B1 + . . .+µmBm for any µ0, . . . , µm ∈ C,

on span{I, A1, . . . , Am}. Then

• φ is a positive linear map if and only if

W (B1, . . . , Bm) ⊆ convW (A1, . . . , Am).

• φ is a completely positive (linear) map if and only if

(B1, . . . , Bm) has joint dilation (I ⊗A1, . . . , I ⊗Am).

5. Quantum Channels and Higher Rank Numerical Ranges

In the mathematical setting, quantum states are density operators, i.e. posi-

tive semidefinite operators of trace 1. Quantum channels and quantum operations

are trace preserving completely positive maps. In the finite dimensional case, a

quantum channel Φ transforming quantum states in Mn to quantum states in Mm

admits the operator sum representation:

Φ(X) = F1XF
∗
1 + ...+ FrXF

∗
r

for some m× n and Fi satisfying
∑r
j=1 F

∗
j Fj = In; see [6] and [20]. The matrices

F1, . . . , Fr are known as the Choi-Kraus operators or the error operators of the

channel Φ.

We say that a quantum channel Φ : B(H)→ B(H) has a quantum error code V ,

which is a subspace of H, provided that there is a quantum channel Ψ : Mn →Mn

satisfying Ψ◦Φ(X) = X where PVXPV = X, where PV is the orthogonal projection
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of H onto the coding subspace V . If H = Cn and Φ has error operators F1, . . . , Fr,

it is shown in [19] that the search of subspace V and PV reduces to the search of

PV satisfying PF ∗i FjF = fijP for all 1 ≤ i, j ≤ r. In this connection, researchers

consider the rank p-numerical range of A = (A1, ..., Am) ∈Mm
n by

Λp(A) = {(a1, ..., am) : X∗AjX = ajIp for some X ∈ Vp}

where Vp is the set of linear maps X : Cp −→ H satisfying X∗X = Ip; see [7, 9, 10,

8, 34, 27]. Note that the quantum channel Φ has a quantum error correction code

of dimension p if and only if Λp(A) 6= ∅ with A = (F ∗1 F1, F
∗
1 F2, . . . , F

∗
r Fr) ∈Mr2

n .

Also, observe that (a1, . . . , am) ∈ Λp(A) if and only if there is a unitary U = [X, X̃]

such that

U∗AjU =

(
ajIp ?
? ?

)
, j = 1, . . . ,m.

Using the higher rank numerical ranges, one can change the problem of searching

for an error correct code for a quantum channel Φ to the problem of studying the

non-empty-ness of the set Λp(A) ⊆ Cm, which is closely related to the joint unitary

orbit of A:

U(A) = {(U∗A1U, . . . , U
∗AmU) : U ∈Mn, U

∗U = In}.

Therefore, one can apply algebraic, analytic, and geometrical techniques to study

the problem.

If m = 1 and A1 = A∗1 has eigenvalues λ1, . . . , λn, and p ≤ (n + 1)/2, then

Λp(A1) = [λn−p+1, λp]. To see this, assume that {x1, . . . , xn} is a set of orthonormal

eigenvectors of A such that Axj = λjxj for j = 1, . . . , n. Then for any µ ∈
[λn−p+1, λp] there is a unit vector yj ∈ span{xn−p+1, xp} such that y∗jAyj = µ. Let

Y = [y1 . . . yp]. Then Y ∗Y = Ip and Y ∗AY = µIp. Conversely, if Y is n × p such

that Y ∗Y = Ip and Y ∗AY = µIp, then by the interlacing inequalities, see [15], we

see that λp ≥ µ ≥ λn−p+1. However, Λp(A1) may be empty if p > (n+ 1)/2.

It is non-trivial to determine Λp(A) even if A is a normal matrix. In [9], the

authors conjectured the following result, which was confirmed in [27].

Theorem 5.1. Suppose A ∈Mn is a normal matrix with eigenvalues λ1, . . . , λn.

Let 1 ≤ p ≤ n. Then

Λp(A) =
⋂

1≤j1<···<jn−p+1≤n

conv {λj1 , . . . , λn−p+1}.

The authors in [9] also conjectured that for A ∈ Mn, the set Λp(A) is convex,

and they reduced the problem to the existence of the solution of certain matrix

equation. This is confirmed in [34]. In [29], the authors used the theory of canonical

form of matrices under ∗-congruence to give a description of the set Λp(A) as the

intersection of half spaces in C. It then follows that Λp(A) is convex. Here is the

statement of the result.
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Theorem 5.2. Suppose A = H + iG ∈ Mn with (H,G) = (H∗, G∗), and

1 ≤ p ≤ n. Then

Λp(A) =
⋂

θ∈[0,2π)

{h+ ig : cos θh+ sin θg ≤ λ1(cos θH + sin θG)},

where λ1(K) is the largest eigenvalue of the Hermitian matrix K. Consequently,

Λp(A) is a compact convex set.

The study of Λp(A1, . . . , Am) for m ≥ 2 is more intricate. Similar to the

study of the joint numerical range, if we write Aj = Hj + iGj with (Hj , Gj) =

(H∗j , G
∗
j ) for j = 1, . . . ,m, then Λj(A1, . . . , Am) ⊆ Cm and can be identified with

Λj(H1, G1, . . . ,Hm, Gm) ⊆ R2m. So, we can focus on Λp(A) for A = (A1, . . . , Am) ∈
S(H)

m
. Now, suppose R ∈ Mm is a real invertible matrix and Ã = (Ã1, . . . , Ãm)

with (Ã1 · · · Ãm) = (A1 · · ·Am)(R ⊗ In), Then ã ∈ Λp(Ã) if and only if ã = aR

with a ∈ Λp(A). Hence, we can choose a suitable R ∈ Mm such that Ã =

(Ã1, . . . , Ãk, 0, . . . , 0), where {Ã1, . . . , Ãk} is linearly independent. Then Λp(A) is

completely determined by Λp(Ã1, . . . , Ãk). Furthermore, if I ∈ span{Ã1, . . . , Ãk},
which is the case in the study of quantum error correction, then we may assume

that Ãk = In so that every ã ∈ Λp(Ã1, . . . , Ãk) will have last entry equal to 1. So,

we need only consider Λp(Ã1, . . . , Ãk−1). In the following we shall always assume

that {A1, . . . , Am} is linearly independent and I /∈ span{A1, . . . , Am}.
Return to the problem concerning the non-empty-ness of Λp(A1, . . . , Am) re-

lated to the study of quantum error correction. We have the following; see [26].

Theorem 5.3. Let A = (A1, . . . , Am) ∈ S(H)
m

. Then Λp(A1, . . . , Am) is

non-empty if dimH ≥ (p− 1)(m+ 1)2.

It is a challenging problem to find minimum dimension of H that ensure

Λp(A) 6= ∅ for A = (A1, . . . , Am) ∈ S(H)
m

. In case the set is non-empty, one

may ask for other properties of the set Λp(A). The following results were also

obtained in [26].

Theorem 5.4. Let A = (A1, . . . , Am) ∈ S(H)
m

. Suppose H1 is a subspace

of H of dimension r, where 1 ≤ r < p ≤ dimH, and X : H⊥1 → H satisfying

X∗X = IH⊥1 . Then

Λp(A) ⊆ Λp−r(X
∗A1X, . . . ,X

∗AmX).

From this theorem, we can obtain the following.

Theorem 5.5. Let A = (A1, . . . , Am) ∈ S(H)
m

. Suppose K = (K1, . . . ,Km) ∈
S(H)

m
is an m-tuple of finite rank operators such that rank(K2

1 + · · ·+ K2
m) = r,

with 1 ≤ r < p. Then

Λp(A) ⊆ Λp−r(A + K).
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The above two theorems provide information about Λp(Ã) if Ã is a (joint)

compression of A or perturbation of A. These results will be extended to a more

general version of numerical ranges arising in more sophisticated quantum error

correction schemes.

In general, Λp(A1, . . . , Am) is not convex if m > 2. It is interesting to de-

termine the conditions on (A1, . . . , Am) so that the set is convex. Note that if

Λp(A1, . . . , Am) is convex, one can derive efficient algorithms to find its elements

(if they exist) and construct quantum error correction codes accordingly.

6. The (p, q)-matricial ranges

Definition 6.1. For A = (A1, ..., Am) ∈ B(H)
m

, the joint q-matricial range

of A is given by

W (q : A) = {(X∗A1X, ...,X
∗AmX) : X ∈ Vq},

where Vq denote the set of operators X : Cp → H satisfying X∗X = Iq.

In case, m = 1, we simply write W (q : A1). Researchers have used the set

W (q : A1) to study operators A1 ∈ B(H). For example, two compact operators

A1, B1 ∈ B(H) are unitarily similar if and only if W (q : A1) = W (q : B1) for

all q = 1, 2, . . . ; see [13]. One may see the survey [16] and its references for more

interesting results. However, not many geometrical results have been obtained from

W (q : A). Again, for the geometrical properties of the set W (q : A), one can use

the Hermitian decomposition of Aj = Hj + iGj for j = 1, . . . ,m. and focus on the

study of W (q : A) for A = (A1, . . . , Am) ∈ S(H)
m

. Moreover, we can assume that

{A1, . . . , Am} is linearly independent and I is not in the linear span. When m = 1,

the following was proved in [30].

Theorem 6.2. Let A ∈Mn be a Hermitian matrix with eigenvalues a1 ≥ ... ≥
an. Then the set W (q : A) consists of Hermitian matrices B ∈Mq with eigenvalues

b1 ≥ · · · ≥ bq satisfying aj ≥ bj ≥ an−q+j for j = 1, ..., q. Consequently, the set

W (q : A) is convex if and only if a1 = aq and an−q+1 = an.

By the above theorem, we see that W (q : A) may not be convex even if A =

(A1) with A1 = A∗1. In general, it is difficult to determine the structure of W (q : A).

Even if A = (A1, A2) for two commuting Hermitian matrices A1, A2 ∈Mn so that

W (q : (A1, A2)) ≡W (q : A) for the normal matrix A = A1+iA2, it is quite difficult

to determine the set W (q : A) of all q × q principal submatrices of U∗AU , where

U ∈Mn is unitary. This may be a reason why the study of W (q : A) has not been

very active in the last two decades.

In the pursuit of “better” quantum error correction codes, researchers proposed

the following concept covering both Λp(A) and W (q : A); see [21] and [28].

Definition 6.3. The (p, q)-matricial range of A = (A1, ..., Am) ∈ B(H)
m

,

denoted by Λp,q(A), is the set of m-tupe Hermitian matrices (B1, ..., Bm) ∈ Mm
q
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such that

X∗AjX = Ip ⊗Bj =

Bj . . .

Bj

 for j = 1, ...,m

for some X ∈ Vpq.

An equivalent formulation is to say there is a unitary U = [X, X̃] such that(
Ip ⊗Bj ?

? ?

)
.

Observe that joint numerical range, joint rank p-numerical range and q-matricial

range are all particular cases of (p, q)-matricial range.

W (q : A)

Λp,q(A) W (A)

Λp(A)

p = 1

q = 1

q = 1

p = 1

There is no general convexity result for Λp,q(A). In [22] it was shown that if

dimH is sufficiently large, then Λp,q(A) is star-shaped and non-empty. To state

the theorem we first recall the definition of star-shaped.

Definition 6.4. A set S ⊆ RN is star-shaped if there is a star center, v0 ∈ S,

such that the line segment [v0, v] = {tv0 + (1 − t)v : t ∈ [0, 1]} lies entirely in the

set S for any v ∈ S.

The following result was proved in [22].

Theorem 6.5. Let A = (A1, . . . , Am) ∈ S(H)
m

, and p, q be positive integers.

Then

(a) If dim(H) ≥ (pq − 1)(m+ 1)2 then Λpq(A) and Λp,q(A) are non-empty.

(b) If dim(H) ≥ (N − 1)(m + 1)2 for N = pq(m + 2), then every element in

conv {(a1Iq, ..., amIq) : (a1, ..., am) ∈ ΛN (A)} is a star center of Λp,q(A).

(c) For any r with 1 ≤ qr < p ≤ dimH, if K = (K1, . . . ,Km) ∈ S(H)
m

is

such that rank(K2
1 + . . .+K2

m) ≤ r, then Λp,q(A) ⊆ Λp−qr,q(A + K).

(d) Suppose H1 is a subspace of H of dimension r with 1 ≤ qr < p ≤ dimH,

and X : H⊥1 → H satisfies X∗X = IH⊥1 . Then

Λp,q(A) ⊆ Λp−qr,q(X
∗A1X, . . . ,X

∗AmX).

When q = 1, Theorem 6.5 reduces to the results in Section 5. By Theorem 6.5

and the results in Section 5, if dimH is high, then one can always find a (basic type

or more sophisticated type of) quantum error correction code for a noisy quantum

channel. If the dimension is much higher, then one can get a convex subset of
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higher rank numerical range so that there will be more choices for quantum error

correction codes, and one may be able to select one with additional nice properties.

Moreover, if the quantum channel is under perturbation so that the operator sys-

tem associated with the error operators changed from the span{I, A1, . . . , Am} to

span{I,A1 +K1, . . . , Am +Km} with low rank operators K1, . . . ,Km, one can still

get a quantum error correction with reduced dimension based on those of the orig-

inal channel. Similarly, if one considers the compression of span{I, A1, . . . , Am} to

span{I,X∗A1X, . . . ,X
∗AmX}, the quantum error correction codes for the original

system will still be useful for the compressed system.

When p = 1, Theorem 6.5 reduces to the following.

Theorem 6.6. Let A = (A1, . . . , Am) ∈ S(H)
m

. The set

W (q : A) = {(X∗A1X, . . . ,X
∗AmX) : X ∈ Vq}

is star-shaped if dimH ≥ (N − 1)(m+ 1)2 with N = q(m+ 2).

In particular, the set ΛN (A) is non-empty, and (a1I1, . . . , amIq) is a star center

whenever (a1, . . . , am) ∈ conv ΛN (A).

7. The joint essential numerical range

If dimH =∞, we consider the following generalization of Λq(A) and Λp,q(A).

Let

Λ∞(A) = ∩r∈NΛr(A) ⊆ Rm,

i.e., (a1, . . . , am) ∈ Λ∞(A) if there is X ∈ V∞, where V∞ consists of X : K → H for

an infinite dimensional closed subspace of H satisfying X∗X = I∞, and X∗AjX =

ajI∞ for j = 1, ...m;

Λ∞,q(A) = ∩r∈NΛr,q(A) ⊆Mm
q ,

i.e., (B1, . . . , Bm) ∈ Λ∞,q(A) if there is X ∈ V∞ such that X∗AjX = I∞ ⊗ Bj for

j = 1, ...m.

Theorem 7.1. [22] Let A = (A1, . . . , Am) ∈ B(H), where dimH = ∞, then

the set Λ∞,q(A) is convex.

The statement above does not guarantee that Λ∞,q(A) is non-empty. For

instance, if A = diag (1, 1/2, 1/3, . . .) then Λ∞,q(A) = ∅ for any integer q > 0.

Definition 7.2. Let K(H) denote the set of compact operators in B(H). Define

the essential (p, q)-matricial range of A ∈ B(H)
m

by

Λessp,q (A) = ∩{cl(Λp,q(A + K)) : K ∈ K(H)m}.

This definition says that B = (B1, . . . , Bm) ∈ Λessp,q (A) if for any K ∈ K(H)m

then B ∈ cl(Λp,q(A+K)). Note that if p = 1, we get the essential q-matricial range

defined as

Wess(q : A) = ∩{cl(W (q : A + K)) : K ∈ K(H)m}.
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That is, B ∈ Wess(q : A) if B ∈ cl(W (q : A + K)) for every K ∈ K(H)m. The

following is obtained in [22].

Theorem 7.3. Let A = (A1, . . . , Am) ∈ B(H)
m

where dimH = ∞, then for

any positive integer p,

Λessp,q (A) = Wess(q : A)

is non-empty, compact and convex.

It turns out the the essential numerical range is connected to the algebra q-

matricial range of A ∈ B(H)
m

defined as follows.

Definition 7.4. Define the algebra q-matricial range of A ∈ B(H)
m

by

Vq(A) = {(Φ(π(A1)), . . . ,Φ(π(Am))) : Φ is a unital completely

positive linear map from B(H)/K(H) to Mq},

where π is the canonical surjection from B(H) to the Calkin algebra B(H)/K(H).

The following results were obtained in [24].

Theorem 7.5. Let A ∈ S(H)
m

, where dimH = ∞, and p, q be positive inte-

gers. Then there is K ∈ K(H)m ∩ S(H)
m

such that

Λessp,r (A) = cl(Λp,r(A + K)) = Vr(A) for all r = 1, . . . , p.

Theorem 7.6. Let A ∈ S(H)
m

be such that Wess(1 : A) is a simplex in Rm,

where dimH =∞. Then there is K ∈ K(H)m ∩ S(H)
m

such that

Λessp,q (A) = cl(Λp,q(A + K)) = Vq(A) for all p, q ∈ N.

It is known that Theorem 7.6 does not hold for general A ∈ B(H)
m

if m ≥ 4.

The case m = 1 is covered by the theorem. The cases for m = 2, 3 are open. One

may see the references in [24] for more background of this problem.
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