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Abstract

The interplay between the algebraic and analytic properties of a matrix and the geometric

properties of its pseudospectrum is investigated. It is shown that one can characterize Hermitian

matrices, positive semi-definite matrices, orthogonal projections, unitary matrices, etc. in terms of

the pseudospectrum. Also, characterizations are given to maps on matrices leaving invariant the

pseudospectrum of the sum, difference, or product of matrix pairs. It is shown that such a map is

always a unitary similarity transform followed by some simple operations such as adding a constant

matrix, taking the matrix transpose, or multiplying by a scalar in {1,−1}.
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1 Introduction

Denote by Mn the set of n×n complex matrices equipped with the operator norm ‖ · ‖ induced by

the usual vector norm ‖x‖ = (x∗x)1/2 on Cn, i.e.,

‖A‖ = max{‖Ax‖ : x ∈ Cn, 0 < ‖x‖ ≤ 1}.

Let ε > 0. The pseudospectrum of a matrix A ∈Mn is defined by

σε(A) = {µ ∈ C : there is x ∈ Cn, E ∈Mn with ‖E‖ ≤ ε such that (A+ E)x = µx}.

(Some authors use “‖E‖ < ε” instead of “‖E‖ ≤ ε” in the definition of σε(A). One can easily

adapt our results and proofs using this different definition.) The pseudospectrum of a matrix A

for a given ε consists of all eigenvalues of matrices which are ε-close to A. Numerical algorithms

which calculate the eigenvalues of a matrix give only approximate results due to rounding and

other errors. These errors can be described with the matrix E. There are many interesting results

concerning the pseudospectrum and its applications to applied problems; see [7]. Moreover, many
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researchers have derived efficient algorithms to generate pseudospetra of matrices; see [3] and its

references.

In this paper, we show that the pseudospectrum can be used to study the algebraic and geometric

properties of matrices; see Section 2. For example, we show that one can characterize Hermitian

matrices, positive semidefinite matrices, orthogonal projections, unitary matrices, etc. in terms of

pseudospectrum. Moreover, we study maps Φ : Mn →Mn such that σε(A ◦B) = σε(Φ(A) ◦Φ(B))

for all A,B ∈ Mn, where A ◦ B = A + B,A − B or AB. We show that such a map is always a

unitary similarity transform followed by some simple operations such as adding a constant matrix,

taking the matrix transpose, or multiplying by a scalar in {1,−1}; see Section 3.

We will use the following equivalent definitions of pseudospectrum in our discussion; see [7].

(1) σε(A) = {µ ∈ C : ‖(µI −A)x‖ ≤ ε for some unit vector x ∈ Cn}.
(2) Denote by s1(A) ≥ · · · ≥ sn(A) the singular values of A ∈Mn. Then

σε(A) = {µ ∈ C : sn(µI −A) ≤ ε}.

(3) Using the convention that ‖(A− λI)−1‖ =∞ for λ ∈ σ(A), we have

σε(A) = {µ ∈ C : ‖(A− µI)−1‖ ≥ ε−1}.

The following properties are useful; see [7, Theorem 2.2 and 2.4].

Proposition 1.1 Let ε > 0 and A ∈Mn.

(a) If A = A1 ⊕A2, then σε(A) = σε(A1) ∪ σε(A2).

(b) We have σ(A) +D(0, ε) ⊆ σε(A). The set equality holds if A is normal.

(c) For any c ∈ C, σε(A+ cI) = c+ σε(A).

(d) For any nonzero c ∈ C, σ|c|ε(cA) = cσε(A).

(e) σε(A) is a nonempty compact subset of C, and any bounded connected component of σε(A)

has a nonempty intersection with σ(A). Consequently, σε(A) has of at most n connected compo-

nents.

In our discussion, we always assume that n ≥ 2 to avoid trivial consideration. The following

notation and definitions will be used.

Mn: the set of n× n complex matrices.

{E11, E12, . . . , Enn}: the standard basis for Mn.

{e1, . . . , en}: the standard basis for Cn.

D(a, r) = {µ ∈ C : |µ− a| ≤ r}, where a ∈ C and r ≥ 0.

2 The pseudospectrum and matrix properties

Proposition 2.1 Suppose ε > 0 and A =

(
a b
0 c

)
∈M2. Then

σε(A) =

{
µ ∈ C :

√
(|µ− a|+ |µ− c|)2 + |b|2 −

√
(|µ− a| − |µ− c|)2 + |b|2 ≤ 2ε

}
.
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Consequently, b = 0 if and only if σε(A) = D(a, ε) ∪D(c, ε). If a = c = 0, then

σε(A) =

{
µ : |µ| ≤

√
ε(ε+ |b|)

}
.

Proof. Let s1 and s2 be the singular values of µI2−A. Then s1s2 = | det(A)| = |(µ− a)(µ− c)|
and

s21 + s22 = tr ((µI2 −A)∗(µI2 −A)) = |µ− a|2 + |b|2 + |µ− c|2.

Thus, (s1 ± s2)2 = (|µ− a| ± |µ− c|)2 + |b|2 so that

2s2 =
√

(|µ− a|+ |µ− c|)2 + |b|2 −
√

(|µ− a| − |µ− c|)2 + |b|2.

The description of σε(A) follows.

The last two assertions can be verified readily. 2

By Proposition 1.1(b), if A is normal, then σε(A) = σ(A) + D(0, ε). By Proposition 2.1, for

ε > 0 and A ∈M2, if σε(A) is the union of two disks, which may be identical, with radius ε, then A

is normal. We do not need to know σ(A) in advance to conclude that A ∈M2 is normal in terms of

σε(A). However, the situation for higher dimensions is more delicate. In fact, contrary to the belief

of some authors (see [7, Theorem 2.4]), the converse of Proposition 1.1(b) is not true as shown in

the following example.

Example 2.2 Let ε = 2, w = ei2π/3, and A = A1 ⊕ A2 with A1 = diag (1, w, w2) and A2 =(
0 b
0 0

)
, where b > 0 satisfies σε(A2) = {µ ∈ C : |µ| ≤

√
2(2 + b)} ⊆ D

(
0, (
√

13 + 1)/2
)

. Then A

is not normal and

σε(A) = σε(A1) ∪ σε(A2) = σε(A1) = σ(A) +D(0, ε).

It is not hard to see that the problem in Example 2.2 occurs because σε(A2) is a subset of

σ(A) + D(0, ε). As a result, σε(A) fails to detect that 0 is not a reducing eigenvalue of A. Recall

that µ is an reducing eigenvalue of B ∈ Mn if B is unitarily similar to µIk ⊕ B̂, where k is the

algebraic multiplicity of the eigenvalue µ of B; a matrix B ∈ Mn is normal if and only if each

eigenvalue of B is reducing. Theorem 2.5 below shows that a stronger condition on σε(A) is needed

to conclude that A is normal. We first prove the following lemmas.

Lemma 2.3 Let ε > 0. Suppose A =

(
A1 ∗
0 A2

)
∈Mn with A1 ∈Mk. Then σε(A1) ⊆ σε(A).

Proof. Suppose µ ∈ σε(A1). Then there is a unit vector x ∈ Ck such that ‖(µI − A1)x‖ ≤ ε.

Let x̃ =

(
x
0

)
∈ Cn. Then ‖(µI −A)x‖ ≤ ε so that µ ∈ σε(A). 2
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Lemma 2.4 Let ε > 0, A ∈ Mn, and µ ∈ σ(A). If D(µ, ε) contains a boundary point of σε(A),

then µ is a reducing eigenvalue of A.

Proof. Suppose µ is not an reducing eigenvalue of A. We may assume that A is in upper

triangular form with the leading 2 × 2 submatrix equal to A1 =

(
µ d
0 µ2

)
with d > 0; see the

lemma in [6]. By Proposition 2.1, D(µ, ε) lies in the interior of σε(A1), which is a subset of σε(A)

by Lemma 2.3. 2

Theorem 2.5 Let ε > 0, A ∈ Mn, and µ1, . . . , µm ∈ C be such that σε(A) = ∪mj=1D(µj , ε) and

each D(µj , ε) contains a boundary point of σε(A). Moreover, suppose that D(µ, ε) 6⊆ σε(A) for any

µ 6∈ {µ1, . . . , µm}, then A is unitarily similar to µ1I ⊕ · · · ⊕ µmI.

Proof. Since σ(A) +D(0, ε) ⊆ σε(A), we see that σ(A) ⊆ {µ1, . . . , µm} under the hypothesis of

the theorem. If µj ∈ σ(A), then µj is a reducing eigenvalue by Lemma 2.4. Clearly, each µj is an

eigenvalue of A. Otherwise, σε(A) ⊆ ∪ 6̀=jD(µ`, ε) cannot contain boundary point of D(µj , ε). 2

Corollary 2.6 Let ε > 0, A ∈Mn and µ ∈ C.

(a) We have A = µI if and only if σε(A) = D(µ, ε).

(b) We have A = µP for a nontrivial orthogonal projection P if and only if σε(A) = D(µ, ε) ∪
D(0, ε).

(c) The matrix A is positive semidefinite (respectivly, positive definite) if and only if each

element µ ∈ σε(A) satisfies |Im(µ)| ≤ ε and Re(µ) ≥ −ε (respectively, Re(µ) > −ε).

(d) Suppose t ∈ [0, 2π) and ξ ∈ C. Then eitA+ ξI is Hermitian if and only if

σε(A) ⊆ {µ ∈ C : |Im(e−itµ− ξ)| ≤ ε}.

(e) Suppose ε ∈ (0, 1/2). Then A is unitary if and only if σε(A) is the union of circular disks

each has radius ε with centers lying on the unit circle.

Note that the assumption ε ∈ (0, 1/2) in (e) is important. Otherwise, we may have the same

problem as in Example 2.2, namely, we have A = A1 ⊕ A2, where A1 = diag (1, w, . . . , wn−1) with

w = ei2π/n for a sufficiently large n, and A2 =

(
0 b
0 0

)
for a sufficiently small b > 0 so that

σε(A2) = D

(
0,
√
ε(ε+ b)

)
⊆ ∪nj=1D(wj , ε) = σε(A1) = σε(A).

Proof. We give details of the proof of (d). The implication (⇐) is clear. Consider the converse.

For simplicity, assume that eit = 1 and ξ = 0. Since D(λ, ε) ⊆ σε(A) for any λ ∈ σ(A), we see that

σ(A) ⊆ R. Suppose A is not normal. Then there is a unitary matrix such that UAU∗ is in upper

triangular form so that the leading 2× 2 submatrix B =

(
a11 a12
0 a22

)
has a nonzero a12 entry; e.g.,
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see [6]. Recall that a11, a22 ∈ R. Consequently, for z = a11 + iε, sn(zI − A) < ε since |a12| 6= 0.

Thus, there is sufficiently small d > 0 such that for z̃ = a11 + i(ε + d), we have z̃ ∈ σε(A) and

Im(z̃) > ε, which is a contradiction. Thus, A is normal with real eigenvalues, i.e., A = A∗.

(c) follows from (d). 2

For A ∈ Mn, denote by rε(A) = max{|λ| : λ ∈ σε(A)}. The following proposition on rε(A) for

A ∈M2 is useful for the proofs in the next section.

Proposition 2.7 Let A = aE11 + bE12 ∈Mn for some nonzero a, b ∈ C. Then

rε(A) =
1

2

{[
|a|2 + 4ε2 + 4ε

√
|a|2 + |b|2

]1/2
+ |a|

}
.

The equality is attained at a unique value z ∈ σε(A) of the form z = ta for a positive t.

Proof. We may replace A by eisA for some s ∈ R and assume that a > 0. We know that

D(a, ε) ⊆ σε(A). Let z ∈ σε(A) ∩ D(a,∞). Then zI − A has singular values s1 ≥ · · · ≥ sn such

that s2 = · · · = sn−1 = z and s1, sn are the singular values of the matrix Bz =

(
z − a −b

0 z

)
.

Thus, s21 + s2n = tr (zI −B)∗(zI −B) = |z − a|2 + |b|2 + |z|2 and s1sn = | det(zI −B)| = |(z − a)z|.
It follows that

(s1 ± sn)2 = (|z| ± |z − a|)2 + |b|2

and

sn =
1

2
{
√

(|z|+ |z − a|)2 + |b|2 −
√

(|z| − |z − a|)2 + |b|2}. (1)

It is known that D(a, ε) ⊆ σε(A). It follows that z = ta ∈ σε(A) for some t > 1. Note that for

z = ta with t > 1, (1) simplifies to

sn =
1

2

{√
(2z − a)2 + |b|2 −

√
a2 + |b|2

}
. (2)

Thus, sn ≤ ε if and only if

z ≤ 1

2

{
[a2 + 4ε2 + 4ε

√
a2 + b2]1/2 + a

}
, (3)

where the equality holds for a suitable choice of ẑ = ta for some t > 1.

Next, we show that if z ∈ C satisfies |z| ≥ |ẑ| and z 6= ẑ, then sn(zI − A) > ε. Our result will

follow. To prove the above claim, note that if z is positive and z > ẑ, then (3) will be violated,

and thus z /∈ σε(A). Thus, if z > ẑ, then sn(zI − A) > ε. Next, we show that if z ≥ ẑ, then

for eis 6= 1, sn(zeisI − A) > sn(zI − A) ≥ ε. Our claim will be established. To this end, note

that |zeis − a| > z − a > 0 so that |zeis − a| = u(z − a) for some u > 1; the matrices Bzeis and

B̃ =

(
|zeis − a| |b|

0 z

)
have the same singular values. Note that none of Bz nor B̃ can be a multiple
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of a unitary; hence each of them has distinct singular values. We may suppose Bz has singular

values µ1 > µ2 ≥ 0, and B̃ has singular values u1µ1 > u2µ2 ≥ 0 for some u1, u2 ≥ 0. Then

|udet(Bz)| = | det(B̃)| = u1u2µ1µ2 = u1u2|det(Bz)|

so that u = u1u2;

u21µ
2
1 + u22µ

2
2 = |zeis − a|2 + |b|2 + z2 = u2(z − a)2 + |b|2 + z2

and

µ21 + µ22 = (z − a)2 + |b|2 + z2

so that

(u21 − 1)µ21 + (u22 − 1)µ22 = (u2 − 1)(z − a)2 = (u21u
2
2 − 1)(z − a)2.

If u2 ≤ 1, then u1 = u/u2 > 1. By the fact that µ1 > µ2 and µ1 > z − a, we have

(u21 − 1)µ21 = (u21u
2
2 − 1)(z − a)2 + (1− u22)µ22 < (u21u

2
2 − 1 + 1− u22)µ21 = (u21 − 1)u22µ

2
1,

which is a contradiction. Thus, we have s2(B̃) = u2µ2 > µ2 = s2(Bz). Our claim follows. 2

3 Preservers

3.1 Sums and differences of matrices

In this subsection, we prove the following.

Theorem 3.1 Let ε > 0 and Φ : Mn →Mn. Then σε(Φ(A)−Φ(B)) = σε(A−B) for all A,B ∈Mn

if and only if there are U, S ∈Mn such that U is unitary and Φ has the form

A 7→ UAU∗ + S or A 7→ UAtU∗ + S.

From this result, we can deduce the following.

Theorem 3.2 Let ε > 0, and Φ : Mn →Mn. The following are equivalent.

(a) Φ is linear and satisfies σε(Φ(A)) = σε(A) for all A ∈Mn.

(b) Φ is additive and satisfies σε(Φ(A)) = σε(A)) for all A ∈Mn.

(c) Φ satisfies σε(Φ(A) + Φ(B)) = σε(A+B) for all A,B ∈Mn.

(d) There is a unitary matrix U ∈Mn such that Φ has the form

A 7→ UAU∗ or A 7→ UAtU∗.

Proof. The implications (d) ⇒ (a) ⇒ (b) ⇒ (c) are clear. To prove (c) ⇒ (d), note that

σε(Φ(0) + Φ(0)) = σε(0 + 0) = D(0, ε). Thus, Φ(0) = 0. Moreover, for any B ∈Mn,

σε(Φ(B) + Φ(−B)) = σε(B −B) = D(0, ε).
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Thus, Φ(B) + Φ(−B) = 0, i.e., Φ(−B) = −Φ(B). Consequently, σε(Φ(A) − Φ(B)) = σε(Φ(A) +

Φ(−B)) = σε(A − B) for any A,B ∈ Mn. Applying the result of Theorem 3.1 and the fact that

Φ(0) = 0, we see that Φ has the asserted form in Theorem 3.1 with S = 0. The result follows. 2

We need a few more definitions and notation to prove Theroem 3.1. For A ∈Mn, let

r(A) be the spectral radius of A,

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1} be the numerical range of A, and

w(A) = max{|µ| : µ ∈W (A)} be the numerical radius of A.

If A ∈ Hn, the set of Hermitian matrices in Mn, has eigenvalues a1 ≥ · · · ≥ an, then

W (A) = [an, a1] and r(A) = w(A) = ‖A‖ = max{|a1|, |an|}.

Proof of Theorem 3.1 The implication (⇐) is clear. To prove the converse, we may set Φ(0) = S

and replace Φ by the map A 7→ Φ(A) − S, and assume that Φ(0) = 0, σε(Φ(A)) = σε(A) for all

A ∈Mn, and σε(Φ(A)−Φ(B)) = σε(A−B) for all A,B ∈Mn. By Corollary 2.6 (d), Φ(Hn) ⊆ Hn.

Note that for any A ∈ Hn, σε(A) = ∪λ∈σ(A)D(λ, ε), rε(A) = r(A) + ε and r(A) = w(A) = ‖A‖.
Since σε(Φ(A)−Φ(B)) = σε(A−B), we see that ‖Φ(A)−Φ(B)‖ = ‖A−B‖. By the result in [2],

Φ is a real linear map. Moreover, W (Φ(A)) = W (A). Thus, there is unitary U ∈Mn such that the

restriction of Φ on Hermitian matrices has the form

A 7→ UAU∗ or A 7→ UAtU∗,

see [4, 5] and their references.

Similarly, we can show that Φ(iHn) ⊆ iHn, and there is a unitary V ∈ Mn such that the

restriction of Φ on skew-Hermitian matrices has the form

A 7→ V AV ∗ or A 7→ V AtV ∗.

Now, if A ∈ Mn, then A = H + iG for some H,G ∈ Hn. Suppose Φ(A) = R + iS for some

R,S ∈ Hn. Then

σε(R+ iS − Φ(H)) = σε(Φ(A)− Φ(H)) = σε(A−H) = σε(iG) ⊆ i{µ ∈ C : |Im(µ)| ≤ ε}

implies that R + iS − Φ(H) is skew-Hermitian, i.e., R = Φ(H). Similarly, we can show that

iS = Φ(G).

We claim that Φ(iH) = iΦ(H) for any Hermitian matrix H. Once this is proved, Φ will have

the asserted form.

To prove our claim, consider A = xx∗ + ixx∗ for any unit vector x ∈ Cn. Then

Φ(A) = Φ(xx∗) + Φ(ixx∗),

where
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(1) Φ(xx∗) = Uxx∗U∗ or (Uxx∗U∗)t, and (2) Φ(ixx∗) = i(V xx∗V ∗) or i(V xx∗V ∗)t.

Since σε(Φ(A)) = σε(A) = D(1 + i, ε) ∪ D(0, ε), which, together with Corollary 2.6 (b), we have

Φ(A) = (1+ i)P for some nontrivial projection P , it follows that Φ(ixx∗) = iΦ(xx∗). As this is true

for any unit vector x and the restriction of Φ on Hermitian matrices (respectively, skew-Hermitian

matrices) is real linear, the result follows. 2

3.2 Products of matrices

In this subsection, we prove the following.

Theorem 3.3 Let ε > 0, and Φ : Mn →Mn. Then

σε(Φ(A)Φ(B)) = σε(AB) for all A,B ∈Mn

if and only if there is a unitary U ∈Mn and ξ ∈ {−1, 1} such that Φ has the form

A 7→ ξU∗AU.

By Theorem 3.3, one easily gets the following.

Corollary 3.4 Let ε > 0. A multiplicative map Φ : Mn →Mn satisfies

σε(Φ(A)) = σε(A) for all A ∈Mn

if and only if there is a unitary U ∈Mn such that Φ has the form

A 7→ U∗AU.

To prove Theorem 3.3, we need the following lemma; see [1, Theorem 2.1].

Lemma 3.5 Suppose n ≥ 3. Suppose Φ : Mn 7→Mn satisfies Φ(A)Φ(B) = 0 if and only if AB = 0.

Then there exists a field monomorphism τ : C → C, a mapping µ : Mn 7→ C \ {0}, and S ∈ Mn

such that Φ has the form:

A 7→ µ(A)S(τ(aij))S
−1 for all rank one matrix A = (aij) ∈Mn.

Proof of Theorem 3.3 The implication “⇐” is clear. We consider the converse. By our assump-

tion on Φ, σε(AB) = D(0, ε) if and only if σε(Φ(A)Φ(B)) = D(0, ε). Thus, AB = 0 if and only if

Φ(A)Φ(B) = 0.

Case 1 Suppose n ≥ 3. Then Φ has the form described in Lemma 3.5. Suppose u1, . . . , un are the

columns of S and v∗1, . . . , v
∗
n are the rows of S−1. If A = Ejj , then

D(0, ε) ∪D(1, ε) = σε(Ejj) = σε(A
2) = σε(Φ(A)2) = σε(µ(A)2ujv

∗
j ).
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Thus, µ(A)2ujv
∗
j = xjx

∗
j for some unit vector xj ∈ Cn by Corollary 2.6 (b). Consequently, uj = djvj

for some dj ∈ C. Hence, S∗ = DS−1 so that S∗S = D, where D = diag (d1, . . . , dn). As a result,

D has positive diagonal entries. Now, for A = (E11 + E1j + Ej1 + Ejj)/2, we have A2 = A and

D(0, ε) ∪D(1, ε) = σε(A
2) = σε(Φ(A)2) = σε(2

−1(µ(A)2v1d1v
∗
1 + v1d1v

∗
1 + vjdjv

∗
j + vjdjv

∗
j )).

By Corollary 2.6 (b), Φ(A)2 is a rank one orthogonal projection. It follows that µ(A)2 > 0 and

d1 = dj . Thus, we see that D = d1In. and S∗ = d1S
−1, i.e., S is a multiple of a unitary matrix.

Replacing S by γS for a suitable γ > 0, we may assume that S is unitary.

Next, we show that |τ(a)| = |a| for any a ∈ C. To this end, let A = E11 + aE1n. Then

Φ(A) = µ(A)S(E11 + τ(a)E1n)S−1. For any 1 < k ≤ n,

|µ(A)µ(E1k)|σε(SE1kS
−1) = σε(Φ(A)Φ(E1k)) = σε(AE1k) = σε(E1k)

and

|τ(a)µ(A)µ(Enk)|σε(SE1kS
−1) = σε(Φ(A)Φ(Enk)) = σε(AEnk) = |a|σε(E1k).

It follows that |τ(a)| = |µ(E1k)/µ(Enk)| |a|. Since τ(1) = 1, we see that |µ(E1k)| = |µ(Enk)|, and

hence |τ(a)| = |a|. It is well known that τ must either be the identity or the complex conjugation;

see [8] for example. Suppose τ(a) = ā for all a ∈ C. Let A = ε(10eiπ/8E11 +ei3π/8
∑n
j=2Ejj). Then

σε(A
2) = D(100eiπ/4ε, ε) ∪D(ei6π/8, ε)

and

σε(Φ(A)2) = D(µ(A2)100e−iπ/4ε, ε) ∪D(µ(A)2e−i6π/8, ε)

so that σε(Φ(A)2) 6= σε(A
2) for any choice of µ(A) ∈ C∗. Thus, we see that τ is the identity map.

We may now replace Φ by the map A 7→ S−1Φ(A)S and assume that S = In. Now, for any

unit vector x ∈ Cn and A = xx∗, we have

D(0, ε) ∪D(1, ε) = σε(A
2) = σε(Φ(A)2) = σε(µ(A)2A2) = σε(µ(A)2A).

Thus, µ(xx∗)2 = 1 and µ(xx∗) ∈ {1,−1}. Assume that µ(E11) = 1. Otherwise, replace Φ by the

map A 7→ −Φ(A). Then for any unit vector x ∈ Cn with et1x 6= 0, we have

σε(xx
∗E11) = σε((Φ(xx∗)Φ(E11)) = σε(µ(xx∗)xx∗E11).

Thus, µ(xx∗) = 1. Now, for a unit vector y ∈ Cn with et1y = 0, we can find a unit vector so that

et1x 6= 0 and xty 6= 0 so that µ(xx∗) = 1, and

σε(xy
∗xx∗) = σε(Φ(xy∗)Φ(xx∗)) = σε(µ(xy∗)xy∗xx∗) = σε(y

∗xµ(xy∗)xx∗).

By Corollary 2.6, we see µ(xy∗) = 1. Next, we consider

σε(yy
∗xy∗) = σε(Φ(yy∗)Φ(xy∗)) = σε(µ(yy∗)yy∗xy∗) = σε(y

∗xµ(yy∗)yy∗),
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which shows µ(yy∗) = 1. Using σε(yx
∗yy∗) in a similar way we have µ(yx∗) = 1.

So for any unit vectors x, y ∈ Cn and x is not orthogonal to y, we have µ(xy∗) = 1. If x∗y = 0,

find a unit vector u such that x∗u 6= 0. Then,

σε(xu
∗yx∗) = σε(µ(yu∗)(yx∗)(u∗y)xx∗).

Since µ(yu∗) = 1 (from above), we have µ(yx∗) = 1. Applying a similar argument to σε(yu
∗xy∗),

we see that µ(xy∗) = 1.

So, we have shown Φ(uv∗) = uv∗ for any unit vectors u, v ∈ Cn. Now, for any A ∈ Mn,

let B = Φ(A). Suppose A = UDV ∗ so that U, V are unitary and D = diag (a1, . . . , an) with

a1 ≥ · · · ≥ an. Then for each j,

σε(BV EjjU
∗) = σε(AV EjjU

∗) = D(aj , ε) ∪ (0, ε).

We see that BV EjjU
∗ is Hermitian with eigenvalues aj , 0, . . . , 0, and so is U∗BV Ejj . Hence,

U∗BV = D, i.e., B = A.

Case 2 Suppose n = 2. We divide the proofs into several steps.

Step 1 If x ∈ C2 is a unit vector, then Φ(xx∗) = ±yy∗ for some unit vector y ∈ C2.

Invoking Corollary 2.6, σε(xx
∗xx∗) = σε(xx

∗) = D(0, ε) ∪D(1, ε). So σε(Φ(xx∗)2) is the same.

Using the reverse direction of Corollary 2.6, Φ(xx∗)2 = yy∗ for a unit vector y ∈ C. It follows that

Φ(xx∗) = ±yy∗.

Step 2 Assume Φ(E11) = E11, then (Φ(I),Φ(E22)) = (E11 + ξE22, ξE22) with ξ ∈ {1,−1}. More-

over, there is a diagonal unitary D such that D∗Φ(X)D = X for X = {E12, E21}.
Since σε(E

2
11) = σε(E11I) = σε(IE11), we have σε(Φ(E11) = σε(Φ(E11)Φ(I)) = σε(Φ(I)Φ(E11)),

we see that Φ(I) = diag (1, ξ). Then consider σε(E
2
22) = σε(E22I) = σε(IE22). We get the first

assertion.

Next, consider σε(Eij) = σε(IEij) = σε(EijI) for {i, j} = {1, 2}, and σε(E12E21) = σε(E21E12),

we get the second assertion.

Step 3 Assume that A = 1
2

(
1 1
1 1

)
7→ ±yy∗ where y is a unit vector. Then Φ(X) = X for

X = E22, I.

Consider σε

(
1
2

(
1 1
0 0

))
= σε(E11A) = σε(Φ(E11)Φ(A)) = σε

((
|y1|2 y1y2
y2y1 |y2|2

))
. By Propo-

sition 2.7, rε = t1 · |y1|2 for some positive t. Since E22A is unitarily similar to E11A, we see that

σε(E11A) = σε(Φ(E22)Φ(A)). So t1|y1|2 = rε = t2|y2|2. Since t1, t2 are positive, Φ(E11) and Φ(E22)

must have the same sign. Therefore, Φ(E22) = E22. Similarly, Φ(I) = I.

Step 4 Under the assumptions of Step 3, we have Φ(X) = X for all X ∈M2.

Assume that A = (aij). Using Proposition 2.7, Φ(A) = (tijaij). Take a matrix X =

(
x1 x2
0 0

)
where the first row is orthogonal to the second column of A. Then XA =

(
∗ 0
0 0

)
and σε(XA) =

10



σε(Φ(X)Φ(A)). So clearly Φ(X)Φ(A) =

(
∗ 0
0 0

)
, meaning (t12a12, t22a22) is parallel to (a12, a22).

Therefore t12 = t22. Choosing matrices X such that the entries are orthogonal to the other columns

and rows of A, we see that all tij = t are the same.

Consider σε(E11A) = σε(E11Φ(A)). Since E11Φ(A) is a multiple of E11A we see from Proposi-

tion 2.7 that t = 1. Therefore Φ(A) = A. 2
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