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Abstract

We investigate an efficient quantum error correction of a fully correlated
noise. Suppose the noise is characterized by a quantum channel whose error
operators take fully correlated forms given by σ⊗n

x , σ⊗n
y and σ⊗n

z , where
n > 2 is the number of qubits encoding the codeword. It is proved that
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(i) n qubits codeword encodes (n − 1) data qubits when n is odd and (ii)
n qubits codeword implements an error-free encoding, which encode (n− 2)
data qubits when n is even. Quantum circuits implementing these schemes
are constructed.
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1. Introduction

In quantum information processing, information is stored and processed
with a quantum system. A quantum system is always in contact with its
surrounding environment, which leads to decoherence in the quantum system.
Decoherence must be suppressed for quantum information stored in qubits to
be intact. There are several proposals to fight against decoherence. Quantum
error correction, abbreviated as QEC hereafter, is one of the most promising
candidate to suppress environmental noise, which leads to decoherence [1].
By adding extra ancillary qubits, in analogy with classical error correction, it
is possible to encode a data qubit to an n-qubit codeword in such a way that
an error which acted in the error quantum channel is identified by measuring
another set of ancillary qubits added for error syndrome readout. Then the
correct codeword is recovered from a codeword suffering from a possible error
by applying a recovery operation, whose explicit form is determined by the
error syndrome readout.

In contrast with the conventional scheme outlined in the previous para-
graph, there is a scheme in which neither syndrome readouts nor syndrome
readout ancilla qubits are required [2, 3, 4, 5]. In particular, in [4, 5], a gen-
eral efficient scheme was proposed. A data qubit is encoded with encoding
ancilla qubits by the same encoding circuit as the conventional one, after
which a noisy channel is applied on the codeword. Subsequently, the inverse
of the encoding circuit is applied on a codeword, which possibly suffers from
an error. The resulting state is a tensor product of the data qubit state with
a possible error and the ancilla qubit state. It is possible to correct erro-
neous data qubit state by applying correction gates with the ancilla qubits
as control qubits and the data qubit as a target qubit.

This paper presents two examples of error correcting codes falling in the
second category. The noisy quantum channel is assumed to be fully corre-
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lated, which means all the qubits constituting the codeword are subject to
the same error operators. In most physical realizations of a quantum com-
puter, the system size is typically on the order of a few micrometers or less,
while the environmental noise, such as electromagnetic wave, has a wave-
length on the order of a few millimeters or centimeters. Then it is natural
to assume all the qubits in the register suffer from the same error operator.
To demonstrate the advantage of the second category, we restrict ourselves
within the noise operators Xn = σ⊗n

x , Yn = σ⊗n
y , Zn = σ⊗n

z in the following,
where n > 2 is the number of constituent qubits in the codeword. We show
that there exists an n-qubit encoding which accommodates an (n− 1)-qubit
data state if n is odd and an (n− 2)-qubit data state if n is even. Although
the channel is somewhat artificial as an error channel, we may apply our
error correction scheme in the following situation. Suppose Alice wants to
send qubits to Bob. Their qubit bases differ by unitary operations Xn, Yn or
Zn. Even when they do not know which basis the other party employs, Alice
can correctly send qubits by adding one extra qubits (when n is odd) or two
extra qubits (when n is even).

Recently, the violation of the quantum Hamming bound due to code
degeneracy was discussed in the case of arbitrarily correlated noise and the
concept of the packing distance has been introduced [6]. In the present paper,
the packing distance is exactly derived for the fully correlated noise by using
rank-k numerical range analysis. We state the theorems and prove them in
the next section. The last section is devoted to summary and discussions.

2. Main Theorems

In the following, σi denotes the ith component of the Pauli matrices and
we take the basis vectors

|0〉 =
(

1
0

)

, and |1〉 =
(

0
1

)

so that σz is diagonalized. We introduce operators Xn, Yn and Zn acting on
the n-qubit space C2

n

= ⊗n
i=1

C2, where n > 2 as mentioned before.
Let A1, A2, A3 be m ×m complex matrices, and let k ∈ {1, . . . , m − 1}.

Denote by Λk(A1, A2, A3) the (joint) rank-k numerical range of (A1, A2, A3),
which is the collection of (a1, a2, a3) ∈ C3 such that PAjP = ajP for some
m ×m rank-k orthogonal projection P [7, 8, 9]. A quantum channel of the
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form

Φ(ρ) = p0ρ+p1XnρX
†
n+p2YnρY

†
n+p3ZnρZ

†
n with p0, p1, p2, p3 > 0,

3
∑

i=0

pi = 1,

(1)
has a k-dimensional quantum error correcting code (QECC) if and only if
Λk(Xn, Yn, Zn) 6= ∅. To prove this statement, we need to recall the Knill-
Laflamme correctability condition, which asserts that given a quantum chan-
nel Φ : Mn → Mn with error operators {Fi}1≤i≤r, V is a QECC of Φ if and
only if PF

†
i FjP = µijP , where P ∈ Mn is the projection operator with the

range space V [10]. It should be clear that Λk({F †
i Fj}1≤i,j≤r) 6= ∅ if and only

if there is a QECC with dimension k. Now it follows from X2

n = Y 2

n = Z2

n = I

and the relations

XnYn = inZn, YnZn = inXn, ZnXn = inYn

that the channel (1) has a k-dimensional QECC if and only if

Λk({F †
i Fj}1≤i,j≤r) = Λk(Xn, Yn, Zn, I) 6= ∅.

By noting that PIP = 1·P irrespective of rank P , we find Λk(Xn, Yn, Zn) 6= ∅
if and only if Λk(Xn, Yn, Zn, I) 6= ∅.

Theorem 2.1. Suppose n > 2 is odd. Then Λ2n−1(Xn, Yn, Zn) 6= ∅.

Proof. Our proof is constructive. For j1, . . . , jn ∈ {0, 1}, denote |j1, . . . , jn〉 =
⊗n

i=1
|ji〉. Let

V = Span { |j1, . . . , jn〉 : the number of i with ji = 1 is even} .

Then dimV =
∑

r is even

(

n

r

)

= 1

2
((1 + 1)n − (1− 1)n) = 2n−1, where

(

n

r

)

is
the number of r-combinations from n elements. Since

σx|0〉 = |1〉, σx|1〉 = |0〉, σy|0〉 = i|1〉, σy|1〉 = −i|0〉, σz|0〉 = |0〉, σz|1〉 = −|1〉,

we have

Xn|v〉, Yn|v〉 ∈ V⊥ and Zn|v〉 = |v〉 for all |v〉 ∈ V.

Let P be the orthogonal projection onto V. Then the above observation
shows that PXnP = PYnP = 0 and PZnP = P . Therefore, (0, 0, 1) ∈
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Λ2n−1(Xn, Yn, Zn), which shows that Λ2n−1(Xn, Yn, Zn) 6= ∅ and hence V is
shown to be a 2n−1-dimensional QECC.

Now let us turn to the even n case. We first state a lemma which is
necessary to prove the theorem.

Lemma 2.2. Let A ∈ MN be a normal matrix. Then the rank-k numerical

range of A is the intersection of the convex hulls of any N−k+1 eigenvalues

of A.

The proof of the lemma is found in [9].

Theorem 2.3. Suppose n > 2 is even. Then Λ2n−2(Xn, Yn, Zn) 6= ∅ but

Λ2n−1(Xn, Yn, Zn) = ∅.

Proof. Let n = 2m. By Theorem 2.1, Λ2n−2(Xn−1, Yn−1, Zn−1) 6= ∅. Consider

V ′ = Span { |0〉|j1, . . . , jn−1〉 : the number of i with ji = 1 is even} .

Observe that the projection P onto V ′ satisfies PXnP = PYnP = 0 and
PZnP = P and hence (0, 0, 1) ∈ Λ2n−2(Xn, Yn, Zn), which proves Λ2n−2(Xn, Yn, Zn) 6=
∅.

Since {Xn, Yn, Zn} is a commuting family, Xn, Yn and Zn can be diago-
nalized simultaneously. We may assume that

Xn = I2n−1 ⊕ (−I2n−1) and Yn = I2n−2 ⊕ (−I2n−2)⊕ I2n−2 ⊕ (−I2n−2) . (2)

Since σxσy = iσz, we have

Zn = (−1)mXnYn = (−1)m ( I2n−2 ⊕ (−I2n−2)⊕ (−I2n−2)⊕ I2n−2 ) . (3)

Let us show that Λ2n−1(Xn, Yn) = {(0, 0)}. We first note the identity
Λk(H,K) = Λk(H + iK) for Hermitian H,K. Let us replace H by Xn and
K by Yn to obtain Λk(Xn, Yn) = Λk(Xn + iYn). Since Xn and Yn commute,
Xn + iYn is normal and Lemma 2.2 is applicable. From Eqs. (2) and (3), we
find Xn+ iYn has eigenvalues 1+ i, 1− i,−1+ i,−1− i and each eigenvalue is
2n−2-fold degenerate. By taking N = 2n and k = 2n−1 in Lemma 2.2, we find
the rank-2n−1 numerical range of Xn + iYn is the intersection of the convex
hulls of any 2n − 2n−1 + 1 = 2n−1 + 1 eigenvalues. Since each eigenvalue
has multiplicity 2n−2, each convex hull involves at least three eigenvalues.
By inspecting four eigenvalues plotted in the complex plane, we easily find
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the intersection of all the convex hulls is a single point (0, 0), which proves
Λ2n−1(Xn, Yn) = {(0, 0)}. Similarly, we prove Λ2n−1(Yn, Zn) = {(0, 0)}. From
these equalities we obtain

Λ2n−1(Xn, Yn, Zn) ⊆ {(0, 0, 0)}.

Suppose Λ2n−1(Xn, Yn, Zn) 6= ∅. Let P be a rank-2n−1 projection such that
PXnP = PYnP = PZnP = 0. Let

P =

[

P11 P12

P
†
12

P22

]

where each Pij has size 2n−1 × 2n−1. From P 2 = P and PXnP = 0, we have
four independent equations

P 2

11
+P12P

†
12

= P11, P
2

11
−P12P

†
12

= 0, P 2

22
+P

†
12
P12 = P22, P

2

22
−P

†
12
P12 = 0.

Let P12 = UDV † be the singular value decomposition of P12, where D is a
nonnegative diagonal matrix and U, V ∈ U(2n−1). Then the above equations
are solved as

P11 = UDU †, P22 = V DV †, 2D2 = D.

By collecting these results, we find that the projection operator is decom-
posed as

P =

[

U 0
0 V

] [

D D

D D

] [

U † 0
0 V †

]

.

Since rank P = 2n−1 and P 2 = P , it follows from 2D2 = D that D =
1

2
I2n−1 .

Let

A = U † (I2n−2 ⊕ (−I2n−2))U and B = V † (I2n−2 ⊕ (−I2n−2))V .

Then both A and B are non-singular. On the other hand, the assumption
PYnP = PZnP = 0 implies A + B = A − B = 0 and hence A = B = 0,
which is a contradiction. Therefore, Λ2n−1(Xn, Yn, Zn) = ∅.

In the following, we give an explicit construction of QECC for Φ in Eq. (1)
with odd n. The technique is based on Theorem 2.1 and the results in [5].
Let W be a 2n × 2n−1 matrix with columns in the set

V = { |j1, . . . , jn〉 : the number of i where ji = 1 is even }. (4)
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Define the 2n × 2n matrix R =
[

W XnW
]

. In our QEC, an (n − 1)-
qubit state ρ is encoded with one ancilla qubit |0〉 as R(|0〉〈0| ⊗ ρ)R†. Then
a noisy quantum channel Φ is applied on the encoded state and subsequently
the recovery operation R† is applied so that the decoded state automati-
cally appears in the output with no syndrome measurements. Our QEC is
concisely summarized as

R† Φ(R (|0〉〈0| ⊗ ρ)R†)R = ρa ⊗ ρ for all ρ ∈ M2n−1 , (5)

where ρa = (p0 + p3)|0〉〈0|+ (p1 + p2)|1〉〈1|.
Choosing an encoding amounts to assigning each of 2n−2 column vectors

in W a basis vector of the whole Hilbert space without repetition. Therefore
there are large degrees of freedom in the choice of encoding. In the following
examples, we have chosen encoding whose quantum circuit can be imple-
mented with the least number of CNOT gates. Since our decoding circuit
is the inverse of the encoding circuit, it is also implemented with the least
number of CNOT gates.

When n = 3, the unitary operation R can be chosen as

R = |000〉〈000|+ |011〉〈001|+ |110〉〈010|+ |101〉〈011|
+|111〉〈100|+ |100〉〈101|+ |001〉〈110|+ |010〉〈111|.

When n = 5, R can be chosen as

R = |00000〉〈00000|+ |00011〉〈00001|+ |00110〉〈00010|+ |00101〉〈00011|
+|01100〉〈00100|+ |01111〉〈00101|+ |01010〉〈00110|+ |01001〉〈00111|
+|11000〉〈01000|+ |11011〉〈01001|+ |11110〉〈01010|+ |11101〉〈01011|
+|10100〉〈01100|+ |10111〉〈01101|+ |10010〉〈01110|+ |10001〉〈01111|
+|11111〉〈10000|+ |11100〉〈10001|+ |11001〉〈10010|+ |11010〉〈10011|
+|10011〉〈10100|+ |10000〉〈10101|+ |10101〉〈10110|+ |10110〉〈10111|
+|00111〉〈11000|+ |00100〉〈11001|+ |00001〉〈11010|+ |00010〉〈11011|
+|01011〉〈11100|+ |01000〉〈11101|+ |01101〉〈11110|+ |01110〉〈11111|.

Figure 1 shows quantum circuits of the matrix R for n = 3 and n = 5. It
follows from Eq. (5) that the recovery circuit is the inverse of the encoding
circuit. It seems, at first sight, that the implementations given in Fig. 1
contradict with Eq. (5) since the controlled NOT gate in the end of the
recovery circuit is missing in the encoding circuit. Note, however, that the
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encoding decoding

{ {
(a)

{{
(b)

decodingencoding noisy 
channel

noisy 
channel

Figure 1: Encoding and recovery circuits, which encodes and recovers an arbitrary (n−1)-
qubit state ρ with a single ancilla qubit initially in the state |0〉〈0|. (a) is for n = 3 while
(b) is for n = 5. The quantum channel in the box represents a quantum operation with
fully correlated noise given in Eq. (1). The output ancilla state is ∗ = 0 (1) for error
operators I⊗3 and Z3 (X3 and Y3) for n = 3 and ∗ = 0 (1) for I⊗5 and Z5 (X5 and Y5)
for n = 5.

top qubit is set to |0〉 initially and the controlled NOT gate is safely omitted
without affecting encoding.

We construct a decoherence-free encoding when n is even as follows. The
codeword in this case is immune to the noise operators, which is an analogue
of noiseless subspace/subsystem introduced in [11, 12]. Let |e〉 be an arbitrary
element in the set V defined in Eq. (4). Then evidently a vector

1√
2
(|e〉 + Xn|e〉)

is separately invariant under the action of Xn, Yn and Zn. There are

1

2

∑

r=even

(

n

r

)

= 2n−2

orthogonal vectors of such form, e.g. we have four vectors,

1√
2
(|0000〉+ |1111〉), 1√

2
(|0011〉+ |1100〉),

1√
2
(|0101〉+ |1010〉), 1√

2
(|0110〉+ |1001〉), (6)

for n = 4. Thus we find a decoherence-free encoding for n − 2 = 2 qubits
by projecting onto this invariant subspace spanned by these basis vectors.
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Figure 2: Encoding and recovery circuits, which encodes and recovers an arbitrary (n−2)-
qubit state ρ with two ancilla qubit initially in the state |00〉〈00|. (a) is for n = 4 while (b)
is for n = 6. The quantum channel in the box represents a quantum operation with fully
correlated noise given in Eq. (1). The output ancilla state is always |00〉〈00|, irrespective
of error operators acted in the channel.

It should be noted that the projection operator P to the subspace spanned
by the four vectors in Eq. (6) satisfies rank P = 4 and PX4P = PY4P =
PZ4P = P , which shows (1, 1, 1) ∈ Λ4(X4, Y4, Z4). It is easy to generalize
this result to cases with arbitrary n = 2m > 2. Figure 2 (a) and (b) depict
quantum circuits for (a) n = 4 and (b) n = 6, respectively.

3. Summary and Discussions

We have shown that there is a quantum error correction which suppresses
fully correlated errors of the form {σ⊗n

x , σ⊗n
y , σ⊗n

z }, in which n qubits are
required to encode (i) n − 1 data qubit states when n is odd and (ii) n − 2
data qubit states when n is even. We have proved these statements by using
operator theoretical technique. Neither syndrome measurements nor ancilla
qubits for syndrome measurement are required in our scheme, which makes
physical implementation of our scheme highly practical. Examples with n = 3
and n = 5 are analyzed in detail and explicit quantum circuits implementing
our QEC with the least number of CNOT gate were obtained.

Since the error operators are closed under matrix multiplication, errors
can be corrected even when they act on the codeword many times.

A somewhat similar QEC has been reported in [6]. They analyzed a
partially correlated noise, where the error operators acts on a fixed number
of the codeword qubits simultaneously. They have shown that the quantum
packing bound was violated by taking advantage of degeneracy of the codes.

9



Justification of such a noise physically, however, seems to be rather difficult.
They have also shown that correlated noise acting on an arbitrary number n
of qubits can encode k = n− 2 data qubits. In contrast, we have analyzed a
fully correlated noise, which shows the highest degeneracy, and have shown
that k = n− 1 data qubits can be encoded with an n-qubit codeword when
n is odd. Clearly, our QEC suppressing fully correlated errors is optimal as
it is clear that one cannot encode n qubits as data qubits for odd n and we
have shown that one cannot encode n− 1 qubits for even n.
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