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1. Introduction

Let A be an n x n matrix. The numerical range of A is defined as
W(A) = {x*Ax;x € C",||x|| = 1}.
The determinantal ternary form associated to A:
Fa(t,x,y) = det(tl, + xR(A) + ySI(A)),
where R(A) = (A+ A*)/2, S(A) = (A — A*)/(2i).

Kippenhahn 1951 proved W(A) is the convex hull of the real affine
part of the dual curve of the algebraic curve Fa(t,x,y) = 0.
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1. Introduction

A ternary form F(t,x,y) is hyperbolic with respect to (1,0,0) if
F(1,0,0) =1, and for any real pairs x, y, the equation
F(t,x,y) = 0 has only real roots.

Peter Lax conjecture(1958): For any hyperbolic ternary form
F(t,x,y) w.r.t (1,0,0), there exist real symmetric matrices 51, S»
so that F(t,x,y) = Fs,1is,(t, x,y) = det(tl, + xS1 + yS2).

Helton and Vinnikov 2007 proved the conjecture is true using

Riemann theta functions.

Hyperbolic ternary forms completely determine numerical ranges
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1. Introduction

The inverse numerical range problem:
Given a point z € W(A), find a unit vector x so that z = x*Ax.

N. K. Tsing, 1984
solved the inverse numerical range problem for 2 x 2 matrices.

Given z € W(A). The chord passing through z and the center of
W(A), intersects the ellipse at u*Au and v*Av. Find t so that
z=tu*Au+ (1 —t)v*Av. Then the unit vector

x:\/fu—i-\/l—teiov

satisfies z = x*Ax, where v*Au = p el?
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1. Introduction

Geometry algorithms

C. R. Johnson, 1978

F. Uhlig, 2008

R. Carden, 2009

C. Chorianopoulos, P. Psarrakos, F. Uhlig, 2010
N. Bebiano, et al., 2014
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1. Introduction

For 0 < 6 < 27, R(e P A) = cos O R(A) + sin 6 S(A).
The line '
{z € C,R(2) = Amax(R(e P A))}

is the right vertical support line of W(e™ "0 A).
Assume

R(e™"A) &9 = Amax(R(e™A)) & (1)
Then the point {;AS € OW(A).
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1. Introduction

The eigen condition
R(e A) & = Amax(R(e " A)) & (1)
is equivalent to
(Amax(%(e_ieA))ln — cosOR(A) —sind %(A))gg —0. (2)
Then
Fa ()\max(ER(e”'eA)), —cosf,—sin 0>

= det ()\max(%(e_ieA)), —cosf,—sin 9)
= 0.
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1. Introduction

Starting an n x n matrix A, define
Ma(t,x,y) = th, + xR(A) + yS(A).

Consider non-zero vectors (t(s), x(s), y(s)) on the algebraic curve
Fa(t,x,y) =0, we construct kernel vector function £(s) satisfying

Ma(t(s). x(5). ¥(5) ) €(s) = 0.

In this sense, the kernel vector function £(s) gives a new direction
to do the inverse numerical range problem.
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2. Elliptic curves

Let F(t,x,y) be an irreducible hyperbolic ternary form of degree
n. Assume the genus of its algebraic curve F(t,x,y) =0is 1, in
other words, the algebraic curve is elliptic. Birationally transforms
the elliptic curve F(t,x,y) = 0 to a cubic curve of the Weierstrass
canonical equation

Y2 =4X3 — X — g3

for some real constants g», g3 with g23 — 27g32 > 0.

Elliptic curve group structure: P+ Q : (0,2) 4+ (1,0) = (3,4)
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2. Elliptic curves

The complex elliptic curve
Y2 =4X3 — X — g3 =4(X — e1)(X — &)(X — e3)
is parametrized as
X=gp(s), Y=¢(s),

where o(s) and ©/(s) are the Weierstrass p-functions and its
derivative.

The function p(s) has two half-periods wy and wy with w1 > 0 and
wa/i >0, i.e.,

o(s +2w1) = p(s + 2w2) = p(s).

The 7-invariant of the curve is defined by 7 = wp /ws.
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2. Elliptic curves

The real affine part F(1,x,y) = 0 is then parametrized as

{1 x,y) = (1, Ru(p(u), ¢ (1)), Ra(p, 9'(1))) -
S(u) = 0,0 < R(u) < 2wy or
S(u) = H(w2),0 < R(v) < 2w}

by real rational functions Ry, R> of p and ¢’ over the torus

T = C/(2Zw1 + 2Zw>) and its normalized Abel-Jacobi variety
C/(Z + 7).

This parametrization s — (1, x, y) is the inverse of the Abel-Jacobi
map ¢ : {F(1,x,y) =0} — T.
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2. Elliptic curves

Define
O(u) = Z exp(mi(m?t + 2mu)), u € C.
meZ

The Riemann theta function 0[¢](u) with 228 characteristics e:
0[e](u) = exp(mi(a®T + 2au + 2ab))d(u + Ta + b, 7),

where e = a+ 7b. For (a, b) = (0,0),(1/2,0),(0,1/2),(1/2,1/2),
the four respective Riemann theta functions are defined by

O1(u) = —0[1/2,1/2](u), 02(u) = 0[1/2,0](u),

03(u) = 0[0,0](u), Oa(u) = 0[0,1/2](u).
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3. Kernel and theta functions

Elliptic hyperbolic ternary form representation theorm

Theorem 3.1 Let F(t,x,y) be an irreducible hyperbolic ternary form.
Assume that the genus of the curve F(t,x,y) =0is 1, and the curve
F(t,x,y) = 0 intersects the line x = 0 at n distinct points Q; = (5;,0, —1),
B € R, Bj # 0. Denote by ¢ the Abel-Jacobi map from the curve

F(t,x,y) = 0 onto the torus C/(2Zw; + 2Zw>). Let Q; = ¢(Q;). For the
Riemann theta functions s, § = 2,3, the symmetric matrix

S = C + idiag(fi, ..., Bn) satisfying

F(t,x,y) = Fs(t,x,y) = det(tl, + xC + y diag(1, . - -, 5n))

are given by

e, = Bi=3)01(0)  0s((Qic — Q)/(2wn)) 1
7 2w105(0) - 01((Qi = @)/ (1)) [d(Ry/Re)(Q)/d(Ri/R)(QY)
_ _Fx(ﬁjvof _1)
G= ﬂj FY(ijQ 71).
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3. Kernel and theta functions

We propose the following conjecture:

Let A be an n x n matrix, and Fa(t,x,y) = 0 be elliptic. Assume a linear pencil
M(t,x,y) = tl, + x C + ydiag(bs, bo, . . ., bn)

represents Fa(t,x,y) = det(M(t, x, y)).
Then

(1) there exist n points P, P5, ..., P;, obtained from the kernel vector

function (¢1,&,...,£,)" of M(x,y, z), and the kernel vector function can
be expressed as

£x(s) = ak( [T o(s- Qj))&l(s P k=1,2,....n

1<j<n,j#k

for some non-zero constants .
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3. Kernel and theta functions

(2) With respect to the Abel group structure of this variety, the points
Pl —Q{,P,—@,...,P,— @, satisfy the equation

Pl—Q=P-Qi=-=P,— Q)

(3) If the linear pencil M(x,y, z) is unitarily equivalent to the pencil via
05-representation in Theorem 3.1 for § = 2 or § = 3, then the point
P — Q1 satisfies the equation

(PL— @)+ (Pi—Q)=0.

(4) Moreover, if § = 2, the point P{ — Q; = 1/2 of the normalized
Abel-Jacobi variety,
and if § = 3, the point P{ — Q] = (1 +7)/2.

Where the equivalence relation z; = 2> on the normalized Abel-Jacobi variety
C/(Z + 7Z) means z; — z = n+ m7 for some integers n, m.
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Lemma 4.1 Let T be a 3 x 3 complex symmetric matrix in the
standard form

a1 + iby an a3
T = an axn + ib ans ) (4.1)
a3 a3 a3 + ibs

where (ajj) is a real symmetric matrix and by, by, bz are mutually

distinct real numbers. Let & = (£1,&2,£3)7 be the third column of
the adjugate matrix of the linear pencil

M(t,X,y) =th+ X?R(T) + y%(T) =th+ x (a,-j) —|—ydiag(b1, by, ba).
Then & is a kernel vector function of M(t, x, y), and
&1 = x (aanx — a3anx — aizhyy — ast),

& = x (an2ai3x — annanx — anby — ant),
& = (aian — a%z)XQ + bibyy® + £ + (a22b1 + a11b2)xy
+(au + axn)xt 4 (b1 + b2)yt.
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Lemma 4.2 Let T be a 3 x 3 complex symmetric matrix defined

in (4.1). Assume & = (&1,&,&3) 7 is the third column of the
adjugate matrix of the linear pencil

M(t,x,y) =t +xR(T) 4+ yI(T). Then the intersection points
of the two curves V¢ (Fr) and V(&) are characterized by the
following divisors on the curve Vc(Fr):

Fr-&i=@1+2Q2+ Q3+ P1+ Ps,
Fr & =201+ Q@+ Q3+ P>+ Ps,
Fr-& =201 +2Q2+2Ps.

& — x =0, Liz: aipaxsx — ajzanx — aizbyy —aist =0

& — x =0, Lx:apaisx — anasx — anbiy —axst =0
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4. Results

25 0
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Theorem 4.3 Let T be a 3 x 3 complex symmetric matrix defined
n (4.1). Assume the the ternary form Fr(t,x,y) is irreducible and
the cubic curve Vc(Fr) is elliptic. Denote

Q' = ¢(Q) € C/(Z + 7Z) corresponding to a point Q € Vc(FT).
Then

Pl— Q=P —Q=P—Q
and

(P — Q)+ (Pl —Q)=0.

Furthermore, the linear pencil
M(t,x,y) = thh + x (aj) + y diag(b, bz, b3) is unitarily equivalent
to the linear pencil via the fs-representation, § = 2 or 3, in

Theorem 3.1 for the hyperbolic form Fr(t,x, y).

If 6 =2 then P{ — Qi = 1/2 on the Abel-Jacobi variety,
and P} — Qi =(1+7)/2if 6 =3.
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The point P} — Q) = P, — Q5 = P; — @5, 2(P; — Q}) = 0, must
be one of the points

{1/2,(1+7)/2}
of the normalized Abel-Jacobi variety C/(Z + 7Z) which

corresponds to a point (t1, x1, y1) = (1, €j,0) of the cubic curve.
Assume Q3 = 0. Then P; = (1,¢;,0), j=1,2.

A. Hurwitz and R. Courant, 1964

( 01(0)  Oksa(u
2w10k+1(0) 01(u)

2
)) = p(2wiu) — e, k=1,2,3.

Therefore, 65, 3-representations.
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We give an example to illustrate the relationship between the kernel
vector functions and the Riemann theta functions for n = 1/2 and
n = (14 7)/2 on the normalized Abel-Jacobi varieties.

3+31 =2 1
T= -2 3+i 1
1 1 2i

Fr(t,x,y) = t* 4 6xt* + 6yt” + 3x°t + 24xyt + 11y°t — 10x°
+6x2y + 24xy2 + 6y3.
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Changing the variables
1 1

2
—Xx—Zy— —t = t=—=(t+2
X1 X 5y 10 ) 1 Y, 1 5( =+ .y)7
Fr(t,x,y) =0 is expressed in the canonical form:
yi =44 — gx1 — g3 =4(x1 — e1)(x1 — &) (x1 — e3),

where
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Then the three line Li5, L13, Lp3 for the matrix T are respectively
given by

Lio=x+4+4y+2t, Lz=—(5x+y+t), Li=—(5x+3y+t).
In this case, the 6 points Q; and Py are given as follows:
Q1 : (t1,x1,y1) = (4,1,10), Q2 = (4,1,-10), Qs = (0,0, 1),
Py : (t1, x1, y1) = (4,21,90), P, = (4,21,—-90), P3 = (4,3,0).

The point Q3 is the neutral element of the elliptic curve group
structure. The point P3 on the line y; = 0 satisfies 2P; = 0. Since
P3 — Q3 = Ps3 is a point (t1,x1,y1) = (1, e2,0), it follows that

1 = (1+ 7)/2 for the matrix T. f3-representation.
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3431 1 5/2
T= 1 3+ 5/2
V52 /5j2 2
Fr(t,x,y) = t> 4 6xt* + 6yt* + 3x°t + 24xyt + 11y°t — 10x°
+6x2y + 24xy2 + 6y3.
Changing the variables

x—x—1 —it = t——g(t+2)
1 = 5}/ 10 n=y, 1= 5 Y)s

Fr(t,x,y) =0 is expressed in the canonical form:

Vi =4x —gx — g3 = 4(x — e1)(xa — &)(a — e3),
where

6 s 3 3 __ 9
g2_47 83 = 87 1_762_3 3 = .
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Then the three line Ly, L13, Lo3 for the matrix T are respectively
given by

1
Lo = 5(5X—4y—2t), L1z = —/ 5/2(2x+y+t), L3 = —\/5/2(2X+3y—|—t).
In this case, the 6 points Q; and Py are given as follows:
Q:(t,x,y)=1(3,0,-1),RQ =(1,0,—-1,1), Qs = (2,0, 1),

P1 : (t17X17.y1) = (47 _37 _18)7 P2 = (47_37 18)7 P3 = (27370)

The point P3 lies on the pseudo line part of the cubic curve and
satisfies P3 + P3 = 0, that is, the intersection point of the cubic
curve and the line y = 0 corresponding to the invariant e;, and
thus n = 1/2. 6,-representation.
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Conclusion

We verify that the conjecture is true for n = 3 symmetric matrices.

Given an n x n symmetric matrix A. The Helton-Vinnikov theorem
gives a symmetric matrix S so that Fa(t,x,y) = Fs(t,x,y). The
construction of S involves Riemann theta function.

We express the kernel vector function £ of the linear pencil

th, + xR(A) + yS(A) as a function on the Abel-Jacobi variety of
the associated elliptic curve of A. The intersection points of the
curves Fa(t,x,y) =0 and £ = 0 provide informations for
determining the Riemann theta representation.

We have tried n = 4. Examples suggest the conjecture is also true
for quartic elliptic curves.
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Thank you

29 /29



	1. Introduction
	2. Elliptic curves
	3. Kernel and theta functions
	4. Results

