An inverse numerical range problem for determinantal representations

Mao-Ting Chien

Soochow University, Taiwan

Based on joint work with Hiroshi Nakazato

WONRA June 13-18, 2018, Munich

Outline

1. Introduction
2. Elliptic curves
3. Kernel and theta functions
4. Results

1. Introduction

Let A be an $n \times n$ matrix. The numerical range of A is defined as

$$
W(A)=\left\{x^{*} A x ; x \in \mathbf{C}^{n},\|x\|=1\right\}
$$

The determinantal ternary form associated to A :

$$
F_{A}(t, x, y)=\operatorname{det}\left(t I_{n}+x \Re(A)+y \Im(A)\right)
$$

where $\Re(A)=\left(A+A^{*}\right) / 2, \Im(A)=\left(A-A^{*}\right) /(2 i)$.
Kippenhahn 1951 proved $W(A)$ is the convex hull of the real affine part of the dual curve of the algebraic curve $F_{A}(t, x, y)=0$.

1. Introduction

A ternary form $F(t, x, y)$ is hyperbolic with respect to $(1,0,0)$ if $F(1,0,0)=1$, and for any real pairs x, y, the equation $F(t, x, y)=0$ has only real roots.

Peter Lax conjecture(1958): For any hyperbolic ternary form $F(t, x, y)$ w.r.t $(1,0,0)$, there exist real symmetric matrices S_{1}, S_{2} so that $F(t, x, y)=F_{S_{1}+i S_{2}}(t, x, y)=\operatorname{det}\left(t I_{n}+x S_{1}+y S_{2}\right)$.

Helton and Vinnikov 2007 proved the conjecture is true using Riemann theta functions.

Hyperbolic ternary forms completely determine numerical ranges

1. Introduction

The inverse numerical range problem:
Given a point $z \in W(A)$, find a unit vector x so that $z=x^{*} A x$.
N. K. Tsing, 1984
solved the inverse numerical range problem for 2×2 matrices.
Given $z \in W(A)$. The chord passing through z and the center of $W(A)$, intersects the ellipse at $u^{*} A u$ and $v^{*} A v$. Find t so that $z=t u^{*} A u+(1-t) v^{*} A v$. Then the unit vector

$$
x=\sqrt{t} u+\sqrt{1-t} e^{i \theta} v
$$

satisfies $z=x^{*} A x$, where $v^{*} A u=\rho e^{i \theta}$

1. Introduction

Geometry algorithms
C. R. Johnson, 1978
F. Uhlig, 2008
R. Carden, 2009
C. Chorianopoulos, P. Psarrakos, F. Uhlig, 2010
N. Bebiano, et al., 2014

1. Introduction

For $0 \leq \theta \leq 2 \pi, \Re\left(e^{-i \theta} A\right)=\cos \theta \Re(A)+\sin \theta \Im(A)$.
The line

$$
\left\{z \in \mathbb{C}, \Re(z)=\lambda_{\max }\left(\Re\left(e^{-i \theta} A\right)\right)\right\}
$$

is the right vertical support line of $W\left(e^{-i \theta} A\right)$.
Assume

$$
\begin{equation*}
\Re\left(e^{-i \theta} A\right) \xi_{\theta}=\lambda_{\max }\left(\Re\left(e^{-i \theta} A\right)\right) \xi_{\theta} \tag{1}
\end{equation*}
$$

Then the point $\xi_{\theta}^{*} A \xi_{\theta} \in \partial W(A)$.

1. Introduction

The eigen condition

$$
\begin{equation*}
\Re\left(e^{-i \theta} A\right) \xi_{\theta}=\lambda_{\max }\left(\Re\left(e^{-i \theta} A\right)\right) \xi_{\theta} \tag{1}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\left(\lambda_{\max }\left(\Re\left(e^{-i \theta} A\right)\right) I_{n}-\cos \theta \Re(A)-\sin \theta \Im(A)\right) \xi_{\theta}=0 . \tag{2}
\end{equation*}
$$

Then

$$
\begin{aligned}
& F_{A}\left(\lambda_{\max }\left(\Re\left(e^{-i \theta} A\right)\right),-\cos \theta,-\sin \theta\right) \\
= & \operatorname{det}\left(\lambda_{\max }\left(\Re\left(e^{-i \theta} A\right)\right),-\cos \theta,-\sin \theta\right) \\
= & 0 .
\end{aligned}
$$

1. Introduction

Starting an $n \times n$ matrix A, define

$$
M_{A}(t, x, y)=t I_{n}+x \Re(A)+y \Im(A)
$$

Consider non-zero vectors $(t(s), x(s), y(s))$ on the algebraic curve $F_{A}(t, x, y)=0$, we construct kernel vector function $\xi(s)$ satisfying

$$
M_{A}(t(s), x(s), y(s)) \xi(s)=0
$$

In this sense, the kernel vector function $\xi(s)$ gives a new direction to do the inverse numerical range problem.

2. Elliptic curves

Let $F(t, x, y)$ be an irreducible hyperbolic ternary form of degree n. Assume the genus of its algebraic curve $F(t, x, y)=0$ is 1 , in other words, the algebraic curve is elliptic. Birationally transforms the elliptic curve $F(t, x, y)=0$ to a cubic curve of the Weierstrass canonical equation

$$
Y^{2}=4 X^{3}-g_{2} X-g_{3}
$$

for some real constants g_{2}, g_{3} with $g_{2}^{3}-27 g_{3}^{2}>0$.
Elliptic curve group structure: $P+Q:(0,2)+(1,0)=(3,4)$

2. Elliptic curves

The complex elliptic curve

$$
Y^{2}=4 X^{3}-g_{2} X-g_{3}=4\left(X-e_{1}\right)\left(X-e_{2}\right)\left(X-e_{3}\right)
$$

is parametrized as

$$
X=\wp(s), \quad Y=\wp^{\prime}(s)
$$

where $\wp(s)$ and $\wp^{\prime}(s)$ are the Weierstrass \wp-functions and its derivative.

The function $\wp(s)$ has two half-periods ω_{1} and ω_{2} with $\omega_{1}>0$ and $\omega_{2} / i>0$, i.e.,

$$
\wp\left(s+2 \omega_{1}\right)=\wp\left(s+2 \omega_{2}\right)=\wp(s) .
$$

The τ-invariant of the curve is defined by $\tau=\omega_{2} / \omega_{1}$.

2. Elliptic curves

The real affine part $F(1, x, y)=0$ is then parametrized as

$$
\begin{gathered}
\left\{(1, x, y)=\left(1, R_{1}\left(\wp(u), \wp^{\prime}(u)\right), R_{2}\left(\wp, \wp^{\prime}(u)\right)\right):\right. \\
\Im(u)=0,0<\Re(u)<2 \omega_{1} \text { or } \\
\left.\Im(u)=\Im\left(\omega_{2}\right), 0 \leq \Re(u) \leq 2 \omega_{1}\right\}
\end{gathered}
$$

by real rational functions R_{1}, R_{2} of \wp and \wp^{\prime} over the torus $\mathbb{T}=\mathbb{C} /\left(2 \mathbb{Z} \omega_{1}+2 \mathbb{Z} \omega_{2}\right)$ and its normalized Abel-Jacobi variety $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.
This parametrization $s \mapsto(1, x, y)$ is the inverse of the Abel-Jacobi $\operatorname{map} \phi:\{F(1, x, y)=0\} \rightarrow \mathbb{T}$.

2. Elliptic curves

Define

$$
\theta(u)=\sum_{m \in \mathbb{Z}} \exp \left(\pi i\left(m^{2} \tau+2 m u\right)\right), u \in \mathbb{C}
$$

The Riemann theta function $\theta[\epsilon](u)$ with $2^{2 g}$ characteristics ϵ :

$$
\theta[\epsilon](u)=\exp \left(\pi i\left(a^{2} \tau+2 a u+2 a b\right)\right) \theta(u+\tau a+b, \tau)
$$

where $\epsilon=a+\tau b$. For $(a, b)=(0,0),(1 / 2,0),(0,1 / 2),(1 / 2,1 / 2)$, the four respective Riemann theta functions are defined by

$$
\begin{gathered}
\theta_{1}(u)=-\theta[1 / 2,1 / 2](u), \theta_{2}(u)=\theta[1 / 2,0](u) \\
\theta_{3}(u)=\theta[0,0](u), \theta_{4}(u)=\theta[0,1 / 2](u)
\end{gathered}
$$

3. Kernel and theta functions

Elliptic hyperbolic ternary form representation theorm

Theorem 3.1 Let $F(t, x, y)$ be an irreducible hyperbolic ternary form. Assume that the genus of the curve $F(t, x, y)=0$ is 1 , and the curve $F(t, x, y)=0$ intersects the line $x=0$ at n distinct points $Q_{j}=\left(\beta_{j}, 0,-1\right)$, $\beta_{j} \in \mathrm{R}, \beta_{j} \neq 0$. Denote by ϕ the Abel-Jacobi map from the curve $F(t, x, y)=0$ onto the torus $\mathrm{C} /\left(2 \mathbb{Z} \omega_{1}+2 \mathbb{Z} \omega_{2}\right)$. Let $Q_{j}^{\prime}=\phi\left(Q_{j}\right)$. For the Riemann theta functions $\theta_{\delta}, \delta=2,3$, the symmetric matrix $S=C+i \operatorname{diag}\left(\beta_{1}, \ldots, \beta_{n}\right)$ satisfying

$$
F(t, x, y)=F_{s}(t, x, y)=\operatorname{det}\left(t I_{n}+x C+y \operatorname{diag}\left(\beta_{1}, \ldots, \beta_{n}\right)\right)
$$

are given by

$$
\begin{gathered}
c_{j k}=\frac{\left(\beta_{k}-\beta_{j}\right) \theta_{1}^{\prime}(0)}{2 \omega_{1} \theta_{\delta}(0)} \times \frac{\theta_{\delta}\left(\left(Q_{k}^{\prime}-Q_{j}^{\prime}\right) /\left(2 \omega_{1}\right)\right)}{\theta_{1}\left(\left(Q_{k}^{\prime}-Q_{j}^{\prime}\right) /\left(2 \omega_{1}\right)\right)} \times \frac{1}{\sqrt{d\left(R_{1} / R_{2}\right)\left(Q_{j}^{\prime}\right)} \sqrt{d\left(R_{1} / R_{2}\right)\left(Q_{k}^{\prime}\right)}}, \\
c_{j j}=\beta_{j} \frac{F_{x}\left(\beta_{j}, 0,-1\right)}{F_{y}\left(\beta_{j}, 0,-1\right)} .
\end{gathered}
$$

3. Kernel and theta functions

We propose the following conjecture:
Let A be an $n \times n$ matrix, and $F_{A}(t, x, y)=0$ be elliptic. Assume a linear pencil

$$
M(t, x, y)=t I_{n}+x C+y \operatorname{diag}\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

represents $F_{A}(t, x, y)=\operatorname{det}(M(t, x, y))$.
Then
(1) there exist n points $P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{n}^{\prime}$, obtained from the kernel vector function $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)^{T}$ of $M(x, y, z)$, and the kernel vector function can be expressed as

$$
\xi_{k}(s)=\alpha_{k}\left(\prod_{1 \leq j \leq n, j \neq k} \theta_{1}\left(s-Q_{j}^{\prime}\right)\right) \theta_{1}\left(s-P_{k}^{\prime}\right), k=1,2, \ldots, n
$$

for some non-zero constants α_{k}.

3. Kernel and theta functions

(2) With respect to the Abel group structure of this variety, the points $P_{1}^{\prime}-Q_{1}^{\prime}, P_{2}^{\prime}-Q_{2}^{\prime}, \ldots, P_{n}^{\prime}-Q_{n}^{\prime}$ satisfy the equation

$$
P_{1}^{\prime}-Q_{1}^{\prime} \equiv P_{2}^{\prime}-Q_{2}^{\prime} \equiv \cdots \equiv P_{n}^{\prime}-Q_{n}^{\prime}
$$

(3) If the linear pencil $M(x, y, z)$ is unitarily equivalent to the pencil via θ_{δ}-representation in Theorem 3.1 for $\delta=2$ or $\delta=3$, then the point $P_{1}^{\prime}-Q_{1}^{\prime}$ satisfies the equation

$$
\left(P_{1}^{\prime}-Q_{1}^{\prime}\right)+\left(P_{1}^{\prime}-Q_{1}^{\prime}\right)=0
$$

(4) Moreover, if $\delta=2$, the point $P_{1}^{\prime}-Q_{1}^{\prime}=1 / 2$ of the normalized Abel-Jacobi variety, and if $\delta=3$, the point $P_{1}^{\prime}-Q_{1}^{\prime}=(1+\tau) / 2$.

Where the equivalence relation $z_{1} \equiv z_{2}$ on the normalized Abel-Jacobi variety $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ means $z_{1}-z_{2}=n+m \tau$ for some integers n, m.

4. Results

Lemma 4.1 Let T be a 3×3 complex symmetric matrix in the standard form

$$
T=\left(\begin{array}{ccc}
a_{11}+i b_{1} & a_{12} & a_{13} \tag{4.1}\\
a_{12} & a_{22}+i b_{2} & a_{23} \\
a_{13} & a_{23} & a_{33}+i b_{3}
\end{array}\right),
$$

where $\left(a_{i j}\right)$ is a real symmetric matrix and b_{1}, b_{2}, b_{3} are mutually distinct real numbers. Let $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)^{T}$ be the third column of the adjugate matrix of the linear pencil

$$
M(t, x, y)=t l_{3}+x \Re(T)+y \Im(T)=t l_{3}+x\left(a_{i j}\right)+y \operatorname{diag}\left(b_{1}, b_{2}, b_{3}\right)
$$

Then ξ is a kernel vector function of $M(t, x, y)$, and

$$
\begin{gathered}
\xi_{1}=x\left(a_{12} a_{23} x-a_{13} a_{22} x-a_{13} b_{2} y-a_{13} t\right), \\
\xi_{2}=x\left(a_{12} a_{13} x-a_{11} a_{23} x-a_{23} b_{1} y-a_{23} t\right), \\
\xi_{3}=\left(a_{11} a_{22}-a_{12}^{2}\right) x^{2}+b_{1} b_{2} y^{2}+t^{2}+\left(a_{22} b_{1}+a_{11} b_{2}\right) x y \\
+\left(a_{11}+a_{22}\right) x t+\left(b_{1}+b_{2}\right) y t .
\end{gathered}
$$

4. Results

Lemma 4.2 Let T be a 3×3 complex symmetric matrix defined in (4.1). Assume $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)^{T}$ is the third column of the adjugate matrix of the linear pencil $M(t, x, y)=t t_{3}+x \Re(T)+y \Im(T)$. Then the intersection points of the two curves $\mathcal{V}_{\mathbb{C}}\left(F_{T}\right)$ and $\mathcal{V}_{\mathbb{C}}\left(\xi_{j}\right)$ are characterized by the following divisors on the curve $\mathcal{V}_{\mathbb{C}}\left(F_{T}\right)$:

$$
\begin{gathered}
F_{T} \cdot \xi_{1}=Q_{1}+2 Q_{2}+Q_{3}+P_{1}+P_{3}, \\
F_{T} \cdot \xi_{2}=2 Q_{1}+Q_{2}+Q_{3}+P_{2}+P_{3}, \\
F_{T} \cdot \xi_{3}=2 Q_{1}+2 Q_{2}+2 P_{3} . \\
\xi_{1} \leftrightarrow x=0, L_{13}: a_{12} a_{23} x-a_{13} a_{22} x-a_{13} b_{2} y-a_{13} t=0 \\
\xi_{2} \leftrightarrow x=0, L_{23}: a_{12} a_{13} x-a_{11} a_{23} x-a_{23} b_{1} y-a_{23} t=0
\end{gathered}
$$

4. Results

4. Results

Theorem 4.3 Let T be a 3×3 complex symmetric matrix defined in (4.1). Assume the the ternary form $F_{T}(t, x, y)$ is irreducible and the cubic curve $\mathcal{V}_{\mathbb{C}}\left(F_{T}\right)$ is elliptic. Denote $Q^{\prime}=\phi(Q) \in \mathbb{C} /(\mathbb{Z}+\tau Z)$ corresponding to a point $Q \in \mathcal{V}_{\mathbb{C}}\left(F_{T}\right)$. Then

$$
P_{1}^{\prime}-Q_{1}^{\prime} \equiv P_{2}^{\prime}-Q_{2}^{\prime} \equiv P_{3}^{\prime}-Q_{3}^{\prime}
$$

and

$$
\left(P_{1}^{\prime}-Q_{1}^{\prime}\right)+\left(P_{1}^{\prime}-Q_{1}^{\prime}\right) \equiv 0 .
$$

Furthermore, the linear pencil
$M(t, x, y)=t l_{3}+x\left(a_{i j}\right)+y \operatorname{diag}\left(b_{1}, b_{2}, b_{3}\right)$ is unitarily equivalent to the linear pencil via the θ_{δ}-representation, $\delta=2$ or 3 , in Theorem 3.1 for the hyperbolic form $F_{T}(t, x, y)$.
If $\delta=2$ then $P_{1}^{\prime}-Q_{1}^{\prime}=1 / 2$ on the Abel-Jacobi variety, and $P_{1}^{\prime}-Q_{1}^{\prime}=(1+\tau) / 2$ if $\delta=3$.

4. Results

The point $P_{1}^{\prime}-Q_{1}^{\prime} \equiv P_{2}^{\prime}-Q_{2}^{\prime} \equiv P_{3}^{\prime}-Q_{3}^{\prime}, 2\left(P_{3}^{\prime}-Q_{3}^{\prime}\right)=0$, must be one of the points

$$
\{1 / 2,(1+\tau) / 2\}
$$

of the normalized Abel-Jacobi variety $\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ which corresponds to a point $\left(t_{1}, x_{1}, y_{1}\right)=\left(1, e_{j}, 0\right)$ of the cubic curve. Assume $Q_{3}^{\prime}=0$. Then $P_{3}^{\prime}=\left(1, e_{j}, 0\right), j=1,2$.
A. Hurwitz and R. Courant, 1964

$$
\left(\frac{\theta_{1}^{\prime}(0)}{2 \omega_{1} \theta_{k+1}(0)} \frac{\theta_{k+1}(u)}{\theta_{1}(u)}\right)^{2}=\wp\left(2 \omega_{1} u\right)-e_{k}, \quad k=1,2,3
$$

Therefore, θ_{2}, θ_{3}-representations.

Example 1

We give an example to illustrate the relationship between the kernel vector functions and the Riemann theta functions for $\eta=1 / 2$ and $\eta=(1+\tau) / 2$ on the normalized Abel-Jacobi varieties.

$$
\begin{gathered}
T=\left(\begin{array}{ccc}
3+3 i & -2 & 1 \\
-2 & 3+i & 1 \\
1 & 1 & 2 i
\end{array}\right) \\
F_{T}(t, x, y)=t^{3}+6 x t^{2}+6 y t^{2}+3 x^{2} t+24 x y t+11 y^{2} t-10 x^{3} \\
+6 x^{2} y+24 x y^{2}+6 y^{3} .
\end{gathered}
$$

Example 1

Changing the variables

$$
x_{1}=x-\frac{1}{5} y-\frac{1}{10} t, \quad y_{1}=y, \quad t_{1}=-\frac{2}{5}(t+2 y)
$$

$F_{T}(t, x, y)=0$ is expressed in the canonical form:

$$
y_{1}^{2}=4 x_{1}^{3}-g_{2} x_{1}-g_{3}=4\left(x_{1}-e_{1}\right)\left(x_{1}-e_{2}\right)\left(x_{1}-e_{3}\right),
$$

where

$$
g_{2}=\frac{63}{4}, \quad g_{3}=-\frac{81}{8}, \quad e_{1}=\frac{3}{2}, \quad e_{2}=\frac{3}{4}, \quad e_{3}=-\frac{9}{4} .
$$

Example 1

Then the three line L_{12}, L_{13}, L_{23} for the matrix T are respectively given by

$$
L_{12}=x+4 y+2 t, \quad L_{13}=-(5 x+y+t), \quad L_{23}=-(5 x+3 y+t)
$$

In this case, the 6 points Q_{j} and P_{k} are given as follows:

$$
\begin{gathered}
Q_{1}:\left(t_{1}, x_{1}, y_{1}\right)=(4,1,10), Q_{2}=(4,1,-10), Q_{3}=(0,0,1), \\
P_{1}:\left(t_{1}, x_{1}, y_{1}\right)=(4,21,90), P_{2}=(4,21,-90), P_{3}=(4,3,0) .
\end{gathered}
$$

The point Q_{3} is the neutral element of the elliptic curve group structure. The point P_{3} on the line $y_{1}=0$ satisfies $2 P_{3}=0$. Since $P_{3}-Q_{3}=P_{3}$ is a point $\left(t_{1}, x_{1}, y_{1}\right)=\left(1, e_{2}, 0\right)$, it follows that $\eta=(1+\tau) / 2$ for the matrix $T . \theta_{3}$-representation.

Example 2

$$
\begin{gathered}
T=\left(\begin{array}{ccc}
3+3 i & 1 & \sqrt{5 / 2} \\
1 & 3+i & \sqrt{5 / 2} \\
\sqrt{5 / 2} & \sqrt{5 / 2} & 2 i
\end{array}\right) \\
F_{T}(t, x, y)=t^{3}+6 x t^{2}+6 y t^{2}+3 x^{2} t+24 x y t+11 y^{2} t-10 x^{3} \\
+6 x^{2} y+24 x y^{2}+6 y^{3} .
\end{gathered}
$$

Changing the variables

$$
x_{1}=x-\frac{1}{5} y-\frac{1}{10} t, \quad y_{1}=y, \quad t_{1}=-\frac{2}{5}(t+2 y)
$$

$F_{T}(t, x, y)=0$ is expressed in the canonical form:

$$
y_{1}^{2}=4 x_{1}^{3}-g_{2} x_{1}-g_{3}=4\left(x_{1}-e_{1}\right)\left(x_{1}-e_{2}\right)\left(x_{1}-e_{3}\right),
$$

where

$$
g_{2}=\frac{63}{4}, \quad g_{3}=-\frac{81}{8}, \quad e_{1}=\frac{3}{2}, \quad e_{2}=\frac{3}{4}, \quad e_{3}=-\frac{9}{4} .
$$

Example 2

Then the three line L_{12}, L_{13}, L_{23} for the matrix T are respectively given by
$L_{12}=\frac{1}{2}(5 x-4 y-2 t), \quad L_{13}=-\sqrt{5 / 2}(2 x+y+t), \quad L_{23}=-\sqrt{5 / 2}(2 x+3 y+t)$.
In this case, the 6 points Q_{j} and P_{k} are given as follows:

$$
\begin{gathered}
Q_{1}:(t, x, y)=(3,0,-1), Q_{2}=(1,0,-1,1), Q_{3}=(2,0,-1), \\
P_{1}:\left(t_{1}, x_{1}, y_{1}\right)=(4,-3,-18), P_{2}=(4,-3,18), P_{3}=(2,3,0) .
\end{gathered}
$$

The point P_{3} lies on the pseudo line part of the cubic curve and satisfies $P_{3}+P_{3}=0$, that is, the intersection point of the cubic curve and the line $y=0$ corresponding to the invariant e_{1}, and thus $\eta=1 / 2$. θ_{2}-representation.

Conclusion

We verify that the conjecture is true for $n=3$ symmetric matrices.
Given an $n \times n$ symmetric matrix A. The Helton-Vinnikov theorem gives a symmetric matrix S so that $F_{A}(t, x, y)=F_{S}(t, x, y)$. The construction of S involves Riemann theta function.

We express the kernel vector function ξ of the linear pencil $t I_{n}+x \Re(A)+y \Im(A)$ as a function on the Abel-Jacobi variety of the associated elliptic curve of A. The intersection points of the curves $F_{A}(t, x, y)=0$ and $\xi=0$ provide informations for determining the Riemann theta representation.

We have tried $n=4$. Examples suggest the conjecture is also true for quartic elliptic curves.

Thank you

