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1. Introduction

Let A be an n × n matrix. The numerical range of A is defined as

W (A) = {x∗Ax ; x ∈ Cn, ‖x‖ = 1}.

The determinantal ternary form associated to A:

FA(t, x , y) = det(tIn + x<(A) + y=(A)),

where <(A) = (A + A∗)/2, =(A) = (A− A∗)/(2i).

Kippenhahn 1951 proved W (A) is the convex hull of the real affine
part of the dual curve of the algebraic curve FA(t, x , y) = 0.
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1. Introduction

A ternary form F (t, x , y) is hyperbolic with respect to (1,0,0) if
F (1, 0, 0) = 1, and for any real pairs x , y , the equation
F (t, x , y) = 0 has only real roots.

Peter Lax conjecture(1958): For any hyperbolic ternary form
F (t, x , y) w.r.t (1,0,0), there exist real symmetric matrices S1,S2

so that F (t, x , y) = FS1+iS2(t, x , y) = det(tIn + xS1 + yS2).

Helton and Vinnikov 2007 proved the conjecture is true using
Riemann theta functions.

Hyperbolic ternary forms completely determine numerical ranges
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1. Introduction

The inverse numerical range problem:
Given a point z ∈ W (A), find a unit vector x so that z = x∗Ax .

N. K. Tsing, 1984
solved the inverse numerical range problem for 2× 2 matrices.

Given z ∈ W (A). The chord passing through z and the center of
W (A), intersects the ellipse at u∗Au and v∗Av . Find t so that
z = t u∗Au + (1− t) v∗Av . Then the unit vector

x =
√

t u +
√

1− te iθ v

satisfies z = x∗Ax , where v∗Au = ρ e iθ

5 / 28



1. Introduction

Geometry algorithms

C. R. Johnson, 1978
F. Uhlig, 2008
R. Carden, 2009
C. Chorianopoulos, P. Psarrakos, F. Uhlig, 2010
N. Bebiano, et al., 2014
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1. Introduction

For 0 ≤ θ ≤ 2π, <(e−iθA) = cos θ<(A) + sin θ=(A).
The line

{z ∈ C,<(z) = λmax(<(e−iθA))}

is the right vertical support line of W (e−iθA).
Assume

<(e−iθA) ξθ = λmax(<(e−iθA)) ξθ (1)

Then the point ξ∗θAξθ ∈ ∂W (A).
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1. Introduction

The eigen condition

<(e−iθA) ξθ = λmax(<(e−iθA)) ξθ (1)

is equivalent to(
λmax(<(e−iθA))In − cos θ<(A)− sin θ=(A)

)
ξθ = 0. (2)

Then

FA

(
λmax(<(e−iθA)),− cos θ,− sin θ

)
= det

(
λmax(<(e−iθA)),− cos θ,− sin θ

)
= 0.
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1. Introduction

Starting an n × n matrix A, define

MA(t, x , y) = tIn + x<(A) + y=(A).

Consider non-zero vectors (t(s), x(s), y(s)) on the algebraic curve
FA(t, x , y) = 0, we construct kernel vector function ξ(s) satisfying

MA

(
t(s), x(s), y(s)

)
ξ(s) = 0.

In this sense, the kernel vector function ξ(s) gives a new direction
to do the inverse numerical range problem.
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2. Elliptic curves

Let F (t, x , y) be an irreducible hyperbolic ternary form of degree
n. Assume the genus of its algebraic curve F (t, x , y) = 0 is 1, in
other words, the algebraic curve is elliptic. Birationally transforms
the elliptic curve F (t, x , y) = 0 to a cubic curve of the Weierstrass
canonical equation

Y 2 = 4X 3 − g2X − g3

for some real constants g2, g3 with g3
2 − 27g2

3 > 0.

Elliptic curve group structure: P + Q : (0, 2) + (1, 0) = (3, 4)

10 / 28



2. Elliptic curves

The complex elliptic curve

Y 2 = 4X 3 − g2X − g3 = 4(X − e1)(X − e2)(X − e3)

is parametrized as

X = ℘(s), Y = ℘′(s),

where ℘(s) and ℘′(s) are the Weierstrass ℘-functions and its
derivative.

The function ℘(s) has two half-periods ω1 and ω2 with ω1 > 0 and
ω2/i > 0, i.e.,

℘(s + 2ω1) = ℘(s + 2ω2) = ℘(s).

The τ -invariant of the curve is defined by τ = ω2/ω1.
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2. Elliptic curves

The real affine part F (1, x , y) = 0 is then parametrized as

{(1, x , y) = (1,R1(℘(u), ℘′(u)),R2(℘, ℘′(u))) :

=(u) = 0, 0 < <(u) < 2ω1 or

=(u) = =(ω2), 0 ≤ <(u) ≤ 2ω1}

by real rational functions R1,R2 of ℘ and ℘′ over the torus
T = C/(2Zω1 + 2Zω2) and its normalized Abel-Jacobi variety
C/(Z + τZ).
This parametrization s 7→ (1, x , y) is the inverse of the Abel-Jacobi
map φ : {F (1, x , y) = 0} → T.
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2. Elliptic curves

Define
θ(u) =

∑
m∈Z

exp(πi(m2τ + 2mu)), u ∈ C.

The Riemann theta function θ[ε](u) with 22g characteristics ε:

θ[ε](u) = exp(πi(a2τ + 2au + 2ab))θ(u + τa + b, τ),

where ε = a + τb. For (a, b) = (0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2),
the four respective Riemann theta functions are defined by

θ1(u) = −θ[1/2, 1/2](u), θ2(u) = θ[1/2, 0](u),

θ3(u) = θ[0, 0](u), θ4(u) = θ[0, 1/2](u).
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3. Kernel and theta functions

Elliptic hyperbolic ternary form representation theorm

Theorem 3.1 Let F (t, x , y) be an irreducible hyperbolic ternary form.
Assume that the genus of the curve F (t, x , y) = 0 is 1, and the curve
F (t, x , y) = 0 intersects the line x = 0 at n distinct points Qj = (βj , 0,−1),
βj ∈ R, βj 6= 0. Denote by φ the Abel-Jacobi map from the curve
F (t, x , y) = 0 onto the torus C/(2Zω1 + 2Zω2). Let Q ′

j = φ(Qj). For the
Riemann theta functions θδ, δ = 2, 3, the symmetric matrix
S = C + i diag(β1, . . . , βn) satisfying

F (t, x , y) = FS(t, x , y) = det(tIn + xC + y diag(β1, . . . , βn))

are given by

cjk =
(βk − βj)θ

′
1(0)

2ω1θδ(0)
×

θδ((Q
′
k − Q ′

j )/(2ω1))

θ1((Q ′
k − Q ′

j )/(2ω1))
× 1q

d(R1/R2)(Q ′
j )

p
d(R1/R2)(Q ′

k)
,

cjj = βj
Fx(βj , 0,−1)

Fy (βj , 0,−1)
.
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3. Kernel and theta functions

We propose the following conjecture:

Let A be an n× n matrix, and FA(t, x , y) = 0 be elliptic. Assume a linear pencil

M(t, x , y) = t In + x C + y diag(b1, b2, . . . , bn)

represents FA(t, x , y) = det(M(t, x , y)).
Then

(1) there exist n points P ′
1, P

′
2, . . . , P

′
n, obtained from the kernel vector

function (ξ1, ξ2, . . . , ξn)
T of M(x , y , z), and the kernel vector function can

be expressed as

ξk(s) = αk

“ Y
1≤j≤n,j 6=k

θ1(s − Q ′
j )

”
θ1(s − P ′

k), k = 1, 2, . . . , n

for some non-zero constants αk .
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3. Kernel and theta functions

(2) With respect to the Abel group structure of this variety, the points
P ′

1 − Q ′
1, P

′
2 − Q ′

2, . . . , P
′
n − Q ′

n satisfy the equation

P ′
1 − Q ′

1 ≡ P ′
2 − Q ′

2 ≡ · · · ≡ P ′
n − Q ′

n.

(3) If the linear pencil M(x , y , z) is unitarily equivalent to the pencil via
θδ-representation in Theorem 3.1 for δ = 2 or δ = 3, then the point
P ′

1 − Q ′
1 satisfies the equation

(P ′
1 − Q ′

1) + (P ′
1 − Q ′

1) = 0.

(4) Moreover, if δ = 2, the point P ′
1 − Q ′

1 = 1/2 of the normalized
Abel-Jacobi variety,
and if δ = 3, the point P ′

1 − Q ′
1 = (1 + τ)/2.

Where the equivalence relation z1 ≡ z2 on the normalized Abel-Jacobi variety

C/(Z + τZ) means z1 − z2 = n + mτ for some integers n, m.
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4. Results

Lemma 4.1 Let T be a 3× 3 complex symmetric matrix in the
standard form

T =

0@a11 + ib1 a12 a13

a12 a22 + ib2 a23

a13 a23 a33 + ib3

1A , (4.1)

where (aij) is a real symmetric matrix and b1, b2, b3 are mutually
distinct real numbers. Let ξ = (ξ1, ξ2, ξ3)

T be the third column of
the adjugate matrix of the linear pencil

M(t, x , y) = tI3 + x<(T ) + y=(T ) = tI3 + x (aij) + y diag(b1, b2, b3).

Then ξ is a kernel vector function of M(t, x , y), and

ξ1 = x (a12a23x − a13a22x − a13b2y − a13t),

ξ2 = x (a12a13x − a11a23x − a23b1y − a23t),

ξ3 = (a11a22 − a2
12)x

2 + b1b2y
2 + t2 + (a22b1 + a11b2)xy

+(a11 + a22)xt + (b1 + b2)yt.
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4. Results

Lemma 4.2 Let T be a 3× 3 complex symmetric matrix defined
in (4.1). Assume ξ = (ξ1, ξ2, ξ3)

T is the third column of the
adjugate matrix of the linear pencil
M(t, x , y) = tI3 + x<(T ) + y=(T ). Then the intersection points
of the two curves VC(FT ) and VC(ξj) are characterized by the
following divisors on the curve VC(FT ):

FT · ξ1 = Q1 + 2Q2 + Q3 + P1 + P3,

FT · ξ2 = 2Q1 + Q2 + Q3 + P2 + P3,

FT · ξ3 = 2Q1 + 2Q2 + 2P3.

ξ1 ↔ x = 0, L13 : a12a23x − a13a22x − a13b2y − a13t = 0

ξ2 ↔ x = 0, L23 : a12a13x − a11a23x − a23b1y − a23t = 0
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4. Results
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4. Results

Theorem 4.3 Let T be a 3× 3 complex symmetric matrix defined
in (4.1). Assume the the ternary form FT (t, x , y) is irreducible and
the cubic curve VC(FT ) is elliptic. Denote
Q ′ = φ(Q) ∈ C/(Z + τZ ) corresponding to a point Q ∈ VC(FT ).
Then

P ′
1 − Q ′

1 ≡ P ′
2 − Q ′

2 ≡ P ′
3 − Q ′

3

and
(P ′

1 − Q ′
1) + (P ′

1 − Q ′
1) ≡ 0.

Furthermore, the linear pencil
M(t, x , y) = tI3 + x (aij) + y diag(b1, b2, b3) is unitarily equivalent
to the linear pencil via the θδ-representation, δ = 2 or 3, in
Theorem 3.1 for the hyperbolic form FT (t, x , y).

If δ = 2 then P ′
1 − Q ′

1 = 1/2 on the Abel-Jacobi variety,
and P ′

1 − Q ′
1 = (1 + τ)/2 if δ = 3.
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4. Results

The point P ′
1 − Q ′

1 ≡ P ′
2 − Q ′

2 ≡ P ′
3 − Q ′

3, 2(P ′
3 − Q ′

3) = 0, must
be one of the points

{1/2, (1 + τ)/2}

of the normalized Abel-Jacobi variety C/(Z + τZ) which
corresponds to a point (t1, x1, y1) = (1, ej , 0) of the cubic curve.
Assume Q ′

3 = 0. Then P ′
3 = (1, ej , 0), j = 1, 2.

A. Hurwitz and R. Courant, 1964( θ′1(0)

2ω1θk+1(0)

θk+1(u)

θ1(u)

)2
= ℘(2ω1u)− ek , k = 1, 2, 3.

Therefore, θ2, θ3-representations.
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Example 1

We give an example to illustrate the relationship between the kernel
vector functions and the Riemann theta functions for η = 1/2 and
η = (1 + τ)/2 on the normalized Abel-Jacobi varieties.

T =

0@3 + 3i −2 1
−2 3 + i 1
1 1 2i

1A
FT (t, x , y) = t3 + 6xt2 + 6yt2 + 3x2t + 24xyt + 11y 2t − 10x3

+6x2y + 24xy 2 + 6y 3.
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Example 1

Changing the variables

x1 = x − 1

5
y − 1

10
t, y1 = y , t1 = −2

5
(t + 2y),

FT (t, x , y) = 0 is expressed in the canonical form:

y2
1 = 4x3

1 − g2x1 − g3 = 4(x1 − e1)(x1 − e2)(x1 − e3),

where

g2 =
63

4
, g3 = −81

8
, e1 =

3

2
, e2 =

3

4
, e3 = −9

4
.
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Example 1

Then the three line L12, L13, L23 for the matrix T are respectively
given by

L12 = x + 4y + 2t, L13 = −(5x + y + t), L23 = −(5x + 3y + t).

In this case, the 6 points Qj and Pk are given as follows:

Q1 : (t1, x1, y1) = (4, 1, 10), Q2 = (4, 1,−10), Q3 = (0, 0, 1),

P1 : (t1, x1, y1) = (4, 21, 90), P2 = (4, 21,−90), P3 = (4, 3, 0).

The point Q3 is the neutral element of the elliptic curve group
structure. The point P3 on the line y1 = 0 satisfies 2P3 = 0. Since
P3 − Q3 = P3 is a point (t1, x1, y1) = (1, e2, 0), it follows that
η = (1 + τ)/2 for the matrix T . θ3-representation.
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Example 2

T =

0@3 + 3i 1
p

5/2

1 3 + i
p

5/2p
5/2

p
5/2 2i

1A .

FT (t, x , y) = t3 + 6xt2 + 6yt2 + 3x2t + 24xyt + 11y 2t − 10x3

+6x2y + 24xy 2 + 6y 3.

Changing the variables

x1 = x − 1

5
y − 1

10
t, y1 = y , t1 = −2

5
(t + 2y),

FT (t, x , y) = 0 is expressed in the canonical form:

y 2
1 = 4x3

1 − g2x1 − g3 = 4(x1 − e1)(x1 − e2)(x1 − e3),

where
g2 =

63

4
, g3 = −81

8
, e1 =

3

2
, e2 =

3

4
, e3 = −9

4
.
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Example 2

Then the three line L12, L13, L23 for the matrix T are respectively
given by

L12 =
1

2
(5x−4y−2t), L13 = −

p
5/2(2x+y+t), L23 = −

p
5/2(2x+3y+t).

In this case, the 6 points Qj and Pk are given as follows:

Q1 : (t, x , y) = (3, 0,−1), Q2 = (1, 0,−1, 1), Q3 = (2, 0,−1),

P1 : (t1, x1, y1) = (4,−3,−18), P2 = (4,−3, 18), P3 = (2, 3, 0).

The point P3 lies on the pseudo line part of the cubic curve and
satisfies P3 + P3 = 0, that is, the intersection point of the cubic
curve and the line y = 0 corresponding to the invariant e1, and
thus η = 1/2. θ2-representation.
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Conclusion

We verify that the conjecture is true for n = 3 symmetric matrices.

Given an n × n symmetric matrix A. The Helton-Vinnikov theorem
gives a symmetric matrix S so that FA(t, x , y) = FS(t, x , y). The
construction of S involves Riemann theta function.

We express the kernel vector function ξ of the linear pencil
tIn + x<(A) + y=(A) as a function on the Abel-Jacobi variety of
the associated elliptic curve of A. The intersection points of the
curves FA(t, x , y) = 0 and ξ = 0 provide informations for
determining the Riemann theta representation.

We have tried n = 4. Examples suggest the conjecture is also true
for quartic elliptic curves.
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Thank you
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