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Abstract. Let F be a field and n ≥ 3. Suppose S1, S2 ⊆ Mn(F) contain all

rank-one idempotents. The structure of surjections φ : S1 → S2 satisfying

ABA = 0 ⇐⇒ φ(A)φ(B)φ(A) = 0 is determined. Similar results are also

obtained for (a) subsets of bounded operators acting on a complex or real

Banach space X, (b) the space of Hermitian matrices acting on n-dimensional

vectors over a skew-field D, (c) subsets of self-adjoint bounded linear operators

acting on an infinite dimensional complex Hilbert space. It is then illustrated

that the results can be applied to characterize mappings φ on matrices or

operators such that

F (ABA) = F (φ(A)φ(B)φ(A)) for all A, B,

for functions F such as the spectral norm, Schatten p-norm, numerical radius

and numerical range, etc.

1. Introduction

Motivated by theory and applications, many authors have studied mappings on

matrices or operators leaving invariant certain subsets, functions, and relations;

for example, see [4, 10, 12, 14] and their references. For instance, given a set S

of matrices or operators, one would like to determine the structure of mappings

φ : S → S satisfying

(1.1) F (φ(A)) = F (A) for all A ∈ S

for a given function F such as the norm, rank, spectrum, numerical range, etc.

Many interesting results have been obtained under the additional assumption that
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Research of Dobovǐsek, Kuzma, Lešnjak, and Petek was supported in part by grants from the

Ministry of Science of Slovenia.

Research of Li was partially supported by a HKRCG grant.

1
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the mappings φ are linear, additive, or multiplicative. Also, depending on moti-

vations of the study, one may assume that S is a certain subspace of operators, a

semi-group of operators (say, of bounded rank), the set of rank-one idempotents,

etc.

When S is a subset of the algebra Mn(F) of matrices over a field F, the mappings

satisfying (1.1) and some mild algebraic condition will have a nice form such as

A 7→MAσN or A 7→M(Aσ)tN

for some invertible matrices M,N ∈ Mn(F) and field automorphism σ : F → F.

HereXσ is obtained fromX by applying σ entrywise. In many cases, MN is a scalar

matrix and hence φ is a multiple of a Jordan isomorphism, which has many nice

algebraic and analytic properties, and leave invariant various interesting functions

and matrix sets such as the rank, determinant, spectrum, the set of invertible

matrices, the set of rank–k matrices, commuting pairs of matrices, etc. Equally

interesting is the behavior of such mappings when S is a subset of the algebra

B(X) of bounded linear operators acting on a real or complex Banach space X.

Often, the mappings satisfying (1.1) are bounded linear or conjugate-linear, while

their algebraic structure is similar to the case when S ⊆Mn(F).

Recently, many researchers have been attracted to the challenging problem of

characterizing mappings on matrices (respectively, on B(X)) with some simple pre-

serving properties without any algebraic and analytic assumptions a priori. Of

course, one cannot “over-simplify” the assumption and consider an arbitrary map-

ping φ : Mn(F) → Mn(F) satisfying (1.1). Otherwise, one can partition Mn(F)

into subsets of matrices having the same functional value under F , and then define

a mapping φ sending matrices in each of these subsets back to itself. One would

not get any additional structure for such mappings. On the other hand, there are

interesting results showing that φ : S → S will have nice structure if

(1.2) F (φ(A) ∗ φ(B)) = F (A ∗B) for all A,B ∈ S

for some suitable operation “∗” and function F . For example, if F (A∗B) = ‖A−B‖
then φ has the form UAV + φ(0) or UAtV + φ(0) for some unitary U and V ; if

F (A ∗ B) = ‖A + B‖ then φ has the form A 7→ UAV or A 7→ UAtV for some

unitary U and V ; if F (A∗B) = ‖AB‖ then φ has the form A 7→ µAU
∗AU for some

unitary U and unimodular scalar µA; if φ is bijective and F (A ∗B) = rank(A−B)

then φ has the form A 7→ MAN + φ(0) or A 7→ MAtN + φ(0) for some invertible

M and N in Mn(F), etc.; for example, see [2, 3, 14, 15].
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In [3], the authors consider such problems onMn(F) for the usual product A∗B =

AB. It turns out that it is helpful to establish the basic result concerning the

mappings φ : Mn(F) →Mn(F) with the property AB = 0 if and only if φ(A)φ(B) =

0. This may be viewed as the special case of (1.2) when F : Mn(F) → {0, 1} such

that F (0) = 0 and F (X) = 1 for any nonzero X.

In this paper, we follow this line of investigation and consider the Jordan triple

product A ∗ B = ABA, and study mappings φ : S → S on subsets of Mn(F) or

B(X) satisfying (1.2). Again, we obtain the basic result concerning such φ that

(1.3) ABA = 0 if and only if φ(A)φ(B)φ(A) = 0.

This problem will be treated in Section 2. We will impose very mild assumption

on the domain S, namely, that it contains all rank-one idempotents, so that the

results can be applied to various settings. In section 3 we obtain similar results for

Hermitian matrices over a skew-field or self-adjoint operators acting on a Hilbert

space. Then we apply the results to preserver problems in Section 4.

We always use the following notations in our discussion. Let F be any (commu-

tative) field and F∗ := F\ {0}. Denote by {e1, . . . , en} the standard basis (of column

vectors) for Fn, and denote by {E11, E12, . . . , Enn} the standard basis for Mn(F).

Let X∗ be the dual of Banach space X, and let (x ⊗ f) : z 7→ 〈z, f〉x be the

general rank-one operator (here, x ∈ X, f ∈ X∗, and 〈z, f〉 = f(z)). Let X∗ be

the adjoint of a bounded operator X : X → X. This operation is also defined

for conjugate linear, bounded X (i.e., X(λx) = λXx, where λ is conjugation of

complex number), by (X∗f) : x 7→ 〈Xx, f〉.

2. Preservers of zeros of Jordan triple products

In this section, we determine the structure of mappings on subsets of matrices

or operators preserving pairs having zero Jordan product. We will state the main

results and some remarks first, and present the proofs in several subsections.

Theorem 2.1. Suppose n ≥ 3, F is a field, and S1,S2 ⊆ Mn(F) contain all

rank-one idempotents. Let φ : S1 → S2 be surjective and satisfy

(2.1) ABA = 0 ⇐⇒ φ(A)φ(B)φ(A) = 0 for all A,B ∈ S1.

Then, there exist an invertible matrix T ∈Mn(F), a field automorphism σ : F → F,

and a scalar function α : S1 → F∗ such that one of the following holds:

(i) φ(A) = α(A) · TAσT−1 for all A ∈ S1.

(ii) φ(A) = α(A) · T (Aσ)t T−1 for all A ∈ S1.
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Moreover, if S1 also contains all rank-one matrices, then the surjectivity assump-

tion can be removed; the only difference is that σ in (i)–(ii) is (a possibly nonsurjec-

tive) nonzero homomorphism.

Theorem 2.2. Suppose X is an infinite-dimensional Banach space over F = R
or C, and S1,S2 ⊆ B(X) contain all rank-one idempotents. Let φ : S1 → S2 be

surjective and satisfy

(2.2) ABA = 0 ⇐⇒ φ(A)φ(B)φ(A) = 0 for all A,B ∈ S1.

Then there is a scalar function α : S1 → F∗ such that one of the following holds:

(i) There is a bounded (conjugate) linear bijection T : X → X such that φ(A) =

α(A) · TAT−1 for all A in S1.

(ii) The space X is reflexive and there is a bounded (conjugate) linear bijection

T : X∗ → X such that φ(A) = α(A) · TA∗T−1 for all A in S1.

The following two corollaries are immediate.

Corollary 2.3. Suppose S1 ⊆Mn(F) satisfies the hypothesis of Theorem 2.1, and

a mapping φ : S1 → Mn(F) satisfies the defining Eq. (2.1), and contains all rank-

one idempotents in its image. Then, φ satisfies the conclusion of Theorem 2.1.

Corollary 2.4. Suppose S1,S2 satisfy the hypothesis of Theorem 2.1 or Theorem

2.2. Let φ : S1 → S2 be surjective and satisfy

rank (ABA) = rank (φ(A)φ(B)φ(A)) for all A,B ∈ S1.

Then, φ satisfies the conclusion of Theorem 2.1 or Theorem 2.2. Moreover, if

S1 ⊆Mn(F) contains all rank-one matrices, then the surjectivity assumption can be

removed; the only difference is that σ in (i)–(ii) is (a possibly nonsurjective) nonzero

homomorphism.

Several remarks are in order concerning our main results of this section.

Remark 2.5. Note that function α, homomorphism σ, and the invertible matrix

T in the conclusion of Theorem 2.1 must be chosen so that α(A) · TAσT−1 ∈ S2

(respectively, α(A) · T (Aσ)tT−1 ∈ S2) whenever A ∈ S1. For most applications

(see Section 4) and for many domains S1 such as the set of rank-one idempotent

matrices, the set of matrices with rank bounded by a positive integer, etc., the

choice of α, σ, and T is usually very liberal and easy. A similar comment applies

to Theorem 2.2.

Remark 2.6. Evidently, the converses of Theorem 2.1 and Theorem 2.2 are valid

with suitable choices of α, σ, and T .
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Remark 2.7. We believe that the surjectivity assumption in Theorem 2.1 can be

removed without any additional assumption. It would be nice to prove or disprove

our conjecture.

Remark 2.8. In the infinite dimensional case, nonsurjective mappings satisfying

(2.2) may have more complicated structure. For example, in Hilbert spaces X, one

can define φ : B(X) → B(X) ⊕ B(X) ⊂ B(X) by A 7→ A ⊕ A∗. Then φ is not

surjective and satisfies (2.2), but is not of the form Theorem 2.2 (i) or (ii).

Remark 2.9. A similar mapping φ : A⊕B 7→ A⊕B∗ on S1 = S2 := B(X)⊕B(X)

testifies that the structure of surjections with the property (2.2) can be richer,

if S1,S2 do not contain all rank-one idempotents.

2.1. Proof for the set of rank-one idempotents. In this subsection, we first

prove Theorem 2.2 for the special case when S1 = S2 = I1 is the set of rank-one

idempotents. Recall that x⊗ f is a rank-one idempotent if and only if 〈x, f〉 = 1.

In the matrix case, one can identify the linear functional f with a vector f , and

identify the operator x⊗ f with the rank-one matrix xf t. We call two idempotents

P,Q orthogonal if PQ = 0 = QP .

We start by proving the injectivity of φ.

Lemma 2.10. Let P,Q ∈ I1. We have P = Q if and only if the following impli-

cation holds for every rank-one idempotent R:

RPR = 0 =⇒ RQR = 0.

Proof. This is obvious for P = Q. If P := x⊗ f 6= Q := y ⊗ g then either x,y are

linearly independent, or else f, g are. In the first case, choose nonzero functional h

with 〈x, h〉 = 0, and 〈y, h〉 = 1, to form a rank-one idempotent R := y ⊗ h.

Obviously, RPR = 0, and RQR = R 6= 0. We argue similarly when f, g are

independent. �

Corollary 2.11. The surjection φ : I1 → I1 from Theorem 2.2 is injective, hence

bijective.

Proof. Suppose φ(P ) = φ(Q). Then, RPR = 0 =⇒ φ(R)φ(P )φ(R) = 0 =⇒
φ(R)φ(Q)φ(R) = 0 =⇒ RQR = 0. By the previous lemma, P = Q. �

It is easy to see that SQS = 0 is equivalent to QSQ = 0 for S,Q ∈ I1. With

this in mind, given a nonempty subset Ω of rank-one idempotents, we define:

(2.3)
ΩB := {S ∈ I1 : SQS = 0 for all Q ∈ Ω}

= {S ∈ I1 : QSQ = 0 for all Q ∈ Ω}.
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We next associate with each nonzero vector x ∈ X the set Lx := {x ⊗ f : f ∈
X∗, 〈x, f〉 = 1} of all rank-one idempotents that project onto LinF{x}. Similarly,

for each nonzero f ∈ X∗, we associate the set Rf := {x ⊗ f : x ∈ X, 〈x, f〉 = 1}
of all rank-one idempotents with the kernel Ker f . Note that Lαx = Lx for every

nonzero α. Note also that if x and y are linearly independent, then Lx ∩ Ly = ∅.
Lastly, note that Lx ∩ Rf is either a singleton {αx ⊗ f} if there exists α with

〈αx, f〉 = 1, or else the intersection is empty.

Following [13], we introduce the relation | among rank-one idempotents with the

following rule: P | Q if both P,Q are in the same Lx or if they are both in the

same Rf . We continue by proving that φ preserves the relation |.

Lemma 2.12. Let P := x ⊗ f and Q := x ⊗ g be rank-one idempotents in the

same Lx. Then, R ∈
(
{P,Q}B

)B if and only if R = x⊗ (λf + (1− λ)g) for some

scalar λ.

Proof. Suppose R = z ⊗ h ∈
(
{P,Q}B

)B. If z and x are linearly independent,

there exists a nonzero functional h1, such that 〈x, h1〉 = 0 and 〈z, h1〉 = 1. Then,

S := z⊗h1 is a rank-one idempotent. Obviously, SPS = 0 = SQS, so S ∈ {P,Q}B.

However, SRS = S 6= 0, a contradiction.

By transferring the appropriate scalar to the other side of the tensor product,

we may thus assume z = x. Now, if f, g, h are linearly independent, there exists

a vector z1 ∈ (Ker f ∩Ker g)\Kerh such that 〈z1, h〉 = 1 (see [11, Lemma 2.4.3]).

Again, S := z1 ⊗ h ∈ {P,Q}B, however SRS 6= 0, a contradiction. Hence, h =

λf + µg. Moreover, 〈z, h〉 = 1 gives µ = 1− λ.

On the other hand, if S ∈ {P,Q}B then either SP = 0 = SQ or else PS = 0 =

QS. In either case, SRS = 0 for every R = x⊗ (λf + (1− λ)g). �

Lemma 2.13. Let P := x ⊗ f and Q := y ⊗ f be rank-one idempotents in Rf .

Then, R ∈
(
{P,Q}B

)B if and only if R = (λx + (1− λ)y)⊗ f for some scalar λ.

Proof. Similar to that of the previous lemma. �

Lemma 2.14. Let P,Q ∈ I1 be distinct. Then, we have P | Q if and only if

#
(
{P,Q}B

)B ≥ 3.

Proof. Assume P | Q, say, P,Q ∈ Lx. Then,
(
{P,Q}B

)B consists of the idem-

potents of the form x ⊗ (λf + (1 − λ)g). Since P 6= Q, the functionals f, g are

independent. Hence, we have as many different idempotents in
(
{P,Q}B

)B, as

there are distinct scalars λ. Thus, #
(
{P,Q}B

)B = #F ≥ 3. Similar arguments

apply when P,Q ∈ Rf .
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Assume lastly P - Q. Then, P = x ⊗ f , and Q = y ⊗ g, and both, x,y, as

well as f, g are linearly independent. Let R = z⊗ h ∈
(
{P,Q}B

)B. Now, if x,y, z

are linearly independent, there exists a functional h1, with 〈x, h1〉 = 0 = 〈y, h1〉,
and 〈z, h1〉 = 1. Clearly then, S := z ⊗ h1 is a rank-one idempotent, in {P,Q}B,

however, SRS = S 6= 0, a contradiction. We deduce that z = λx + µy, and

consequently, R = (λx + µy)⊗ h.

Suppose µ 6= 0. We claim that then h ∈ F∗ g. Namely, as x,y are linearly

independent, and dim X∗ ≥ 3, there exists a functional h1, linearly independent

of g, such that 〈x, h1〉 = 0 and 〈µy, h1〉 = 1. Now, if h 6∈ F∗ g, we could find

z1 ∈ Ker g such that 〈z1, h1〉 = 1, and 〈z1, h〉 6= 0. Then, S := z1 ⊗ h1 would be

a rank-one idempotent, and clearly, SP = 0 = QS, so S ∈ {P,Q}B. However,

SRS = (〈λx + µy, h1〉 · 〈z1, h〉)S 6= 0, a contradiction. Indeed: µ 6= 0 implies

h ∈ F∗ g.
Similarly, we show that λ 6= 0 would imply h ∈ F∗ f . However, f, g are linearly

independent, so either λ = 0 or else µ = 0. In the first case, a rank-one idempotent

R is a scalar multiple of a rank-one idempotent y ⊗ g = Q, i.e., R = Q. In the

second case, R = P . Thus, #
(
{P,Q}B

)B = #{P,Q} = 2. �

Corollary 2.15. The bijection φ preservers the relation |.

Proof. It was shown in Corollary 2.11 that φ is bijective. By the defining Eq. (2.2),

φ(ΩB) = φ(Ω)B. The rest follows from Lemma 2.14. �

Proof of Theorem 2.2 when S1 = S2 = I1. We clearly have P | Q if and only if

φ(P ) | φ(Q). Using the arguments in [13, Proof of Theorem 2.4, or Theorem 2.3,

pp. 13–18], we can then prove that either for each nonzero x there exists a nonzero

vector x̂ with φ(Lx) = Lx̂, or else for each nonzero x there exists a nonzero func-

tional ĝ with φ(Lx) = Rĝ.

In the former case, suppose QP = 0 for rank-one idempotents Q,P . Choose

a vector x with P ∈ Lx. Then, QLx = 0 =⇒ QLxQ = 0 =⇒ φ(Q)Lx̂φ(Q) =

0. It is impossible to have Lx̂φ(Q) = 0, so φ(Q)Lx̂ = 0. Since φ(P ) ∈ Lx̂ we

deduce φ(Q)φ(P ) = 0. Consequently, φ preserves orthogonality among rank-one

idempotents. We use a similar argument in the case when φ(Lx) = Rĝ. The same

argument apply to φ−1; so orthogonality is preserved in both direction. By [13,

Theorems 2.3 and 2.4], we get the desired conclusion. �

2.2. Proof for the general case. In this subsection, we prove the general case

of Theorem 2.2 through a series of lemmas. Throughout, I will denote the identity

operator, or identity matrix.

Lemma 2.16. Let A,B ∈ B(X)\ {0} . The following are equivalent.
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(a) B = αA for some nonzero scalar α.

(b) PAP = 0 ⇐⇒ PBP = 0 for all rank-one idempotents P .

Proof. The implication (a)⇒(b) is obvious.

(b)⇒(a). Assume that B is not a multiple of A. We distinguish three cases.

Suppose first that there exists a vector x such that x, Ax, Bx are independent.

Choose f ∈ X∗ with 〈Ax, f〉 = 0, and 〈x, f〉 = 1 = 〈Bx, f〉. Then, P := x⊗ f is a

rank-one idempotent, with PAP = 0, while PBP 6= 0, a contradiction.

Suppose next Ax, Bx are independent, while x = λxAx + µxBx, with, say

µx 6= 0. Again, choose f ∈ X∗ such that 〈Ax, f〉 = 0, and 〈Bx, f〉 = 1/µx. Again,

P := x⊗ f is idempotent, and we get a contradiction as before.

Suppose lastly that Ax, Bx are always linearly dependent. If KerA ⊆ KerB

then B = λA, as desired (see [7, Lemma 2.2.i] or [6, Lemma 2.3.1]). Otherwise,

pick a (nonzero) vector x ∈ KerA\KerB. Now, regardless of linear independence

between x, Bx, we could always choose f ∈ X∗ with 〈Bx, f〉 6= 0, and 〈x, f〉 = 1.

Since x ∈ KerA, we get a contradiction as before. �

Lemma 2.17. Let A ∈ B(X)\{0}. Then A is not a scalar operator if and only if

PAP = 0 for some rank-one idempotent P .

Proof. We prove only the non-trivial part. Suppose A ∈ B(X)\{0} is not a scalar.

Since dimX ≥ 3 there exists a vector u such that y := Au and u are linearly

independent. Pick a functional f such that 〈u, f〉 = 1 and 〈y, f〉 = 0. Then

P := u⊗ f is a rank-one idempotent and

PAP = (u⊗ f)A(u⊗ f) = 〈y, f〉P = 0. �

Lemma 2.18. The following conditions hold:

(a) Assume 0 ∈ S1. Then also 0 ∈ S2. Moreover, φ(X) = 0 if and only if

X = 0.

(b) Assume S1 contains nonzero scalar operators. Then the same holds for S2.

Moreover, φ(X) is a nonzero scalar operator if and only if X is a nonzero

scalar operator.

Proof. (a) Suppose X ∈ S1 is nonzero. Then Xx 6= 0 for some vector x. Pick a

functional f ∈ X∗ such that 〈x, f〉 = 1 and 〈Xx, f〉 6= 0. Then, A := x⊗ f ∈ S1 is

a rank-one idempotent, and AXA 6= 0 and hence φ(A)φ(X)φ(A) 6= 0, so φ(X) 6= 0.

Reversed implications, and surjectivity also give φ(0) = 0. Therefore, 0 ∈ S2.

(b) Suppose µI ∈ S1. If φ(µ I) is not a scalar then, by Lemma 2.17, Pφ(µ I)P =

0 for some rank-one idempotent P . By surjectivity, P = φ(Q) and µQ2 =

Q(µ I)Q = 0. So, also Q3 = 0, while φ (Q)3 = P 3 = P 6= 0, a contradiction.
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Conversely, suppose φ (X) = µI 6= 0. By (a), X 6= 0. If X is non-scalar then,

again by Lemma 2.17, we have PXP = 0 and hence µφ (P )2 = φ(P )(µ I)φ(P ) = 0.

So φ (P )3 = 0, contradicting P 3 = P 6= 0. �

Lemma 2.19. Suppose S ⊆ X contains all rank-one idempotents, and suppose A ∈
S is not a scalar operator. Then A is a nonzero multiple of a rank-one idempotent

if and only if A3 6= 0 and there does not exist N ∈ S such that NAN = 0 6= ANA.

Proof. Suppose rankA ≥ 2. Since it is not a scalar, there exists x, which is not

an eigenvector of A, and there exist vector y such that Ax and Ay are linearly

independent. Then we can choose a nonzero functional f satisfying 〈Ax, f〉 = 0,

〈x, f〉 = 1 and 〈Ay, f〉 6= 0. It follows that N := x ⊗ f is a rank-one idempotent

in S. We have NAN = 〈Ax, f〉x⊗ f = 0, while indeed

ANAy = 〈Ay, f〉Ax 6= 0.

Conversely, assume A = x ⊗ f with 〈x, f〉 6= 0. Then A3 6= 0. Let N ∈ S be

arbitrary. If NAN = (Nx) ⊗ (N∗f) = 0 we conclude that either Nx = 0 or

N∗f = 0. In any case, ANA = 〈Nx, f〉A = 0. �

Corollary 2.20. Let S0
i := (F∗ I1)∩Si be the set of nonzero multiples of rank-one

idempotents in Si. Then φ(S0
1) = S0

2.

Lemma 2.21. There exists a bijection ψ : F∗ S1 → F∗ S2 and a nonzero scalar

function α : F∗ S1 → F∗ such that

ψ (A) = α (A)φ (A) for all A ∈ S1.

Moreover, ψ preserves rank-one idempotents in both directions and satisfies

ABA = 0 ⇐⇒ ψ (A)ψ (B)ψ (A) = 0 for all A,B ∈ F∗ S1.

Proof. Let S0
i be as in Corollary 2.20. Suppose X,Y ∈ S1 are nonzero such that

X = λY . Then clearly PXP = 0 if and only if PY P = 0 for all P ∈ S0
1. By

Corollary 2.20, Qφ(X)Q = 0 if and only if Qφ(Y )Q = 0 for all Q ∈ S0
2. By

Lemma 2.18 (a), φ(X) and φ(Y ) are nonzero; hence φ(X) and φ(Y ) are scalar

multiples of each other by Lemma 2.16. Using surjectivity, we can apply a similar

argument to conclude that if φ(X) = λφ(Y ) are nonzero then X and Y are scalar

multiples of each other.

Let Si/∼ be the set of equivalence classes of Si under the equivalence X ∼
Y ⇐⇒ F∗X = F∗ Y . Define ψ̃ : S1/∼ → S2/∼ by ψ̃ (F∗A) := F∗ φ (A). This

is well defined and injective by the discussion in the preceding paragraph. The

surjectivity of φ implies the surjectivity of ψ̃. In each equivalence class F∗X, fix a
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representative Ẋ in such a way that if F∗X contains a rank-one idempotent then

let Ẋ be this idempotent. We now extend ψ̃ to ψ : F∗ S1 → F∗ S2 by ψ (A) := λḂ,

where λȦ = A, and where Ȧ and Ḃ are fixed representatives of F∗A and ψ̃ (F∗A),

respectively. It is easy to see that such a ψ is bijective. Moreover, A ∈ S1 implies

F∗ ψ (A) = F∗ φ (A), so ψ (A) = α (A) ·φ (A) for some nonzero scalar α(A) (if A = 0

we may define α (A) arbitrarily, say α (0) = 1). Since α (A) 6= 0 we obviously have

ABA = 0 ⇐⇒ φ (A)φ (B)φ (A) = 0 ⇐⇒ ψ (A)ψ (B)ψ (A) = 0,

whenever A,B ∈ S1. Consequently, ABA = 0 if and only if ψ(A)ψ(B)ψ(A) = 0

for any A,B ∈ F∗ S1. Lastly, ψ preserves rank-one idempotents in both directions,

by Corollary 2.20, and the definition of representatives of equivalence classes. �

Proof of Theorem 2.2. Replace φ by ψ from the preceding lemma and, retaining

the notation, assume without loss of generality that φ is bijective, maps F∗ S1

onto F∗ S2, preserves the zeros of Jordan triple product, and preserves rank-one

idempotents. We can then apply the result in the special case on the restriction φ|I1 .

Suppose it takes the form (ii). Then, the natural embedding κ : X ↪→ X∗∗ is

surjective. Now, let P be a rank-one idempotent operator, and let Q := φ−1(P ) =

κ−1(T−1PT )∗κ. For every nonzero A ∈ S1 we have

Pφ(A)P = 0 ⇐⇒ QAQ = 0 ⇐⇒ κ−1(T−1PT )∗κ ·A · κ−1(T−1PT )∗κ = 0.

⇐⇒ T ∗P ∗(T−1)∗ κ ·A · κ−1︸ ︷︷ ︸
=A∗∗

T ∗P ∗(T−1)∗ = 0

⇐⇒ P ∗(T−1)∗A∗∗T ∗P ∗ = 0 ⇐⇒ (PTA∗T−1P )∗ = 0

⇐⇒ PTA∗T−1P = 0.

By Lemma 2.16 and Lemma 2.18 (a), φ(A) = αTA∗T−1 for some nonzero α = α(A).

Similarly we argue if the restriction takes the form (i). �

Proof of Theorem 2.1. The proof of the first part of Theorem 2.1 can be based on

obvious adaptation of the arguments in the proof of Theorem 2.2. However, it does

not cover the case F = Z2 since Lemma 2.14 requires #F ≥ 3. We have found a new

approach, that works for all fields. It is based on a single Lemma 2.22 below. With

its help, one easily finds that bijection φ|I1 : I1 → I1 preserves maximal sets of

pairwise orthogonal rank-one idempotents, hence also orthogonality on I1. We can

then use [13, Theorem 2.3] instead of [13, Theorem 2.4] in the concluding arguments

of subsection 2.1. The proof of general case then follows similar arguments as

before. �
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Lemma 2.22. Let Q1, . . . , Qn ∈ I1 ⊂Mn(F) be n idempotents of rank-one. Then,

they are pairwise orthogonal if and only if QiQjQi = 0 for i 6= j, and there exists

no rank-one idempotent B with QiBQi = 0 for all i = 1, 2, . . . , n.

Proof. Necessity is clear (use Qi = TEiiT
−1, and the trace, to deduce that QiBQi = 0

for all i = 1, . . . , n is impossible).

To prove sufficiency, assume that QiQjQi = 0 holds for all i 6= j, yet idem-

potents Qi are not pairwise orthogonal. Write Qi = xif t
i , where f t

i xi = 1. It is

easy to see that QiQjQi = 0 implies that for any pair (i, j), with i 6= j, we have

f t
i xj = 0 or f t

jxi = 0 but not necessary both. Actually, by our assumption, Qi are

not pairwise orthogonal so there must exist a pair (i, j) such that f t
i xj 6= 0 and

f t
jxi = 0. Assume without loss of generality that i = n and j = n− 1.

Now, if dimLinF {x1, . . . ,xn} < n then there exists a nonzero f with f txi = 0

for all i. Pick any x with f tx = 1 to form a rank-one idempotent B := xf t. An

easy calculation shows that QiBQi = 0 for all i = 1, . . . , n.

Otherwise, {x1, . . . ,xn} is a basis of Fn. Consider the dual base {x∗1, . . . ,x∗n} of

Fn (i.e.: (x∗j )
txi = δij). Let β := − (f t

nxn−1)
−1, and define

B := (βxn−1 + xn) (x∗n)t .

Then,

QiBQi = xif t
i (βxn−1 + xn) (x∗n)t xif t

i = f t
i (βxn−1 + xn ) (x∗n)t xi

(
xif t

i

)
.

Now, if i 6= n then (x∗n)t xi = 0, so QiBQi = 0. On the other hand, if i = n then

f t
n (βxn−1 + xn) = β f t

nxn−1 + 1 = 0 so also QnBQn = 0. �

2.3. Removal of surjectivity assumption in the matrix case. In this sub-

section, we show that the surjectivity assumption in Theorem 2.1 can be removed

if S1 contains all rank-one matrices. To achieve our goal we need the following

terminology: With each nonempty subset Ω ⊆Mn(F) we associate (cf. Eq. 2.3) the

set

Ω� := {B ∈Mn(F)\{0} : ABA = 0 for every A ∈ Ω} ⊂Mn(F).

Likewise, with each nonzero matrix A ∈Mn(F) we associate the set

A� := {A}� = {B ∈Mn(F)\{0} : ABA = 0} ⊂Mn(F).

Note that 0 6∈ A�. Also, note that A� = ∅ whenever A is invertible.

We start with two simple technical lemmas.
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Lemma 2.23. Let A1, . . . , Ak be linearly independent rank-one matrices. Then,

{0} ∪ {A1, . . . , Ak}� is an n2 − k dimensional subspace of Mn(F).

Proof. Write Ai := xif t
i . Then, AiXAi = 0 if and only if 0 = f t

iXxi = Tr(AiX),

the trace of AiX. Note that 〈X,Y 〉 := Tr(XY ) is a pairing, and since A1, . . . , Ak

are linearly independent, there exist X1, . . . , Xk with 〈Xj , Ai〉 = δij (see [1]). Thus,

the k functionals 〈· , Ai〉 are linearly independent, and their common zero subspace,

which equals {0} ∪ {A1, . . . , Ak}�, is n2 − k dimensional. �

Lemma 2.24. Suppose σ : F → F is a nonzero field homomorphism, and let A,B ∈
Mn(F) be nonzero. Then, the following are equivalent:

(a) B = λAσ for some nonzero scalar λ.

(b) NσAσNσ = 0 ⇐⇒ NσBNσ = 0 for every rank-one N .

If, in addition, rankA = 1 = rankB then (a) is equivalent to:

(c) PσAσPσ = 0 ⇐⇒ PσBPσ = 0 for every rank-one idempotent P .

Proof. The implications (a)=⇒(b) and (a)=⇒(c) are obvious.

(b)=⇒(a). Let x be any vector with the property x = xσ (say, x = ei), and

assume erroneously that b := Bx and aσ := Aσx are linearly independent. Let

f1, . . . , fn−1 be a basis of a⊥ := {f ∈ Fn : f ta = 0}. Since the rank equals the

maximal dimension of nonzero minor, fσ
1 , . . . , f

σ
n−1 are also linearly independent.

Hence, they are a basis of (aσ)⊥. Now, b is independent of aσ, so (fσ
j )tb 6= 0 for

at least one j. Then, Nσ := (xf t
j )

σ satisfies NσBNσ 6= 0, while NσAσNσ = 0, a

contradiction.

Now, if rankAσ ≥ 2 then its two columns, say Aσe1 and Aσe2, are linearly

independent. By the above, Be1 = λ1A
σe1, and Be2 = λ2A

σe2, and B(e1 + e2) =

λAσ(e1+e2). Hence λ1 = λ = λ2. Pick i-th column Aσei. Then, at least one pair of

{Aσ(e1+ei), Aσe1}, {Aσei, A
σe2} is linearly independent, and hence Bei = λAσei,

as well. Consequently, B = λAσ 6= 0. We proceed similarly when rankB ≥ 2.

Lastly, assume rankAσ = 1 = rankB. We prove (c)=⇒(a). Note that Aσ =

(x0f t
0)

σ, and B = y0gt
0. Fix any nonzero z ∈ f⊥0 . We can find n linearly indepen-

dent hi such that Pi := zht
i are rank-one idempotents. Obviously, (PiAPi)σ = 0,

so also 0 = Pσ
i BP

σ
i =

(
(hσ

i )ty0

)
· (gt

0z
σ) · Pσ

i . Since hσ
1 , . . . ,h

σ
n are also indepen-

dent, hence a basis of Fn,
(
(hσ

i )ty0

)
cannot be always zero. Therefore, gt

0z
σ = 0.

Recall that z ∈ f⊥0 was arbitrary, so this implies {0} = gt
0 · LinF(f⊥0 )σ = gt

0 · (fσ
0 )⊥.

Consequently, g0 ∈ F fσ
0 . Dual arguments give y0 ∈ Fxσ

0 , which finally estab-

lishes B ∈ FAσ. �

We continue with the following observation.
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Lemma 2.25. If φ(A) = 0 then A = 0 ∈ S1.

Proof. Similar to that of Lemma 2.18 (a). �

Lemma 2.26. Let S be any of the subsets S1,S2. Suppose A ∈ S be nonzero.

Then the following are equivalent:

(a) rankA = 1.

(b) There exist n2−1 matrix tuples (X1, C1), . . . , (Xn2−1, Cn2−1) ∈ (A�∩S)×S

with the property: CkXkCk 6= 0, while CkXzCk = 0 whenever z 6= k.

Proof. Suppose rankA = 1, and write it as A = UE11V for some invertible U, V .

Define the n2 − 1 matrix tuples

(Xij , Cij) :=
(
V −1EijU

−1 , UEjiV
)
; where (ij) ∈ Ξ := {1, . . . , n}2 \ {(11)}.

Obviously, (Xij , Cij) ∈ (A� ∩ S) × S. Moreover, CijXijCij = UEjiV 6= 0, and

CijXuvCij = 0 whenever (uv) ∈ Ξ is distinct from (ij).

Conversely, assume (b) holds. Now, if rankA ≥ 2 then A = UPV for some

invertible U, V and idempotent P :=
∑r

i=1Eii, (r := rankA). Then,

A� ∩S =

[
V −1

(
0r×r ∗
∗ ∗

)
U−1

]
∩S

spans at most n2−r2 dimensional subspace of matrices. By hypothesis, CkXkCk 6=
0, while CkXzCk = 0 for z 6= k. This easily implies that X1, . . . , Xn2−1 are (n2−1)

linearly independent matrices in A� ∩S — a contradiction. �

Corollary 2.27. The mapping φ preserves matrices of rank-one.

Proof. Suppose rankA = 1. Choose (n2 − 1) matrix tuples from Lemma 2.26.

Since CkXkCk 6= 0, each matrix A,Xk, Ck is nonzero. Same holds of their φ–

images, by Lemma 2.25. Since φ preserves zeros of Jordan triple product in both

directions, the (n2 − 1) matrix tuples (φ(Xk), φ(Ck)) are also in (φ(A)� ∩ S2) ×
S2, and φ(Ck)φ(Xk)φ(Ck) 6= 0, while φ(Ck)φ(Xz)φ(Ck) = 0 for z 6= k. By

Lemma 2.26, rankφ(A) = 1. �

Corollary 2.28. The mapping φ maps rank-one idempotents to nonzero scalar

multiples of rank-one idempotents.

Proof. If A is a rank-one idempotent then A3 6= 0, so also φ(A)3 6= 0. Hence, φ(A)

cannot be a rank-one nilpotent, hence it is a scalar multiple of a rank-one idempo-

tent. �
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Note that the assumptions and the end result will not be affected if we replace φ

by a mapping A 7→ α(A) · φ(A), where α(A) ∈ F∗. We will do so in the sequel,

and will choose a function α in such a way that the redefined φ preserves rank-one

idempotents. Evidently, the redefined φ also preserves rank-one nilpotent matrices.

We can now continue our discussion:

Lemma 2.29. The restriction φ|I1 : I1 → I1 is injective.

Sketch of the proof. Suppose P,Q are distinct rank-one idempotents. Then, they

are linearly independent. Write them as P = xf t and Q = ygt, to find rank-

one X ∈ S1 with PXP = 0, and QXQ 6= 0. Thus, also φ(P )φ(X)φ(P ) = 0, while

φ(Q)φ(X)φ(Q) 6= 0. This gives φ(P ) 6= φ(Q). �

Lemma 2.30. The mapping φ preserves orthogonality among rank-one idempo-

tents.

Proof. Let P1, P2 be orthogonal rank-one idempotents. We may add (n− 2) rank-

one idempotents, to obtain a maximal set of pairwise orthogonal idempotents. Pick

a similarity V with Pi = V EiiV
−1.

Note that EijEuvEij = 0 whenever (uv) 6= (ji). In contrast, EijEjiEij 6= 0.

Since φ preserves zeros of Jordan triple product in both directions, we deduce the

similar identities for rank-one matrices Aij := φ(V EijV
−1):

(2.4)
0 = AijAuvAij ; whenever (uv) 6= (ji)

0 6= AijAjiAij .

These identities easily imply that the n2 matrices Aij are linearly independent.

Moreover, they also imply that Aij ∈ {A11, . . . , Ann}�∩S2, whenever i 6= j. Hence,

{A11, . . . , Ann}� ∩S2 contains n2 − n linearly independent nilpotent matrices Aij .

By Lemma 2.23, their linear span equals {0}∪{A11, . . . , Ann}�, and nilpotents Aij

are the basis.

Then, however, idempotents Aii = φ(Pi), which also satisfy AiiAjjAii = 0

for i 6= j, must indeed be pairwise orthogonal: Namely, otherwise, there would

exist a rank-one idempotent B ∈ {A11, . . . , Ann}�, by Lemma 2.22. However, in

that case the subspace {0} ∪ {A11, . . . , Ann}� could not be spanned by nilpotents

alone, since the trace function would vanish on it — a contradiction. �

Proof of the last assertion of Theorem 2.1. We already know that the redefined φ

preserves rank-one idempotents, and their orthogonality (in one direction only), and
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that φ|I1 : I1 → I1 is injective. By [13, Theorem 2.3], φ|I1 : P 7→ TP σT−1 or else

φ|I1 : P 7→ T (Pσ)tT−1, for some nonzero homomorphism σ : F → F.

Replace φ by T−1φ(·)T or by (T−1φ(·)T )t, so that the redefined φ satisfies φ|I1 :

P 7→ Pσ. Let N be any rank-one matrix. Then, Pσφ(N)Pσ = φ(P )φ(N)φ(P ) =

0 ⇐⇒ PNP = 0 ⇐⇒ (PNP )σ = PσNσPσ = 0 for every rank-one idempotent P .

Hence, by (c) of Lemma 2.24, φ(N) = α(N)·Nσ for every rank-one N . Assume with

no loss of generality that α(N) = 1. We then repeat the process with arbitrary

nonzero matrix A ∈ S1, to deduce that φ(A) = α(A) · Aσ, as claimed. Lastly,

if 0 ∈ S1 then Eijφ(0)Eij = φ(Eij)φ(0)φ(Eij) = 0, so φ(0) = 0σ = 0. �

3. Self-adjoint operators and Hermitian/symmetric matrices

In this section, we obtain results analogous to those in the last section for self-

adjoint operators acting on a complex Hilbert space
(
H, 〈·, ·〉

)
. Given a continuous

linear operator T : H → H, we let T ∗ be its Hilbert-space adjoint, i.e, 〈Tx,y〉 =

〈x, T ∗y〉. If a continuous T : H → H is conjugate-linear then we define T ∗ uniquely

by 〈Tx,y〉 = 〈T ∗y,x〉.

Theorem 3.1. Suppose H is a complex, infinite-dimensional Hilbert space, and

S ⊂ B(H) is a subset of self-adjoint operators that contains all rank-one projections.

Then, a bijective φ : S → S satisfies

(3.1) ABA = 0 ⇐⇒ φ(A)φ(B)φ(A) = 0 for all A,B ∈ S

if and only if there exists a bounded (conjugate) linear bijection T : H → H with

T ∗T = I = TT ∗, and a scalar function α : S → R∗ with the following two proper-

ties:

(i) φ(A) = α(A) · TAT ∗ whenever A ∈ S or φ(A) ∈ S have spectral points of

different signs.

(ii) Kerφ(A) = KerTAT ∗ and Imφ(A) = ImTAT ∗ for all A ∈ S.

Remark 3.2. In particular, this shows that the restriction of φ on positive definite

operators has no structure, i.e., φ can arbitrarily permute them.

In the finite dimensional case, the surjectivity and injectivity assumption can be

removed, at the expense of a slightly larger domain.

Theorem 3.3. Let n ≥ 3, let F = R or C, and let Hn be the set of n×n real symmet-

ric matrices or the set of n× n complex Hermitian matrices, respectively. Suppose

further S ⊆ Hn is a subset that contains all Hermitian matrices of rank ≤ 2. Then,

a mapping φ : S → S satisfies

(3.2) ABA = 0 ⇐⇒ φ(A)φ(B)φ(A) = 0 for all A,B ∈ S
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if and only if there exist a unitary matrix U , and a scalar function α : S → R∗

with the following two properties:

(i) φ(A) = α(A) · UA†U∗ whenever A ∈ S or φ(A) ∈ S have eigenvalues of

different signs.

(ii) Kerφ(A) = KerUA†U∗ and Imφ(A) = ImUA†U∗ for all A ∈ S.

Here, A† = A or A† = A.

In the finite dimensional case, we can also consider mappings on Hermitian

matrices over a skew-fields. Below we collect some basic facts about such matrices.

We refer to [15] for additional information.

Let D be a skew-field of characteristic char D 6= 2. Given two matrices A =∑
αijEij and B :=

∑
βijEij in Mn(D), we define AB :=

∑
γijEij , where γij :=∑

k αikβkj . Also, we let rankA be the column rank, i.e., the dimension of the

subspace in the right D–vector space Dn, generated by the columns of a matrix A.

It is known that this equals the row rank of A in the left vector space nD.

Suppose ¯ : D → D is a skew-field antiisomorphism of order two. Let F := {λ ∈
D : λ = λ̄} be a set of its fixed points. Throughout, we will assume that F is a field,

contained in the center of D. For any matrix A ∈ Mn(D) we let A∗ := Āt be the

transpose of a matrix, obtained from A by applying antiisomorphism ¯ entry-wise.

Then, (AB)∗ = B∗A∗. Recall [15] that A is Hermitian, if A = A∗. The F-space of

all Hermitian matrices over D will be denoted by Hn(D), or even by Hn.

Since char D 6= 2, every Hermitian matrix A is cogredient to a diagonal matrix,

i.e., there exists invertible P ∈Mn(D) such that

A = P diag (λ1, . . . , λr, 0, . . . , 0)P ∗; (r := rankA),

where λ1, . . . , λr ∈ F∗ := F\{0}. Consequently, each Hermitian matrix A can be

written as A =
∑r

i=1 xix∗i λi, where λi ∈ F∗, and xi are linearly independent n–by–

1 matrices (= column vectors) in the right D-vector space Dn. Note that when D is

commutative and ¯ is identity then Hn(D) equals the space of symmetric matrices.

We have the following analog of Theorem 3.3:

Theorem 3.4. Let n ≥ 3, let D be a skew-field with char D 6= 2, and let ¯ : D → D
be a skew-field anti-isomorphism of order two, such that F := {λ ∈ D : λ = λ̄} is

a field, contained in the center of D (possibly, ¯ is identity when D is commutative).

Denote by S ⊆ Hn(D) a subset of Hermitian matrices relative to ,̄ that contains

all Hermitian matrices of rank ≤ 2.

Suppose φ : S → S is a surjective mapping with the property

(3.3) ABA = 0 ⇐⇒ φ(A)φ(B)φ(A) = 0 for all A,B ∈ S.
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Then, there exist P ∈ Mn(F) with P ∗P = λI for some λ ∈ F∗, a skew-field

automorphism σ : D → D that commutes with ,̄ and a scalar function α : S → F∗

such that

φ(A) = PAσP ∗ · α(A) for all rank-one A = xx∗.

The proofs of the main theorems will be presented in the next three subsections.

3.1. The proof of Theorem 3.1. We divide the proof of Theorem 3.1 in a series

of lemmas. Let R− := (−∞, 0), and R+ := (0,∞). In addition, if x ∈ H we let

x∗ := 〈·,x〉, where 〈·, ·〉 is a scalar product on H.

Lemma 3.5. Let H be a complex Hilbert space, and let A,B ∈ B(H) be self-

adjoint operators. Assume the spectrum, Sp(A), contains both positive and negative

numbers. Then, the following are equivalent:

(a) B = λA for some nonzero scalar λ.

(b) 〈Ax,x〉 = 0 ⇐⇒ 〈Bx,x〉 = 0 for all normalized vectors x ∈ H.

Proof. We only prove the nontrivial part (b) =⇒ (a).

Measurable Calculus gives us the decomposition of I into pairwise orthogo-

nal projections P1 :=
∫
Sp(A)

χR+(ξ) dE(ξ), P2 :=
∫
Sp(A)

χR−(ξ) dE(ξ), and P3 :=∫
Sp(A)

χ{0}(ξ) dE(ξ), where χΩ is the characteristic function of Ω. Let Ai := PiAPi;

then A = A1 ⊕A2 ⊕A3, with A3 = 0.

By the spectral mapping Theorem [11, p. 167–168], Sp(A1) ⊆ Sp(A) ∩ R+, and

Sp(A2) ⊆ Sp(A) ∩ R−. Actually, the equality holds everywhere, since Sp(A)\{0} =

Sp(A1 ⊕A2 ⊕A3)\{0} = (Sp(A1) ∪ Sp(A2) ∪ Sp(A3))\{0}.

Now, suppose A has spectral points of different signs. Recall that the numerical

range of a self-adjoint operator is a convex hull of its spectrum, so there exist

two normalized vectors e0 ∈ ImP1 and f0 ∈ ImP2 such that γ2
0 := 〈A1e0, e0〉 =

〈Ae0, e0〉 > 0, and −δ20 := 〈A2f0, f0〉 = 〈Af0, f0〉 < 0. We next fix arbitrary

normalized vectors e ∈ ImP1 and f ∈ ImP2. Moreover, we choose x, y ∈ C; |x|2 +

|y|2 = 1 to form normalized x := xe + yf . It is elementary that 〈Ax,x〉 = (γe|x| −
δf |y|)(γe|x| + δf |y|), where γ2

e := 〈Ae, e〉 ≥ 0, and −δ2f := 〈Af , f〉 ≤ 0. Hence, by

the assumptions,

(3.4)
(γe|x| − δf |y|)(γe|x|+ δf |y|) = 0

⇐⇒ 0 = 〈Bx,x〉 = |x|2〈Be, e〉+ 2 Re(xy 〈Be, f〉) + |y|2〈Bf , f〉.

We have four cases to consider:

Case 1: γe 6= 0 6= δf . Here, we evaluate (3.4) at real x := ±δf/
√
γ2
e + δ2f and

y := γe/
√
γ2
e + δ2f . Comparing the two results gives γ2

e 〈Bf , f〉 + δ2f 〈Be, e〉 = 0
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and also γeδf Re(〈Be, f〉) = 0. Evaluate next at x := δf
√
−1/

√
γ2
e + δ2f and y :=

γe/
√
γ2
e + δ2f , to get additional equation Im(〈Be, f〉) = 0. Hence, for some λef ∈ R

we get

(3.5)

(
〈Be, e〉, 〈Bf , f〉

)
= λef

(
γ2
e ,−δ2f

)
= λef

(
〈Ae, e〉, 〈Af , f〉

)
, and

〈Be, f〉 = 0.

Case 2: γe = 0 6= δf . Evaluate (3.4) at real (x, y) = (cos t, sin t). With t = 0

we get 〈Be, e〉 = 0. Hence, we may rewrite (3.4) into: sin t 6= 0 ⇐⇒ (cos t, sin t) 6∈{(
2 Re〈Be, f〉, 〈Bf , f〉

)}⊥, the orthogonal complement in C2. This easily gives

Re〈Be, f〉 = 0. We repeat the arguments with (x, y) = (cos t,
√
−1 sin t) to deduce

that Im〈Be, f〉 = 0, as well. Hence, (3.5) holds even in Case 2.

Case 3: γe 6= 0 = δf is similar to Case 2.

Case 4: γe = 0 = δf . Then, the left-hand side of (3.4) vanishes. This easily

gives that all coefficients on the right-hand are zero, whence (3.5).

Likewise we show the validity of Eq. (3.4), and then use arguments from cases (2)–

(4) to deduce Eq. (3.5), when precisely one of e or f is replaced by a normalized

g ∈ ImP3 (provided that P3 6= 0). Recall now that γ2
0 := 〈Ae0, e0〉 > 0, and

−δ20 := 〈Af0, f0〉 < 0. It is then straightforward that, in (3.5), λ := λef does not

depend on choosing normalized vectors e⊕f⊕g ∈ ImP1⊕ ImP2⊕ ImP3 = H. This

shows that 〈(B − λA)x,x〉 = 0 for every normalized x ∈ H. Hence, B = λA. �

We next prove the following counterpart to Lemma 2.19:

Lemma 3.6. A nonzero self-adjoint operator A ∈ S is of rank-one if and only if

ΩA := {B ∈ S\{0} : ABA = 0} is nonempty and maximal.

Here, maximal means: If ΩA ⊆ ΩN for some N ∈ S\{0}, then ΩN = ΩA.

Proof. Suppose ΩA is nonempty, maximal. Obviously then, A is singular, so that

0 ∈ Sp(A). Moreover, A 6= 0, so there exists nonzero spectral point ξ ∈ Sp(A).

Let ∆ ⊂ Sp(A) be an open disc, centered at ξ, and separating it from 0. By the

Measurable Calculus, the projection

P :=
∫

Sp(A)

χ∆(ξ) dE(ξ)

is nontrivial (i.e, P 6= 0, I), and satisfies A = PAP ⊕ (I −P )A(I −P ). Measurable

Calculus with bounded function ξ 7→ χ∆(ξ)/ξ also gives Ã ∈ B(H) such that

ÃA = P = AÃ. Hence, ImP ⊆ ImA, and KerA ⊆ KerP . Now, if ABA = 0
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then B( ImA) ⊆ KerA, and so B( ImP ) ⊆ B( ImA) ⊆ KerA ⊆ KerP , which gives

PBP = 0. Consequently, ΩA ⊆ ΩP .

If P is not of rank-one, we can decompose it into projections P = P1 ⊕ P2 ⊕ P ′,

with rankP1 = 1 = rankP2. By hypothesis, P1, P2 ∈ S. Obviously, P2 ∈ ΩP1\ΩP .

Then, however, ΩA ⊆ ΩP $ ΩP1 , contradicting maximality. Hence, rankP = 1. By

maximality again, ΩA ⊆ ΩP implies ΩA = ΩP . We claim this is possible only when

rankA = 1: Actually, S contains all projections of the form B = z⊗z∗. Moreover,

z⊗ z∗ ∈ ΩA ⇐⇒ 0 = A(z⊗ z∗)A = (Az)⊗ (A∗z)∗ = (Az)⊗ (Az)∗ ⇐⇒ z ∈ KerA.

Since ΩA = ΩP , this gives KerA = KerP , which is a subspace of codimension one

in B(H). Therefore, rankA = 1.

To prove the reversed implication note that B ∈ Ωξx⊗x∗ ⇐⇒ 〈Bx,x〉 = 0.

Hence, y ⊗ y∗ ∈ Ωξx⊗x∗ for every y ∈ {x}⊥, the orthogonal complement of a

set {x}. Therefore, if Ωξx⊗x∗ ⊆ ΩN for some N ∈ S\{0}, then 0 = N(y⊗ y∗)N =

(Ny) ⊗ (Ny)∗ for every y ∈ {x}⊥, which implies that {x}⊥ ⊆ KerN . Thus,

0 6= rankN ≤ 1, and actually, N ∈ Rx⊗ x∗. Obviously then, ΩN = Ωξx⊗x∗ . �

Lemma 3.7. Assume 0 ∈ S. Then φ(A) = 0 if and only if A = 0.

Proof. Suppose A 6= 0, and pick x with Ax 6= 0. Then, A(x ⊗ x∗)A = (Ax) ⊗
(Ax)∗ 6= 0. By the assumptions, also φ(A)φ(x ⊗ x∗)φ(A) 6= 0, so φ(A) 6= 0.

Reversed implications, with surjectivity give φ(0) = 0. �

Corollary 3.8. The bijection φ preserves the set of rank-one operators in S. More-

over, for each nonzero vector x there exists nonzero y such that φ(S∩R∗ x⊗x∗) ⊆
S ∩ R∗ y ⊗ y∗.

Proof. By Lemma 3.7, φ(X) = 0 ⇐⇒ X = 0. Hence, by the bijectivity, φ(ΩX) =

Ωφ(X). It is easy to see that bijection φ preserves maximality among the sets ΩX .

Consequently, by Lemma 3.6, φ maps the set of rank-one operators in S to itself.

To prove the addendum, start with a normalized vector x, and pick any λ ∈
R∗ such that λx ⊗ x∗ ∈ S. We already know that φ(x ⊗ x∗) = ξy ⊗ y∗, and

φ(λx⊗ x∗) = ζz⊗ z∗ for some normalized y and z, respectively. It now suffices to

show that y, z are linearly dependent. Assume otherwise. Then, we could find a

normalized w such that 〈y,w〉 = 0, and 〈z,w〉 6= 0. By bijectivity, w⊗w∗ = φ(B).

Then, however, φ(B)φ(x⊗ x∗)φ(B) = 0, and φ(B)φ(λx⊗ x∗)φ(B) 6= 0. This gives

B(x⊗ x∗)B = 0 6= λB(x⊗ x∗)B, a contradiction. �
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Lemma 3.9. There exists a bounded (conjugate) linear bijection T : H → H, with

TT ∗ = I = T ∗T , and a scalar function α : S → R∗, such that

φ(P ) = α(P ) · TPT ∗; (P = x⊗ x∗).

Proof. Let

P := {〈x〉 = Cx : x ∈ H\{0}}

be a projective space. Hence, by Corollary 3.8, φ induces a well-defined mapping

Υ : P → P, with the property

Υ〈x〉 := 〈y〉 if φ(x⊗ x∗) ∈ R∗ y ⊗ y∗.

Pick any normalized vectors x1,x2. Now, the subspaces 〈x1〉, 〈x2〉 are orthogonal

if and only if (x1 ⊗ x∗1)(x2 ⊗ x∗2)(x1 ⊗ x∗1) = 0. This, in turn, is equivalent to

φ(x1 ⊗ x∗1)φ(x2 ⊗ x∗2)φ(x1 ⊗ x∗1) = 0, i.e., to Υ〈x1〉 being orthogonal to Υ〈x2〉. In

addition, Υ is bijective — just repeat the above arguments with φ−1.

By the classical Wigner unitary-antiunitary theorem (see Faure [5, Cor. 4.5] for a

short proof), there exists a (conjugate) linear, bijective isometry T : H → H with

Υ〈x〉 = 〈Tx〉. This gives φ(x ⊗ x∗) = α · Tx ⊗ (Tx)∗ = α · T (x ⊗ x∗)T ∗ for some

nonzero scalar α = α(x ⊗ x∗). Obviously, a bijective (conjugate) linear isometry

also satisfies T ∗T = I = TT ∗. �

Proof of Theorem 3.1. The sufficiency part is easy. Sketch: we assume (T, α(X)) =

(I, 1) ∀X, and let ABA = 0. If B has spectral points of different signs then φ(B) =

B, hence φ(B)( Imφ(A)) = B ImA ⊆ KerA = Kerφ(A), giving φ(A)φ(B)φ(A) = 0.

If, on the other hand, Sp(B) ⊆ [0,∞) then ABA = 0 implies (
√
BA)∗(

√
BA) = 0,

so BA = 0, hence, Imφ(A) ⊆ Kerφ(B), i.e., φ(A)φ(B)φ(A) = 0. Similarly we see

that φ(A)φ(B)φ(A) = 0 implies ABA = 0.

To prove the necessity we assume, with no loss of generality that, in Lemma 3.9,

α(x⊗x∗) = 1. Also, we may replace φ by T ∗φ(·)T to achieve that φ(x⊗x∗) = x⊗x∗.

Choose now any A ∈ S with both positive and negative spectral points. Note

that (x ⊗ x∗)A(x ⊗ x∗) = 0 ⇐⇒ 〈Ax,x〉 = 0. Consequently, by the assumptions,

〈Ax,x〉 = 0 ⇐⇒ 〈φ(A)x,x〉 = 0. By Lemma 3.5, φ(A) = α(A) ·A.

Applying the above argument to φ−1, we see that if B = φ(A) has spectral

points of different signs, then A has also spectral points of different signs. So, if all

nonzero spectral points of A have the same signs, then same holds of B = φ(A).

Since 〈Ax,x〉 = 0 if and only if 0 = 〈Bx,x〉 we see that A and B = φ(A) have the

same kernel (use
√
B), and also the same closure of image (use ImX = (KerX)⊥

for self-adjoint X). �
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3.2. The proof of Theorem 3.3. For the purpose of this section only, we let
~ij be an ordered pair (ij), where emphasizing that i < j. Also, we associate (cf.

Eq. 2.3) with each nonzero matrix A ∈ Hn(C) the set

A� := {B ∈ Hn(C)\{0} : ABA = 0}.

We start with the technical lemma, which characterizes rank-one complex Her-

mitian matrices in terms of zeros of Jordan triple product. It is based on the fact

that Hn(C) is a real vector space of dimension n2. The sole purpose of Hermit-

ian matrices Bk, C~ij , D̃~ij below is to control the linear independence among the

corresponding Xk, Y~ij , Ỹ~ij .

Lemma 3.10. Let A ∈ Hn(C) be nonzero. Then the following are equivalent:

(a) rankA = 1.

(b) There exist n−1 matrix tuples (X2, B2), . . . , (Xn, Bn) ∈ (A�∩S)×S, and

two sets of n(n − 1)/2 matrix tuples (Y~ij , C~ij), (Ỹ~ij , D̃~ij) ∈ (A� ∩S) ×S;

(1 ≤ i < j ≤ n) such that

BkXkBk 6= 0 C~ijY~ijC~ij 6= 0 D̃~ij Ỹ~ijD̃~ij 6= 0 (∀ k, ∀ ~ij);(3.6)

on the one hand, while on the other:

BkXsBk = 0 BkY ~uvBk = 0 BkỸ ~uvBk = 0 (∀ s 6= k, ∀ ~uv)(3.7)

C~ijY ~uvC~ij = 0 C~ij Ỹ~stC~ij = 0 (∀ ~uv 6= ~ij, ∀ ~st)(3.8)

D̃~ij Ỹ ~uvD̃~ij = 0 (∀ ~uv 6= ~ij).(3.9)

Proof. Suppose rankA = 1, and write it as A = PλE11P
∗ for some invertible P

and nonzero scalar λ. Define the n− 1 matrix tuples

(Xk, Bk) :=
(
(P−1)∗EkkP

−1 , PEkkP
∗); (k = 2, . . . , n),

and the first set of n(n− 1)/2 matrix tuples

(Y~ij , C~ij) :=
(
(P−1)∗(Eij+Eji)P−1, P (Eii+Eij+Eji+Ejj)P ∗

)
; (1 ≤ i < j ≤ n),

and also the second set of n(n− 1)/2 matrix tuples

(Ỹ~ij , D̃~ij) :=
(√

−1(P−1)∗(Eij − Eji)P−1, P (Eij + Eji)P ∗
)
; (1 ≤ i < j ≤ n).

Obviously, Xk, Y~ij , Ỹ~ij ∈ A� ∩ S, and Bk, C~ij , D̃~ij ∈ S. Elementary exercise also

validates (3.6)–(3.9).
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Conversely, assume (b) holds. Now, if r := rankA ≥ 2 then A = PEP ∗ for some

invertible P and diagonal E :=
∑r

i=1 λiEii. Then,

A� ∩S =

[
(P−1)∗

(
0r×r ∗
∗ ∗

)
P−1

]
∩S

spans at most n2 − r2 dimensional R-subspace of complex Hermitian matrices.

It is easily seen that the hypothesis of (b) imply that {Xj , Y~ij , Ỹ~ij : 1 ≤ i < j ≤
n} is an R-linearly independent set that consists of n2 − 1 matrices.

(Indeed, assume
P

j αjXj +
P

β ~uvY ~uv +
P

γ ~uv
eY ~uv = 0. Pre- and post- multiply with

Bk. The assumptions (3.6)–(3.7) yield αk = 0 ∀ k. Next, pre- and post- multiply with

C~ij to get β~ij = 0 ∀ k, via (3.6)–(3.8). Pre- and post- multiply with D̃~ij to finish.)

However, the above set of n2 − 1 R-independent matrices lies in A� ∩ S, a

contradiction. �

Remark 3.11. Similar arguments characterize real-symmetric, rank-one matrices:

we just omit the third tuple (Ỹ~ij , D̃~ij) in Lemma 3.10 (b).

Lemma 3.12. If φ(A) = 0 then also A = 0.

Proof. Similar to the first part of Lemma 3.7. �

Corollary 3.13. The mapping φ preserves Hermitian matrices of rank-one. More-

over, for each nonzero vector x there exists nonzero y such that φ(R∗ xx∗) ⊆
R∗ yy∗.

Proof. Suppose rankA = 1. Choose matrix tuples from Lemma 3.10 (b) (see

also Remark 3.11 for real symmetric matrices). Identity (3.6) implies that all ma-

trices A,Xk, Bk, Y~ij , C~ij , Ỹ~ij , D̃~ij are nonzero. Same holds of their φ–images, by

Lemma 3.12. Since φ preserves zeros of Jordan triple product in both directions,

the matrix tuples (φ(Xk), φ(Bk)), (φ(Y~ij), φ(C~ij)), and (φ(Ỹ~ij), φ(D̃~ij)) are also

in (φ(A)� ∩S)×S and satisfy Eqs. (3.6)–(3.9). By Lemma 3.10, rankφ(A) = 1.

To prove the addendum, start with λ ∈ R∗ and nonzero vector x. Com-

plete it with vectors x2, . . . ,xn to an orthogonal basis of Fn. Then, P1 := xx∗

and Pi := xix∗i are rank-one matrices, and PiPjPi 6= 0 precisely when i = j. Same

holds of their images φ(Pi), by the first part and by the defining Eq. (3.2). Hence,

φ(Pi) = ξiyiy∗i 6= 0, and vectors yi must also be pairwise orthogonal. Now, con-

sider φ(λxx∗). We have P2(λxx∗)P2 = 0 = · · · = Pn(λxx∗)Pn. As before, we

deduce φ(λxx∗) = ξzz∗, where z is orthogonal to y2, . . . ,y2. This is possible only

when z ∈ F∗y1, so that φ(λxx∗) ∈ R∗y1y∗1 = R∗ φ(xx∗), as anticipated. �
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Sketch of the proof of Theorem 3.3. We follow the familiar footsteps to prove ne-

cessity: By Corollary 3.13, φ induces a well-defined mapping Υ : P(Fn) → P(Fn)

on the projective space, with the property

Υ〈x〉 := 〈y〉 if φ(xx∗) ∈ R∗ yy∗.

To prove that Υ is projective, suppose 〈x〉 ⊆ 〈x1〉+ 〈x2〉. Then, x = λ1x1 + λ2x2.

Denote 〈y〉 := Υ〈x〉, 〈y1〉 := Υ〈x1〉, and 〈y2〉 := Υ〈x2〉.
Now, if 〈x1〉 = 〈x2〉 then x ∈ F∗x1 = F∗x2, so that Υ〈x〉 = Υ〈x1〉, by

Corollary 3.13. Otherwise, complete x1,x2 with pairwise orthogonal x3, . . . ,xn ∈
{x1,x2}⊥. Obviously, they are also orthogonal to x. As in the proof of Corol-

lary 3.13 we deduce that φ(xix∗i ) = ξiyiy∗i , with y3, . . . ,yn ∈ {y1,y2}⊥ pairwise

orthogonal, and orthogonal to y. Therefore, y ∈ {y3, . . . ,yn}⊥ = {y1,y2}, which

translates into the desired Υ〈x〉 ⊆ Υ〈x1〉+Υ〈x2〉. As a byproduct: if the subspaces

〈x1〉 and 〈x2〉 are orthogonal then same holds of Υ〈x1〉 and Υ〈x2〉.

We may now use the nonsurjective version of Wigner’s unitary-antiunitary the-

orem (see Faure [5, Theorem 4.1]). Consequently, we get a (conjugate) linear isom-

etry T : Fn → Fn such that φ(xx∗) = α(xx∗) · T (xx∗)T ∗. In finite-dimensions, T

is automatically bijective.

We next follow the proof of Theorem 3.1, just that Measurable Calculus is re-

placed with unitary diagonalization of complex Hermitian/real-symmetric matrices

in Lemma 3.5. As a result: φ(A) = α(A) · TAT ∗ holds for every Hermitian matrix

in S, with both positive and negative eigenvalues (and all rank-one Hermitian matri-

ces). This can be easily rewritten into φ(A) = α(A)·UAU∗, or φ(A) = α(A)·UAU∗,

where U is a unitary matrix.

The final part is different, though, since φ−1 may not exist: We first replace, if

necessary, φ by (1/α(A) · U∗φ(·)U)† to achieve that the redefined φ fixes rank-one

matrices in S. It is easy to see that the set {x ∈ Fn\{0} : x∗Ax = 0} ∪ {0}
is not a vector subspace of Fn if and only if the Hermitian matrix A has both

positive and negative eigenvalues. Recall φ(xx∗) = xx∗, so that x∗Ax = 0 if and

only if x∗φ(A)x = 0. Consequently, if all eigenvalues of A are nonnegative or

nonpositive, then same holds of B = φ(A). As the proof of Theorem 3.1 we see

that KerA = Kerφ(A) and ImA = Imφ(A).

The sufficiency also goes as the proof of Theorem 3.1. �

3.3. Proof of Theorem 3.4. Lastly, we prove Theorem 3.4 concerning Hermitian

matrices over a skew-field. We proceed in a series of lemmas.

Lemma 3.14. Assume 0 ∈ S. Then, φ(A) = 0 if and only if A = 0.
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Proof. Similar to Lemma 3.7. �

To continue, we classify rank–one Hermitian matrices in terms of zeros of the

Jordan triple product:

Lemma 3.15. A nonzero Hermitian A ∈ S is a rank–one matrix if and only if

ΩA := {B ∈ S\{0} : ABA = 0} is nonempty and maximal.

Here, maximal means: If ΩA ⊆ ΩN for some N ∈ S\{0}, then ΩN = ΩA.

Proof. Suppose A is a Hermitian matrix such that ΩA is nonempty and maximal.

Choose invertible P ∈ Mn(D) with A = P (
∑r

i=1 λiEii)P ∗, r := rankA. Clearly

then, for N ∈ S\{0},

ANA = 0 ⇐⇒ 0 =
( r∑

i=1

λiEii

)
P ∗NP

( r∑
i=1

λiEii

)
⇐⇒ P ∗NP =

(
0r×r ∗
∗ ∗

)
.

Consequently, if ANA = 0 then so much the more ÃNÃ = 0, where Ã := PE11P
∗ ∈

S. This translates into ΩA ⊆ ΩÃ, which, by maximality, further gives ΩA = ΩÃ.

We claim this is possible only when rankA = 1: Actually, S contains all matrices

of the form B = zz∗. Moreover, zz∗ ∈ ΩA ⇐⇒ 0 = Azz∗A = (Az)(A∗z)∗ =

(Az)(Az)∗ ⇐⇒ z ∈ KerA. Since ΩA = ΩÃ, this gives KerA = Ker Ã, which is a

subspace of codimension one in Dn. Therefore, rankA = 1.

To prove the reversed implication note that B ∈ Ωxx∗λ ⇐⇒ x∗Bx = 0. Hence,

B = yy∗ ∈ Ωxx∗λ for every y ∈ {x}⊥ := {y ∈ Dn : y∗x = 0}. Therefore, if Ωxx∗λ ⊆
ΩN , then 0 = N(yy∗)N = (Ny)(N∗y)∗ = (Ny)(Ny)∗ for every y ∈ {x}⊥. This

implies {x}⊥ ⊆ KerN . Thus, 0 6= rankN ≤ 1, and actually, N ∈ xx∗ F . Obviously

then, ΩN = Ωxx∗λ. �

Corollary 3.16. The surjection φ preserves Hermitian matrices of rank-one.

Proof. By Lemma 3.14, φ(A) = 0 ⇐⇒ A = 0. Hence, 0 6∈ φ(ΩX). It is now easy to

see that a surjection φ, which satisfies the defining Eq. (3.3), also satisfies φ(ΩX) =

Ωφ(X). Moreover, it preserves maximality among the sets ΩX : this follows at once

from Ωφ(X) ⊆ Ωφ(N) =⇒ ΩX ⊆ ΩN . The implication, on the other hand, must be

true; otherwise, there would exist B ∈ S, with XBX = 0 6= NBN . Hence, also

φ(X)φ(B)φ(X) = 0 6= φ(N)φ(B)φ(N), which would contradict φ(B) ∈ Ωφ(X) ⊆
Ωφ(N). Lemma 3.15 now finishes the proof. �

Lemma 3.17. For each nonzero vector x there exists a vector y with the property

φ(xx∗F∗) ⊆ yy∗F∗.
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Proof. Let λ, µ ∈ F∗. By Corollary 3.16, rankφ(xx∗ λ) = 1 = rankφ(xx∗ µ).

Consequently, φ(xx∗ λ) = yy∗ α, and φ(xx∗ µ) = zz∗ β for some α, β ∈ F∗. Plainly,

it suffices to prove that y and z are D-linearly dependent, since then, z = yξ, so

that zz∗β = yξξy∗ · β = yy∗ξξ · β ∈ yy∗F∗.

Assume otherwise. Then, we may find a vector w with w∗y = 0 and w∗z = 1.

By surjectivity, ww∗ = φ(A). Note that α, β ∈ F are in the center of D, and

y∗w = (w∗y)∗ = 0 ∈ D, so

(yy∗ α) · (ww∗) · (yy∗ α) = y(y∗w) (w∗y) · y∗ α2 = 0.

In contrast, (w∗z)∗(w∗z) = 1 · 1 = 1 ∈ D, so

(zz∗ β) · (ww∗) · (zz∗ β) = z(z∗w)(w∗z)z∗β2 = z(w∗z)∗(w∗z)z∗β2 = zz∗β2 6= 0.

However, the φ–pre-images, (xx∗ λ)A(xx∗ λ) and (xx∗ µ)A(xx∗ µ) are either both

zero or both nonzero, since λ, µ ∈ F∗ are in the center of D. This contradicts (3.3).

�

Below we use the idea in [9] to complete our proof.

Proof of the Theorem 3.4. It suffices to show that φ(A) ∈ (PAσP ∗)F∗ for every

rank-one A = xx∗, where P ∈ Mn(D) and σ : D → D have the stated properties.

We proceed in three steps.

Step 1. We claim that

(3.10) φ(xx∗) ∈ (Pxσ)(Pxσ)∗ F∗ =
(
P
(
xσ(xσ)∗

)
P ∗
)
F∗

for some matrix P , and automorphism σ : D → D. To see this, let

P(Dn) := {〈x〉 = xD : x ∈ Dn\{0}}

be a projective space. Note that (xξ)(xξ)∗ = xx∗ ξξ ∈ xx∗ F∗ for ξ ∈ D\{0}.
Hence, by Lemma 3.17, φ induces a well-defined mapping Υ : P(Dn) → P(Dn),

with the property

(3.11) Υ〈x〉 := 〈y〉 if φ(xx∗) ∈ yy∗ F∗.

To prove that Υ is projective, suppose 〈x〉 ⊆ 〈x1〉+ 〈x2〉. Then, x = x1ξ1 + x2ξ2.

Denote 〈y〉 := Υ〈x〉, 〈y1〉 := Υ〈x1〉, and 〈y2〉 := Υ〈x2〉 and assume erroneously

that y is D-linearly independent of y1,y2. Then, there is w ∈ Dn with w∗y = 1,

while w∗y1 = 0 = w∗y2. By surjectivity, ww∗ = φ(A). Then, (ww∗) · (y1y∗1) ·
(ww∗) = 0 = (ww∗) · (y2y∗2) · (ww∗), while (ww∗) · (yy∗) · (ww∗) = ww∗ 6= 0.

Same equations hold for φ–pre-images, i.e., Ax1x∗1A = 0 = Ax2x∗2A, while

Axx∗A 6= 0. However, Azz∗A = Az(A∗z)∗ = Az(Az)∗ = 0 if and only if Az = 0.

Hence, Ax1 = 0 = Ax2, while 0 6= Ax = A(x1ξ1 + x2ξ2) = (Ax1)ξ1 + (Ax2)ξ2 = 0,
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a contradiction. It is easy to see that this implies 〈y〉 ⊆ 〈y1〉 + 〈y2〉, i.e., Υ〈x〉 ⊆
Υ〈x1〉+ Υ〈x2〉, as claimed.

Note that Υ is surjective, since φ is. We now apply the (nonsurjective version of)

Fundamental Theorem of Projective Geometry [5]. Hence, Υ〈x〉 = 〈Tx〉 for some

σ-semilinear surjection T : Dn → Dn. Actually, KerT = 0, so T is also injective.

By (3.11),

(3.12) φ(xx∗) ∈ (Tx)(Tx)∗ F∗.

To prove the rest, let e1, . . . , en be a standard basis of right D-vector space Dn,

and let P be a matrix with Pei = Tei. Then, Tx = Pxσ, and Eq. (3.12) simplifies

into φ(xx∗) ∈ (Pxσ)(Pxσ)∗ F∗ = P
(
xσ(xσ)∗

)
P ∗ F∗, as anticipated in (3.10).

Step 2. We claim that P ∗P = λI for some λ ∈ F∗. To see this, recall that F is

a field, contained in the center of D, and that
(
(xσ)∗Dyσ

)
·
(
(xσ)∗Dyσ

)∗ ∈ F for

any matrix D and vectors x,y. Consequently, by (3.10):

φ(xx∗)φ(yy∗)φ(xx∗) ∈
(
P
(
xσ(xσ)∗

)
P ∗ · P

(
yσ(yσ)∗

)
P ∗ · P

(
xσ(xσ)∗

)
P ∗
)
F∗

⊆ Pxσ(xσ)∗P ∗ ·
((

(xσ)∗Dyσ
)
·
(
(xσ)∗Dyσ

)∗)F∗,(3.13)

where D := P ∗P = D∗. Put x := ei and y := ej . Then, eσ
i = ei = ei, and the

same holds for ej . Moreover, if i 6= j then x∗y = 0, hence (xx∗)(yy∗)(xx∗) = 0,

hence the left side of (3.13) is zero, which is possible only if the right side is zero,

as well. This gives e∗iDej = 0, i.e., the off-diagonal entries of D are zero.

Repeat the procedure with x := ei + ej and y := ei − ej to deduce that all

diagonal entries of D are the same, i.e., D is scalar. Actually, D = D∗ implies that

this scalar is in F∗.

Step 3. It only remains to see that σ commutes with .̄ Put x := (ξ, 1, 0, . . . , 0)∗,

and y := (1,−ξ, 0, . . . , 0)∗ into (3.13). Note that x∗y = ξ · 1 + 1 · (−ξ) = 0, hence

(xx∗)(yy∗)(xx∗) = 0, hence the left, and so also the right side of (3.13) are zero.

Since D is a scalar, in the center of D, the right side reduces into 0 = (xσ)∗yσ =

ξσ · 1− 1 · (ξ)σ. Indeed: ξσ = (ξ)σ for every ξ ∈ D, and Eq. (3.10) further simplifies

into φ(xx∗) ∈ P
(
xx∗

)σ
P ∗ F∗, as claimed. �

4. Applications to preservers

In this section, we show that the results in the last two sections can be used to

solve many preserver problems efficiently. Throughout this section, F = R or C.

There has been interest in studying preservers of various types of scalar functions

on real or complex matrices including:
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• the spectral norm ‖A‖ = sup{(x∗A∗Ax)1/2 : x ∈ Fn, x∗x = 1},
• the Schatten p-norm Sp(A) = {

∑n
j=1 sj(A)p}1/p for any p ≥ 1, where

s1(A) ≥ · · · ≥ sn(A) are the singular values of A;

• the numerical radius r(A) = max{|x∗Ax| : x ∈ Cn,x∗x = 1}.

Using the results in the previous section, we can obtain a general result covering

all these cases. In the following, we consider F : Mn(F) → [0,∞), which satisfies

some of the following conditions.

(i) F (A) = 0 if and only if A = 0.

(ii) There is a nonzero p ∈ R such that F (µA) = |µ|pF (A) for all µ ∈ F and

A ∈Mn(F).

(iii) F (A) = F (U∗AU) for all U,A ∈Mn(F) with U∗U = In.

We have the following result.

Theorem 4.1. Let F = R or C, n ≥ 3, and S ⊆ Mn(F) contains all rank-one

idempotents. Suppose F : Mn(F) → [0,∞) and φ : S → S is surjective and

satisfies

F (ABA) = F (φ(A)φ(B)φ(A)) for all A,B ∈ S.

If F satisfies (i), then there exist an invertible S ∈Mn(F), a field automorphism σ

of F, and α : S → F∗ such that φ has the form

A 7→ α(A) · SAσS−1 or A 7→ α(A) · S(Aσ)tS−1.

If F satisfies (i) – (ii), then σ is continuous (i.e., σ is identity or a complex conjuga-

tion) in the above conclusion. If F satisfies (i) – (iii), and S contains all idempotent

and nilpotent matrices of rank-one, then S can be chosen unitary, and |α(A)| = 1

for all nonzero A ∈ S in the above conclusion.

Proof. By Theorem 2.1, if F satisfies (i), then there is an invertible S and a function

α : S → F∗ such that φ has the form

(4.1) A 7→ α(A) · SAσS−1 or A 7→ α(A) · S(Aσ)tS−1.

Suppose F also satisfies (ii). Then we may replace F by the map A 7→ (F (A))1/p

and assume that p = 1. To prove continuity of σ, we consider the restriction of φ

on rank-one idempotent matrices. If A has rank-one, then A is unitarily similar to

At, and thus F (A) = F (At). So, we may assume that φ satisfies the first form;

otherwise, replace φ by A 7→ φ(At). Let A = E11 + zE12, B = E11 + E12, and

C = E21 + E22. Then ABA = A and ACA = zA. Thus,

|z| · F (A) = |z| · F (ABA) = |z| · F (φ(A)φ(B)φ(A)) = |z| |α(A)α(B)| · F (φ(A)),
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which is the same as

F (zA) = F (ACA) = F (φ(A)φ(C)φ(A)) = |σ(z)| |α(A)α(C)| · F (φ(A)).

Putting z = 1, we see that |α(C)| = |α(B)|. Using this fact, we see that |σ(z)| = |z|
as asserted.

Now, suppose S contains all idempotent and nilpotent matrices of rank-one, and

F satisfies (i) – (iii). We first consider the restriction of φ on rank-one matrices

and prove that a scalar multiple of S is unitary. We will then show that |α(X)| = 1

for all X ∈ S. As before, we may assume that this restriction has the form

A 7→ α(A) · SAσS−1. Furthermore, if S = UDV is a singular value decomposition,

we may replace φ by A 7→ U∗φ(V̂ ∗AV̂ )U ; (V̂ := V σ−1
) and assume that S = D

is the diagonal matrix D = diag (d1, . . . , dn) with d1 ≥ · · · ≥ dn > 0. Then,

φ(A) = α(A) · DAD−1 if A ∈ S is a rank-one matrix with integer coefficients.

Also, φ(Eij) = did
−1
j α(Eij)Eij . Therefore,

F (Ejj) = F (E3
jj) = F (φ(Ejj)3) = |α(Ejj)|3 · F (Ejj)

and hence |α(Ejj)| = 1 for all j = 1, . . . , n. Next, observe that

F (Ejj) = F (Ejj(Ejj + Eji)Ejj) = |α(Ejj)2α(Ejj + Eji)| · F (Ejj).

Consequently, |α(Ejj + Eji)| = 1. Next,

F (Eij) = F (EijEjiEij) = did
−1
j |α(Eij)2α(Eji)| · F (Eij),

which is the same as

F (Eij) = F (Eij(Ejj + Eji)Eij) = did
−1
j |α(Eij)2α(Ejj + Eji)| · F (Eij).

It follows that |α(Eji)| = |α(Ejj +Eji)| = 1, whenever i 6= j. Hence also |α(Eij)| =
1, and the last equation gives did

−1
j = 1. Therefore, D = λI is a scalar, and

S = λUV . Nothing changes in Eq. (4.1) if we replace S by λ−1S = UV . Thus, S

can be chosen unitary.

For simplicity we may assume S = I. Recall that we have already shown

|α(Eij)| = 1 for all i, j. Consider a general X ∈ S\{0}. Now, if X has the (ij)

entry equal to a nonzero number µ then, by the assumption on φ, and Eq. (4.1):

|µ| · F (Eji) = F (EjiXEji) = F
(
φ(Eji)φ(X)φ(Eji)

)
= |α(Eji)2α(X)| · F

(
(EjiXEji)τ

)
= |α(Eji)2α(X)| |σ(µ)| · F

(
Eτ

ji

)
,

where Aτ denotes Aσ or (Aσ)t. Note that |µ| = |σ(µ)|, and F (Et
ji) = F (Eji), so

that |α(X)| = 1. �
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Remark 4.2. Note that one needs to assume that S contains all rank-one nilpotents

to get the last assertion. For example, define F (X) = |TrX| for X with nonzero

trace, and F (X) = ‖X‖ otherwise. Then F satisfies (i) – (iii). However if S = I1,

then any mapping of the form A 7→ SAS−1 for an invertible (possibly non-unitary)

S will satisfy F (ABA) = F (φ(A)φ(B)φ(A)) for all A,B ∈ S.

Remark 4.3. If S contains all matrices of rank-one, surjectivity assumption may

be removed — all conclusions remain the same; the only difference is that in the

first assertion, σ is a (possibly nonsurjective) field homomorphism.

Remark 4.4. Evidently, Theorem 4.1 can be used to treat many scalar functions

on Mn(F) including all the unitary similarity invariant norms ν, i.e., those norms ν

satisfying ν(U∗AU) = ν(A) for all U,A ∈Mn(F) with U∗U = I. One can also use

the above result to treat non-scalar value functions. For example, denote by W (T )

the numerical range of a complex matrix defined by W (T ) = {x∗Tx : x ∈ Cn}.
Suppose

W (ABA) = W (φ(A)φ(B)φ(A)) for all A,B ∈ S.

Then r(ABA) = r(φ(A)φ(B)φ(A)) for all A,B ∈ S. By Theorem 4.1, there is a

unitary matrix U and a scalar function α : Mn(F) → {µ ∈ C : |µ| = 1} such that φ

has the form

A 7→ α(A) · UAU∗ or A 7→ α(A) · UAtU∗.

Note that if X has rank-one, then W (X) is an elliptical disk with foci 0 and TrX.

We see that α(X)3 = 1 for all rank-one idempotents. One can then show that

α(X) = ξ with ξ3 = 1 for all X ∈ S (see also [8]).

We can apply similar arguments to get other results. Moreover, we can use The-

orem 3.3 and its corollary to get similar results on (complex) Hermitian matrices.
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