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Abstract

Every norm v on C” induces two norm numerical ranges on the algebra M, of all n x n
complex matrices, the spatial numerical range

W(A) = {z*Ay: =,y € C", v’ (z) = v(y) = 2"y = 1},
where v? is the norm dual to v, and the algebra numerical range

V(A)={f(4): feS},

where S is the set of states on the normed algebra M,, under the operator norm induced
by v. For a symmetric norm v, we identify all linear maps on M,, that preserve either one
of the two norm numerical ranges or the set of states or vector states. We also identify
the numerical radius isometries, i.e., linear maps that preserve the (one) numerical radius
induced by either numerical range. In particular, it is shown that if v is not the ¢, £, or £o
norms, then the linear maps that preserve either numerical range or either set of states are
“inner”, i.e., of the form A — Q*AQ), where () is a product of a diagonal unitary matrix and
a permutation matrix and the numerical radius isometries are unimodular scalar multiples
of such inner maps. For the /; and the /., norms, the results are quite different.
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1 Introduction

Let M, be the algebra of n x n complex matrices, and let || - || be the operator norm on M,
induced by a norm v on C", i.e.,

|A]| = max{v(Az) : x € C", v(z) < 1}.

Suppose X and Y are complex matrices or vectors of the same size. Denote by (X,Y) =
tr(XY*) the usual inner product on matrices, and denote by v? and || - ||’ the dual norms
of v and || - ||, respectively, i.e.,

vP(y) = max{|(y,2)| : v(z) <1} and || B||” ={|(B, 4)|: 4] <1}.

We note that in our version of duality, the identification of (C",»P) with the dual space of
(C", v), is conjugate-linear rather than linear, i.e., the linear functional f, on (C", v) induced
by a vector y is given by f,(z) = >7_; z;7;. This is at variance with standard notation in
classical Banach space theory, but consistent with Hilbert space duality. Similarly the duality
(X,Y) between (M, ||-||) and (M, ||-||P) is variably given in the literature as tr (XY*), as
we do, and also tr (XY?) or tr (XY).

A state on a normed algebra A (with identity I of norm one) is a linear functional f on
A such that f(I) = ||f|| = 1. With the usual identification of M,, with its dual, the set ¥ of
states is then identified with the set & C M,, described below, which we shall also refer to
as the set of states on M,, with respect to the norm || - ||.

S={BeM,:trB=|B||” =1}. (1.1)
The following subset
R={zy* 2,y € C", v°(2) =v(y) = 2%y = 1} (1.2)

is called the set of vector states. There are two norm numerical ranges of A € M,, associated
with v. The spatial numerical range

W,(A)={(A,2): Ze R} ={z*Ay: 2,y € C", v°(z) = v(y) = 2"y = 1}, (1.3)
and the algebra numerical range
V,(A)={(A,Z2): Z € S}. (1.4)
When there is no ambiguity about the norm v, we simply write
W(A) =W,(4) and V(A4) =V,(A).
It is known (see [3, p.84] and Corollary 2.2 below) that V(A) is the convex hull of W (A),
ie.,

V(A) = conv W(A). (1.5)
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In view of this, there is only one norm numerical radius associated with the numerical ranges,
namely,

ru(A) = max{|p|: p € W(A)} = max{|p|: p € V(A)}.

Again, when there is no ambiguity about v, we simplify write
r(A) =r,(A).
The numerical radius is a norm on M,, and (see [3, p.34])
e '[JAf < r(4) < [|4], (1.6)

where e is the Euler constant. It is obvious that W (A) includes every eigenvalue of A and
hence

p(A) <r(A), (1.7)

where p(A) is the spectral radius of A.

The standard reference for norm numerical ranges is [3]. See also [2, 17].

When v is the /, norm, § is the set of positive semidefinite matrices with trace 1 and
W(A) = V(A) is the classical numerical range of A acting on the n-dimensional Hilbert space
C", which has been studied extensively; see [8, 9] for background. In this case, the linear
preservers of the numerical range are known. Pellegrini [18] showed that a linear operator
¢ on M, satisfies V(¢(A)) = V(A) for all A € M, if and only if its dual transformation ¢*
satisfies ¢*(S) = S. If v is the £, norm, then one may use a result of Kadison [10] on state
preserving maps to deduce that there is a unitary U € M,, such that ¢ has the form

A= U*AU or A U*AWU.

In this article, we consider linear maps on M,, that preserve numerical ranges and radii
induced by symmetric norms v on C", i.e., norms v that satisfy v(Px) = v(z) for every P
that is either a permutation matrix or a diagonal unitary matrix. (Some authors refer to
these norms as symmetric and absolute.) We give a complete characterization of those linear
operators ¢ on M, satisfying

F(¢(A)) = F(4)  forall A € M,, (1.8)

where F(A) = W(A), V(A) or r(A). A linear operator ¢ on M, satisfying (1.8) is called a
linear preserver of the function F'.
It is evident that if v is any norm on C™ and if T is a linear isometry of (C",v), then

the “inner” map A — T—1AT preserves each of the two numerical ranges. The main result
of §3 is that the converse is also true when v is a symmetric norm other than multiples of
the /1, {5 or £, norms. i.e., the numerical range preservers are all inner. These results differ
from the ¢, results in as much as the transpose map is no longer present and that the group
of isometries of the underlying space (C",v) is much smaller. We also give in §5 a complete
description for the preservers of the numerical ranges when v is the ¢; or the /., norm. The
preservers of the spatial numerical range are also inner, but there are more linear preservers
of the algebra numerical range.



In §4, we identify the numerical radius isometries, i.e., the numerical radius preservers.
When v is a symmetric norm other than multiples of the /; or the /4, norm, such maps are
unimodular scalar multiples of the numerical range preservers. This is again not true for the
4 or the £, norms and we characterize the numerical radius preservers in these exceptional
cases in §5.

We end this section by fixing notation and terminology.

By a complex unit, we mean a complex number of modulus one. Also the term “uni-
modular complex number” is used synonymously. Vectors in C" are always assumed to be
column vectors so that zy* is an n X n matrix, while y*z is the inner product of x and y. We
always assume that || - || is the operator norm on M,, induced by a symmetric norm v on C"
unless specified otherwise. Since one may replace v by yv for any v > 0 without changing
|- ||, W(A) and V(A), we often assume that v(e;) = 1.

Furthermore, we use the following notation and terminology.

{e1,...,e,}: the standard basis for C",

e=e;+ -+ ey,

(xz,y) = y*z: the usual inner product on C",

l,(x): The £, norm of x € C*; (1 <p < 0),

{E11, F1a, ..., By} the standard basis for M,

(X,Y) = tr (XY™): the usual inner product in M,,

conv S: the convex hull of a given set S,

Ext S: the set of extreme points of a compact convex set S,

€ = Ext B, where B= {z € C" : v(z) < 1},

EP = Ext BP, where B={z € C": v”(z) < 1},

5||.||D = Ext B”.HD, where BH.”D ={XeM,: ||X||D <1}

GP(n): the group of generalized permutation matrices in M, i.e., the group generated
by permutation matrices and diagonal unitary matrices.

For A € M, the sets

D(A) ={DAD* : D is a diagonal unitary},

P(A) = {PAP' : P is a permuation}, and

GP(A) = {QAQ" : Q € GP(n)}
will be called the diagonal-unitary orbit of A, the permutation orbit of A and the generalized
permutation orbit of A (or the GP-orbit of A) respectively.

2 Auxiliary Results

We begin with some general results on operator norms not necessarily induced by symmetric
norms on C". Some of them are well known. We will mention some convenient references
or give short proofs for completeness. We start with the following proposition whose proof
may be found in [15, Proposition 4.1].

Proposition 2.1 Let v be a norm on C". Then
5||.||D = {xy* S 5D, Yy e 5},
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and
By o = conv {zy* : z € ED, ye &} = conv {zy* : vP(z) = v(y) = 1}.

We use Proposition 2.1 to give a proof for the following known result. We mention, in
passing, that the extreme points of the set S of states are called pure states.

Corollary 2.2 Let v be a norm on C" and let S and R be the corresponding set of states
and set of vector states respectively. Then

convR =S, V(A)=convW(4), and ExtS=RNEp. (2.1)

Proof. 1t is easy to verify the well-known fact that S is convex. Indeed, it is the intersec-
tion of the unit ball B)p and the set 7 of matrices of trace 1 since 1 = tr S = (S, I) implies

that [|S||” > 1. The convexity of each of Bj.jp and T is quite easy to see.
It is obvious that R € S and hence conv R C S To prove the reverse inclusion, let B € S.
Since § C By p, then by Proposition 2.1, B is a convex combination of elements of the form

zy* with vP(z) = v(y) = 1. Since |tr (zy*)| = |y*z| < vP(z)v(y) = 1, each matrix zy* in the
convex combination must satisfy 1 = tr (zy*) = y*z to ensure that tr B = 1. We conclude

that B € convR.
For the second equality in the corollary, we have

convIWW(A) = conv{(A4,72):Z € R}
= {(A,Z): Z € convR}
{(A,Z): Z € 8§}
= V(A4).

Finally, we consider the third equality. Since § = conv’R and § C Bj|p, then ExtS§ C R
and Ext S C & p. Thus, ExtS C RNEp. For the reverse inclusion, if X € Ext RNEp,

then X € 8§ and X cannot be written as the convex combination of two different matrices
in S C £||_||D. Hence, X € Ext S. O

In the following proposition, we use the notation S = {ji : p € S} for S C C. The first
assertion of the proposition can be found (with different notation) in ([3, p.85]).

Proposition 2.3 Let W, (A) or V,(A) be the numerical ranges associated with a norm v on
C". For F,(A) =W,(A) or V,(A), we have

F,(A) =F,p(A*) and r,(A)=r,(A").
If, in addition, v(z) = v(Z) for all x € C", which is true for a symmetric norm v, then

F,(A)=F,0(A") and r,(A)=r,(A".



Proof. Observe that

W,(A) = {z*dy:vP(z) =v(y) ="y =1}

The first assertion on F, and 7, follows. If v(y) = v(y) for all y € C*, then v”(z) = v”(z)
for all x € C™. It follows that

W, (4) = {(a"Ay)": vP(z) = v(y) = 2"y = 1}
= {y'A'z: 0P () =v(y) = 2"y =1}
— W, (4.

The second assertion follows. O

Corollary 2.4 Suppose F,,(A) = W,(A), V,(A) orr,(A). A mapping ¢ : M,, — M, satisfies
F,(¢(A)) = F,(A) for all A € M, (2.2)

if and only if the mapping ¢ - M, — M, defined by ¢(A) = ¢p(A*)* satisfies
F,0(¢(A)) = F,n(A) for all A € M,,. (2.3)

If, in addition, v(z) = v(Z) for all x € C", in particular if v is a symmetric, then (2.2)
holds if and only if the mapping ¢ : M, — M, defined by ¢(A) = ¢(A")! satisfies (2.3).

Here is another well known result needed in our discussion.

Lemma 2.5 Let W, and V, be the numerical ranges associated with a norm v on C". Then
a matric A € M, is such that any one (or both) of the sets W,(A) or V,(A) equals {u} if
and only if A = ul.

The rest of the results in this section concern operator norms on M,, induced by symmetric
norms v on C".

Lemma 2.6 Suppose || - || is the operator norm on M, induced by a symmetric norm v
on C". Let 8§ and R be the set of states and the set of vector states corresponding to v,
respectively. If xy* € R, then there exists a generalized permutation Q € GP(n) such that
both Qx and Qy have nonnegative entries in descending order. Consequently, all matrices
in R and S have nonnegative diagonal entries.



Proof. Suppose @ is the generalized permutation matrix satisfying Qz = (zy,...,z,)"

withzy > -+ >, > 0. f Qy = (y1,-..,y,)" is not a nonnegative vector, then there exists
a diagonal unitary matrix D such that DQzy*Q*D* € R has positive trace larger than
tr (zy*) = 1. Thus v(y)vP(z) = v(DQy)v?(DQx) > tr (DQxy*Q*D*) > 1, a contradiction.
This establishes that QQy is a nonnegative vector. Furthermore, if y; > y;41, then we claim
that x; = x;11; otherwise, we can let P be the permutation matrix obtained from I be
interchanging the jth and (5 + 1)st rows so that PQzy*@Q*P* € R has trace larger than
tr (zy*) = 1. We may replace @ by PQ. After at most n — 1 of such modifications, the
resulting matrix () will satisfy the asserted property. O

The following is a key lemma in this paper and will be extensively used in the foregoing.

Lemma 2.7 Let v be a symmetric norm on C", and || - || be the corresponding operator
norm on M,.

(a) If c =v(e1) then clo(z) < v(z) < cly(z) for every z € C™.

(b) At least one of the vectors e/v(e) and e/vP(e) belongs to the set of extreme points €
or EP of the corresponding unit ball respectively.

(c) v(e)v”(e) =n.
(d) Ife/v(e) € € then

(i) for every nonnegative x € BP, the unit ball of v*, we have e'z < v(e);

(ii) for every monnegative y € B, the unit ball of v, we have ey < n/v(e) and
equality holds if and only if y = e/v(e);

(iii) there exists u = (U1, ..., U)" withu; > -+ >up >0 and uy + -+ +u, =1
such that ue! € Ext S, and so the QP-orbit D, of ue® satisfies

D, = {Q*ue'Q : Q € GP(n)} C ExtS. (2.4)
Furthermore u = ey if and only if v is a multiple of the o norm.
(e) Ife/vP(e) € EP then

(i) for every nonnegative y € B, we have ey < vP(e);

(i) for every nonnegative x € BP, we have etz < n/vP(e) and equality holds if
and only if x = e/vP(e);

(iii) there exists v = (vi,...,v,)  withvy > - > v, >0 and vy +---+v, = 1
such that evt € Ext S, and so the QP-orbit Dy of ev' satisfies

Dy, = {Q*ev'Q : Q € GP(n)} C Ext S. (2.5)

Furthermore v = ey if and only if v is a multiple of the £1 norm.
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(f) The following conditions are equivalent to each other:

(i) there exist vectors u and v in C™ such that both ue' and ev' belong to Ext S;
(ii) e/v(e) € € and e/vP (e) € EP;
(iii) ee'/n € Ext S.

Proof. The inequality v(z) < cfy(z) follows easily from the triangle inequality. The
other inequality in part (a) follows by duality.

To prove part (b), let v = v(e). If e/ ¢ £, then it is a convex combination of a finite
set Z C €. Let w be a vector in EP such that w'e/y = 1. We shall show that w is scalar
multiple of e. By Lemma 2.6, we have that w is a nonnegative vector. For every z € Z we
have (w, |z|) <1, but 1 = (w, e/7) is a convex combination of the numbers (w, z) for z € Z.
It follows that (w, z) = (w, |z|) = 1. Since we may replace w by Pw for any permutation P,
we get that (Pw, z) = (Pw,|z|) = 1 for every permutation P. This easily implies that z is
nonnegative and that either z or w is a multiple of e. By assumption z cannot be, so w is.
In other words e/v”(e) € EP. This proves part (b).

Part (c) will be proved after parts (d) and (e).

To prove part (d), we again let v = v(e). There exists a vector w = (wy,...,w,)" € EP
such that w*e = 7. By Lemma 2.6, the vector w is nonnegative. We may, with no loss of
generality, assume that w; > --- > w,. Now let u = w/v. Then ue' = we'/y € & p by
Proposition 2.1. By Corollary 2.2, we conclude that D; € R N &) p = ExtS. This proves
the set inclusion part of (d).

If = is a nonnegative vector in B”, then
n
>z = (z,e) <vP(2)v(e) = v(e).
=1

If y is a nonnegative vector in B, let z be the average of Py as P runs through all permuta-
tions. Therefore v(z) < 1. But z = (e'y)e/n. It follows that e'y < n/v(e). If equality holds,
then z = e/v(e) is an extreme point of the unit ball of v and is at the same time a convex
combinations of the vectors Py in the unit ball. It follows that y = e/v(e)

Next, we turn our attention to the last assertion of the last part of (d). It is obvious that
if v is a multiple of the £, norm, then Q*e;e!@ € Ext S for every @ € GP(n). Conversely, if
ere’ € Ext S, then by Proposition 2.1 and Corollary 2.2, we have that (after normalisation)
e; € EP and e € £. In particular v(e) = 1. The set of extreme points of the unit ball of
the £, norm is precisely the set {Qe : Q@ € GP(n)}. Thus every vector in the unit ball of
the £, norm belongs to conv{Qe : Q@ € GP(n)} C B. This shows that v(z) < f(z) for
every z € C". The reverse inequality follows from part (a) and so the normalised v is the

{- norm.
The proof of part (e) follows by duality.



Finally, we consider part (f). The implication (iii) = (i) is clear and the implication (i)
= (ii) follows from Proposition 2.1 and Corollary 2.2. If (ii) is satisfied, then using the same
two results together with part (c), we get that

—_— = — ER ﬂ5||.||D = Ext S.

O

Lemma 2.8 Suppose v is a symmetric norm on C™ not equal to a multiple of the £o-norm.

(a) For every k € {1,...,n}, and for every Q € GP(n), we have
Qler+--+ep)(er+--+ep)Q/k €8S,
in particular ee'/n € S and Ej; € S for every j.

(b) There exists an element of the form xy* € Ext S such that x,y € C" are not multiples
of each other.

(c) S"#8#S8* and R # R # R*.
(d) There exists a matriz of the form S = aFy + by + ¥7_, d;Ej; in S with a > b> 0.

Proof. To prove (a), suppose y = (e; + --- + ex) and v(y) = . Then there exists
T = (z1,- -, 2,)" € EP such that (z,y)/y = 1, and hence z; + -+ 1 = 7. Let 7 =
(1, -, Tk, 0,---,0)", where the zeros are absent if K = n. Note that

=@+ I ®—I_x)x)/2 € B®.

Let P be the permutation matrix E12 —+ -4 Ek:—l,k + Ek,l + Ej>k: E]J Then

u = (iP%) Jk=~(er +---+e)/k € B".

Thus,
uy'/y=(e1+---+er)(er+ - +ex)/k € convR =8.

Clearly, for any @ € GP(n), we have Q(uy'/v)Q* € S.

To prove part (b) assume, to the contrary, that every element in Ext S has the form zz*
for some vector z € C". It follows that every element of S is self-adjoint. Therefore every
element of R has the form zz* for some vector x € C". If x € C" satisfies v(x) = 1, then
there exists y € C" such that 1 = vP(y) = (z,y). By our assumption, we have y = x and
hence 1 = (z, ) = fy(z)?. Tt follows that v is the £, norm, a contradiction.

For part (c) we will only prove the first inequality; the second inequality may be proved
by a similar argument and the last two follow from the first two. So assume that S = S*. It
follows that Ext S = (Ext 8)’. By part (b) there exist linearly independent vectors z € &P
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and y € £ such that the matrix A = zy* € ExtS. By Lemma 2.6, we may assume that z
and y have nonnegative entries. Now, yz! = A' € ExtS. Hence there is a positive number
r such that ry € P and z/r € €. But then

1> (z,2/r)(y,ry) = (z,2)(y,y) > (z,y)(z,y) = (tr4)* =1

implies that z and y are multiples of each other, a contradiction.

For part (d), we again choose linearly independent nonnegative vectors = and y such that
xy' € 8. Since the matrix zy’ is not symmetric, there exists a permutation matrix P such
that Pzy'P® has its (1,2) and (2, 1) entries equal to a and b with a > b > 0. Let A = Pxy'P?
and D = —I, & I,, 5. By the convexity of S, the matrix Ay = (DAD + A)/2 belongs to S.
But Ag = B® C where B € M, is the top left 2 x 2 corner of A. Now, set

S =Y (DA,D)/2"* € S,
D

where D ranges over all diagonal orthogonal matrices whose (1,1) and (2,2) entries are equal
to 1. Then S has the form described in (d). O

Let v be a norm on C". Then A € M, is said to be v—hermitian if W, (A) (or equiv-
alently V,(A)) is contained in R. If v is the ¢, norm, this reduces to the usual notion of
hermitian (or self-adjoint) matrices. (v—positive definite or semi-definite matrices may be
defined analogously.) The v—hermitian matrices associated with an absolute norm have been

characterized in [21]. Specializing their results to symmetric norms, we have the following
corollary, which can also be derived from our previous lemmas as we presently show.

Corollary 2.9 Let v be a symmetric norm on C™ not equal to a multiple of the y-norm.
Then a matrix A € M, is v—hermitian if and only if A is a diagonal matriz and the
diagonal entries are real. If D is such a diagonal hermitian with diagonal entries dj;, then

V(D) =W,(D) =conv{d;; : 1 < j <n}

Proof. Note that every state S in § satisfies trS = 1 and , by by Lemma 2.6, has
nonnegative diagonal entries. If A is a diagonal matrix with real diagonal entries, then
(A, S) is real. Thus V(A) = {(4,S): S € S} is a subset of R.

Conversely, suppose V(A) is a subset of R. Since Ej; € S, we have (A, Ej;) is real for
all j =1,...,n. Thus A has real diagonal entries. Suppose A has a nonzero (j, k) entry a;x
for some j # k. By Lemma 2.8(d), there exists a matrix B = > j-1d;Ejj + aFs +bEy with
a>b>0in S. For every s € [0, 27) there exists a Qs € GP(n) such that Q;BQ* has (j, k)
entry e®a and (k,j) entry e **b. Let D4 and D, denote the diagonal part of A an Q,BQ?,
respectively. Then both of them are real matrices and thus tr (D4 D;) € R. But then for all
s € [0,27), we have

(4, QsBQ,) = tr (DaD,) + ajrae™" + ag;be™ € R.
Thus a;xa and ay;b are complex conjugates. It follows that |a,x| < |ak;|.
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On the other hand for every permutation P, we have that P!SP = S, which implies that
P!AP is also a v-hermitian matrix. If we take P to be the transposition that transposes
e; and e, we conclude also that |a;x| > |ag;|, which is impossible. Hence A cannot have
non-zero off-diagonal entries.

If D is a diagonal hermitian and S is a state, then it is obvious that (D, S) is a convex
combination of the diagonal entries of D. On the other hand, every eigenvalue d;; of D
evidently belongs to the spatial numerical range and hence to the algebra numerical range of
D. The convexity of the algebra numerical range now implies that V(D) = conv{d,; : 1 <

j < n}. Since the spatial numerical range is always connected [3, p.102], we also conclude
that W, (D) = conv{d,; : 1 < j <n}. O

The isometries of the space (C",v) for a symmetric norm v are known (see [20] ). As we
now have all the ingredients needed for a short proof, we take this opportunity to present it.

Corollary 2.10 Let v be a symmetric norm on C™ not equal to a multiple of the o-norm.
Then a matriz U € M, is an isometry of (C",v) if and only if U is a generalized permutation.

Proof. The fact that a generalized permutation is an isometry is nothing more than the
definition of a symmetric norm. To prove the converse, assume that U is an isometry. It
follows that UHU ! is v-hermitian for every v-hermitian matrix H. In particular UE;;U *
is a rank-one v-hermitian matrix for every j. Therefore UE;;U ! is a scalar multiple of Ejy
for an index k depending on j. This implies that Ue; = Ajer(;), for unimodular complex
numbers )\;, and a permutation 7 of the set {1,---n}, i.e., U is a product of a permutation
matrix and a diagonal unitary matrix as required. O

3 States and Numerical Range Preservers

In this section, we characterize linear operators on M,, that preserve the states or the vector
states or any of the two norm numerical ranges arising from a symmetric norm which is not
a multiple of the ¢, /5 or £, norm.

Theorem 3.1 Let v be a symmetric norm not equal to a multiple of the £, norm with
q € {1,2,00}. The following conditions are equivalent for a linear operator ¢ on M,.

(a) ¢ preserves the spatial numerical range, i.e., W ($(A)) = W(A) for all A € M,.
(b) ¢ preserves the algebra numerical range, i.e., V(¢(A)) = V(A) for all A € M,
(c) There exists a generalized permutation Q@ € GP(n) such that
6(A) = Q'AQ VA€ M,,
or equivalently,

¢*(A) = QAQ* VA€ M,.
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(d) ¢*(R) =R.
(€) ¢"(5)=S.
Proof. We first consider the following chain of implications:
(€)= (d) = (a) = (b) = (¢)
The implication (c) = (d) can be readily verified. The implication (d) = (a) follows
from (1.3). The implication (a) = (b) follows from (1.5), and the implication (b) = (e)
follows from the result in [18].

It remains to establish (e) = (c). We divide the proof into several lemmas. In the rest
of this section, we always assume that S C M, is the set of states arising from a symmetric
norm v on C", and 1) = ¢* is a linear operator on M, satisfying ¥(S) = S.

Lemma 3.2 Let ¢ be a linear map on M, such that ¥(S) = S, where S is the set of states
induced by a symmetric norm v which is not a multiple of the 5 norm. Then

(a) ® preserves the algebra numerical range;

(b) ¥ maps the set of diagonal matrices onto itself;
(c) IfE = {E;;: 1 < j < n} then (&) = €.

Furthermore, there ezists a permutation matriz P such that the operator ¥ defined by
X — PY(X)P

(i) preserves the usual inner product on M,
(i) fizes every diagonal matriz in M, and
(iii) maps the set of matrices with zero diagonal onto itself.

Proof. Let G be the set of all linear operators on M,, that map & onto itself. Since § is
a compact set that spans M, it is easy to see that G is a compact group of invertible linear
operators on M,. Viewing M,, as a Hilbert space under the Frobenius (or Hilbert-Schmidt)

norm, then using a result in [1] (see also [7]), we get that there exists a positive definite
linear operator £ on M, such that £G£ ! is a subgroup of the group of unitary operators on
M,
Note that for any Q € GP(n) the linear operator ¢ defined by A — Q*AQ is a member
of G. Thus &€~ is a unitary operator, i.e., (£o&)*(Evo€™") is the identity operator.
It follows that £2thg = 1o for all Q@ € GP(n).

Let Gy be the group of operators g, where ) € GP(n). Then G, has three irreducible
subspaces on M, namely, the span of I, the space of trace zero diagonal matrices, and the
spaces of matrices with zero diagonal. If n > 2, the three subspaces have different dimensions,

namely, 1,n — 1,n? — n. By Schur’s lemma, (see, e.g. [6, p.182]), these are also reducing
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subspaces of €2, and &2 acts as a scalar operator on each of them. If n = 2, the dimensions
of the first two irreducible subspaces are equal and so £2 may apparently interchange them.
But then the matrix of £€? with respect to the orthonormal basis {Io, E11 — Eg9, E1o, Eo1 } will

then be of the form
0 =
<* 0) S 71—27

which contradicts the fact that £2 is the square of a positive definite operator on M,. Thus,
we conclude that &2 acts as scalar operators on the three irreducible subspaces of Gy, and so
does &. Therefore £(I) = A for a scalar A and £(D) = D, where D is the space of diagonal
matrices.

For every matrix A € M,,, we have

V(E e (4) = {(€ ™€ (A),2): Z € S}
= {(€(A),¥(2)): Z € S} as §(8) =
{7 (A), e (Z)): Z € S} as € is self-adjoint
(E(A),612)): Z e S} as £714p¢ is unitary on M,
(A4,2): Z € S} =V(A).

——

That is, £~2€? preserves the algebra numerical range. From this, we conclude that:

1 & 2pe(I) = (I)

2. £ %pE2(H) = H, where H is the set of of y—hermitian elements.

3. £ %pE2(D) = D, where D is the set of all diagonal matrices, since D = span H.

However £(I) = Al for a scalar A and £(D) = D, and so items 1 and 3 above imply that:

4. (1) = (I), and (D) = D,

5. €WE(I) = I, and £714¢(D) = D

Since £ 11)€ is a unitary operator on M, we also conclude that

6. £~ 1€ maps the set of zero-diagonal matrices onto itself since the set of zero-diagonal
matrices is the orthogonal complement of D.

7. £ 19€ maps the set of trace zero diagonal matrices onto itself since this set is the
orthogonal complement of {/} in D.

Thus £ '€ leaves invariant every one of the three eigenspaces of £, and so it commutes
with &, i.e., 2% = £71pE = 1. We conclude that ) itself preserves the algebra numerical
range, leaves invariant the identity, the set of trace zero diagonal matrices and set of zero-
diagonal matrices. Consequently, 1 also preserves the trace. In particular if #; is the set
of matrices whose algebra numerical range is in the interval [0, 1] and whose trace is 1, then

W(H1) = Hi. By Corollary 2.9, H; consists of all diagonal matrices with trace 1 and whose

entries are in [0, 1]. It is evident that £ is the set of extreme points of #; and hence 1 (&) = £.
This proves assertions (a) — (c) of the Lemma.

Since 7,/)(5) = £, there exists a permutation matrix P such that the map v defined by
X + P*p(X)P satisfies )(F;;) = Ej; for j = 1,...,n. Tt then follows that ¢ satisfies the
asserted properties (i) — (iii). O
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Lemma 3.3 Let 1) be as in the preceding lemma. Assume also that v is not a multiple of
the £y or the Ly, norms and let F = {Dee*D* : D is diagonal unitary}. Then ¢(F) = F.

Proof. By Lemma 3.2, we may assume that 1 acts as the identity on diagonal matrices,
preserves the usual inner product on M,,, and maps the set of matrices with zero diagonal
onto itself.

Recall that £ and £P denote the sets of extreme points of the unit ball of v and 7,
respectively and that &» denotes the set of extreme points of the unit ball of || - |P. By
Lemma 2.7, at least one of £ and £P contains a multiple of e. We shall assume the former
as the latter may be treated by a similar argument. So by Lemma 2.7, there is a vector
= (Uyy...,U)" with uy >-+->wu, =1and u; +---+ u, = 1 such that ExtS contains a
subset of the form D; defined in (2.4). We use this fact to show that ¢(F) = F.

First, we claim that

’lp(Dl) = Dl.
Note that elements in D; are extreme points of S. Thus, ¥(D1) C ExtS = R N &p.

Suppose ¥ (ue*) = xy*, where x = (z1,...,7,)" and y = (y1,...,yn)". Since 7 fixes the
diagonal entries, we have
uj = T;Y; for j=1,...,n. (3.1)

By Lemma 2.6, there exists S € GP(n) such that Sz and Sy has nonnegative entries arranged
in descending order. Since the diagonal entries w4, ..., u, of the matrix xy* are already in
descending order, the matrix S must be a diagonal unitary Hence

1] > - > Jaa| andyi] > - >yl (3.2)

Let Qo = En1 4+ Xj={ Ejj+1 be the basic circulant matrix. By (3.1) and (3.2), we have

S22 > (a0 k=1, (33)
7j=1
Now,
nYy u; = (ue*,ue’)
j=1
= ((ue?), P(ue’))
= (zy",zy")
= (M) lwil®)
j=1 j=1
= (‘x1‘27-"7|xn|2)Q%(|yl‘27-"7|yn‘2)t‘
j=1
Hence, all the inequalities in (3.3) become equalities. It follows that |z1| = |z,| or |y1| = |ynl-

If |y1| = |yn| then zy* = P*ue*P € D;. If |z;| = |z,|, by Lemma 2.7 (f), we see that
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ue* = xy* = ee*/n. Again we have ¢(ue*) € D;. Slmllarly, we can show that for any
R € GP(n), ¥(Rue*R*) € D;y. So, we have ¢(D;) C D;. Applying the same argument to

¥~!, we conclude that ¢ (D;) = D; as asserted.
Next, we shall prove that i leaves invariant certain subsets of D;. These are the sets
Dyj, (1 < j < n) defined as

= {DQ}ue'(Q})!D* : D is diagonal unitary }

where )y is the basic circulant matrix F,,; + Z" ! E; j11. In other words D, ; is the diagonal-
unitary orbit of the matrix (u;41, - - -, Un, 1, - - -, u;)"e’, while Dy is the unions of the diagonal-
unitary orbits of all the matrices (uw(l), e ,uﬁ(n))tet for all permutations 7 of the set of
indices {1,2,---,n}. It is clear that a matrix X belongs to D;; if and only if X € D; and
the diagonal entries of X are wjiq,..., Uy, U1, ..., u;. Now 9 maps D; onto itself and fixes
the diagonal of every matrix. Thus is X € Dy;, then X € D; and so ¥(X) € D;. Also
diag (¢(X)) = diag (X) = (uj41,---,Un, U1, ..., u;). Therefore )(X) € Dy;. Applying the
same reasoning to 1™, we conclude that

1[J(D1j) = Dlja j = 1, ey . (34)

If u is a scalar multiple of e, then ue* = ee*/n, and Dy; =Dy = Fforall j =1,...,n
and the assertion of the lemma is already established. We now assume that « is not a scalar
multiple of e, i.e., u; > u,. In this case, the sets D;; are all distinct. We claim that A € F

if and only if (4, A) = n? and

Suppose A = Dee*D* € F, where D is a diagonal unitary matrix. Then (A, A) =
and (3.5) holds with A4; = Dque*(Qé)*D* € Dy for j = 1,...,n. Conversely, suppose
A = (a;j) € M, is such that
A= ZD Qoue QJ)
j=1

where D is a diagonal unitary matrix for j = 1,...,n. Let d;1, - - -, dj, be the diagonal entries
of D;. Then ay, =377 juj =1forallj=1,...,n, whileif p # ¢, then a,, = 377, djpdiqUpis
with addition p + j taken to be addition modulo n. Thus a,, is a linear combination of
U1, Ug, - . ., Up, With unimodular coefficients and hence |a;;| < 1 and (A4, A) < n? If we also
assume that (A, A) = n?, then we must have |a,,| = 1, for every p, ¢. Since v is not the £,

we have u; > uy > 0 by Lemma 2.7(a). It follows that |a,,| = 1, for every p, ¢ if and only if
all D; are the same up to a multiple of complex unit. Thus

(Z Qjue* (Q ) = Diee'D} € F.
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Since 1 satisfies (3.4), preserves the inner product on M,, and the set D;; for each j, we

see that 1) maps the set of matrices A satisfying (3.5) onto itself. So, we have ¢(F) = F as
asserted. O

We are now ready to finish the proof of our theorem by establishing the following.
Lemma 3.4 The implication (e) = (c) in Theorem 3.1 holds.

Proof. By the result in Lemma 3.2, there exists a permutation matrix P; such that
the map 1, defined by ¢, (X) = P/¢(X)P, fixes every diagonal matrix. By Lemma 3.3,
1 (F) = F. By the result in [14], there exists @ € GP(n) such that

(i) ¥1(X) = QXQ* for all X with equal diagonal entries, or

(i) ¥1(X) = QX'Q* for all X with equal diagonal entries.

Define ¢ by ¢»(X) = Q"¢1(X)Q, then
(iii) 12(X) = X for all X with zero diagonal, or
(iv) 1¥9(X) = X for all X with zero diagonal,
and by Lemma 3.2 (c), there exists a permutation matrix P such that

1y(D) = PDP* for every diagonal matrix D. (3.6)

We need to show that 1), satisfies (iii) and that P = I.

For n = 2, the forms (i) and (ii) coincide since if Py = Ej5 + Es, then the off-diagonal
entries of X* are the same as the off-diagonal entries of PyX P{. So we may assume that v,
satisfies (iii). If P # I then P = Ej5 + E5 and 9»(X) = PX'P for all X € M,. It follows
that S = S, which contradicts Lemma 2.8. Therefore P = I.

Suppose n > 3. Then every rank one matrix is completely determined by its off-diagonal
entries with the exception of those matrices that are “ essentially 2 x 2”7, i.e., matrices of the
form uwv® where u, v € span {e;, e;} for some indices i and j. In particular a vector state S
is completely determined by its off-diagonal entries except when S takes the following form:

S = tE” + SijEij + sz'Eji + (1 - t)Ejj. (37)

where ¢ # j, 0 <t <1 and s;;5;; = t(1 — t). Furthermore in this exceptional case the only
other vector state that has the same off-diagonal entries as S is

T = (1 — t)E“ + SijEz'j + sz'Ejz' + tEjj. (38)

We use the above to prove that (iv) is not possible and that P = I. Since ¢»(S) = S, we
have 5 (ExtS) = Ext S, which is a set of rank one matrices by Corollary 2.2. By Lemma
2.8 (c), there exist nonnegative vector z,y € C™ such that zy' € Ext (S) but ya! ¢ Ext (S).
If (iv) holds and if xy" is not one of the exceptional states of (3.7) then the off-diagonal
entries of ¥ (zy') € Ext (S) are the same as those of yz!, and thus ¢ (zy') = ya! € Ext (S),
which is a contradiction. If 2y is one of the exceptional states of (3.7), then either we reach
a contradiction as before or the permutation P in (3.6) satisfies Pe; = e; or Pe; = e; or
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both according as ¢ = 1 or ¢t = 0 or neither. Since this may be applied to Uzy!U? for any
permutation U, we get that Pe; = eo = e3 which is absurd. This proves that (iii) is satisfied.

We now consider a nonnegative state uv® € Ext S whose diagonal is not constant. Such
a state must exist since otherwise every state in S = conv (ExtS) would have constant

diagonal. By considering the image 1, (Uzy'R") for different permutation matrices U, we
see that see that 1y fixes the diagonal entries of matrices. Therefore 1, is the identity and
1) is of the desired form O

The extremal cases where v is the £; or the /., norm will be considered in §5.

4 Numerical Radius Isometries

The main result of this section is the following theorem. The result is known when v is a
multiple of the ¢, norm [12] (see also [4, 5])

Theorem 4.1 Suppose r = r, is the norm numerical radius associated with a symmetric
norm v on C", where v is not a multiple of the {1 norm or the ¢y, norm. Then a linear
operator ¢ on M, is a v-numerical radius isometry, i.e., satisfies

r(¢(A)) =r(A) for all A € M,
iof and only if there is a complex number pu of modulus 1 such that
W(up(A)) = W(A) for all A € M,

In other words, ¢ preserves the numerical radius if and only if it s a unit multiple of a
numerical range preserver.

If we exclude the ¢, norm and use Theorem 3.1, we obtain the following.

Corollary 4.2 Suppose v is a symmetric norm on C™ and that v is not a multiple of the
l1,0y or the Lo, morm. Then a linear operator ¢ on M, is a v-numerical radius isometry

if and only if there exists a complex number A of modulus 1 and a generalized permutation
Q@ € GP(n) such that

$(A) = AQ*AQ for all A € M,

To prove Theorem 4.1, we need the following characterization of scalar matrices in terms
of the numerical radius, which may be of independent interest.

Proposition 4.3 Suppose v is a symmetric norm on C™ not equal to a multiple of £, norm

with ¢ € {1,000}, and r = r, is the corresponding norm numerical radius. Let L be the set
of matrices A € M,, such that for every Y € M,, there exists a complex unit n such that

rmA+Y)=1+r(). (4.1)

Then A € L if and only if A = ul for some p € C with |u| = 1.
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The “if” part is clear. The converse will be proved by establishing a sequence of lemmas.
In all that follows, the set £ will be the set of matrices defined by (4.1) for initially an

arbitrary symmetric norm. Restrictions on the norm (to exclude the extremal norms) will
be required when first needed.

Lemma 4.4 If A € L, then r(A) = 1.
Proof. Take Y =01in (4.1).

Lemma 4.5 If A € L, then so does 0Q*AQ for every generalized permutation @Q and every
complex unit 0.

Proof. Let Y € M,. Then there exists a complex unit n such that
1+7r(Y)=1+r(PYP*)=r(nA+ PYP*)=r((nd)dP*AP +Y).

This proves the Lemma ]

Lemma 4.6 Let B € M, let m be a positive integer and Ay, As, -+, Ay, € L. Then there
exists a state S € ExtS such that

|(B,S)|=r(B) and |[(4;,S)=1forj=1,2,...,n. (4.2)

Proof. By applying equation (4.1) repeatedly (or by induction), we see that there exist
complex numbers 7;; (1 < j < n) of modulus one such that

r(mAL+ -+ p Ay + B) = m+1(b).

Therefore there exists a state S € S, such that (41 + -+ + Am + B, S)| = m + r(B).
But |(4;,5)| <1 and |(B,S)| < r(B). This implies that S satisfies (4.2). If S is not an

extreme point of &, then S is a convex combination of states in Ext S, each of which must
also satisfy (4.2). O

We next prove a generalization of the above lemma.
Lemma 4.7 Let B € M,. Then there exists a state S € ExtS such that
|(B,S)|=r(B) and |(A,S)|=1 forevery AcL. (4.3)
Proof. For every A € L, let
Sa={XeS : |(AX)=1 and |(B,X)|=7r(B)}.

Each &4 is evidently a closed subset of §. Furthermore, by Lemma 4.6, the intersection
of any finite number of the sets S4 is nonempty. Since S is compact, it follows that the

intersection
ﬂAeL‘SA
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is nonempty, i.e., there exists a state X satisfying (4.3). As in the proof of Lemma 4.6, if X
is not in Ext S, then there exists an S € Ext S that satisfy the same equations (4.3). a

To effectively exploit the above lemma , we shall choose one particular matrix B for
which we know something about the corresponding set of numerical radius norming states,
i.e., the states S that satisfy |(B,S)| = r(B).

Recall that by Lemma 2.7, there exists a nonnegative vector u such that ue! or eu' belong
to Ext S. We shall henceforth assume the latter case as the former case would then follow
by duality. In other words, we are assuming that e/v” (e) belongs to £P, the set of extreme
points of the unit ball of v”. We recall also that we must have that u; + --- 4+ u, = 1.

Let k£ be the smallest positive integer such that the set

U={e(uy,...,ux,0,...,0) €S :ug,...,up >0,u1+ -+ up =1} (4.4)

is non-empty. Now, we set
B = 6(61 + -+ ek)t. (45)
The set U is convex. Indeed if S is a convex combination of elements of U, then S is
evidently a state of the form e(vq,...,v,0,...,0). Furthermore, by the minimality of &k, we

must have vq,...,v; > 0, that is, S is a member of U. We also note that be Lemma 2.7,
k =1 if and only if v is the £; norm.

Lemma 4.8 Let B be the matriz defined by equation (4.5) and let U be the subset of S
described in (4.4). A state S € S is numerical radius norming for the matriz B, i.e.,
|(B,S)| =r(B) if and only if S € U.

Proof. Let v = vP(e). First we consider extremal states vw* € ExtS. By Lemma 2.7(e),
for every vw* € Ext (S) such that v = (vq,...,v,)" € EP and w = (w1, ..., w,)" € &, we
have

Dol <n/y and Y fwg <,
Jj=1 7j=1
and the first equality holds if and only if (Jv1|,...,|v,|)t = e/7. Therefore, for every vw* €
Ext S, we have
(B, vw")| = [(e,v)(e1 4 - - - + ex, w)| < (n/7)y = n.

Thus 7(B) = n, and if |(B,uv*)| = n, then all the inequalities above become equalities
and this occurs only if v; = vy = -+ = v, and w; = 0 for 7 > k. This means that
vw* = eu* for some u € C™. Since eu* is a state, the vector u must be nonnegative and since
u = (U, -, ux,0,---,0)" then by the minimality of k£ in (4.4), we must have that u; > 0 for
j=1,---, k. Thus zw* = eu* € U.

Now let S be any state that satisfies |(B,S)| = r(B) = n. The state S is a convex
combination of extremal states X, Xy, ---, X,,. Each of these extremal states X; must then
satisfy |(B, X;)| = n. Therefore every X; € U and it then follows that S € U since U is
convex.

The converse is easily verified as direct calculation shows that (B,U) = n = r(B) for
every U € U. O
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Corollary 4.9 There ezists a state U € U such that |(A,U)| =1 for every A € L.
Proof. This follows immediately from Lemma 4.7 and Lemma 4.8. O

In the following, we need to partition matrices. If A = (a;;), we also write
A
A= ( aii 12)
Ay A
where Asy is the (n — 1) x (n — 1) obtained from A by deleting the first row and column.

Lemma 4.10 Let

U a A
U:(Un 12)65 d A=< 11 12)
U21 U22 an A21 A22

and assume that |(DAD*,U)| = 1 for every diagonal unitary matriz D. Assume further that
(A21, U21) 7é 0. Then

1 =|(A21,Us1)| and 0= (A, U2) = a11T11 + (Agz, Usg).

Proof. Let Dy = e @ I,,_1, and let Ay = DyAD}. By assumption, we have |(4,,U)| = 1,
ie.,
1 = |anTi1 + (Ag2, Us2) + eia(A12, Uiz) + E_M(Am, Usy)| (4.6)

for every 0. It is not hard to see that if a, b, and ¢ are complex numbers, such that
la+be® +ce~%| = 1 for every 0, then two of a, b, or ¢ must be 0. Indeed if f(#) = a+be?+ce ™,
then we have f (0)% — 1 =0. Upon equating the coefficients of every power of €% to zero,
we reach the above conclusion.

Since (Ag1,Us1) # 0, then the other coefficients in equation (4.6) must be zero, i.e.,
a11T11 + (Ao, Uxe) = 0 and (Aig,Ure) = 0. It then follows that |(Ag, Us)| = 1. O

Lemma 4.11 Let A € L. Then each column of A has at most one nonzero off-diagonal
entry.

Proof. If the assertion is not true, there exists @ € GP(n) and a complex unit § such
that JQAQ* has nonnegative first column and such that the (2,1) and (3,1) entries are
positive. We may now replace A by 6QAQ*, i.e., we assume that A itself has a nonnegative
first column and that as; > 0 and a3; > 0. By Corollary 4.9, there exists a state U € U
such that [(C,U)| = 1 for every C € L. We conclude that the results of Lemma 4.10 hold
for the matrix A as well as a certain perturbation of A introduced below.

First applying Lemma 4.10 to A, we get that |4y, Us)| = 1, i.e.,

u Y an =1 (4.7)
=2
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Next we describe the perturbation A of A alluded to above. Towards this, let

R = diag (1,€", e, ..., e"("’l)s) (4.8)
Then -
- a A
A=RAR*=(C£H ~12)
Ag1 A
where Ay, = (ag1€%, ag e, - - - a,1€"" 1)t This matrix A is in the diagonal-unitary orbit

of A and for sufficiently small € > 0, the inner product (Ayy, U) is close enough to (A, S)

so that it is not zero. But by assumption (4,U)| = 1, so, by Lemma 4.10, |(As, U)| = 1,
ie.,

n

Z e(jfl)'isa,j1

i=2

~1. (4.9)

U

However, equations (4.7) and (4.9) are not simultaneously possible as e®ay u; and e az u,

are nonzero and have different arguments. O

We note that all of the preceding lemmas in §4 are still true when v is the /; norm. (Recall

that the £, norm is excluded by our assumption that eu' is a state in ExtS.) For most of
the remainder of this Section, we must exclude the ¢; norm as well. But we momentarily
pause to state the characterization of the set £ for these extremal norms.

Lemma 4.12 When v is the {1 norm (respectively, L, norm), A € L if and only if every

column (respectively, row) of A has exactly one nonzero entry, and every such entry has
modulus 1.

Proof. For the /1 norm, we have already seen that if A € £ then every column of A has
at most one off-diagonal nonzero entry. If as; # 0, then using Lemma 4.10 and noting that
k = 1, we get that a;; = 0 and |ag;| = 1. If there are no off-diagonal nonzero entries in
the first column, then by Corollary 4.9 and the fact that U = {ee!}, we get that |a;;| = 1.
The same argument applies to any column, thus very column of A has exactly one nonzero
entry, and every such entry is of modulus 1. For the converse assume every column of A has
exactly one nonzero entry and every such entry is of modulus 1. Let Y = (y;;) € M,,. The
numerical radius of Y is assumed at an extremal state S = Qee!@* for some @ € GP(N),
ie, r(Y) = |(Y,S)|. But from the structure of A it we also have |(A,S5)| = 1 = r(A) for
every such S. If 7 is a complex unit chosen so that the complex numbers (Y, S) and n(A, S)
have the same argument then [nA +Y,S)| = [(4,5)] + [(Y,S)| = 1 + r(Y), proving that
AelL.

The ¢, result follow by duality.

For the remainder of this Section we shall assume that v is not the #; or the £, norm.

Lemma 4.13 If A € L, then each row of A has at most one nonzero off-diagonal entry.
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Proof. The proof is similar to the proof of Lemma 4.11. We must however make sure that
Uy has at least two nonzero entry. Recall that U = eu’. Since v is not the £; norm, by Lemma,
2.7(e)(iii), the vector u has at least two nonzero entries. Also since the set £ is invariant
under permutations, i.e., PLP!' = L, for every permutation P, then the same holds for the
states that are simultaneously numerical radius norming for £. We choose a permutation P
so that if v = Pu, then v, and v3 are both nonzero. The state V = ev' = Peu!P? satisfies
|(C,V)| =1 for ever C € L. We now follow the same argument as in the proof of Lemma
4.11, first reducing to the case A having nonnegative first row and finally reaching

Z a1;V; = 1 (410)
=2
and
Z 6_(j_1)i6a1j1)j =1. (411)
=2
and the result follows as before. O

Lemma 4.14 If A € L has a nonzero off-diagonal entries in the j-th column, then all the
off-diagonal entries in the j-th row are all zero.

Proof. We may replace A by a matrix in its G P-orbit, and so, without loss of generality,
we may assume that as; # 0 and that A;, is nonnegative. By Corollary 4.9, there exists a
state U € U such that (|C,U)| = 1 for ever C in the GP-orbit of A. By Lemma 4.10, we
get that (Aj9,Uj2) = 0. This is also true for every permutation A}, of A5 which leads to a
contradiction as U and A5 are both assumed nonzero and nonnegative. This proves the
assertion. O

Lemma 4.15 If A € L, then A has at most one nonzero off-diagonal entry.

Proof. Assume to the contrary that A has two nonzero off-diagonal entries a;; and a,,.
By the above assertion, the indices %, j, p, ¢ must all be different from each other. We may
replace A by a matrix in its permutation orbit and so we may assume that a3; and a4 are
nonzero. By Lemma 4.14, the matrix A must now be of the form

@ C.

O *x O *
* O ¥ O
S ¥ O O
* O O O

As before we get a state U € U that is numerical radius norming for the G P-orbit of A,
and we conclude by Lemma 4.10 that

a11u1 + (Agg, Usa) = 0. (4.12)
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This equation is also satisfied when A is replaced by any matrix A4 in its diagonal-unitary
orbit, i.e.,

apuiy + (Agg, Usz) = 0. (4.13)

In particular, if we take D = diag(1,—1,1,...,1) and A = DAD*, then the entries N

of A are the same as a;; except for the (4,2) entry, where G4 = —aso. Now subtracting

equation (4.13) form equation (4.12), we get 2a4us = 0. But a4 # 0 by assumption and
uy # 0 since v is not the ¢; norm. The contradiction establishes the lemma. O

Lemma 4.16 If A = (a;;) € L and ax # 0, then
(a) The integer k in (4.4) is 2 and the set U is {e(3,3,0,---,0)}.
(b) lan| =2 , and |aj| =1 for everyj.
(€) as=a;; foreveryj>2, and a; +ayp =0.

Proof. Let U = eu! € U be a numerical radius norming state for all matrices in £. Using
(A,U)| =1 and Lemma 4.10, we have ui[as:| = 1. Using other matrices in the permutation

orbit of A, we get that u;|lay| =1 for j =1,2,---, k. Therefore uy =uy =--- =y, = % and
laor| = k. We recall that ||A|| < er(A) where e is the Euler constant. Thus

k= |asi| < Al < er(A) =e < 3.

Also k > 2 as v is not the £, norm. Thus k = 2, u; = ug = % and |ag| = 2. Furthermore,
we get from Lemma 4.10 that a;;u; 4+ agssus = 0, which implies that a;; + as = 0. Since

we may also replace A by P!AP for any permutation P that fixes e;, we also conclude that
a1 + a;; =0 for 2 < j < n. Therefore

Qg = A33 = *** = Upp-

If n > 3, we use a permutation P so that the first column of PU P! is zero and the second
and third columns are not zero. Then

1= |(P'AP,U)| = |(A,PAP")| = |(as2 + as3)|/2 = |ass|.

We then have |a;;| = 1 since aq; + age = 0, and |a;;| = 1 for other indices j since a;; = as9,
fore j > 2.

If n = 2, we apply Lemma 4.7 with B = E;;. An extremal state X that is numerical
radius norming for Fy; is either of the form X = e;z’ with z = (1,£)" or of the form X = ye!
with y = (1,7)". In the former case, we get |a;1| = |(4, X)| = 1. In the latter case, we take
P to be the permutation ((1) (1)>, then |ag| = [(PAP*, X)| = 1. Since a;; = —asgs, then in

each case we get [a11| = |ag| = 1. a
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Lemma 4.17 FEvery matriz in L is a diagonal unitary matrizc.

Proof. If A € L is not diagonal, then by Lemma 4.15, it has only one off-diagonal entry,
which we may assume, without loss of generality, to be as;. By Lemma 4.16 and Lemma
4.5, we must also have the following matrix A; in L.

-1 0
A1—(2 1)€Bfn—2-

It follows also that the matrix

1 -2

also belongs to £ since Ay = PDA,D*P* for D = (—-1)® I,_, and P = ((1) (1)) ® I, .

Therefore
T(Al — AQ) S T(Al) + T(AQ) = 2.

On the other hand,

-2 2

has eigenvalues +2v/2 and n — 2 zeros. Therefore its spectral radius is larger than its
numerical radius, which is impossible. This proves that A is diagonal.
Next, we use Lemma 4.7 with B = E,,,,,. Any state S = (s;;) that satisfies |(Epm, S)| =

1 = r(Epm) must have s, = 1 and all other diagonal entries zero. Therefore |d,,| =
(A, S)| = 1. This proves that A is a diagonal unitary. O

Finally, we are ready to prove Proposition 4.3.
Lemma 4.18 FEvery matriz in L is a unimodular scalar multiple of the identity.

Proof. Let A € £. We have now shown that A = diag(dy,ds,--,d,) with |d;| =1
for every j. By Corollary 4.9, there exits U € U such that [(PAP!,U)| = 1 for every

permutation P. Thus 1 = |(dy,...,d)P(u1,...,u0,...,0) for every permutation matrix
P. Since v is not the ¢; norm, k£ > 2, and we conclude that d; = --- = d,. d

We remark that our proof of Proposition 4.3 is computational and quite long. It would
be of interest to have a short conceptual proof. Since the result is not valid for r, if v is a
multiple of the ¢; or £, norm, any proof must use the fact that two norms behave differently
from other symmetric norms. In our proof, the set U defined in (4.4) allows us to make the
distinction.

We establish another general result which is useful in proving Theorem 4.1.
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Proposition 4.19 Let IC(C) be the set of all compact convex subsets of C and let M be a
linear subspace of M, such that I € M. Suppose F : M — K(C) is a function that satisfies

F(A+pBI)=F(A)+ B, forevery e C,

and define f: M — R by f(A) = max{|z| : z € F(A)}. If ¢ is a linear operator from M
into M satisfying ¢(I) = I and f(#(A)) = f(A) for all A € M, then F(¢(A)) = F(A) for
all A e M.

Proof. Assume that F(¢(A)) # F(A) for some A € M. If there is u € F(¢(A)) \ F(A),
then by a standard separation theorem for convex sets, there exists n € C such that

f(p(A—nI)) = f(#(A) —nI) > [p—n| > zrer;ag)lz—n\ = f(A—nl),

which is a contradiction. Similarly, if there is p € F(A) \ F(¢(A)), then there exists n € C
such that

f(p(A—nI)) = f(#(A) —nl) = Lomax lz—n| <|p—n| < f(A=nI),

which is a contradiction. O

Now, we are ready to present the

Proof of Theorem 4.1.

First, we show that a linear preserver ¢ of the numerical radius associated with a sym-
metric norm satisfies ¢(I) = pl for some complex unit p.

Since the numerical radius is a norm, ¢ is invertible. Suppose ¢(I) = C. Then for every
Y € M, there exists X € M, such that ¢#(X) =Y. By Proposition 4.3 there exists a complex
unit 7 such that

I1+r(Y)=1+r(X)=14+r(X)=r(nIl + X) =r(nd(I) + (X)) =r(nC +Y).

Since this is true for every Y € M, by Proposition 4.3 we conclude that C' = ul for some
complex unit p.

We may now replace ¢ by the mapping A — [fi¢p(A) and assume that ¢(I) = I. Applying
Proposition 4.19 with M = M,, and F(A) = V(A), we see that V(¢(A)) = V(A) for all
A € M,, and the conclusion follows. O

5 The Extremal /; and /., Norms

In this section, we assume that the norm v on C” is the ¢; or the £,, norm and we characterize
the linear operators on M, that preserve the corresponding states or vector states or any
of the two norm numerical ranges or the induced numerical radius. For the most part, we
shall state and prove the results only for the #; norm as the £, norm may then be treated
using duality. First, the preservers of the spatial numerical range are the same as those of
the other (non Hilbert space) symmetric norms.
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Theorem 5.1 Let v be the ¢, or the Ly, norm on C", and let W(A) denote the induced
spatial numerical range on M,. Let ¢ be a linear operator on M,. Then the following
conditions are equivalent.

(a) ¢ preserves the spatial numerical range, i.e., W ($(A)) = W(A) for all A € M,.
(¢) There exists a generalized permutation Q) € GP(n) such that
9(A) = Q"AQ VA€ M,

or equivalently,
¢"(A) = QAQ* VA€ M,.

(d) ¢*(R)=R.
The next result shows that the group of algebra numerical range preservers is much larger.
When we write A = [A;|---|A,], we mean that the columns of A are the column vectors
Ala T An

Theorem 5.2 Let v be the ¢4 norm on C", and let V(A) denote the induced algebra nu-
merical range on M,. Let ¢ be a linear operator on M,. Then the following conditions are
equivalent.

(b) ¢ preserves the algebra numerical range, i.e., V(¢(A)) = V(A) for all A € M,

(c)’ There ezist a permutation matriz P and generalized permutations Q1, . ..,Q, € GP(n)
with Qje; = e; for j € {1,...,n} such that

O([As] -+ [An]) = Pr[QA]---|@nAn]P  for all A=[Ay],---|An] € M,

or equivalently
o ([Ai]-+-|An]) = PIQ1 AL+ |QuAL P forall A=A, |A,] € M,,.
with Qj = P*Qqr(;) P where 7 is the permutation determined by Pe; = ey

(e) ¢°(S) =S.

The analogous result for ¢4, is similar but with columns replaced by rows. In fact, since
S is a state of the operator norm arising from the /., norm if and only if S? is a state of
the operator norm arising from the ¢; norm, one readily verifies that a linear ¢ satisfies any
one of the conditions (b), (e) in Theorem 5.2 for the £, norm if and only if the mapping
A — [¢p(AY)]* preserves the norm numerical range associated with the ¢; norm. Of course,
this also follows from Corollary 2.4.

We note that P is chosen to be a permutation rather than a generalized permutation
since the action of any diagonal unitary may be absorbed in the action of the generalized
permutations @);.
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Remark. The group of operators appearing in Theorems 3.1 and 5.1 is ubiquitous in the
theory of linear preservers. This is the group GP(n)/Z(GP(n)), where Z(GP(n)) is the

centre of GP(n), i.e., the group of scalar matrices. On the other hand, the group appearing
in Theorem 5.2 does not seem to appear anywhere else. This is the semidirect product of S,

and (GP(n - 1))n

The next result shows that the group of numerical radius isometries are much larger than
the unit multiples of the numerical range preservers.

Theorem 5.3 Suppose r = ry is the norm numerical radius associated with the 1 norm on
C". Then a linear operator ¢ on M, is an {1-numerical radius isometry, i.e., satisfies

r(¢(A)) =r(A) for all A € M,

if and only if there exists a permutation P and generalized permutations Q1,...,Q, € GP(n)
such that ¢ has the form

Again, a similar result holds for the /., norm with columns replaced by rows.
We note that the action of the permutation P is a (one-sided) right multiplication and

not the usual “conjugation” A — P!AP. This is due to the fact a left multiplication by a
permutation may be absorbed in the action of the generalized permutations @);.

The group of operators in Theorem 5.3, i.e., the semidirect product of S, and GP(n)"
is also a rare group among the groups of linear preservers or the group is isometries of a
normed space.

Before proving our theorems, we present some general observations, some of which are
well- known, about norms and numerical ranges induced by these extremal norms.

Proposition 5.4 Let A = (ai;) € M,. The operator norm ||A||, its dual ||A||P and the
algebra numerical range V (A) induced by the ¢1 norm satisfy the following.

(i) ||| = max; (X", |ail), i-e., the mazimum of the £, norms of the columns of A.
(i) |JAI® = Zf_,(max; |ail), i.e., the sum of the Lo norms of the columns of A,
(iii) A matriz S = (si;) is a state if and only if s;; > 0 for every j, tr(S) =1 and

s;; = max |s;;| for ever j
i1 = {5 B y J

(iv) V(A) = conv (U?;l Qj), where §); is the disk with centre a;; and radius p; = ;4 |aij],
in other words, V(A) is the convezr hull of the column-Gershgorin disks of A.

(v) W(A) includes the union of the Gershgorin disks Q;.
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(vi) r(A) = [|A]l for every A.

Proof. The first assertion is well-known in both the finite and infinite dimensional cases.
The second assertion follow easily. Also assertion (iii) is an easy consequence of (ii).
To prove (v), consider the following subset of vector states.

S; ={ze; lu(z) <1, z; =1}

It is not too hard to see that {(A4,Z2): Z € Sx} = Q; and hence Q; C W(A).

By the convexity of V(A4), we get conv{§2; :1 < j <n} C V(A). As to the reverse
inclusion, we notice that the extreme points of the set of states are precisely the states in
U; Sj, so that (A, S) € conv {€2; :1< j < n} for every state S. This proves (iv).

Finally (vi) follows easily from (iv) and (ii) O

In the following we use the notation [z1, 25| for the closed line segment joining the two
complex numbers z; and 2o, i.e., [21, 22] = conv {21, 25 }.

Lemma 5.5 Let m < n, and let A=Aa 0,,—n, where A € M,,. The spatial numerical

ranges W (A) and W (A) induced by the ¢1 norm on C™ are related by

0<t<1

i.e., W(A) is the union of the line segments [0, w] for w € W (A).

Ry R12> c
Ry1 R

R with Ry; € M, and if Ry; # 0 then Ry;/tr Ry is a vector state in M,,. Therefore,
(A,R) = (A, Ry1) € tW(A), where t = tr Ry;. Conversely, if z € W(A), and 1 < t < 1, then
z = (A, Z) for a vector state Z = yz* in M,, with z,y € C™ such that {,(z) = l(y) =
z*y = 1. We define Z and § € C™ by

Proof. From the description of the states in Lemma 5.4, we see that if R = (

T = (twy, -+, t0p,, 1 —1,0,---,0)", 7=y, Ym,1,1,-+-, 1)".
Then §&* is a vector state in M, and (A4, §*) = t(A4, yz*) € tW(A). O

Next we give some examples of spatial numerical range calculations. In addition to being
illuminating, these examples will be used later to show that certain maps on M,, which
preserve the algebra numerical range, nevertheless fail to preserve the spatial numerical
range.

Example 1. Let

2 -1
Ay = (ew _2) @0, @€ [0, 27T),
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in particular

2 -1 2 -1

The numerical ranges of these matrices with respect to the #; norm satisfy the following.

(i) W(A) = V(A) = conv (D(2; 1) U D(-2; 1)), where D(z; p) denotes the disk with

centre z and radius p

(ii)) If @ # 0, then W (Ap) contains the endpoints but none of the interior points of the
line segment [—2 + 14, 2 +i].

(iii) W (Ayp) is convex for # = 0 but not convex for 0 < < 2.

First the assertion about V' (A) is an easy consequence of Proposition 5.4. For the spatial

2

numerical range, we first calculate W (Cy) for the 2 x 2 matrices Cy = (ew _1> which are

-2

the top left 2 x 2 compressions of Ag. The vector states U, = (1, 2)%(1,0) for |z| < 1 give
rise to points (Cy, U,) in W(Cy). These points are precisely the points in the disk D(2;1).
Similarly the states (z,1)%(0,1) give us the disk D(—2,1) C W (By). The remaining vector
states are

(S;m (11__8);m> ; 0<s<l, 0<a< 2T
Such a state is a convex combination of the state B; = (1,e7*®)%e! and Ry = (e*,1)%s%.
Furthermore (Cp, R;) = 2+¢* and (Cy, Ry) = —2—e " and so W (C)) include the horizontal
line segment [—2 — e **, 2+ ¢'®]. The union of all these segments is exactly the convex hull
of D(2;1) U D(—2;1). Using Lemma 5.5, we see that W (A) = conv (D(l; 1) UD(-1; 1))
This proves (i).

We note that the only convex combinations of extreme points in V' (Ay) that gives an
interior point in the line segment [—2 + 4, 2+ 7] are just the convex combinations of —2 + i

and 2+i. Furthermore if X and Y are states that satisfy (4g, X) = 2+i7 and (4y,Y) = —2+1,
then the top left 2 x 2 compressions of X and Y must be

1 0 0 i
XO_(—ie“’ 0) and YO_(O 1)'

But then any proper convex combination sX + (1 —s)Y, (0 < s < 1) has rank one (i.e., is
a vector state) if and only if # = 0. This proves (ii) and (iii). O

The matrices in the next example are obtained from the matrices in the previous example
by applying generalized permutations to the columns.
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Example 2. Let

> w0 > 0 o 2 0 00
F=|0 -2 0|®0,5, G=|0 =2 0|®0,5, H= B 0,4,

A0 0 0

A0 0 X p 0 A 0 0

where A and p are arbitrary complex numbers of modulus 1. Then
W(F)=W(G)=W(H) = conv (D(Q; 1) UD(-2; 1)),

To verify this, we note that the two indicated disks together with {0} are the Gershgorin
disks for each of the given matrices. Every point in the convex hull is a convex combination
sz1 + (1 — s)zp with s € [0,1], 2z € D(2;1) and 2z, € D(—2;1). Now z; = (E, Z;) and
29 = (E, Zy) where Z; = uel, Z, = vel where

U= (1,*,/\(2_1—2)),0,---,0)t and v = (uz_Q,l,*,O,---,O)t,

and where * indicates an arbitrary complex number of modulus at most 1. It clear that
those arbitrary entries may be chosen so that the vectors u and v are linearly dependent
and so every convex combination of the vector states Z; and Z, is thus a vector state. This
shows that every convex combination of z; and 2, belongs to W (F). A similar calculation
establishes the same for G and H.

Example 3. Let

4 1 0
A@ = 1 —4 0 D On_g, 0 € [O, 271')
1 ie?? 0

Then 2i € W(Ay) if and only if § = 0.

This is established by similar methods to the methods used in the previous two examples.
The Gershgorin disks are D(4;2) and D(—4;2) together with {0}. For 2i to belong to the
spatial numerical range, we must have a vector state S such that (A4y,S) = 2i. But this
occurs if and only if S = (X +Y)/2 where X and Y are states that satisfy (Ay, X) =4+ 2i
and (Ay,Y) = —4 + 2i. The states that satisfy the later two equations are

X = (1,04, %+, %)% and Y =(=i,1,e” %, -, *)eb.
But if 6 # 0, then (X +Y)/2 has rank two and so is not a vector state. While if # = 0, then
by taking all the undermined entries in X and Y to be zero, we get a vector state (X +Y)/2.

We are now ready to prove Theorems 5.1, 5.2, and 5.3. We start with second one.

Proof of Theorem 5.2. From the description of the algebra numerical range in Proposition
5.4, it is clear that (c)’ implies (b). The implication (b) = (e) follows, as before, from [18].
It remains to prove that (e) = (c)’. Asin §3, we let 1) = ¢* and so assume that ¢ is a linear

30



operator on M, satisfying ¢(S) = S§. By Lemma 3.2, there exists P € GP(n) such that

the mapping @E(D) = P1)(D)P* preserves the usual inner product on M, fixes all diagonal
matrices, and maps the set of matrices with zero diagonal onto itself. Furthermore, the set
of extreme points of S consists of matrices of the form P*ee; P with P € GP(n). This set

must also be mapped onto itself by 'J Consequently, if
Cy = {P*ee, P : P is diagonal unitary}, k=1,...,n,

then &(Ck) = Ck. One easily checks that the restriction of ¢/ on the span of Cj (identified
with C") is a linear operator preserving the dual norm ball of the ¢; norm and maps e to
itself; thus, it is of the form v — Qv for some Q, € GP(n) satisfying Qrer = e;. This
proves the form of ¢* in (c)’. It is straightforward to establish The equivalence of the form
for ¢ and the form of ¢* given in (c)’. O

Proof of Theorem 5.1. 1t is clear that (c) = (d). To show that (d) = (a), assume that
#*(R) =R. Then

W(p(4) = {(¢(A),R) : ReR}={(4,¢"(R)) : ReR}
{(A,S) : S€ ¢ (R)}={(A,S) : SeR}

= W(A).

It remains to prove the implication (a) = (c). Assume that ¢ satisfies (a). Since V(A) =
conv W (A), then ¢ preserves the algebra numerical range and so is of the form (c)’ of Theorem
5.2. Replacing ¢ by the mapping A — P¢(A)P? for a permutation P, we may assume that

O([A1]---An]) = [@141] - |QnAL] for all A =[A],---|A4,] € M,, (5.1)

where Q1,...,Q, € GP(n) are generalized permutations in GP satisfying ();e; = e; for
j €{1,...,n}. We must then show that ¢(A) = DAD* for a diagonal unitary D.

We start by showing that ), is a diagonal unitary. If not, then there exist 7 # & such that
Q1ej = —Aeg for a complex unit A. Without loss of generality, we may assume that j = 2
and k = 3. Furthermore Q3(e1) = pe, for a complex unit 4 and an index p which may be 1
or 3 or p > 4. The latter case may reduced to p = 4 as follows. Let P be the permutation
matrix obtained from the identity by interchanging the 4-th and the p-th rows, and consider
¢, defined by A — P¢(P*AP)P!. This new map preserves the spatial numerical range if ¢
does and also has the same form as ¢ and the generalized permutation (); that acts on the
first column has not changed. Now consider the matrix

2 -1 0
B=|-1 -2 0|&0,_3
0 0 0

of Example 1. Then ¢(B) is one of the matrices F', G or H of Example 2 according as Q2(e;)
is pep, pes or pey respectively. From the calculations in Examples 1 and 2, we have that
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W (¢(B)) is convex while W (B) is not. This is a contradiction, proving that ); is a diagonal
unitary. This argument may be used on any column and so we have that (); is a diagonal
unitary for every j.

Next, we replace ¢ by the map A — D*¢(A)D, where D is the matrix ;. Thus we
may assume that ¢ is of the form (5.1) with @Q; = I We will then show that every Q; = I
and thus ¢ is the identity. We shall prove this only for 7 = 2 as it can be seen that the
same argument applies to any index j. Let Qo = diag(ds, 1,ds,---,d,). First consider the
2 -1 2 —d

matrix A = (1 9 1 _9

) @ 0,,—2, of Example 1. Then ¢(A) = ( ) @ 0,,_o. This is

2 -1

& 2) ® 0, 2. By example 1, we see
o

diagonal-unitary equivalent to the matrix C' = (

that W (¢(A)) = W(A) if and only if d; = 1.

Next we consider the matrix

4 1 0
T=11 -4 0| ®0,_s,
1 7 0
of Example 3. Then
4 1 0
o(T)=11 —4 0| &®0,_3.
1 iy O

By Example 3, we see that W(¢(A) = W(A) if and only if d3 = 1. Using PTP? for a
permutation P that fixes e; and ey, we get in the same way that d; = 1 for j > 3. This
proves that (o = I and ends the proof. O

Proof of Theorem 5.3. By Proposition 5.4, the norm numerical radius coincides with the
operator norm. Thus, numerical radius isometries are just the isometries of the operator
norm, whose structure is known is known to be as given in the statement of Theorem 5.3;
see [11, 22].

We present another proof. Assume v is the /; norm. Let use denote by G the group of
operators ¢ on M, of the form

for a permutation P and generalized permutations @1, . .., Q, € GP(n). From the description
of the norm and numerical radius given in Proposition 5.4, it follows easily that every ¢ € G
is indeed a numerical radius isometry. For the converse, we have already seen that A belongs
to the set £ defined by (4.1) if and only if every column has exactly one nonzero entry and
that this entry has modulus 1, i.e., A belongs to the orbit of I under the action of the group
G. Now if ¢ is a spectral radius isometry, then ¢(I) € L. Therefore, we may compose ¢ with

a member of the group G to get a map (;3 which preserves the numerical radius and maps

I to I. By Proposition 4.19, ¢ is a unimodular scalar multiple of a map that preserve the
algebra numerical range. By Theorem 5.2 such map belong to G, so the original operator

o€ q. O
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It is interesting to note that in the extremal norms, the norm numerical radius preservers
are not unit multiple of the corresponding numerical range preservers. This is a deviation
from all the known results on linear preservers of generalized numerical ranges and radii; see

[13].
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