Linear Maps Leaving the Alternating Group Invariant

HANLEY CHIANG ¹ AND CHI-KWONG Li²

Department of Mathematics, College of William and Mary P.O. Box 8795, Williamsburg, Virginia 23187-8795 hschia@wm.edu ckli@math.wm.edu

Abstract

Let \mathbf{A}_n be the group of $n \times n$ even permutation matrices, and let \mathbf{V}_n be the real linear space spanned by \mathbf{A}_n . The purpose of this note is to characterize those linear operators ϕ on \mathbf{V}_n satisfying $\phi(\mathbf{A}_n) = \mathbf{A}_n$. This answers a question raised by Li, Tam and Tsing.

AMS Classification: 15A04

Key words: Linear preserver, symmetric group, alternating group.

1 Introduction

Let \mathbf{S}_n (respectively \mathbf{A}_n) be the group of $n \times n$ (respectively, even) permutation matrices, and let \mathbf{V}_n be the real linear space spanned by \mathbf{A}_n . The purpose of this note is to characterize those linear operators ϕ on \mathbf{V}_n satisfying $\phi(\mathbf{A}_n) = \mathbf{A}_n$. This answers an open problem in [3].

The problem for A_2 is trivial since A_2 is a singleton, and V_2 is a one dimensional space. The set A_3 consists of 3 linearly independent matrices, and thus V_3 is 3-dimensional and A_3 is a basis. A linear map ϕ on V_3 satisfies $\phi(A_3) = A_3$ if and only if it permutes the elements in the basis A_3 .

For $n \geq 4$, we have the following results.

Theorem 1.1 Suppose $n \geq 4$. Then \mathbf{V}_n is the space of $n \times n$ real matrices with equal row sums and columns sums.

Let \mathbf{U}_n be the space of $n \times n$ real matrices with equal row sums and columns sums. Then span $\mathbf{A}_n \subseteq \operatorname{span} \mathbf{S}_n \subseteq \mathbf{U}_n$. By Theorem 1.1, we have $\mathbf{U}_n = \operatorname{span} \mathbf{A}_n = \operatorname{span} \mathbf{S}_n$ if $n \ge 4$, and it is easy to see that span $\mathbf{A}_n \ne \operatorname{span} \mathbf{S}_n = \mathbf{U}_n$ for $n \in \{2,3\}$. In [3, Section 2] the authors used Birkhoff Theorem to deduce that span $\mathbf{S}_n = \mathbf{U}_n$ for any positive integer n.

Theorem 1.2 Consider the normal subgroup $\mathbf{H}_0 = \{P \in \mathbf{A}_4 : P^2 = I_4\}$ of \mathbf{A}_4 , and the two cosets \mathbf{H}_1 and \mathbf{H}_2 of \mathbf{H}_0 in \mathbf{A}_4 . If $\phi : \mathbf{V}_4 \to \mathbf{V}_4$ is a linear map such that $\phi(\mathbf{A}_4) = \mathbf{A}_4$, then

$$\phi(\mathbf{H}_j) = \mathbf{H}_{i_j} \quad for \quad j = 0, 1, 2, \quad with \quad \{i_0, i_1, i_2\} = \{0, 1, 2\}. \tag{1}$$

Conversely, if ψ is a permutation on \mathbf{A}_4 such that (1) holds for $\phi = \psi$, then ψ can be extended uniquely to a linear map on \mathbf{V}_4 .

¹Research supported by an NSF REU grant.

²Research supported by an NSF grant.

Theorem 1.3 Let $n \geq 5$. A linear map $\phi : \mathbf{V}_n \to \mathbf{V}_n$ satisfies $\phi(\mathbf{A}_n) = \mathbf{A}_n$ if and only if there exist $P, Q \in \mathbf{S}_n$ with $PQ \in \mathbf{A}_n$ such that ϕ is of the form

$$A \mapsto PAQ \qquad or \qquad A \mapsto PA^tQ.$$
 (2)

It was proved in [3, Theorem 2.2] that linear operators on span \mathbf{S}_n mapping \mathbf{S}_n onto itself have the form (2) for some $P, Q \in \mathbf{S}_n$. If one can show that for $n \geq 5$ every linear operator ϕ on \mathbf{V}_n that satisfies $\phi(\mathbf{A}_n) = \mathbf{A}_n$ also satisfies $\phi(\mathbf{S}_n) = \mathbf{S}_n$, then Theorem 1.3 will follow. However, there does not seem to be an easy proof of this.

For any linear operator ϕ on \mathbf{V}_n satisfying $\phi(\mathbf{A}_n) = \mathbf{A}_n$, we can replace it by the linear operator ψ of the form $A \mapsto \phi(I_n)^{-1}\phi(A)$. Then ψ is unital, i.e., $\psi(I_n) = I_n$, and satisfies $\psi(\mathbf{A}_n) = \mathbf{A}_n$. Using this observation, one easily sees that Theorem 1.3 is equivalent to the following.

Theorem 1.4 Let $n \geq 5$. A linear map $\phi : \mathbf{V}_n \to \mathbf{V}_n$ satisfies $\phi(I_n) = I_n$ and $\phi(\mathbf{A}_n) = \mathbf{A}_n$ if and only if there exists $P \in \mathbf{S}_n$ such that ϕ is of the form

$$A \mapsto PAP^t$$
 or $A \mapsto PA^tP^t$,

i.e., the restriction of ϕ on \mathbf{A}_n is a group automorphism or anti-automorphism.

2 Auxiliary Results and Proofs

Let $\{e_1, \ldots, e_n\}$ and $\{E_{11}, E_{12}, \ldots, E_{nn}\}$ be the standard bases for \mathbb{R}^n and the linear space of $n \times n$ real matrices, respectively. We use the usual cycle notation to represent a permutation matrix in \mathbf{S}_n . For example, $(i,j) \in \mathbf{S}_n$ will represent the permutation matrix P obtained from I_n by interchanging the ith and jth rows. Every element $P \in \mathbf{S}_n$ can be regarded as a bijection $\sigma: \{1,\ldots,n\} \to \{1,\ldots,n\}$, and vice versa; namely, the matrix $P = [e_{\sigma(1)}|\cdots|e_{\sigma(n)}] \in \mathbf{S}_n$ corresponds to the bijection σ . We will use both interpretations in our discussion. For instance, if $P \in \mathbf{S}_n$ corresponds to a permutation $\sigma: \{1,\ldots,n\} \to \{1,\ldots,n\}$, and $Q \in \mathbf{S}_n$ corresponds to the k-cycle (i_1,\ldots,i_k) , then PQP^t corresponds to the k-cycle $(\sigma(i_1),\ldots,\sigma(i_k))$.

Denote by J_n the $n \times n$ matrix with all entries equal to 1/n. For $1 \le k \le n$, let

$$\mathbf{U}_k = \{X_0 \oplus \gamma I_{n-k} : \gamma \in \mathbb{R}, X_0 \text{ is } k \times k \text{ with all row and column sums equal to } \gamma\}.$$
 (3)

Then \mathbf{U}_n is just the set of $n \times n$ real matrices with equal row sums and column sums defined in the last section, and Theorem 1.1 asserts that $\mathbf{U}_n = \mathbf{V}_n$. Indeed, every $n \times n$ matrix A with equal row sums and column sums γ can be written as $A = A_0 + \gamma I$ so that $A_0 = A - \gamma I$ has row sums and column sums zero. We have the following result, from which Theorem 1.1 readily follows.

Proposition 2.1 Let $n \geq k \geq 4$. Then U_k defined as in (3) is spanned by elements in A_n of the form:

$$R = (i_1, i_2)(i_3, i_4) \quad \text{with} \quad i_1, i_2, i_3, i_4 \in \{1, \dots, k\}.$$
 (4)

(Note that R can only be I_n , a 3-cycle, or a product of two disjoint transpositions.)

Proof. Since \mathbf{U}_k has a basis

$$\mathcal{B} = \{I_n\} \cup \{E_{ij} - E_{ik} - E_{kj} + E_{kk} : 1 \le i, j \le k - 1\},\$$

it has dimension $(k-1)^2 + 1$.

When $n \geq k = 4$, \mathbf{U}_4 has dimension 10, and every matrix in $\mathbf{A}_n \cap \mathbf{U}_4$ is of the form (4) with $i_1, i_2, i_3, i_4 \in \{1, 2, 3, 4\}$. One can check that there are 10 linearly independent matrices in $\mathbf{A}_n \cap \mathbf{U}_4$. This can also be done by a simple Matlab program as shown in the Appendix.

Suppose $n \geq k \geq 5$. It suffices to show that every element in \mathcal{B} is a linear combination of matrices in \mathbf{A}_n of the form (4). Clearly, I_n is of the form (4). For any $1 \leq i, j \leq k-1$, let $F_{ij} = E_{ij} - E_{ik} - E_{kj} + E_{kk}$, and let p, q, r, s be distinct elements of $\{1, \ldots, k\}$ that satisfy $\{i, j, k\} \subseteq \{p, q, r, s\}$. Suppose Q is a permutation mapping the indices p, q, r, s to 1, 2, 3, 4. Then $QF_{ij}Q^t \in \mathbf{U}_4$, and we can apply the result on \mathbf{U}_4 to conclude that $QF_{ij}Q^t$ is a linear combination of matrices R_1, \ldots, R_m of the form (4) with $i_1, i_2, i_3, i_4 \in \{1, 2, 3, 4\}$. Thus, F_{ij} is a linear combination of the matrices Q^tR_1Q, \ldots, Q^tR_mQ , all of the form (4) with $i_1, i_2, i_3, i_4 \in \{p, q, r, s\}$.

We need the following lemma to prove Theorem 1.2.

Lemma 2.2 Let $n \geq 3$. Suppose ϕ is a linear map on \mathbf{V}_n satisfying $\phi(\mathbf{A}_n) = \mathbf{A}_n$. Then

$$\phi(J_n) = J_n. \tag{5}$$

Proof. Since $\sum_{P \in \mathbf{A}_n} P = n! J_n/2$, we have

$$\phi(n!J_n) = \phi(2\sum_{P \in \mathbf{A}_n} P) = 2\sum_{P \in \mathbf{A}_n} \phi(P) = 2\sum_{P \in \mathbf{A}_n} P = n!J_n.$$

The result follows.

Proof of Theorem 1.2. Let $\mathbf{H}_0, \mathbf{H}_1, \mathbf{H}_2$ be defined as in the theorem. Clearly, $\mathbf{H}_0 = \{I_4, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$. We claim that:

$$\mathbf{T} = \{X_1, \dots, X_4\} \subseteq \mathbf{A}_4$$

satisfies $X_1 + \cdots + X_4 = 4J_4$ if and only if $\mathbf{T} = \mathbf{H}_i$ for some $i \in \{0, 1, 2\}$.

To prove this claim, let **T** be such a set. Then the matrices $Y_j = X_1^t X_j$ for $j \in \{1, ..., 4\}$ satisfy $Y_1 = I_4$ and $Y_1 + \cdots + Y_4 = 4J_4$; so, Y_2, Y_3, Y_4 all have zero diagonals, and thus $\{Y_1, \ldots, Y_4\} = \mathbf{H}_0$. Hence, $\mathbf{T} = X_1 \mathbf{H}_0$ is a coset of \mathbf{H}_0 as asserted.

Suppose $\phi: \mathbf{V}_4 \to \mathbf{V}_4$ satisfies $\phi(\mathbf{A}_4) = \phi(\mathbf{A}_4)$. Let $\mathbf{H}_0 = \{X_1, \dots, X_4\}$. By Lemma 2.2, we have

$$4J_4 = \phi(4J_4) = \phi(X_1 + \dots + X_4) = \phi(X_1) + \dots + \phi(X_4).$$

It follows from our claim that $\phi(\mathbf{H}_0) = \mathbf{H}_{i_0}$ for some $i_0 \in \{0, 1, 2\}$. Repeating the arguments to \mathbf{H}_1 and \mathbf{H}_2 , we see that $\phi(\mathbf{H}_j) = \mathbf{H}_{i_j}$ for j = 0, 1, 2, where $\{i_0, i_1, i_2\} = \{0, 1, 2\}$.

Suppose ψ permutes the elements in \mathbf{A}_n and satisfies $\psi(\mathbf{H}_j) = \mathbf{H}_{i_j}$ for j = 0, 1, 2, where $\{i_0, i_1, i_2\} = \{0, 1, 2\}$. Take 3 elements from each of the set \mathbf{H}_j for j = 0, 1, 2, to get 9 matrices $Y_1, \ldots, Y_9 \in \mathbf{A}_4$. One can check, say, using Matlab, that $\{J_4, Y_1, \ldots, Y_9\}$ is a basis for \mathbf{V}_4 . Define the linear map $\phi : \mathbf{V}_4 \to \mathbf{V}_4$ by $\phi(J_4) = J_4$ and $\phi(Y_j) = \psi(Y_j)$ for $j = 1, \ldots, 9$. Then ϕ is the unique linear operator on \mathbf{V}_4 such that $\phi(X) = \psi(X)$ for all $X \in \mathbf{A}_4$.

The rest of this section is devoted to proving Theorem 1.4. We need some more notations and lemmas. Let $\tilde{\mathbf{U}}_n$ be the set of $n \times n$ real matrices with row sums and column sums zero, and let

$$\tilde{\mathbf{A}}_n = \mathbf{A}_n - J_n = \{P - J_n : P \in \mathbf{A}_n\}.$$

Then $\tilde{\mathbf{A}}_n \subseteq \tilde{\mathbf{U}}_n$ is a group with $I_n - J_n$ as the identity, and $P^t - J_n$ as the inverse of $P - J_n$, for any $P \in \mathbf{A}_n$. Moreover, since $\tilde{\mathbf{U}}_n \subseteq \mathbf{U}_n = \mathbf{V}_n$, for any $X \in \tilde{\mathbf{U}}_n$ there is a linear combination of $P_1, \ldots, P_k \in \mathbf{A}_n$ such that $\sum_{j=1}^k \alpha_j P_j = X$. Since X has zero row sums and column sums, we see that $\sum_{j=1}^k \alpha_j = 0$, and thus $X = \sum_{j=1}^k \alpha_j (P_j - J_n)$. Hence we have $\tilde{\mathbf{U}}_n = \operatorname{span} \tilde{\mathbf{A}}_n$. Suppose $\phi : \mathbf{V}_n \to \mathbf{V}_n$ is a linear map that satisfies $\phi(\mathbf{A}_n) = \mathbf{A}_n$. Since $\phi(J_n) = J_n$ by Lemma 2.2, and $\phi(P - J_n) = \phi(P) - J_n$ for any $P \in \mathbf{A}_n$, we have $\phi(\tilde{\mathbf{A}}_n) \subseteq \tilde{\mathbf{A}}_n$, and hence $\phi(\tilde{\mathbf{U}}_n) \subseteq \tilde{\mathbf{U}}_n$.

The usual inner product

$$(X,Y) = \operatorname{tr}(XY^t)$$

on $n \times n$ real matrices induces inner products on the subspaces \mathbf{V}_n and $\tilde{\mathbf{U}}_n$. Let G be the group of linear operators ψ on $\tilde{\mathbf{U}}_n$ satisfying $\psi(\tilde{\mathbf{A}}_n) = \tilde{\mathbf{A}}_n$. Since $\tilde{\mathbf{A}}_n$ is a compact set spanning $\tilde{\mathbf{U}}_n$, we see that G is a compact group of nonsingular linear operators on $\tilde{\mathbf{U}}_n$. By a result of Auerbach [1] (see [2] for an elementary proof), there exists a positive definite operator T on $\tilde{\mathbf{U}}_n$ such that

$$TGT^{-1} = \{T\psi T^{-1} : \psi \in G\}$$

is a subgroup of $O(\tilde{\mathbf{V}}_n)$ – the group of orthogonal operators on $\tilde{\mathbf{U}}_n$. Denote by L^* the adjoint operator of L on $\tilde{\mathbf{U}}_n$, i.e., $(L(X),Y)=(X,L^*(Y))$ for all $X,Y\in \tilde{\mathbf{U}}_n$. Then for any $\psi\in G$, $(T\psi T^{-1})^*(T\psi T^{-1})$ is the identity operator on $\tilde{\mathbf{U}}_n$, i.e., $T^2\psi=(\psi^*)^{-1}T^2$.

Note that $\tilde{\mathbf{U}}_n$ and M_{n-1} are isomorphic algebras. To see this, consider an orthogonal matrix P whose last row equals $(1,\ldots,1)/\sqrt{n}$. Then for every $X\in \tilde{\mathbf{U}}_n$, we have $PXP^t=\hat{X}\oplus [0]$ with $\hat{X}\in M_{n-1}$, and the mapping $X\mapsto \hat{X}$ is an algebra isomorphism. It is well known (and easy to check) that if \mathcal{S} is a spanning set for the linear space M_{n-1} , then the mappings of the form $X\mapsto PXQ$ with $P,Q\in\mathcal{S}$ span the linear space of linear transformations from M_{n-1} to itself. An analogous result holds for $\tilde{\mathbf{U}}_n$. So, if H is the subgroup of G consisting of operators of the form $X\mapsto PXQ$ with $P,Q\in\tilde{\mathbf{A}}_n$, then H spans the space of all linear operators on $\tilde{\mathbf{U}}_n$ because span $\tilde{\mathbf{A}}_n=\tilde{\mathbf{U}}_n$. Furthermore, every element in H satisfies $\psi^*=\psi^{-1}$,

and hence $T^2\psi = \psi T^2$ for all $\psi \in H$. It follows that T^2 commutes with all operators on $\tilde{\mathbf{U}}_n$; hence T^2 is a scalar operator. Since T is a positive definite operator, T is a scalar operator as well. Thus, we have $TGT^{-1} = G$ and so G is a subgroup of $O(\tilde{\mathbf{U}}_n)$, i.e., every element in G preserves the inner product on $\tilde{\mathbf{U}}_n$.

Consider any linear map $\phi: \mathbf{V}_n \to \mathbf{V}_n$ that satisfies $\phi(\mathbf{A}_n) = \mathbf{A}_n$. Suppose $\tilde{\phi}$ is the restriction of ϕ on $\tilde{\mathbf{U}}_n$ (to $\tilde{\mathbf{U}}_n$). For any $R, S \in \mathbf{V}_n$ with row sums r and s, respectively, we can write $R = R_0 + rJ_n$ and $S = S_0 + sJ_n$ with $R_0, S_0 \in \tilde{\mathbf{U}}_n$. By what we have just shown, $\tilde{\phi}$ preserves the inner product on $\tilde{\mathbf{U}}_n$. And since $\phi(J_n) = J_n$, we have

$$(R,S) = (R_0 + rJ_n, S_0 + sJ_n)$$

$$= (R_0, S_0) + rs$$

$$= (\tilde{\phi}(R_0), \tilde{\phi}(S_0)) + rs$$

$$= (\tilde{\phi}(R_0) + rJ_n, \tilde{\phi}(S_0) + sJ_n)$$

$$= (\phi(R_0) + rJ_n), \phi(S_0) + sJ_n)$$

$$= (\phi(R_0 + rJ_n), \phi(S_0 + sJ_n))$$

$$= (\phi(R), \phi(S)).$$

Summarizing, we have the following lemma.

Lemma 2.3 Suppose $n \geq 4$, and ϕ is a linear operator on \mathbf{V}_n satisfying $\phi(\mathbf{A}_n) = \mathbf{A}_n$. Then

$$(\phi(R), \phi(S)) = (R, S) \qquad \text{for any } R, S \in \mathbf{V}_n. \tag{6}$$

Lemma 2.4 Suppose $n \geq 4$.

- (a) For any $S \in \mathbf{A}_n$, (I_n, S) is just the number of nonzero diagonal entries of S.
- (b) For any $R, S \in \mathbf{A}_n$, $(R, S) = (I_n, R^t S)$.
- (c) For any two different $R, S \in \mathbf{A}_n$, we have $(R, S) \leq n 3$, where the equality holds if and only if $R^t S$ is a 3-cycle. Moreover,
 - (c.1) a 3-cycle (i_1, i_2, i_3) and a 5-cycle (j_1, \ldots, j_5) have inner product n-3 if and only if (i_1, i_2, i_3) is one of the following:

$$(j_1, j_2, j_3), (j_2, j_3, j_4), (j_3, j_4, j_5), (j_4, j_5, j_1), (j_5, j_1, j_2);$$

(c.2) a 5-cycle (j_1, \ldots, j_5) and a product of two disjoint transpositions $(i_1, i_2)(i_3, i_4)$ have inner product n-3 if and only if $(i_1, i_2)(i_3, i_4)$ is one of the following:

$$(j_1,j_2)(j_3,j_4), (j_1,j_2)(j_4,j_5), (j_2,j_3)(j_4,j_5), (j_2,j_3)(j_5,j_1), (j_3,j_4)(j_5,j_1);$$

- (c.3) a 3-cycle (k_1, k_2, k_3) and a product of two disjoint transpositions $(i_1, i_2)(i_3, i_4)$ have inner product n-3 if and only if $k_1, k_2, k_3 \in \{i_1, i_2, i_3, i_4\}$;
- (c.4) two 5-cycles (i_1,\ldots,i_5) and (j_1,\ldots,j_5) , with $\{i_1,\ldots,i_5\} \neq \{j_1,\ldots,j_5\}$, have inner product n-3 if and only if there exists $k \notin \{i_1,\ldots,i_5\}$ such that (j_1,\ldots,j_5) is one of the following:

$$(i_1, i_2, i_3, i_4, k), (i_2, i_3, i_4, i_5, k), (i_3, i_4, i_5, i_1, k), (i_4, i_5, i_1, i_2, k), (i_5, i_1, i_2, i_3, k).$$

- (d) Two matrices $R, S \in \mathbf{A}_n$ satisfy (R, S) = n 4 if and only if $R^t S$ is the product of 2 disjoint transpositions.
- (e) Two matrices $R, S \in \mathbf{A}_n$ satisfy (R, S) = n 5 if and only if $R^t S$ is a 5-cycle.

Proof. Let $R, S \in \mathbf{A}_n$. Then computing (R, S) is the same as counting the number of overlapping nonzero positions of the two matrices. Also, it is clear that

$$(R,S) = \operatorname{tr}(RS^t) = (I, R^t S).$$

With these two observations, one immediately get (a), (b), (c), (d), (e).

Suppose we have a 3-cycle (i_1, i_2, i_3) and a 5-cycle (j_1, \ldots, j_5) in \mathbf{A}_n . Then the two matrices can overlap at no more than n-5 diagonal positions (limited by (j_1, \ldots, j_5)), and no more than 2 off-diagonal positions (limited by the number of off-diagonal entries of (i_1, i_2, i_3) that can appear in (j_1, \ldots, j_5)). If the two matrices have inner product n-3, then both of these upper bounds are attained. So, $\{i_1, i_2, i_3\} \subseteq \{j_1, \ldots, j_5\}$, and two off-diagonal entries of (i_1, i_2, i_3) must appear in (j_1, \ldots, j_5) . We get (c.1).

The proofs of (c.2) and (c.3) are similar to that of (c.1). To prove (c.4) let (i_1, \ldots, i_5) and (j_1, \ldots, j_5) be two 5-cycles in \mathbf{A}_n such that $\{i_1, \ldots, i_5\} \neq \{j_1, \ldots, j_5\}$. Then the two matrices can overlap at no more than n-6 diagonal positions, and no more than 3 off-diagonal positions. If the two matrices have inner product n-3, then both of these upper bounds are attained. Using the fact that the two matrices overlap at 3 off-diagonal positions, one readily gets the conclusion.

Proof of Theorem 1.4. The sufficiency part is clear. We consider the necessity part. We need only to show that ϕ can be converted to the identity mapping on \mathbf{V}_n by the composite of a sequence of mappings of the form

$$X \mapsto P\phi(X)P^t$$
 or $X \mapsto P\phi(X)^t P^t$ for some $P \in \mathbf{S}_n$. (7)

First, we prove the following.

Assertion 1. Replacing ϕ by the composite of a sequence of mappings of the form (7), we can assume that ϕ fixes I_n , (1,2,3,4,5), (1,2,3), and (1,2)(3,4).

Proof of Assertion 1. Since $\phi(I_n) = I_n$ and (6) is satisfied, it follows from Lemma 2.4 (c) and (e) that ϕ will map 3-cycles to 3-cycles and map 5-cycles to 5-cycles. In particular, we

have $\phi((1,2,3,4,5)) = (i_1,\ldots,i_5)$. We may assume that ϕ fixes (1,2,3,4,5); otherwise, let P be a permutation sending i_1,\ldots,i_5 to $1,\ldots,5$, respectively, and replace ϕ by the mapping $A \mapsto P\phi(A)P^t$.

Let X = (1, 2, 3). Then $\phi(X)$ is a 3-cycle. Since ϕ preserves the inner product and fixes (1, 2, 3, 4, 5), we have

$$(\phi(X), (1, 2, 3, 4, 5)) = (\phi(X), \phi((1, 2, 3, 4, 5))) = (X, (1, 2, 3, 4, 5)) = n - 3.$$

By Lemma 2.4 (c.1),

$$\phi(X) \in \{(1,2,3), (2,3,4), (3,4,5), (4,5,1), (5,1,2)\}.$$

We may assume that $\phi(X) = (1, 2, 3)$. Otherwise, replace ϕ by the mapping $A \mapsto P\phi(A)P^t$ with

$$P = (1, 2, 3, 4, 5)^4, (1, 2, 3, 4, 5)^3, (1, 2, 3, 4, 5)^2, \text{ or } (1, 2, 3, 4, 5),$$

depending on $\phi(X) = (2, 3, 4), (3, 4, 5), (4, 5, 1),$ or (5, 1, 2), respectively. The resulting map will fix $I_n, (1, 2, 3, 4, 5),$ and (1, 2, 3).

Let **T** be the set of products of two disjoint transpositions $R = (i, j)(k, l) \in \mathbf{A}_n$ such that (R, (1, 2, 3, 4, 5)) = n - 3. By Lemma 2.4 (c.2),

$$\mathbf{T} = \{(1,2)(3,4), (1,2)(4,5), (2,3)(4,5), (2,3)(5,1), (3,4)(5,1)\}. \tag{8}$$

Let X = (1,2)(3,4). By Lemma 2.4 (d) and the facts that ϕ fixes I_n and preserves the inner product, we see that $\phi(X)$ is a product of two disjoint transpositions. Since ϕ fixes (1,2,3,4,5) and preserves the inner product, we have

$$(\phi(X),(1,2,3,4,5))=(X,(1,2,3,4,5))=n-3,$$

and thus $\phi(X) \in \mathbf{T}$ by the definition of \mathbf{T} . Now, since ϕ fixes (1,2,3) and preserves the inner product, we have

$$(\phi(X), (1,2,3)) = (X, (1,2,3)) = n - 3.$$

By Lemma 2.4 (c.3) and the fact that $\phi(X) \in \mathbf{T}$, we have $\phi(X) \in \{(1,2)(3,4),(2,3)(1,5)\}$. We may assume that $\phi(X) = (1,2)(3,4)$. Otherwise, let P = (1,3)(4,5) and replace ϕ by the mapping $A \mapsto P\phi(A)^t P^t$. Then the resulting map will fix $I_n, (1,2,3,4,5), (1,2,3)$, and (1,2)(3,4). The proof of Assertion 1 is complete.

Next, we prove an assertion, which will be used repeatedly in the future with $\{1, 2, 3, 4, 5\}$ replaced by suitable $\{k_1, k_2, k_3, k_4, k_5\}$.

Assertion 2. If ϕ fixes I_n , (1,2,3), (1,2,3,4,5), and (1,2)(3,4), then ϕ fixes the matrices in U_5 defined as in (3).

Proof of Assertion 2. By the argument given in the proof of Assertion 1, we have $\phi(\mathbf{T}) = \mathbf{T}$, where \mathbf{T} is defined as in (8). Moreover, \mathbf{T} may be partitioned into subsets

$$\mathbf{T}_1 = \{(1,2)(3,4),(2,3)(1,5)\}, \ \mathbf{T}_2 = \{(1,2)(4,5),(2,3)(4,5)\}, \ \text{and} \ \mathbf{T}_3 = \{(3,4)(1,5)\},$$

where the elements of \mathbf{T}_i have inner product n-2-i with (1,2,3). Since ϕ fixes (1,2,3) and preserves the inner product, $\phi(\mathbf{T}_i) = \mathbf{T}_i$ for i = 1,2,3. So, ϕ fixes (3,4)(1,5). Since ϕ already fixes (1,2)(3,4), ϕ must fix (2,3)(1,5). Finally, since the members of \mathbf{T}_2 have different inner products with (1,2)(3,4), ϕ must fix (1,2)(4,5) and (2,3)(4,5). Thus, ϕ fixes each element of

$$\mathbf{F} = \{I_n, (1, 2, 3, 4, 5), (1, 2, 3)\} \cup \mathbf{T}. \tag{9}$$

Next, consider any 3-cycle

$$R = (i_1, i_2, i_3)$$
 with $i_1, i_2, i_3 \in \{1, 2, 3, 4, 5\}.$ (10)

By Lemma 2.4 (c.3), R has inner product n-3 with at least one member of \mathbf{T} . Let $\phi(R)=(k_1,k_2,k_3)$. Since ϕ fixes each member of \mathbf{T} and preserves the inner product, it follows that (k_1,k_2,k_3) has inner product n-3 with at least one member of \mathbf{T} , say, with $S=(j_1,j_2)(j_3,j_4)$. Since $(\phi(R),S)=n-3$, it follows from Lemma 2.4 (c.3) that

$${k_1, k_2, k_3} \subseteq {j_1, j_2, j_3, j_4} \subseteq {1, 2, 3, 4, 5}.$$

In other words, ϕ maps any 3-cycle (i_1, i_2, i_3) satisfying (10) to another 3-cycle satisfying (10). Let X_1, \ldots, X_8 be the elements in **F**. For each 3-cycle Y satisfying (10), let

$$v(Y) = ((Y, X_1), \dots, (Y, X_8)). \tag{11}$$

One can check that if Y_1 and Y_2 are different 3-cycles satisfying (10), then $v(Y_1) \neq v(Y_2)$. (See the Matlab program and output in the Appendix.) Since ϕ preserves the inner product and fixes each element in \mathbf{F} , we conclude that ϕ fixes each 3-cycle satisfying (10).

One can check (see the Matlab program at the Appendix) that elements in \mathbf{F} together with the 3-cycles satisfying (10) generate a 17-dimensional subspace, which is the dimension of \mathbf{U}_5 . Thus, ϕ fixes the elements in a generating set of \mathbf{U}_5 , and hence it fixes every matrix in \mathbf{U}_5 . The proof of Assertion 2 is complete.

If n = 5, then $\mathbf{U}_5 = \mathbf{V}_n$ and we are done. Suppose n > 5. We prove the following assertion.

Assertion 3. Suppose $5 \le k < n$, and suppose ϕ fixes all the matrices in \mathbf{U}_k defined as in (3). Then one can replace ϕ by a mapping of the form (7) so that the resulting map will fix all matrices in \mathbf{U}_{k+1} .

Proof of Assertion 3. By Proposition 2.1, it suffices to show that ϕ can be modified so that the resulting map will fix all permutations in \mathbf{A}_n of the form $(i_1, i_2)(i_3, i_4)$ with $i_1, i_2, i_3, i_4 \in \{1, \ldots, k+1\}$. Let X = (1, 2, 3, 4, k+1). Then $\phi(X)$ is a 5-cycle by Lemma 2.4 (e). Since ϕ fixes (1, 2, 3, 4, 5) and preserves the inner product, we have

$$(\phi(X), (1, 2, 3, 4, 5)) = (X, (1, 2, 3, 4, 5)) = n - 3.$$

By Lemma 2.4 (c.4), $\phi(X)$ equals one of the following:

$$(1,2,3,4,j),(2,3,4,5,j),(3,4,5,1,j),(4,5,1,2,j),(5,1,2,3,j)$$

for some j > k. We may assume that j = k + 1; otherwise, let P be the transposition (j, k + 1) and replace ϕ by the mapping $A \mapsto P\phi(A)P^t$. We are going to show that this modified mapping ϕ fixes all matrices in U_{k+1} . Since ϕ also fixes (1,2)(3,4), we have

$$(\phi(X), (1,2)(3,4)) = (X, (1,2)(3,4)) = n-3.$$

By Lemma 2.4 (c.2), it follows that $\phi(1,2,3,4,k+1) = (1,2,3,4,k+1)$. Now, ϕ fixes

$$I_n$$
, $(1,2,3)$, $(1,2,3,4,k+1)$, and $(1,2)(3,4)$.

Using Assertion 2 with 5 replaced by k+1, we see that ϕ fixes all permutations in \mathbf{A}_n generated by elements of the form $(j_1, j_2)(j_3, j_4)$ with $j_1, j_2, j_3, j_4 \in \{1, 2, 3, 4, k+1\}$.

Next, we consider a 5-cycle $X = (1, i_1, i_2, i_3, k+1)$ with $i_1, i_2, i_3 \in \{2, ..., k\}$. Then $\phi(X)$ is a 5-cycle. Let $i_4 \in \{2, ..., k\} \setminus \{i_1, i_2, i_3\}$, $Y_1 = (1, i_1, i_2, i_3, i_4)$, and $Y_2 = (1, i_1)(i_2, i_3)$. Then for j = 1, 2, we have $\phi(Y_j) = Y_j$ and

$$(\phi(X), Y_j) = (\phi(X), \phi(Y_j)) = (X, Y_j) = n - 3. \tag{12}$$

By Lemma 2.4 (c.2) and (c.4), we have $\phi(X) = (1, i_1, i_2, i_3, j)$ for some $j \geq k+1$. If j > k+1, then every common nonzero (diagonal, or off-diagonal) position of (1, 2, 3, 4, k+1) and $(1, i_1, i_2, i_3, j)$ is also a common nonzero position of (1, 2, 3, 4, k+1) and $(1, i_1, i_2, i_3, k+1)$. But (1, 2, 3, 4, k+1) and $(1, i_1, i_2, i_3, k+1)$ have common nonzero positions that are not shared by (1, 2, 3, 4, k+1) and $(1, i_1, i_2, i_3, j)$; namely, at the (1, k+1) and (j, j) positions (and also at the (k+1, 4) position if $i_3 = 4$). Hence, if $Y_3 = (1, 2, 3, 4, k+1)$, then $(X, Y_3) - (\phi(X), \phi(Y_3)) = 2$ or 3, which is a contradiction. Thus, we must have j = k+1 and $\phi(X) = X$. So, ϕ fixes $I_n, (1, i_1, i_2), (1, i_1, i_2, i_3, k+1)$, and $(1, i_1)(i_2, i_3)$. Using Assertion 2 with (1, 2, 3, 4, 5) replaced by $(1, i_1, i_2, i_3, k+1)$, we see that ϕ fixes all permutations in \mathbf{A}_n generated by elements of the form $(j_1, j_2)(j_3, j_4)$ with $j_1, j_2, j_3, j_4 \in \{1, i_1, i_2, i_3, k+1\}$.

Suppose $X = (i_1, i_2, i_3, i_4, k+1)$ is a 5-cycle such that $i_j \in \{1, ..., k\}$ for j = 1, ..., 4, and $i_1 \neq 1$. Let $i_5 \in \{1, ..., k\} \setminus \{i_1, i_2, i_3, i_4\}$, $Y_1 = (i_1, i_2, i_3, i_4, i_5)$, $Y_2 = (i_1, i_2)(i_3, i_4)$, and $Y_3 = (i_2, i_3)(i_1, k+1)$. Note that $\phi(Y_3) = Y_3$ by the result in the preceding paragraph. So, for j = 1, 2, 3, we have $\phi(Y_j) = Y_j$ and (12). By Lemma 2.4 (c.2) and (c.4), we have $\phi(X) = X$. Now, ϕ fixes $I_n, (i_1, i_2, i_3), (i_1, i_2, i_3, i_4, k+1), (i_1, i_2)(i_3, i_4)$. Using Assertion 2 with (1, 2, 3, 4, 5) replaced by $(i_1, i_2, i_3, i_4, k+1)$, we see that ϕ fixes all permutations in \mathbf{A}_n generated by elements of the form $(j_1, j_2)(j_3, j_4)$ with $j_1, j_2, j_3, j_4 \in \{i_1, i_2, i_3, i_4, k+1\}$.

Combining the above arguments, we see that the modified mapping ϕ fixes all the permutations in \mathbf{A}_n of the form $(i_1, i_2)(i_3, i_4)$ with $i_1, i_2, i_3, i_4 \in \{1, \dots, k+1\}$. The proof of Assertion 3 is complete.

Applying Assertion 3 repeatedly, we conclude that ϕ fixes every element in $\mathbf{U}_n = \mathbf{V}_n$. The conclusion of the theorem follows.

3 Appendix: Matlab Programs and Output

The following Matlab program provides the computational step in the proof of Proposition 2.1, namely, checking that $\mathbf{A}_n \cap \mathbf{U}_4$ contains 10 linearly independent elements. Since every matrix in $\mathbf{A}_n \cap \mathbf{U}_4$ is of the form $P \oplus I_{n-4}$ with $P \in \mathbf{A}_4$, it suffices to show that \mathbf{A}_4 has 10 linearly independent elements.

In the program, we first define the standard unit vectors of \mathbb{R}^4 in row vector form. Then we express the matrices in \mathbf{A}_4 in row vector form and store them in the matrix X. Finally, we apply the "rank" command to check the number of linearly independent row vectors of X. The output "ans = 10" indicates that there are 10 linearly independent elements in \mathbf{A}_4 , as we claimed.

```
e1= [1 0 0 0]; e2= [0 1 0 0]; e3= [0 0 1 0]; e4= [0 0 0 1]; 

X = [e1 e2 e3 e4; e2 e1 e4 e3; e3 e4 e1 e2; e4 e3 e2 e1; 

e2 e3 e1 e4; e2 e4 e3 e1; e3 e2 e4 e1; e1 e3 e4 e2; 

e3 e1 e2 e4; e4 e1 e3 e2; e4 e2 e1 e3; e1 e4 e2 e3]; 

z = rank(X)

ans =
```

The next Matlab program provides two computational steps in the proof of Theorem 1.4, namely,

- (i) for v(Y) defined in (11) for a 3-cycle $Y = (i_1, i_2, i_3) \in \mathbf{U}_5$, if Y_1 and Y_2 are two different 3-cycles in \mathbf{U}_5 then $v(Y_1) \neq v(Y_2)$,
- (ii) the elements in F defined in (9) and the 3-cycles in U₅ together contain 17 linearly independent matrices.

Since every matrix under consideration is of the form $X_0 \oplus I_{n-5}$, we only need to verify the statement for n = 5.

In the following program, we first define the standard unit vectors in \mathbb{R}^5 in row vector form. Then we express the eight matrices in \mathbf{F} defined in (9) in the proof of Theorem 1.4 as 1×25 row vectors, and store them as rows in the matrix X. Then we express the twenty 3-cycles in \mathbf{A}_5 as 1×25 row vectors, and store them as rows in the matrix Y.

We then compute the $Z = YX^t$. The *i*th row of this matrix will give

$$v(Y_i) = ((X_1, Y_i), \dots, (X_8, Y_i))$$

defined as in (11). Then we compare the rows of Z, and check that no two rows are the same, i.e., $v(Y_i) \neq v(Y_j)$ if $Y_i \neq Y_j$. The output "ans = 0 0" confirms this claim.

Also, we compute the rank of the matrix

$$\begin{bmatrix} X \\ Y \end{bmatrix}$$

and the output "ans = 17" confirms that the matrices in \mathbf{F} and the 3-cycles together generate a 17-dimensional subspace as asserted.

```
e1 = [1 0 0 0 0]; e2 = [0 1 0 0 0]; e3 = [0 0 1 0 0]; e4 = [0 0 0 1 0];
e5 = [0 \ 0 \ 0 \ 0 \ 1];
X = [e1 \ e2 \ e3 \ e4 \ e5; \ e2 \ e3 \ e4 \ e5; \ e2 \ e1 \ e4 \ e3 \ e5; \ e5 \ e3 \ e2 \ e4 \ e1;
     e2 e1 e3 e5 e4; e1 e3 e2 e5 e4; e5 e2 e4 e3 e1; e2 e3 e4 e5 e1];
Y = [e2 e3 e1 e4 e5; e2 e4 e3 e1 e5; e2 e5 e3 e4 e1; e3 e2 e4 e1 e5;
     e3 e2 e5 e4 e1; e4 e2 e3 e5 e1; e1 e3 e4 e2 e5; e1 e3 e5 e4 e2;
     e1 e4 e3 e5 e2; e1 e2 e4 e5 e3; e3 e1 e2 e4 e5; e4 e1 e3 e2 e5;
     e5 e1 e3 e4 e2; e4 e2 e1 e3 e5; e5 e2 e1 e4 e3; e5 e2 e3 e1 e4;
     e1 e4 e2 e3 e5; e1 e5 e2 e4 e3; e1 e5 e3 e2 e4; e1 e2 e5 e3 e4];
Z = Y * X';
z = [0 \ 0];
for r=1:19
  for s=r+1:20
      if Z(r,:) == Z(s,:),
                    z = [r,s];
            else
                    z = z;
            end
      end
   end
z
ans =
     0
            0
rank([X ; Y])
ans =
    17
```

Acknowledgment

We thank Professor Bit-Shun Tam for many helpful suggestions.

References

- [1] H. Auerbach, Sur les groupes bornés de substitutions linéaires, C.R. Acad. Sci. Paris 195 (1932), 1367–1369.
- [2] E. Deutsch and H. Schneider, Bounded groups and norm-hermitian matrices, *Linear Algebra Appl.* 9 (1974), 9–27.
- [3] C.K. Li, B.S. Tam and N.K. Tsing, Linear maps preserving permutation and stochastic matrices, *Linear Algebra Appl.*, to appear. Preprint available at http://www.math.wm.edu/~ckli/pub.html.