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Abstract

Let A, be the group of n X n even permutation matrices, and let V,, be the real linear
space spanned by A,. The purpose of this note is to characterize those linear operators ¢
on V,, satisfying ¢(A,) = A,,. This answers a question raised by Li, Tam and Tsing.
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1 Introduction

Let S,, (respectively A,,) be the group of n x n (respectively, even) permutation matrices, and
let V,, be the real linear space spanned by A,. The purpose of this note is to characterize
those linear operators ¢ on V,, satisfying ¢(A,) = A,. This answers an open problem in [3].

The problem for A, is trivial since A, is a singleton, and V3 is a one dimensional space.
The set Aj consists of 3 linearly independent matrices, and thus V3 is 3-dimensional and
Aj is a basis. A linear map ¢ on Vj satisfies ¢(As) = As if and only if it permutes the
elements in the basis Asj.

For n > 4, we have the following results.

Theorem 1.1 Suppose n > 4. Then V,, is the space of n X n real matrices with equal row
sums and columns sums.

Let U, be the space of n x n real matrices with equal row sums and columns sums. Then
span A,, C span S,, C U,,. By Theorem 1.1, we have U,, = span A,, = span S,, if n > 4, and
it is easy to see that span A, # span S, = U, for n € {2,3}. In [3, Section 2] the authors
used Birkhoftf Theorem to deduce that span S,, = U,, for any positive integer n.

Theorem 1.2 Consider the normal subgroup Hy = {P € Ay : P? = L} of A4, and the two
cosets Hy and Hy of Hy in Ay. If ¢ : V4 — Vg is a linear map such that (A4s) = Ay, then

QD(H]) = Hij fOT .7 =0,1,2, with {i07i17i2} = {07 172} (1)

Conversely, if ¢ is a permutation on Ay such that (1) holds for ¢ = 1, then b can be
extended uniquely to a linear map on V4.
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Theorem 1.3 Let n > 5. A linear map ¢ : V, — V,, satisfies p(A,) = A, if and only if
there exist P,Q) € S,, with PQ) € A,, such that ¢ is of the form

A PAQ  or  Aw PAWQ. (2)

It was proved in [3, Theorem 2.2] that linear operators on span S,, mapping S,, onto itself
have the form (2) for some P, @ € S,,. If one can show that for n > 5 every linear operator
¢ on V,, that satisfies ¢(A,) = A,, also satisfies ¢(S,,) = S,,, then Theorem 1.3 will follow.

However, there does not seem to be an easy proof of this.
For any linear operator ¢ on V,, satisfying ¢(A,) = A,,, we can replace it by the linear

operator ¢ of the form A — &(I,) " '@#(A). Then ¢ is unital, i.e., (I,) = I,, and satisfies
¥(A,) = A,. Using this observation, one easily sees that Theorem 1.3 is equivalent to the
following.

Theorem 1.4 Letn > 5. A linear map ¢ : 'V, — V,, satisfies ¢(1,) = I, and ¢(A,) = A,
iof and only of there exists P € S,, such that ¢ is of the form

A PAP! or Ars PA'P,

i.e., the restriction of ¢ on A, is a group automorphism or anti-automorphism.

2 Auxiliary Results and Proofs

Let {ey,...,e,} and {Eq1, Eqa, ..., Eun} be the standard bases for IR™ and the linear space
of n X n real matrices, respectively. We use the usual cycle notation to represent a per-
mutation matrix in S,,. For example, (i,7) € S, will represent the permutation ma-
trix P obtained from I, by interchanging the ith and jth rows. Every element P € S,
can be regarded as a bijection o : {1,...,n} — {1,...,n}, and vice versa; namely, the
matrix P = [es1)| - |€s(n)] € Sn corresponds to the bijection o. We will use both in-
terpretations in our discussion. For instance, if P € S,, corresponds to a permutation
o:{1,....,n} = {1,...,n}, and @ € S, corresponds to the k-cycle (i1,...,1), then PQP*
corresponds to the k-cycle (o(i1),...,0(ik)).
Denote by .J,, the n X n matrix with all entries equal to 1/n. For 1 < k < n, let

U ={Xo®yl—k: v € R, Xois k X k with all row and column sums equal to v}. (3)

Then U, is just the set of n x n real matrices with equal row sums and column sums defined
in the last section, and Theorem 1.1 asserts that U,, = V,,. Indeed, every n X n matrix A
with equal row sums and column sums v can be written as A = Ag+~I so that A4g = A—~1
has row sums and column sums zero. We have the following result, from which Theorem 1.1
readily follows.

Proposition 2.1 Letn > k > 4. Then Uy defined as in (3) is spanned by elements in A,
of the form.:
R = (il,ig)(’i3,i4) with i17i27i3,i4 € {1,,]6‘} (4)

(Note that R can only be I,,, a 3-cycle, or a product of two disjoint transpositions.)
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Proof. Since Uy, has a basis
B={L}U{E; —Ey} — Exj+En:1<14,5 <k—1},

it has dimension (k — 1)* + 1.
When n > k = 4, Uy has dimension 10, and every matrix in A,, N Uy is of the form (4)

with 11,19,143,24 € {1,2,3,4}. One can check that there are 10 linearly independent matrices
in A,, N Uy. This can also be done by a simple Matlab program as shown in the Appendix.

Suppose n > k > 5. It suffices to show that every element in B is a linear combination
of matrices in A,, of the form (4). Clearly, I, is of the form (4). For any 1 <14,j <k —1,

let F;; = Ei;j — Eix — Ex; + Exx, and let p,q,r, s be distinct elements of {1,...,%k} that
satisfy {7,7,k} C {p,q,r,s}. Suppose @ is a permutation mapping the indices p,q,r, s to
1,2,3,4. Then QF;;Q" € Uy, and we can apply the result on Uy to conclude that QF;;Q°

is a linear combination of matrices Ry,..., R, of the form (4) with 7y,12,13,74 € {1,2,3,4}.
Thus, F;; is a linear combination of the matrices Q'R1Q, ..., Q'R,,Q, all of the form (4)
with i1,142,13,24 € {p, q, 1, s}. O

We need the following lemma to prove Theorem 1.2.

Lemma 2.2 Let n > 3. Suppose ¢ is a linear map on V,, satisfying ¢(A,) = A,,. Then
QD(Jn) = Jn. (5)

Proof. Since Y.pea, P = n!J,,/2, we have

Gnl1) =62 3 P)=2 % ¢(P)=2 3 P=nlJ,

PeA, PeA, PeA,

The result follows. O

Proof of Theorem 1.2. Let Hy,H;, H; be defined as in the theorem. Clearly, Hy =
{I4,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}. We claim that:

T:{le---7X4}gA4

satisfies X; + -+ + Xy = 4.J4 if and only if T = H;, for some ¢ € {0,1,2}.

To prove this claim, let T be such a set. Then the matrices Y; = X! X for j € {1,...,4}
satisfy Y1 = I, and Y] + --- + Y, = 4J4; so, Y5, Y3, Y, all have zero diagonals, and thus
{Y1,...,Ya} = Hy. Hence, T = X Hj is a coset of Hy as asserted.

Suppose ¢ : V4 — V, satisfies ¢(A4) = ¢(Ay). Let Hy = {X1,..., X4}. By Lemma 2.2,
we have

ATy = ¢(4Js) = S(Xq + -+ Xy) = 6(Xq) + -+ + H(Xa).

It follows from our claim that ¢(Hy) = H;, for some 1o € {0,1,2}. Repeating the arguments
to H; and H, we see that ¢(H;) = H;, for j = 0, 1,2, where {i0,71,72} = {0,1,2}.
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Suppose ¢ permutes the elements in A, and satisfies ¢)(H;) = H;; for j = 0,1,2, where
{i0,11,72} = {0,1,2}. Take 3 elements from each of the set H; for ;7 = 0,1,2, to get 9
matrices Y7,..., Yy € A,. One can check, say, using Matlab, that {J4,Y7,...,Ys} is a basis
for V4. Define the linear map ¢ : V4 — Vy by ¢(Js) = Jy and ¢(Y;) = (Y;) for y =1,...,9.
Then ¢ is the unique linear operator on V4 such that ¢(X) = ¢(X) for all X € A,. O

The rest of this section is devoted to proving Theorem 1.4. We need some more notations

and lemmas. Let U,, be the set of n x n real matrices with row sums and column sums zero,
and let

A =A,—J,={P—1J,: PeA,}.

Then A, - U, isa group with I,, —.J,, as the identity, and P*—.J,, as the inverse of P —.J,, for
any P € A,,. Moreover, since U, CU, =V, forany X € U,, there is a linear combination
of P,..., P, € A,, such that Ele a;P; = X. Since X has zero row sums and column sums,
we see that Zle aj = 0, and thus X = Z§:1 a;(P; — J,). Hence we have U, = span A,
Suppose ¢ : V,, — V,, is a linear map that satisfies ¢(A,) = A,. Since ¢(.J,,) = J, by
Lemma 2.2, and (P — J,,) = ¢(P) — J, for any P € A,,, we have #(A,) C A, and hence
$(U,) C U,
The usual inner product

(X,Y) = tz(XV?)

on n X n real matrices induces inner products on the subspaces V, and U,. Let G be
the group of linear operators 1 on U, satisfying L/J(An) — A,. Since A, is a compact set

spanning U, we see that G is a compact group of nonsingular linear operators on U,,. By
a result of Auerbach [1] (see [2] for an elementary proof), there exists a positive definite

operator T on U, such that
TGT ' ={TyT " : v € G}

is a subgroup of O(\an) — the group of orthogonal operators on U,,. Denote by L* the adjoint
operator of L on U,, i.e., (L(X),Y)=(X,L*(Y)) for all X, Y € U,,. Then for any ¢ € G,
(TYT~Y)*(TT™') is the identity operator on U,. ie., Th) = ()17

Note that fJn and M,,_; are isomorphic algebras. To see this, consider an orthogonal
matrix P whose last row equals (1,...,1)/y/n. Then for every X € U,,, we have PXP! =

X3 [0] with Xe M,,_1, and the mapping X +— Xisan algebra isomorphism. It is well known

(and easy to check) that if S is a spanning set for the linear space M,_1, then the mappings
of the form X — PX@Q with P,() € § span the linear space of linear transformations from

M, _, to itself. An analogous result holds for U,. So, if H is the subgroup of G consisting
of operators of the form X — PXQ with P,Q € A,,, then H spans the space of all linear

operators on U, because span A,, = U,,. Furthermore, every element in H satisfies ¢* = 1!,



and hence T = T? for all ¢ € H. It follows that T? commutes with all operators on U,;

hence T? is a scalar operator. Since T' is a positive definite operator, T is a scalar operator
as well. Thus, we have TGT~! = G and so G is a subgroup of O(ﬁn), l.e., every element in

G preserves the inner product on U,,.

Consider any linear map ¢ : V,, — V,, that satisfies ¢(A,) = A,. Suppose é is the
restriction of ¢ on U, (to fjn) For any R, S € V,, with row sums r and s, respectively, we
can write R = Rg + rJ, and S = Sy + s.J,, with Ry, Sy € fjn By what we have just shown,

& preserves the inner product on U,. And since &(Jn) = Jn, we have

(R,S) = (Ro+rJa,So+ sJn)
Ry, So) + rs
5(Ro), ¢(S0)) + rs
H(Ro) + rJn, (So) + s.J,)
d(Ro) +1J5), 5(S0) + sJn)
O(Ro +1Jn), (S0 + sJn))
(

¢(R), 4(5)).

Summarizing, we have the following lemma.

(
(
(¢
= (¢
(
(
(

Lemma 2.3 Suppose n >4, and ¢ is a linear operator on V,, satisfying $(A,) = A,,. Then

(¢(R),d(S)) = (R, S) for any R,S € V,,. (6)

Lemma 2.4 Suppose n > 4.
(a) For any S € A,,, (I,,S) is just the number of nonzero diagonal entries of S.
(b) For any R,S € A,,, (R,S) = (I, R'S).

(c¢) For any two different R, S € A,,, we have (R,S) < n — 3, where the equality holds if
and only if R'S is a 3-cycle. Moreover,

(c.1) a 3-cycle (i1,12,13) and a 5-cycle (j1,...,75) have inner product n — 3 if and only
if (11,12,13) is one of the following:

(j17j27j3)7 (.j27.j37.j4)7 (.j37.j47.j5)7 (j47.j57.j1)7 (.j57j17.j2);

(c.2) a d-cycle (j1,...,J5) and a product of two disjoint transpositions (i1,i2)(i3,14)

have inner product n — 3 if and only if (i1,12)(i5,14) s one of the following:

(jlij)(j37j4)7 (j1,j2)(j4,j5)7 (j27j3)(j47j5)7 (j27j3)(j57j1)7 (j37j4)(j57j1);



(c.3) a 3-cycle (ky, ks, ks) and a product of two disjoint transpositions (i1,12)(i3,%4) have
inner product n — 3 if and only if ky, ko, ks € {i1,12,13,14};

(c.4) two 5-cycles (i1,...,i5) and (j1,...,J5), with {i1,...,i5} # {J1,...,Js}, have in-
ner product n — 3 if and only if there exists k ¢ {i1,...,15} such that (j1,...,J5)
1s one of the following:

(11,72,13,14, k), (t2,03,04,05, k), (i3,04,05,01,Kk), (ia,05,01,00,k), (i5,%1,02,03,k).

(d) Two matrices R, S € A,, satisfy (R,S) =n —4 if and only of R'S is the product of 2

disjoint transpositions.
(e) Two matrices R, S € A,, satisfy (R,S) =n —5 if and only if R'S is a 5-cycle.

Proof. Let R,S € A,,. Then computing (R, S) is the same as counting the number of
overlapping nonzero positions of the two matrices. Also, it is clear that

(R, S) = tr(RS") = (I, R'S).

With these two observations, one immediately get (a), (b), (c), (d), (e).

Suppose we have a 3-cycle (i1,72,13) and a 5-cycle (j1,...,75) in A,,. Then the two
matrices can overlap at no more than n — 5 diagonal positions (limited by (j1,...,7s)),
and no more than 2 off-diagonal positions (limited by the number of off-diagonal entries of
(i1,12,13) that can appear in (j1,...,75)). If the two matrices have inner product n — 3, then
both of these upper bounds are attained. So, {u1,172,73} C {J1,...,J5}, and two off-diagonal
entries of (i1, 12,43) must appear in (ji,...,Js5). We get (c.1).

The proofs of (c.2) and (c.3) are similar to that of (c.1). To prove (c.4) let (iy,...,15)

and (j1,...,75) be two 5-cycles in A, such that {i1,...,i5} # {J1,...,75}. Then the two
matrices can overlap at no more than n — 6 diagonal positions, and no more than 3 off-
diagonal positions. If the two matrices have inner product n — 3, then both of these upper
bounds are attained. Using the fact that the two matrices overlap at 3 off-diagonal positions,
one readily gets the conclusion. O

Proof of Theorem 1.4. The sufficiency part is clear. We consider the necessity part. We
need only to show that ¢ can be converted to the identity mapping on V,, by the composite
of a sequence of mappings of the form

X — Pp(X)P? or X +— Pp(X) P! for some P € S,,. (7)

First, we prove the following.

Assertion 1. Replacing ¢ by the composite of a sequence of mappings of the form (7), we
can assume that ¢ fizes I,,(1,2,3,4,5),(1,2,3), and (1,2)(3,4).

Proof of Assertion 1. Since ¢(I,,) = I,, and (6) is satisfied, it follows from Lemma 2.4 (¢)
and (e) that ¢ will map 3-cycles to 3-cycles and map 5-cycles to 5-cycles. In particular, we
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have ¢((1,2,3,4,5)) = (i1,...,15). We may assume that ¢ fixes (1,2,3,4,5); otherwise, let
P be a permutation sending 71, ...,75 to 1,...,5, respectively, and replace ¢ by the mapping
A Po(A)P.

Let X =(1,2,3). Then ¢(X) is a 3-cycle. Since ¢ preserves the inner product and fixes
(1,2,3,4,5), we have

(6(X),(1,2,3,4,5)) = (6(X), 8((1,2,3,4,5))) = (X,(1,2,3,4,5)) =n — 3.
By Lemma 2.4 (c.1),
o(X) €{(1,2,3),(2,3,4),(3,4,5),(4,5,1),(5,1,2)}.

We may assume that ¢(X) = (1,2,3). Otherwise, replace ¢ by the mapping A — P¢(A)P?
with

P =(1,2,3,4,5)"(1,2,3,4,57,(1,2,3,4,5)%, or (1,2,3,4,5),
depending on ¢(X) = (2,3,4),(3,4,5),(4,5,1), or (5,1,2), respectively. The resulting map
will fix I,,,(1,2,3,4,5), and (1,2, 3).

Let T be the set of products of two disjoint transpositions R = (7, j)(k,!) € A,, such that
(R,(1,2,3,4,5)) = n — 3. By Lemma 2.4 (c.2),

T = {(1,2)(3,4),(1,2)(4,5), (2,3)(4,5), (2,3)(5,1), (3,4) (5, 1)} (8)

Let X = (1,2)(3,4). By Lemma 2.4 (d) and the facts that ¢ fixes I, and preserves the
inner product, we see that ¢(X) is a product of two disjoint transpositions. Since ¢ fixes

(1,2,3,4,5) and preserves the inner product, we have
(¢(X),(1,2,3,4,5)) = (X,(1,2,3,4,5)) = n — 3,

and thus ¢(X) € T by the definition of T. Now, since ¢ fixes (1,2,3) and preserves the

inner product, we have
(¢(X),(1,2,3)) =(X,(1,2,3)) =n —3.

By Lemma 2.4 (¢.3) and the fact that ¢(X) € T, we have ¢(X) € {(1,2)(3,4),(2,3)(1,5)}.
We may assume that ¢(X) = (1,2)(3,4). Otherwise, let P = (1,3)(4,5) and replace ¢ by
the mapping A — P@(A)'P!. Then the resulting map will fix I,,,(1,2,3,4,5),(1,2,3), and
(1,2)(3,4). The proof of Assertion 1 is complete.

Next, we prove an assertion, which will be used repeatedly in the future with {1,2,3.4,5}
replaced by suitable {kq, ko, k3, kg, ks}.

Assertion 2. If ¢ fizes I,,(1,2,3),(1,2,3,4,5), and (1,2)(3,4), then ¢ fizes the matrices
in Us defined as in (3).



Proof of Assertion 2. By the argument given in the proof of Assertion 1, we have ¢(T) =

T, where T is defined as in (8). Moreover, T may be partitioned into subsets
T, ={(1,2)(3,4),(2,3)(1,5)}, T2 ={(1,2)(4,5),(2,3)(4,5)}, and T3 = {(3,4)(1,5)},

where the elements of T; have inner product n — 2 — ¢ with (1,2,3). Since ¢ fixes (1,2, 3)
and preserves the inner product, ¢(T;) = T, for i = 1,2,3. So, ¢ fixes (3,4)(1,5). Since
¢ already fixes (1,2)(3,4), ¢ must fix (2,3)(1,5). Finally, since the members of Ty have
different inner products with (1,2)(3,4), ¢ must fix (1,2)(4,5) and (2,3)(4,5). Thus, ¢ fixes
each element of

F={I,(1,2,3,4,5),(1,2,3)} UT. (9)

Next, consider any 3-cycle
R = (i17i27i3) with il,iz,ig S {1,2,3,4,5}. (10)

By Lemma 2.4 (c.3), R has inner product n — 3 with at least one member of T. Let
d(R) = (k1,ke,ks). Since ¢ fixes each member of T and preserves the inner product, it
follows that (kq, k2, ks) has inner product n — 3 with at least one member of T, say, with

S = (j1,72)(Js3, ja). Since (¢(R),S) = n — 3, it follows from Lemma 2.4 (c.3) that
{kla k27 kS} g {j17j27j37j4} g {17 27 37475}

In other words, ¢ maps any 3-cycle (i1,12,13) satisfying (10) to another 3-cycle satisfying
(10). Let X;,..., X3 be the elements in F. For each 3-cycle Y satisfying (10), let

o(Y) = (Y, X1),..., (Y, X)) (11)

One can check that if ) and Y, are different 3-cycles satisfying (10), then v(Y;) # v(Y2).
(See the Matlab program and output in the Appendix.) Since ¢ preserves the inner product
and fixes each element in F, we conclude that ¢ fixes each 3-cycle satisfying (10).

One can check (see the Matlab program at the Appendix) that elements in F together

with the 3-cycles satisfying (10) generate a 17-dimensional subspace, which is the dimension
of Us. Thus, ¢ fixes the elements in a generating set of Us, and hence it fixes every matrix
in Us. The proof of Assertion 2 is complete.

If n = 5, then Us = V,, and we are done. Suppose n > 5. We prove the following
assertion.

Assertion 3. Suppose b < k < n, and suppose ¢ fizes all the matrices in Uy defined as in
(3). Then one can replace ¢ by a mapping of the form (7) so that the resulting map will fix
all matrices in Upgyq.

Proof of Assertion 3. By Proposition 2.1, it suffices to show that ¢ can be modified
so that the resulting map will fix all permutations in A, of the form (i1,19)(73,74) with

i1,02,03,04 € {1,...,k+1}. Let X = (1,2,3,4,k 4+ 1). Then ¢(X) is a 5-cycle by Lemma
2.4 (e). Since ¢ fixes (1,2,3,4,5) and preserves the inner product, we have

($(X),(1,2,3,4,5)) = (X,(1,2,3,4,5)) = n — 3.
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By Lemma 2.4 (c.4), ¢(X) equals one of the following:
(17 27 37 47j)7 (27 37 47 57j)7 (37 47 57 17j)7 (47 57 17 27j)7 (57 17 27 37])

for some 5 > k. We may assume that ; = k& + 1; otherwise, let P be the transposition
(j,k + 1) and replace ¢ by the mapping A — P@(A)P!. We are going to show that this
modified mapping ¢ fixes all matrices in Ugy. Since ¢ also fixes (1,2)(3,4), we have

(¢(X)7 (172)(374)) = (Xv (172)(374)) =n—3.
By Lemma 2.4 (c.2), it follows that ¢(1,2,3,4,k+ 1) = (1,2,3,4,k 4+ 1). Now, ¢ fixes
I, (1,2,3), (1,2,3,4,k+1), and (1,2)(3,4).

Using Assertion 2 with 5 replaced by k + 1, we see that ¢ fixes all permutations in A,
generated by elements of the form (j1, 72)(J3, 74) with j1, 72,73, Ja € {1,2,3,4,k + 1}.

Next, we consider a 5-cycle X = (1,1y,12,13, k+ 1) with 41,149,135 € {2,...,k}. Then ¢(X)
is a 5-cycle. Let 1y € {2,...,k}\ {i1,02,03}, Y1 = (1,01,192,13,14), and Yy = (1,41)(v2,13).
Then for j = 1,2, we have ¢(Y;) = Y; and

(6(X), ;) = (6(X), ¢(Y;)) = (X, ¥j) = n = 3. (12)

By Lemma 2.4 (c.2) and (c.4), we have ¢(X) = (1,11,19,13,7) for some 5 > k+1. If j > k+1,
then every common nonzero (diagonal, or off-diagonal) position of (1,2,3,4,k + 1) and
(1,41,19,15,7) is also a common nonzero position of (1,2,3,4,k+1) and (1,41, 42,73, k+1). But
(1,2,3,4,k+1) and (1,1, 12,13, k+1) have common nonzero positions that are not shared by
(1,2,3,4,k+1) and (1,41, 9,13, 7); namely, at the (1,k+1) and (7, j) positions (and also at the
(k+1,4) position if 15 = 4). Hence, if Y3 = (1,2,3,4,k+1), then (X, Y5) — (¢(X), o(Y3)) = 2
or 3, which is a contradiction. Thus, we must have j = £+ 1 and ¢(X) = X. So, ¢ fixes
L, (1,04,02), (1,41, 12,13, k+1), and (1,41)(s2,73). Using Assertion 2 with (1,2, 3,4, 5) replaced
by (1,i1,19,23,k + 1), we see that ¢ fixes all permutations in A,, generated by elements of
the form (j1, j2)(Js, ja) wWith ji, ja, js, ja € {1,i1,70, 43,k + 1}.

Suppose X = (i1,12,13,74,k + 1) is a 5-cycle such that ¢; € {1,...,k} for j = 1,...,4,
and iy £ 1. Let i € {1,...,k}\ {iv,izsinyia}, Yi = (i1yi0, i, ia,05), Yo = (i1,72) (s i),
and Ys = (i2,13)(¢1,k + 1). Note that ¢(Y5) = Y5 by the result in the preceding paragraph.
So, for j = 1,2,3, we have ¢(Y;) = Y, and (12). By Lemma 2.4 (c.2) and (c.4), we have
#(X) = X. Now, ¢ fixes I, (11,19,13), (21,09, 03,22,k + 1), (21,72)(i3,24). Using Assertion 2
with (1,2,3,4,5) replaced by (i1,12,13,74,k + 1), we see that ¢ fixes all permutations in A,
generated by elements of the form (51, 72)(J3, 74) With j1, 72, js, ja € {t1,72,73, 74,k + 1}.

Combining the above arguments, we see that the modified mapping ¢ fixes all the per-
mutations in A, of the form (iy,12)(is,74) with i1,19,25,74 € {1,...,k + 1}. The proof of
Assertion 3 is complete.

Applying Assertion 3 repeatedly, we conclude that ¢ fixes every element in U,, = V,,.
The conclusion of the theorem follows. O



3 Appendix: Matlab Programs and Output

The following Matlab program provides the computational step in the proof of Proposition
2.1, namely, checking that A, N U, contains 10 linearly independent elements. Since every
matrix in A, N Uy is of the form P & I,,_4 with P € Ay, it suffices to show that A, has 10
linearly independent elements.

In the program, we first define the standard unit vectors of IR* in row vector form. Then
we express the matrices in A in row vector form and store them in the matrix X. Finally,
we apply the “rank” command to check the number of linearly independent row vectors of
X. The output “ans = 107 indicates that there are 10 linearly independent elements in A,
as we claimed.

el=[1000]; e2= [0 1 0 0]; e3= [0 0 1 0]; e4= [0 0 O 1];
X = [el e2 €3 e4; e2 el e4 e3; e3 ed el e2; e4d e3 e2 el;
e2 e3 el e4; e2 ed e3 el; e3 e2 e4d el; el e3 e4 e2;
e3 el e2 ed; ed el e3 e2; e4 e2 el e3; el ed e2 e3];
z = rank(X)
ans =
10

The next Matlab program provides two computational steps in the proof of Theorem 1.4,
namely,

(i) for v(Y) defined in (11) for a 3-cycle Y = (i1,19,13) € Us, if ¥} and Y, are two different
3-cycles in Us then v(Y7) # v(Y3),

(ii) the elements in F defined in (9) and the 3-cycles in Us together contain 17 linearly
independent matrices.

Since every matrix under consideration is of the form Xy & I,,_5, we only need to verify the
statement for n = 5.

In the following program, we first define the standard unit vectors in IR’ in row vector
form. Then we express the eight matrices in F defined in (9) in the proof of Theorem 1.4
as 1 x 25 row vectors, and store them as rows in the matrix X. Then we express the twenty
3-cycles in A5 as 1 X 25 row vectors, and store them as rows in the matrix Y.

We then compute the Z = Y X*. The ith row of this matrix will give

U(Y;) = ((Xh Y;)v SRR (X87 Y;))

defined as in (11). Then we compare the rows of Z, and check that no two rows are the
same, i.e., v(Y;) # v(Y;) if V; # Y;. The output “ans = 0 0 ” confirms this claim.

Also, we compute the rank of the matrix
V)
Y
and the output “ans = 17” confirms that the matrices in F and the 3-cycles together generate
a 17-dimensional subspace as asserted.
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el [10000]; e2=[01000]; e3=[00100]; e4=1000010];
eb [0000O0 1];
X = [el €2 e3 e4 e5; e2 e3 el e4 e5; e2 el e4 e3 e5; e5 e3 e2 e4 el;
e2 el e3 eb e4; el e3 e2 e5 ed; e5 e2 e4 e3 el; e2 e3 e4d e5 el];
Y = [e2 e3 el e4 e5; e2 e4 e3 el e5; e2 e5 e3 e4 el; e3 e2 ed el eb;
e3 e2 eb e4d el; ed e2 e3 eb el; el e3 e4d e2 eb; el e3 eb e4 e2;
el ed4 e3 eb e2; el e2 ed eb e3; e3 el e2 ed eb; ed el e3 e2 eb;
eb el e3 e4 e2; ed e2 el e3 eb; e5 e2 el ed e3; eb e2 e3 el e4;
el ed e2 e3 e5; el e5 e2 e4 e3; el eb e3 e2 e4; el e2 e5 e3 e4d];

Z = Y*X’;
z = [0 0];
for r=1:19
for s=r+1:20
if Z(r,:) == Z(s,:),
z = [r,s];
else
z = z;
end
end
end
z
ans =
0 0
rank([X ; Y])
ans =
17
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