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1 Introduction

The study of linear algebra has become more and more popular in the last few decades.
People are attracted to this subject because of its beauty and its connections with many
other pure and applied areas. In theoretical development of the subject as well as in many
applications, one often needs to measure the “length” of vectors. For this purpose, norm
functions are considered on a vector space. In this expository article, we explain why one
would want to study different kinds of norms on a real vector space. We then focus on
the problem of how to identify different norms using linear isomorphisms with particular
attention to a group theory method used by several authors recently.

One may view the first half of this article as a gentle introduction to the theory of norms
and the second half as an illustration of how group theory can be applied to questions in
linear algebra.

2 What are norms and why study them?

A norm on a real vector space V' is a function || - || : V — IR satisfying:
||u|| > 0 for any nonzero u € V, (positive)
|rul| = |r|||u|| for any » € R and u € V, (homogeneous)
lu+ v < |Jul| + ||v|| for any u,v € V. (triangle inequality)

The homogeneous condition ensures that the norm of the zero vector in V' is 0; this condition
is often included in the definition of a norm.

Common examples of norms on IR" are the ¢, norms, where 1 < p < oo, defined by

=1
ly(x) = max. |z, if  p=o0,
for any « = (z1,...,2,)" € IR". Note that if one defines an ¢, function on IR" as in (1) with

0 < p < 1, then it does not satisfy the triangle inequality, and hence is not a norm.

Other examples of norms on IR" are the c-norms defined by
|z|l = max{z'Pc: P € GP(n)},

in which ¢ € IR" is nonzero and G P(n) denotes the set of all generalized permutation matrices
(also known as signed permutation matrices or monomial matrices), the matrices with exactly
one nonzero entry equal to +1 in each row and column.



Norms can be regarded as generalizations of the absolute value function of numbers.
Actually, one easily verifies:

Fact 1 Consider IR as a real vector space. The absolute value function on IR is a norm, and
every norm on IR is a positive scalar multiple of the absolute value.

With the absolute value function on IR, one can compare the magnitudes of numbers,
discuss the convergence of sequences, study limits and continuity of functions, and consider
approximation problems such as finding the nearest integer or prime to a given real number.
The same is true for a norm on a vector space. Given a norm on a real vector space V', one
can compare the norms of vectors, discuss convergence of sequences of vectors, study limits
and continuity of transformations, and consider approximation problems such as finding the
nearest element in a subset or a subspace of V to a given vector. These problems arise
naturally in analysis, Lie theory, numerical analysis, differential equations, Markov chains,
econometrics, population models in biology or sociology, equilibrium states in physics and
chemistry; see [1], [9], [10], [18] and their references.

As pointed out in Fact 1, there is only one norm on IR up to positive scalar multiples.
In general, one may have a much wider variety of norms on a vector space. For example, we
have the ¢, norms on IR", which are not scalar multiples of each other when n > 2. Actually,
it is not hard to verify:

Fact 2 All norms on a vector space V are positive scalar multiples of a single given norm if
and only if V' is one dimensional.

3 Why study different norms?

Different norms on a vector space can give rise to different geometrical and analytical struc-
tures. In an infinite dimensional vector space, the convergence of a sequence can vary,
depending on the choice of norm. This phenomenon leads to many interesting questions and
research in analysis and functional analysis; see [16] and [17].

In a finite dimensional vector space V, all norms are equivalent in the following sense:
for any norms || - [|; and || - ||2 on V, there are positive constants a and b such that

allvli < fjv|lz < blv||;  for all v € V.

(A fancy description is that there is only one norm topology on a finite dimensional vector
space.) Consequently, the convergence of a sequence of vectors in a finite dimensional vector
space is independent of the choice of norm. Nevertheless, there are reasons to consider
different norms.

First, for a given sequence it may be easier to prove convergence with respect to one
norm rather than another. In applications such as numerical analysis, one would like to
use a norm that can determine convergence efficiently. Therefore, it is a good idea to have
knowledge of different norms.

Second, sometimes a specific norm may be needed to deal with a certain problem. For
instance, if one travels in Manhattan and wants to measure the distance from a location
marked as the origin (0,0) to a destination marked as (z,y) on the map, one may use the
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{5 norm of (x,y), which measures the straight line distance between the two points, or one
may need to use the ¢; norm of v, which measures the distance for a taxi cab to drive from
(0,0) to (x,y). The ¢; norm is sometimes referred to as the tazi cab norm for this reason.
In approximation theory, solutions of a problem can vary with different norms. For
example, if W is a subspace of R" and v ¢ W, then for 1 < p < oo there is a unique vy € W
such that
|l — ol < |lv—ull for all u € W,

but the uniqueness condition may fail if p = 1 or co. To see a concrete example, let v = (1,0)
and W ={(0,y) : y € IR}. Then for all y € [-1,1] we have 1 = |jv—(0,y)|| < ||lv—w|| for all
w € W. For some problems, having a unique approximation is good, but for others it may
be better to have many so that one of them can be chosen to satisfy additional conditions.

4 Identify two norms

While we emphasis the importance of studying different norms, one should avoid wasting
effort in studying two norms || - [[; and || - ||z on V' that are essentially the same in the sense
that there is a linear bijection L : V — V satisfying

| L(v)||2 = [|v]]1 forallveV. (2)
More generally, one can identify two normed vector spaces (V4, | - ||1) and (Va, || - ||2) if there
is a linear bijection L : Vj; — V4 so that (2) holds for all v € V;. We call such an L an
isometric isomorphism between (V4, || - ||1) and (Va, || - ||2).- Vi =Voand || - |1 = || - [|2, we
say that such an L is an isometry for || - [|; on Vj.

Studying bijections that preserve the basic structure of a mathematical system always
leads to better understanding of the system. This is a reason why one would study linear
isomorphisms between vector spaces, homeomorphisms between topological spaces, and so
forth. We illustrate this general comment in the context of normed vector spaces in the
following.

Since the 5 norm has a lot of symmetries, there are a lot of isometries, namely, all the
orthogonal matrices, for it. If p # 2, there are not so many symmetries for the ¢, norm and
only generalized permutation matrices can be isometries for it. For simple proofs of these
facts, see [4], [12], [15].

Many techniques have been developed to characterize isometries for a given norm. These
methods often involve knowledge from other areas [7]. In the forthcoming sections, we discuss
a group theory method, which was not mentioned in [7], and some related results.

5 Study isometries using group theory

A basic result on isometries asserts that the collection of isometries for a given norm is a
group, a subgroup of the group of invertible operators under composition of functions. To
verify this, it suffices to check that the identity map is always an isometry, and if L; and Lo

are isometries of a norm then so is L;*Lo.



Certainly, knowing the isometries gives complete information about the isometry group.
For example, by the previous discussion we see that the group O(n) of orthogonal matrices
is the isometry group of the ¢; norm, and if p # 2 then the group GP(n) of generalized
permutation matrices is the isometry group of the ¢, norm.

In the following, we show that sometimes it is easy to characterize the isometry group
directly; the result can then be used to determine the structure of isometries. This, in a
certain sense, illustrates a principle of Polya [14]: If you wish to prove a theorem, it is
sometimes easier to prove a harder theorem (that covers the original theorem as a special
case)!

Using the group theory approach, one may borrow mathematical tools from other subjects
such as the theory of Lie groups and algebraic groups. Moreover, getting complete informa-
tion about isometry groups may help solve other problems involving the given norms; see
5], 8], [13]. We describe some results in the following to illustrate our point.

A symmetric norm (also known as a symmetric gauge function) is a norm on IR" such
that
|Px|| = ||z|]] for all P € GP(n) and all z € IR".

Evidently, £, norms and c-norms are symmetric norms. Suppose one focuses on the isometry
group G of a symmetric norm. It is easy to see that G must be closed and bounded, i.e.,
compact, in R™", and it contains GP(n) as a subgroup. This leads naturally to the question

of determining the compact groups of n X n real matrices that contains GP(n). To this end
we have

Theorem 1 A compact group of matrices in IR"*" that contains GP(n) must be one of the
following:

(a) O(n),
P(n),

(b) G
(c) if n =2, the dihedral group Dgy with 8k elements for some integer k > 1, or
)

(d) if n =4, a group generated by GP(4) and one of the following matrices

1 1 1 1 1 1 0 0
11 1 -1 =1 111 -1 0 0

A_§ 1 -1 1 =1}’ B_ﬁ 0 0 1 1 (3)
1 -1 -1 1 0 0 1 -1

Consequently, one sees that the isometry group of a symmetric norm must be one of the
groups described in Theorem 1. Of course, only a multiple of the 5 norm can have O(n)
as the isometry group. For other symmetric norms, the isometry group must be GP(n)
unless n = 2 or 4. In these exceptional cases, one can decide easily which one should be the
isometry group for a given symmetric norm.

It is worth mentioning that Theorem 1 can be deduced from the theory of reflection
groups and Lie groups ([2], [3]), but it can also be proved by elementary methods [6].
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6 Isometric isomorphisms

Knowledge of isometry groups can help us determine efficiently the isometric isomorphisms
relating two normed spaces. For such problems, the following observation is useful.

Observation A Suppose G; is the isometry group of || - ||; on V; for j = 1,2. If L : V} — V4
is an isometric isomorphism, then L='GyL = G.

If (Vi, |- |l1) and (Va, || - ||2) are isometrically isomorphic, there is no loss of generality to
assume that V; = V5. Theorem 1 gives complete information about the possible isometry
groups for symmetric norms on IR". In particular, the several types of groups identified in
Theorem 1 have different cardinality. Thus, if G; and G5 are isometry groups of symmetric

norms on IR™ and there exists an invertible operator L such that L='GsL = Gy, then G,
and G; must be the same. Hence, the problem reduces to studying the existence and the
structure of an L such that L~'G'L = G for those groups G in Theorem 1. Recall that if G,
is a subgroup of Gs, then the normalizer of G in G4 is the collection of elements g € Go
such that ¢~'G1g = G;. Hence, our problem is to find the normalizer of G in the group of
invertible operators on IR™*". With some effort, one can prove the following.

Theorem 2 Let || - ||; and || - ||o be symmetric norms on IR". Then L is an isometric
isomorphism between (IR", || - ||1) and (IR",|| - ||2) if and only if there is a v > 0 such that
one of the following holds:

(a) Gy = Gy, ||z]ly = 7||x||2 for all x € R", and y~'L € G;.

(b) n =4, Gy = Gy = (GP(4), A), the group generated by GP(4) and A, ||z||y = 7v||z]|2
for all x € R, and v~'L € (GP(4), B) \ (GP(4), A), where A and B are the matrices
in (3).

(C) n = 2, G1 = G2 = ng, HZ’H = ’7||RIH for some R € Dlﬁk\ng, and ’y_lL S Dlﬁk\DSk.

Theorem 2 illustrates how difficult it is for IR" with two different symmetric norms to be
isometrically isomorphic.

7 Identify a norm with its dual

Suppose V is a real inner product space with inner product (-,-), and suppose || - || is a given
norm on V', which need not be the norm derived from the inner product [9, p. 262]. The
dual norm || - ||P of || - || is defined by

l]|” = max{|(z, )] - lyll < 1}.

For example, with the usual Euclidean inner product (z,y) = y'z on IR", the ¢; and /(.
norms are dual to each other, and for 1 < p < oo the dual norm of ¢, is the ¢, norm,

where p~t + ¢! = 1. Clearly, the {5 norm is self-dual. More generally, it is known that



|z|| = y|lz||” if and only if ||z]| = /7¢2(x) [9, Theorem 5.4.16]. Again, knowledge of the
isometry group of a norm is useful in studying the isometric isomorphisms between the norm
and its dual norm.

Given a linear operator L on the real inner product space V', the dual transformation
L* is the unique linear operator on V satistying (z, L*(y)) = (L(x),y) for all z,y € V. If

V = IR" is equipped with the usual inner product, then the dual transformation of A € IR"*"
is just A, the transpose of A. We have the following observation.

Observation B Suppose G is the isometry group of the norm || - || on the inner product
space V.

(a) The isometry group G* of || - ||” is {L* : L € G}.
(b) If L is an isometric isomorphism between (V, || - ||) and (V, | - ||”), then L7'G*L = G.

Theorem 1 ensures that the isometry group G of a symmetric norm on IR" always satisfies
G* = G. Thus, checking condition (b) in Observation B again reduces to studying an

invertible operator L such that L='GL = G. One has the following result.
Theorem 3 Let ||-|| be a symmetric norm on IR"™. Then (IR", ||-||) is isometrically isomorphic

to (R™, || - ||P) if and only if there exists a v > 0 such that one of the following holds:
(a) ||z|| = vl2(x) for all x € IR".

(b) n = 4, the isometry group of the norm is (G, A), and the norm satisfies ||x|| = v||Bx||”
for all x € R*, where A and B are the matrices in (3).

(¢) n = 2, the isometry group of the norm is Dgy, and there exists R € Dig, \ Dgg such
that ||z|| = v||Rx| for all z € IR?.

8 Retain desired norm properties

Given a norm || - || and an invertible linear operator S on V', a standard technique to obtain
a new norm is to define

|z||s = ||S(z)|| forallzeV.

If the norm || - || has some nice properties, one would like to see that || - ||g retains them.

In particular, if one views S(z) as a change of basis operation, then one would like the nice
norm properties to be preserved by the change of basis.

One way to impose nice properties on a norm is to require it be H-invariant for a certain
(compact) group H of linear operators on V' [11], i.e.,

|L(z)|| = ||z|| forall L € Hand all z € V.

One would like to characterize those S such that || - ||s is also an H—invariant norm. We
have the following observation.

Observation C Suppose G is the isometry group of an H-invariant norm || - || on V. Then
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(a) STIGS is the isometry group of || - || s,
(b) || - || is H-invariant if and only if H < ST'GS, and

(c) if S satisfies ST'GS = G or ST'HS = H, then || - ||s is H—invariant.

Clearly, symmetric norms are H—invariant norms with H = GP(n). Using Observation
C, one has:

Theorem 4 Let || - || be a symmetric norm on IR", and let S be an invertible operator on

IR". The norm | - ||s is a symmetric norm if and only if there exists a v > 0 such that one
of the following holds:

(a) vS € G,

(b) n=4, G =(GP(4),A), and vS = PBQ for some P,) € GP(4), where A and B are
the matrices in (3), or

(¢c) n=2, G = Dg; and vS € Dig \ Dss.

9 Conclusion

We have illustrated the importance of studying different norms on a vector space and have
shown how studying the isometry group can help deduce information on isometries for a
norm. In many situations, this approach is efficient and allows one to use mathematical
tools from other areas. Moreover, using knowledge of isometry groups and some general
observations, one can solve several other problems effectively. Related results can be found
in [5], [8], [11], [12], [13]. There is much potential for further development and applications
of the group theory approach.
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