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Abstract

We prove inequalities on singular values for 2 X 2 block triangular matrices. Us-
ing the results, we answer the three questions of Ando on Bloomfield-Watson type
inequalities on eigenvalues and generalize the Kantorovich inequality.
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1 Introduction

Let X be a p x ¢ matrix and let & = min{p, q}. Denote by s(X) = (s1(X),...,sk(X))
the vector of decreasingly ordered singular values of X, i.e., s1(X) > -+ > s4(X) are the
nonnegative square roots of the k largest eigenvalues of X X*. For an n x n Hermitian matrix
X let M(X) = (M(X),..., (X)) denote the vector of decreasingly ordered eigenvalues.
Given two real vectors x = (xy,...,2x) and y = (y1,...,yk), we say that = is weakly
majorized by y, denoted by = <, y if the sum of the m largest entries of = i1s not larger than
that of y for m = 1,..., k; for general background of the theory on majorization see [6]. The
algebra of n X n complex matrices will be denoted by M,.

In this note, we prove inequalities on singular values for 2 x 2 block triangular matrices.
Using the results, we answer Ando’s questions on Bloomfield-Watson type inequalities on
eigenvalues, and generalize the Kantorovich inequality and some results of Demmel.
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2 Main Theorem
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Our proof of (1) relies on an elegant result of Thompson and Therianos [8]:
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be an n x n Hermitian matrix with X being g x ¢. Then for any indices 1 < 1y <
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Proof. Let S have singular values sy > --- > s;. Note that the matrix A= (
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where Z = 0,, and X € M,, has the n eigenvalues sy, ..
result of Thompson and Therianos, we have
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) € M, be a block triangular matriz with singular
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Multiplying both sides by —1, we get (1).
If A is invertible, then

A R7! 0
A= (Ip D _In—p)A_l(Ip D _In—p) = ( )

T-'SR™' 1!

has singular values a;;!,...,a;'. Applying the inequalities (1) to A, we get (2).

Next, note that
~ I, 0
Ad = (25R_1 In_p> ’

Suppose U and V are unitary matrices such that U*SR™'V has r; as the (j,7) entry for
J = 1,...,k, and all other entries zero, where s(SR™') = (ry,...,r;). Then AA has the

same singular values as the matrix

‘i - I, 0
(Ve Uy AAV e U) = <2U*SR—1V Iﬂ_p),

which is permutationally similar to a direct sum of I,,_5; and 2 X 2 matrices of the form

1 0 .
(273 1), j=1,... k. (5)

Matrices of the form (5) have singular values

-1
ri+4/ri+1 and (rj—l— r?—l—l) =\/ri+1l—r,
Thus,
S(AA):(rl—l— P+l R+ ,\/rk L—rgyeefri+1—ry).

A well known result of Alfred Horn ([4], [5, Theorem 3.3.4], or [6, Chapter 9 H1]) gives
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Consider the function f(t) = e¢' — e for t > 0. Then f(ln(r; + 7“]2 +1)) = 2r; for

j=1,...,k Since f is increasing and convex on (0, 00) it preserves weak majorization ([6,

Chapter 3, A.8 and C.1]), and so we have

2ri,...,mi) = (flnsi(AA)),..., f(Insy(AA)))
<w (f(n(ai/an)), ..., f(In(ar/an-r+1)))
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which is (3). Applying a similar argument to AA, we get (4). O




3 Questions of Ando

In [1], Ando raised several problems in connection with Bloomfield-Watson type inequalities
for eigenvalues that arise in statistics (see also [3, Problem 7.3]). The following theorem
answers his questions in the affirmative and extends scalar inequalities of Demmel [2, (62),

(63), (65), (66)] to majorizations.

A A
Ay Ay
min{p,n — p} and A has eigenvalues A\y > -+ > \,. Then

(A7 A30) < <f ﬁ,...,ﬁ—,/xn_k+1), (6)
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Proof. Let a; = \//\jforj =1,...,n. Let

Theorem 2 Let A = ( ) be positive definite such that Ay, € M,. Suppose k =

and
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with T = Ay, S = Ay, /* Ay and R = (Ay — A1pA3) Ayy)'/2 Then A = B*B, and B has
singular values aq,...,a,. Applying Theorem 1 to the block triangular matrix B, we see
that (6) is just (1).
Next, let
R 0
c~(5 r)
with R = A}{z, S = A21A1_11/2, and T = (As — Ani Al A12)1/2 Then A = CC*, and C has
singular values ay,...,a,. Applying Theorem 1 to the block triangular matrix C, we see
that (7) is just (3). O

Suppose P is an n X k matrix such that P*P = I;. Then there exists a unitary U such
that P is the first £ columns of U. For any positive definite matrix A, we can apply Theorem

2 to the block matrix U*AU = (All Ay
Asr Ap

involving the eigenvalues and singular values of the matrices P*AP, P*A~'P, P*A?P, etc.

). The results will take the more general form

Many results in [1, 3] are stated in these forms, and they can be deduced from our results.
We give a few examples in the following discussion. For easy reference and comparison, we
state the next corollary in this manner.

Corollary 3 Let A be a positive definite matriz with Ay > --- > X,. For any n X k matriz
P such that P*P = I, where 2k < n, we have

S(P*AP — (P"A'P)- ((f \/7> (ﬁ—mf) (8)
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and

P ((P*AP)‘1(P*AZP)(P*AP)‘l) L (L +An)* (M + A”"““)z) . (9)
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Proof. Let a; > --- > a, > 0so that ¢} = A for j=1,...,n
To prove (8), we may assume that P is the first & columns of a unitary matrix U, and

All A12>
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U* AU = <
Then
P*AP — (P*A7'P)™" = Ay — (A — A% A} Agr) = A5 A5 Agy = (AP A51)" (A5 * Aay).

By the majorization (6), and the fact that squaring preserves majorization (see [6, Chapter

A.8 and C.1]), we have

m m

Y s;(P*AP — (P*A7'P)” E (Ag?Ag1) < E —njs1)s m=1,...,k

Thus, (8) holds.
To prove (9), we may again assume that P is the first k& columns of a unitary matrix U

such that (10) holds. Then the left side of (9) is just
s(In+ A An A AT = (1., 1) + s(An AT Ap).

Using the square of (7), we have
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which is the right side of (9). O

We proved (8) and (9) by squaring (6) and (7). Ando proved (9) by another method in
[1]. One may wonder whether it is possible to deduce (6) and (7) from (8) and (9) by taking
square roots. It is not possible, since taking square roots does not preserve majorization.

Our bound (8) includes the inequality of Rao [7]:

tr (P AP — (P A7 P)™) <3 (VA — i)

The inequality (9) includes the Kantorovich inequality. To see this, given a unit vector z,
take k = 1 and take P = A="/2z/(2* A~ z)"/?. Then we have the Kantorovich inequality:

(/\1 —I' )\n)z

(2" Az)(2"A™'2) = s1(P"AP) ™/ (P"A*P)(PTAP)™) < ~=5-



In [1], Ando also asked whether the following is true for a positive definite matrix

Ay A
A= ( 11 12>
Ay Ay

with eigenvalues Ay > --- > A, where Ay € M,,_; with 2k < n:

m

L )\n—'
Z Sj(142_21/21421141_11/2) < Z A s m=1,....k.
7=1 )\] +

5
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The result is indeed true for m =1 ([1], [2, Theorem 1]), but not in general:
Example 4 Let

. AH Alg . . . 6 0 . . 2 0
A— <A21 A22> U]?th All—A22— (0 3> and Alg—Agl— (0 1)

Then A has eigenvalues 8,4,4,2 and A;21/2A21A1_11/2 has singular values 1/3,1/3. However
1/3+1/3 £3/5=(8—-2)/10+ (4 —4)/8.
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