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Abstract

For the non-Hermitian and positive semidefinite systems of linear equations, we derive
sufficient and necessary conditions for guaranteeing the unconditional convergence of the
preconditioned Hermitian and skew-Hermitian splitting iteration methods. These result
is specifically applied to linear systems of block tridiagonal form to obtain convergence
conditions for the corresponding block variants of the preconditioned Hermitian and skew-
Hermitian splitting iteration methods.

Keywords: Non-Hermitian matrix, positive semidefinite matrix, Hermitian and skew-
Hermitian splitting, splitting iteration method, convergence.
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1 Introduction

We consider iterative solution of the large sparse non-Hermitian system of linear equations

Ax = b, A ∈ Cn×n nonsingular, A 6= A∗, and x, b ∈ Cn, (1.1)

where A∗ denotes the conjugate transpose of the complex matrix A.
Based on the Hermitian and skew-Hermitian (HS) splitting

A = H(A) + S(A), with H(A) =
1
2
(A + A∗) and S(A) =

1
2
(A−A∗),

Bai, Golub and Ng recently established a class of Hermitian and skew-Hermitian split-
ting (HSS) iteration methods in [3] for solving the non-Hermitian system of linear equa-
tions (1.1).

When the coefficient matrix A ∈ Cn×n is positive definite, i.e., its Hermitian part
H(A) ∈ Cn×n is Hermitian positive definite, they proved in [3] that the HSS iteration
converges unconditionally to the exact solution of the system of linear equations (1.1), with
the bound on the rate of convergence about the same as that of the conjugate gradient
method when applied to the Hermitian matrix H(A). Moreover, the upper bound of
the contraction factor is dependent on the spectrum of the Hermitian part H(A), but is
independent of the spectrum of the skew-Hermitian part S(A) as well as the eigenvalues
of the matrices H(A), S(A) and A. Numerical experiments have shown that the HSS
iteration method is very efficient and robust for solving the non-Hermitian and positive
definite linear systems, see [3].

When the coefficient matrix A ∈ Cn×n has the two-by-two block structure

A =
(

B E
−E∗ C

)
, (1.2)

with B ∈ Cp×p being positive definite (i.e., H(B) is Hermitian positive definite), C ∈ Cq×q

being Hermitian positive semidefinite and E ∈ Cp×q being of full column rank, Benzi and
Golub further proved in [8] that the HSS iteration method for the corresponding saddle-
point problem

Ax ≡
(

B E
−E∗ C

) (
y
z

)
=

(
f
g

)
≡ b (1.3)

also converges unconditionally to its exact solution. Note that the matrix A is now only
positive semidefinite with some special structure, namely, its Hermitian part

H(A) =
(
H(B) 0

0 C

)
∈ Cn×n

is such that H(B) is positive definite and C is Hermitian positive semidefinite.
In this paper, we give a necessary and sufficient condition for an arbitrary non-Hermitian

positive semidefinite linear system so that the preconditioned Hermitian and skew-
Hermitian splitting (PHSS) iteration method will lead to an unconditionally convergent
iteration sequence. This result is further specialized to linear systems of block tridiagonal
form to obtain unconditional convergence conditions for the corresponding block PHSS
(BPHSS) iteration method.
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2 The Preconditioned HSS Method

Instead of applying the HSS iteration technique directly to the system of linear equa-
tions (1.1), we may apply it to the systematically preconditioned linear system

Âx̂ = b̂, with Â = R−∗AR−1, x̂ = Rx and b̂ = R−∗b, (2.1)

where R ∈ Cn×n is a prescribed nonsingular matrix and R−∗ = (R−1)∗ = (R∗)−1. Let
P = R∗R. Then P ∈ Cn×n is a Hermitian positive definite matrix. This leads to the pre-
conditioned Hermitian and skew-Hermitian splitting (PHSS) iteration method as follows.
See also [2, 3, 4] and [8, 9].

The PHSS Iteration Method.

Let P ∈ Cn×n be a prescribed Hermitian positive definite matrix. Given
an initial guess x(0) ∈ Cn, compute x(k) for k = 0, 1, 2, . . . using the following
iteration scheme until {x(k)} satisfies the stopping criterion:{

(αP +H(A))x(k+ 1
2
) = (αP − S(A))x(k) + b,

(αP + S(A))x(k+1) = (αP −H(A))x(k+ 1
2
) + b,

where α is a given positive constant.

Clearly, when P = I, the identity matrix, the PHSS iteration method reduces to the
HSS iteration method studied in Bai, Golub and Ng in [3]. When P 6= I, we can suitably
choose P and α such that the induced PHSS iteration method possesses fast convergence
and high computing efficiency. In addition, the Hermitian positive definite matrix P and
the positive constant α should be judiciously selected so that the two sub-systems of
linear equations with the coefficient matrices αP + H(A) and αP + S(A) can be solved
economically and rapidly.

In matrix-vector form, the above PHSS iteration method can be rewritten as

x(k+1) = L(α, P )x(k) + G(α, P )b, k = 0, 1, 2, . . . , (2.2)

where
L(α, P ) = (αP + S(A))−1(αP −H(A))(αP +H(A))−1(αP − S(A))

and
G(α, P ) = 2α(αP + S(A))−1(αP +H(A))−1.

Here, L(α, P ) is the iteration matrix of the PHSS iteration method. In fact, (2.2) may
also result from the splitting

A = M(α, P )−N (α, P )

of the coefficient matrix A, with{
M(α, P ) = 1

2α(αP +H(A))(αP + S(A)),
N (α, P ) = 1

2α(αP −H(A))(αP − S(A)).
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Therefore, the PHSS iteration method can naturally induce a preconditioner M(α, P ) to
the matrix A. This preconditioner is called as the PHSS preconditioner. See [2, 4, 8, 9].

When A ∈ Cn×n is a positive definite matrix, duplicating the proofs of Theorem 2.2
and Corollary 2.3 in [3] we can establish the following convergence theorem for the PHSS
iteration method. In the sequel, sp(X) represents the spectrum of the square matrix X.

Theorem 2.1. Let A ∈ Cn×n be a positive definite matrix, H(A) = 1
2(A + A∗) and

S(A) = 1
2(A − A∗) be its Hermitian and skew-Hermitian parts, respectively, and α be a

positive constant. Let P ∈ Cn×n be a Hermitian positive definite matrix. Then the spectral
radius ρ(L(α, P )) of the iteration matrix L(α, P ) of the PHSS iteration is bounded by

σ(α, P ) = max
λj∈sp(P−1H(A))

|α− λj |
|α + λj |

.

Consequently, we have

ρ(L(α, P )) ≤ σ(α, P ) < 1, ∀α > 0,

i.e., the PHSS iteration unconditionally converges to the exact solution of the system of
linear equations (1.1).

Moreover, if γmin and γmax are the lower and the upper bounds of the eigenvalues of the
matrix P−1H(A), respectively, then

α̃ := arg min
α

{
max

γmin≤λ≤γmax

∣∣∣∣α− λ

α + λ

∣∣∣∣} =
√

γminγmax

and

σ(α̃, P ) =
√

γmax −
√

γmin√
γmax +

√
γmin

=

√
κ(P−1H(A))− 1√
κ(P−1H(A)) + 1

,

where κ(P−1H(A)) is the spectral condition number of the matrix P−1H(A).

¿From Theorem 2.1 we see that the Hermitian positive definite matrix P ∈ Cn×n

should be chosen such that it is at least a good approximate to the matrix H(A). In this
situation, κ(P−1H(A)) may be reasonably small so that the PHSS iteration method may
achieve a fast convergence speed. On the other hand, since we often have to solve the
two half-iterates x(k+ 1

2
) and x(k+1) inexactly by some iteration schemes, P and α should

be chosen such that both matrices αP +H(A) and αP + S(A) are well conditioned and
economically invertible. Hence, in a practical computation, it is crucial but a difficult
problem to determine a good preconditioner P and choose an optimal iteration parameter
α. For some discussions on this aspect, we refer the readers to [2, 4, 8, 9].

3 Convergence Theorems

In this section, we study the convergence properties of the PHSS iteration method when
the coefficient matrix A ∈ Cn×n is positive semidefinite. To this end, we call an eigenvalue
λ of a matrix W ∈ Cn×n a reducing eigenvalue if Wx = λx and W ∗x = λ∗x. Equivalently,
W is unitarily similar to [λ]⊕W0 where W0 ∈ C(n−1)×(n−1).

The following theorem describes the convergence property of the PHSS iteration method
when the coefficient matrix A ∈ Cn×n is positive semidefinite.
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Theorem 3.1. Let A ∈ Cn×n be a positive semidefinite matrix, H(A) = 1
2(A + A∗) and

S(A) = 1
2(A − A∗) be its Hermitian and skew-Hermitian parts, respectively, and α be a

positive constant. Let P ∈ Cn×n be a Hermitian positive definite matrix. Then the spectral
radius ρ(L(α, P )) of the iteration matrix L(α, P ) of the PHSS iteration is bounded by 1,
i.e.,

ρ(L(α, P )) ≤ 1, ∀α > 0.

The inequality becomes an equality if and only if the matrix Â := R−∗AR−1 has an (re-
ducing) eigenvalue of the form iξ with ξ ∈ R and i the imaginary unit, i.e., the null space
of H(Â) contains an eigenvector of S(Â). Here, P = R∗R and R ∈ Cn×n is a prescribed
nonsingular matrix.

Proof. Evidently, we only need to consider the case when P = I, as otherwise, we can
turn to the preconditioned linear system (2.1) instead. Denote by

L(α) := L(α, I) = (αI + S(A))−1(αI −H(A))(αI +H(A))−1(αI − S(A)),

which is similar to the matrix

L(α) := (αI +H(A))−1(αI −H(A))(αI + S(A))−1(αI − S(A)).

Therefore, we only need to investigate the property of the eigenvalues of L(α).
Suppose that H(A) has eigenvalues

µ1 ≥ · · · ≥ µr > 0 = µr+1 = · · · = µn = 0.

Then (αI +H(A))−1(αI −H(A)) is Hermitian and has eigenvalues

νj = (α− µj)/(α + µj), j = 1, 2, . . . , n,

so that
−1 < ν1 ≤ · · · ≤ νr < 1 = νr+1 = · · · = νn. (3.1)

Hence L(α) has singular values

|νj | ≤ 1, j = 1, 2, . . . , n.

Consequently,
ρ(L(α)) ≤ ‖L(α)‖ = 1, ∀α > 0.

Suppose that A has an eigenvalue of the form iξ with ξ ∈ R corresponding to a unit
eigenvector v. We show that iξ is in fact a reducing eigenvalue of A. To see this, let V be
a unitary matrix such that V ∗AV is in lower triangular form with iξ in the (1, 1) entry,
and w as the first column. Then

H(V ∗AV ) = V ∗H(A)V

is positive semidefinite with 0 in the (1, 1) entry and 1
2w as the first column. It follows that

w = 0 and U∗AU = [iξ]⊕A0 for some A0 ∈ C(n−1)×(n−1), i.e., iξ is a reducing eigenvalue
of A. Now,

(αI +H(A))−1(αI −H(A))(αI + S(A))−1(αI − S(A))v = λv
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with λ = (α− iξ)/(α + iξ) such that |λ| = 1.
Conversely, if L(α) has an eigenvalue λ of modulus 1, then λ is an eigenvalue of the

matrix
(αI + S(A))−1(αI − S(A))(αI +H(A))−1(αI −H(A)).

Thus, there is a unit vector v ∈ Cn such that

(αI + S(A))−1(αI − S(A))(αI +H(A))−1(αI −H(A))v = λv.

Since |λ| = 1 and (αI + S(A))−1(αI − S(A)) is unitary, we see that

‖(αI +H(A))−1(αI −H(A))v‖ = ‖v‖.

Suppose that {x1, x2, . . . , xn} is an orthonormal basis for Cn consisting of eigenvectors of
H(A) such that H(A)xj = µjxj for j = 1, 2, . . . , n. Let v =

∑n
j=1 θjxj with θj ∈ C. Then

1 =
n∑

j=1

|θj |2 = ‖v‖2 = ‖(αI +H(A))−1(αI −H(A))v‖2 =
n∑

j=1

|θj |2ν2
j .

By (3.1), we know that θj = 0 for j = 1, 2, . . . , r. It follows that v =
∑n

j=r+1 θjxj and

H(A)v =
n∑

j=r+1

θjH(A)xj =
n∑

j=r+1

θjµjxj = 0.

Furthermore,

λv = (αI + S(A))−1(αI − S(A))(αI +H(A))−1(αI −H(A))v
= (αI + S(A))−1(αI − S(A))v.

Thus, v is an eigenvector of (αI + S(A))−1(αI − S(A)), and hence v is an eigenvector of
S(A) such that S(A)v = iξv with ξ ∈ R satisfying λ = (α − iξ)/(α + iξ). As a result,
Av = iξv and A∗v = −iξv. So, iξ is a reducing eigenvalue of A. 2

Corollary 3.2. Suppose that A ∈ Cn×n satisfies the hypothesis of Theorem 3.1. If
ρ(L(α, P )) < 1, then A is nonsingular.

The contra-positive of the above corollary asserts that if a matrix A satisfying the
hypothesis of Theorem 3.1 is singular, then ρ(L(α, P )) = 1. Note also that such an A is
singular if and only if 0 is a reducing eigenvalue. This happens if and only if H(A) and
S(A) have a common null vector.

Note that in general, a matrix may have an eigenvalue of the form iξ which is not
a reducing eigenvalue. However, this cannot happen for matrices A such that H(A) is
positive semidefinite.

For matrices A such that H(A) is positive semidefinite, we need to determine whether
it has no (reducing) eigenvalue of the form iξ with ξ ∈ R. The next proposition gives
some information along this direction.
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Proposition 3.3. Suppose that A ∈ Cn×n satisfies the hypothesis of Theorem 3.1. Then
the following statements are equivalent:

(a) A does not have an (reducing) eigenvalue of the form iξ with ξ ∈ R;

(b) The null space of H(A) does not contain an eigenvector of S(A);

(c) If v is an eigenvector of S(A), then v∗H(A)v > 0;

(d) Let V be unitary such that V ∗H(A)V = H1 ⊕ 0` where H1 is nonsingular, and let

V ∗S(A)V =
(

S1 E
−E∗ S2

)
.

Then the null space of E does not contain an eigenvector of S2.

Proof. The equivalence of (a), (b) and (c) are straightforward. Now we consider (d).
Suppose that V is unitary such that V ∗H(A)V = H1 ⊕ 0`, where H1 is nonsingular, and

V ∗S(A)V =
(

S1 E
−E∗ S2

)
.

Then a vector in the null space of H(A) must be of the form

V

(
0
x

)
, with x ∈ C`.

Furthermore, it is an eigenvector of S(A) corresponding to the eigenvalue iξ with ξ ∈ R
if and only if Ex = 0 and S2x = iξx. Thus, (a) and (d) are equivalent. 2

¿From Theorem 3.1 and Proposition 3.3, one can easily deduce the convergence results
on the HSS iteration method for positive definite matrices in [3] and on the PHSS iteration
methods for special positive semidefinite saddle-point matrices (1.2) in [2, 4, 8]. In the
former case, it is clear that no eigenvalue has the form iξ with ξ ∈ R. In the lattter case,
under the assumption that E has full column rank, condition (d) in Proposition 3.3 cannot
hold.

The following example shows that even if A is in two-by-two block form with

H(A) =
(

H1 0
0 H2

)
and S(A) =

(
S1 E
−E∗ S2

)
,

the relation between the null spaces of the matrices H1,H2, E and E∗ may not be too
useful in determining whether ρ(L(α, P )) < 1. See [8].

Example 3.4. Suppose that A ∈ Cn×n is such that

H(A) =
(

H0 0
0 H0

)
with H0 =

(
1 1
1 1

)
.
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(a) If

S(A) =
(

0 E
−E∗ 0

)
with E =

(
1 0
0 1

)
,

then A has eigenvalues ±i. So, ρ(L(α, I)) = 1. However, it holds that null(H0) ∩
null(E) = {0};

(b) If

S(A) =
(

0 E
−E∗ 0

)
with E =

(
1 0
0 0

)
,

then A has no eigenvalue of the form iξ with ξ ∈ R. So, ρ(L(α, I)) < 1. However,
it holds that null(H0) ∩ null(E) = {0};

(c) If

S(A) =
(

S0 0
0 S0

)
with S0 =

(
0 1
−1 0

)
,

then A has no eigenvalue of the form iξ with ξ ∈ R. So, ρ(L(α, I)) < 1. However,
it holds that null(H0) ∩ null(E) = {0};

(d) If

S(A) =
(

S0 E
−E∗ S0

)
with S0 =

(
0 1
−1 0

)
so that ‖E‖ is small, then A has eigenvalues close to 1. Thus, ρ(L(α, I)) = 1.
However, we can choose E such that either null(H0) ∩ null(E) = {0} or null(H0) ∩
null(E) 6= {0} holds.

If H(A) or S(A) is in diagonal block form

B1 ⊕B2 ⊕ · · · ⊕B`, with Bj ∈ Cnj×nj (j = 1, 2, . . . , `),

then one can consider

P = α1In1 ⊕ α2In2 ⊕ · · · ⊕ α`In`
, with αj > 0 (j = 1, 2, . . . , `).

As long as Â := P−1/2AP−1/2 does not have an eigenvalue of the form iξ with ξ ∈ R, then
the iteration matrix L(α, P ) of the PHSS iteration method has spectral radius less than
one, i.e., the PHSS iteration scheme converges. In particular, when ` = 1, this conclusion
recovers the convergence theorem established in [8].

We remark that one may relax the condition that H(A) = 1
2(A+A∗) is positive semidef-

inite. In fact, if there exists a θ ∈ [0, 2π) such that H(eiθA) = 1
2(eiθA+ e−iθA∗) is positive

semidefinite, then one can apply Theorem 3.1 to eiθA. This latter condition is equivalent
to the fact that the numerical range of A defined by

W(A) := {v∗Av : v ∈ Cn, v∗v = 1}

lies on a closed half plane defined by a line passing through the origin. In particular,
if θ = π

2 is such that H(eiθA) is positive semidefinite, then the PHSS iteration method
resulted from interchanging the Hermitian matrix H(A) and the skew-Hermitian matrix
S(A) may still converge. Note that in this PHSS iteration method the right-hand-side
vector b is replaced by ib, correspondingly.
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4 Applications

We consider the non-Hermitian system of linear equations (1.1) whose coefficient matrix
A ∈ Cn×n is in the block tridiagonal form, i.e.,

Ax ≡


A1 E1

−E∗
1 A2 E2

. . . . . . . . .
−E∗

`−2 A`−1 E`−1

−E∗
`−1 C




x1

x2
...

x`−1

x`

 =


b1

b2
...

b`−1

b`

 ≡ b, (4.1)

where Aj ∈ Cnj×nj (j = 1, 2, . . . , ` − 1) are non-Hermitian matrices, Ej ∈ Cnj×nj+1

(j = 1, 2, . . . , `−1), C ∈ Cn`×n` is a Hermitian matrix, xj , bj ∈ Cnj , and nj (j = 1, 2, . . . , `)
are positive integers satisfying n1 ≥ n2 ≥ · · · ≥ n` and

∑`
j=1 nj = n.

The block tridiagonal systems of linear equations may arise from many applications,
e.g., the remaining (linearized) Euler-Lagrange equations [24, 25] and a coupled DEM-
FEM formulation combined with Lagrange multipliers in the imperious porous material
with an incompressible pore fluid[20].

In particular, when ` = 2, the system of linear equations (4.1) reduces to the gener-
alized saddle-point problem (1.3). As is known, saddle-point problems correspond to the
Kuhn-Tucker conditions for linearly constrained quadratic programming problems, which
typically result from mixed or hybrid finite element approximations of second-order ellip-
tic problems, elasticity problems or the Stokes equations (see, e.g., Brezzi and Fortin[10])
and from Lagrange multiplier methods (see, e.g., Fortin and Glowinski[14]). A number of
structured preconditioners [12, 13, 21, 8] and iterative methods [11, 19, 4, 2] have been
studied in the literature for these problems. See also [23, 18, 17, 22, 16, 15, 6] and the
references therein.

In this section we consider the block tridiagonal systems of linear equations satisfying
all of the following assumptions:

• A1 is positive definite, i.e., H(A1) is Hermitian positive definite;

• Aj (j = 2, 3, . . . , `− 1) are positive semidefinite, i.e., H(Aj) (j = 2, 3, . . . , `− 1) are
Hermitian positive semidefinite;

• Ej (j = 1, 2, . . . , `− 2) are of full column rank;

• C is Hermitian positive semidefinite;

• null(C) ∩ null(E`−1) = {0}.

As shown below, these assumptions guarantee existence and uniqueness of the solution.

Proposition 4.1. Let A ∈ Cn×n be the coefficient matrix of the system of linear equa-
tions (4.1). Assume that A1 is positive definite, Aj (j = 2, 3, . . . , ` − 1) are positive
semidefinite, Ej (j = 1, 2, . . . , ` − 2) are of full column ranks, C is Hermitian positive
semidefinite, and null(C) ∩ null(E`−1) = {0}. Then A is nonsingular.
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Proof. Let x = (x∗1, x
∗
2, . . . , x

∗
`)
∗ ∈ Cn be such that Ax = 0, where xj ∈ Cnj for

j = 1, 2, . . . , `. Then
A1x1 + E1x2 = 0,
−E∗

j−1xj−1 + Ajxj + Ejxj+1 = 0, j = 2, 3, . . . , `− 1,

−E∗
`−1x`−1 + C`x` = 0.

(4.2)

Because Ax = 0 implies both x∗Ax = 0 and x∗A∗x = 0, we know that x∗H(A)x = 0. As
H(Aj) (j = 1, 2, . . . , `− 1) and C are Hermitian positive semidefinite, H(A) is Hermitian
positive semidefinite, too. Hence, x ∈ null(H(A)), or equivalently,

Cx` = 0 and H(Aj)xj = 0 for j = 1, 2, . . . , `− 1.

The system of linear equations (4.2) then reduces to the following:
S(A1)x1 + E1x2 = 0,
−E∗

j−1xj−1 + S(Aj)xj + Ejxj+1 = 0, j = 2, 3, . . . , `− 1,

−E∗
`−1x`−1 = 0.

(4.3)

Since H(A1) is Hermitian positive definite, we see that x1 = 0. Based on (4.3) and the
assumption that Ej has full column rank for j = 1, 2, . . . , `− 2, we can successively obtain
xj = 0 for j = 1, 2, . . . , `− 1. Thereby, (4.3) can be further reduced to

E`−1x` = 0.

Since Cx` = 0, we conclude that x` ∈ null(C)∩null(E`−1), which is {0} by our assumption.
Hence, x` = 0. Therefore, the only solution for Ax = 0 is the trivial solution, and A is
nonsingular. 2

For the PHSS iteration method described in § 2, if we first specifically take the Hermitian
positive definite matrix P ∈ Cn×n to be of block diagonal form, i.e.,

P = Diag
(α1

α
P1,

α2

α
P2, . . . ,

α`

α
P`

)
with

αj > 0 and Pj ∈ Cnj×nj Hermitian positive definite, j = 1, 2, . . . , `,

and then directly apply it to the block tridiagonal system of linear equations (4.1), the
following iteration scheme, called the block preconditioned Hermitian and skew-Hermitian
splitting (BPHSS) iteration method, can be obtained immediately.

The BPHSS Iteration Method.

Let Pj ∈ Cnj×nj (j = 1, 2, . . . , `) be prescribed Hermitian positive definite
matrices and αj (j = 1, 2, . . . , `) be given positive constants. Given an initial
guess

x(0) =
(
x

(0)∗

1 , x
(0)∗

2 , . . . , x
(0)∗

`

)∗
∈ Cn with x

(0)
j ∈ Cnj×nj ,

compute

x(k) =
(
x

(k)∗

1 , x
(k)∗

2 , . . . , x
(k)∗

`

)∗
∈ Cn with x

(k)
j ∈ Cnj×nj

for k = 0, 1, 2, . . . using the following iteration scheme until {x(k)} satisfies
the stopping criterion:
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• Solve x
(k+ 1

2
)

j (j = 1, 2, . . . , `) successively from the sub-systems of linear
equations

(αjPj +H(Aj))x
(k+ 1

2
)

j = (αjPj − S(Aj))x
(k)
j + E∗

j−1x
(k)
j−1 − Ej+1x

(k)
j+1 + bj ,

j = 1, 2, . . . , `,

• Solve x
(k+1)
j (j = 1, 2, . . . , `) from the system of linear equations

(αjPj + S(Aj))x
(k+1)
j − E∗

j−1x
(k+1)
j−1 + Ej+1x

(k+1)
j+1 = (αjPj −H(Aj))x

(k+ 1
2
)

j + bj ,

j = 1, 2, . . . , `.

Here, we have stipulated that x
(k)
0 = x

(k+1)
0 = 0 and x

(k)
`+1 = x

(k+1)
`+1 = 0.

Note that in the BPHSS iteration method, for each fixed iteration index k, the block

vectors x
(k+ 1

2
)

j (j = 1, 2, . . . , `) can be computed independently and, hence, the vector

x(k+ 1
2
) can be easily obtained on a multiprocessor system. Comparatively, the block

vectors x
(k+1)
j (j = 1, 2, . . . , `) are more dependent, which may cause difficulty in solving

the second-half iterate x(k+1) in parallel. However, there are efficient direct and iterative
methods for solving this special class of block tridiagonal systems of linear equations,
see [18, 5, 1, 7]. Therefore, the BPHSS iteration method can be easily and effectively
implemented in parallel on a multiprocessor system.

In addition, in actual computing it may be beneficial in solving the second-half iterate
x(k+1) if we first execute block re-ordering for the system of linear equations (4.1), although
this does not change the sub-system of linear equations defining the first-half iterate x(k+ 1

2
).

The following theorem describes the convergence property of the BPHSS iteration
method.

Theorem 4.2. Let all conditions of Proposition 4.1 be satisfied. Then the BPHSS it-
eration scheme is unconditionally convergent; that is, the spectral radius of its iteration
matrix L(α1, α2, . . . , α`;P ) satisfies

ρ(L(α1, α2, . . . , α`;P )) < 1, for all α1, α2, . . . , α` > 0.

Proof. Without loss of generality, we only need to consider the case that P = I, as
otherwise, we can turn to the preconditioned linear system (2.1) instead.

To prove the unconditional convergence of the BPHSS iteration method, according to
Theorem 3.1 we only need to show that the null space of H(A) does not contain an
eigenvector of S(A). In fact, if there exists a nonzero vector x = (x∗1, x

∗
2, . . . , x

∗
` )
∗ ∈ Cn,

with xj ∈ Cnj (j = 1, 2, . . . , `), such that H(A)x = 0 and S(A)x = iξx hold for some
ξ ∈ R, i.e.,

Cx` = 0, H(Aj)xj = 0 for j = 1, 2, . . . , `− 1,

and 
S(A1)x1 + E1x2 = iξx1,
−E∗

j−1xj−1 + S(Aj)xj + Ejxj+1 = iξxj for j = 2, 3, . . . , `− 1,

−E∗
`−1x`−1 = iξx`,

(4.4)
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then from the Hermitian positive definiteness of the matrix H(A1) we know that x1 = 0.
It then follows from the full-rank assumption of the matrices Ej (j = 1, 2, . . . , `− 2) that
xj = 0 (j = 1, 2, . . . , `− 1). Thereby, (4.4) can be further reduced to

E`−1x` = 0 and iξx` = 0.

Evidently, whether ξ = 0 or not we can obtain x` = 0 due to the assumption null(C) ∩
null(E`−1) = {0}. Therefore, x = 0, a contradiction. 2

By suitable re-ordering or re-decomposing the block tridiagonal system of linear equa-
tions (4.1) can be reformulated as one with a two-by-two block coefficient matrix, or
in the form of saddle-point problems. But now the (1, 1)-block of the newly obtained
two-by-two block matrix is not positive definite, even though its (2, 2)-block is Hermitian
positive semidefinite and the overlapping set between the null spaces of its (1, 2)-block
and (2, 2)-block is {0}. Therefore, Theorem 3.1 in [8] can not guarantee the convergence
of the BPHSS iteration sequence. However Theorem 4.2 shows that the BPHSS iteration
method is convergent unconditionally to the exact solution of the block tridiagonal system
of linear equations (4.1).
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