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1 Introduction
Let M, be the algebra of n x n square matrices equipped with the spectral norm
17| = max{|[Tal| : = € €, || = 1}
satisfying the C*-norm features
IT*T(| = |T)?,  and [|TS]| < [|T][[|S]]-
Suppose A, B € M,, are Hermitian matrices subject to the conditions
CL1_[ S A S CLQI and bl_[ S B S b2_l

There has been considerable interest in getting an upper bound for ||A +iB]||. For instance,
if O < A<al and O < B < bI, then (see [1, Problem 1.6.18])

|A+iB|| < {a®+0}'%,
and the equality holds if A=al and B=0bI. If -1 < A< T and —I < B <, then
|A+iB| < [|All + Bl = 2,

0 2
0 0
bound for ||A + iB|| in terms of the given four real numbers a; < as, and b; < by (see
Theorem 2.1).

The norm bound problem can be transformed to another basic question in operator
(matrix) inequalities. Namely, let T € M,, subject to four affine inequalities

and the equality holds if A +iB = ( ) In this paper, we obtain the optimal upper

a1l <ReT <ayl and b1 <ImT <bsyl;

we wish to find the optimal bound ¢ for the norm inequality ||T’|| < ¢, which is equivalent to
a quadratic inequality 77T < 1.

Using similar techniques, we obtain optimal bound for ||U + V||, where U and V are
n X n unitary matrices with any specified spectra (see Theorem 3.2); the study leads to some
surprising phenomena of discontinuity concerning the spectral variation of unitary matrices.

We then extend our analysis to the summation of two (non-commuting) normal matrices.
In fact, for any two normal matrices A and B with spectra 0(A) and o(B), the optimal norm
bound for ||A + B|| equals

min{ max |a+ A|+ max |5 — Al}, 1.1
AE(D{(IEU(A)I | Jmax, 18— Al} (1.1)

(see Theorem 4.3). Moreover, extensions of the results to infinite dimensional cases are
considered.

This paper is organized as follows. In Section 2, we obtain the optimal norm bound
for |A + ¢B|| for two Hermitian matrices A and B in terms of their spectra. In Section
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3. we study norm bounds for the sum of two unitary matrices. In particular, we get the
best estimate of |[U — V|| for unitary U and V, and see some jump-discontinuity phenomena
about the set of unitary matrices. In Section 4, we prove that the quantity (1.1) gives the

optimal norm bound for ||A + B|| if A and B are normal matrices. In Section 5, we discuss
the extension of the results to infinite dimensional cases.

We thank Rajendra Bhatia and the referee for drawing our attention to some additional
references and related work. In particular, when A and B are both unitary, or when A is
Hermitian and B is skew-Hermitian, our results improve the known bound (see [2] and [1,

Theorem VI. 3.14])

|A+ B|| < vV2max{|a+ 8| : a € 0(A), B € a(B)}.

Our study is about the uppper bound of ||A + B|| for two normal matrices A and B; lower
bounds for ||A + B|| have been studied; e.g., see [1, Chapter VI| and the references therein.
Related studies on norm bounds of the sum of two matrices with respect to other norms can
be found in [2, 3, 4, 5|. The paper [2] is very close in spririt to our Section 4.

2 The sum of a Hermitian matrix and a skew-Hermitian
matrix

In this section, we obtain the ultimate bound for any matrix 7" = A 4 ¢B, where A and B
are Hermitian matrices subject to a1/ < A < ayl and b1 < B < byl. Since

|A+:B|| =||A—iB|=[-A+iB|=|—-A-:B|,
we may assume without loss of generality that as > |a1| and by > |b].

Theorem 2.1 Suppose A, B are n x n Hermitian matrices subject to a1l < A < aol and
biI < B < byl. Assume further that as > |a1| and by > |by].

(1) If a1b2 + a2b1 Z 0, then

|A +iB|| < |ag + iby| = /a3 + b3.

(11) If a1b2 + a2b1 S 0, then
|A+:iB| <7+ 7,

where

1
T = ‘(1,1 — Z()| = ‘(1,2 — Zo‘ = 5\/(0/1 — a2)2 -+ (bl + b2)2

and

. ) 1
’TI = ‘Zbl — Z()| = |Zb2 — Z()‘ = 5\/(011 + 02)2 + (b1 - b2)2

with zZ0 = {(a1 + 0,2) + Z(bl + b2)}/2



(iii) The bounds in (i) and (ii) are sharp in the following sense: If {ai,as} C o(A) and
{b1,b2} C o(B), then there exists a unitary W such that ||A + iW BW?|| attains the
bound in each case.

Note that 7 + 7 = |ay — 29| + |ibe — 20| > |ag — iba] = (/a3 + b3 is always valid. If
aibe + agb; = 0, then 7 = (1/2+ ¢)y/a% + b3 and 7 = (1/2 —¢)y/a3 + b3 with 2¢c = —ay /ay =
b1/bo; thus 7 + 7' = (/a3 + b} as in case (i).

Proof. Since 0(A) C [a1,a2] and o(B) C [by, bs), it follows that |[A—z1|| < maxj_; |a;—2|

and ||iB — zI|| < max;— 2 |ib; — z| for each complex number z. Write A = —z. Then
|A+iB| = |[(A+ M)+ (B — A)||
< JJA+ M|+ [liB — M|

I(A+AD |+ ] = (B = AT)7|
|A = 2I|| + ||iB — 21|

max |a; — z| + max |ib; — z|
7j=1,2 7j=1,2

IN

for all z € C. Specifically, letting zo = [(a1 +a2) +i(b1 +b2)]/2, we get |a1 — 20| = |aa— 20| =7
and |ib; — zg| = |iby — 29| = 7; thus the inequality ||A + iB|| < 7+ 7' is always valid.
In case of a1by +agb; > 0, we select a different point z = (a1 + ag)/2 + i(az — a1)be/(2a2)

in order to get the better bound (/a3 + b3. (Here we ignore the degenerate case ay = 0

when A = 0.) In fact, [a1 — 2| = |ay — 2| = % 9\/a3 + b3, |iby — 2| = 552, /aj + b3, and

liby — 2|? — |iby — 2|2 = (bo — by)(agby + albz)/aQ > 0. Therefore,

|A+iB|| < |ag — 2| + |iby — 2| = /a3 + b3.

These upper bounds for ||A+ iB|| are sharp as they are attained by n X n matrices with
1 x 1 and/or 2 x 2 matrices as direct summands. In case of a;by + agb; > 0, the 1 x 1 matrix

(ag + ibg) is of norm /a3 + b3. In case of a1by + asb; < 0, the 2 x 2 matrix T = A + 1By

with s
0 1 —a (b1 + bg) d
A = ((1,1 ) d B = ( ! ) ’
0 0 @) M0 ay — a; Vd az (b1 + b2)
where d = —(a1b1 + agby)(a1b2 + agby), serves the purpose. In fact, By is a Hermitian matrix

with tr By = by + be, det(By) = biby and so o(By) = {b1, be}; furthermore, tr (T*7T) =
tr (A2 + B2) = a? + a3 + b? + b3, det(T*T) = |det T'|? = (aras — b1b)?, and thus

IT]| = {\/tr (T°T) — 2| det( )|+\/tr(T*T)+2|det(T)|}:T—i—T’.



Remark 2.2 Note that the setting of Theorem 2.1 admits a geometrical interpretation.
Namely, the given four real numbers (a1, as, by, by) subject to ay > |a;| and by > |b;| determine
a rectangle
R = {(L +ib:a€ [al,ag],b € [bl,bg]}

whose center
a by + b

1+ a9 e + 09

2 2

is a point in the first quadrant. We pay special attention to the location of w = ay + iby
the center of R and the vertex farthest away from the origin, and the location of the center
2o with respect to the line segment L joining a, with iby in the first quadrant. Hence, the
inequality a1bs 4+ asb; > 0 means that zo (the center of the rectangle R) lies above the line

segment L; thus the asserted norm bound y/a3 + b3 is just the length of the line segment L,

which is the same as the distance from the origin to the farthest vertex of the rectangle R.
On the other hand, the inequality a1by + a2b; < 0 means that the center of R lies below the
line segment L; thus the asserted norm bound is just |zg — as| + |20 — b2/, the sum of the
distances from the center of R to two ends of the line segment L, which is certainly larger
than the length of L. In the particular case of the equality a;by + asb; = 0, which means

that z lies on the line segment L, the two norm bounds /a3 + b3 and |2y — as| + |29 — by

coincide.

20 =

Remark 2.3 Recall that the numerical range of a matrix 7" € M,, is the set
W(T)={2"Tz:z € C", 'z =1}.

Let R be the rectangle with vertices a; + ib;, where j, k € {1,2}. Then a matrix T has
numerical range W(T) lying inside R if and only if T = A + iB such that A and B are
Hermitian matrices subject to a1 < A < asl and biI < B < byI. Let w = ag+1by and let 2
be the right-angled triangle formed by the three vertices w, @, and —@ that are equi-distant
from the origin. It turns out that the conditions as > |ai| and by > |by| together with
a1bs + axb; > 0 give rise to the situation that the rectangle R is a subset of the triangle €.
We can therefore apply a result of Mirman [7] (see also [8]) to conclude that |A+iB|| < |w].
Otherwise, the result of Mirman is not applicable whereas Theorem 2.1 provides a better
way to obtain the optimal norm bound for ||A 4 iB||. Furtermore, our bound improves the

result in [5] asserting

lA+iBI| < /llAl? + 2|18
if R is on the right half plane.

As a supplement to Theorem 2.1, we give below a detailed description of the situations
when the norm bounds in Theorem 2.1 are actually attained.

Lemma 2.4 Suppose A and B are 2 x 2 Hermitian matrices with spectra o(A) = {a1,as}
and o(B) = {b1,bs}. Assume further that |ai| < as and |b1| < by. Then

A+ iB|| = max{||A + iWBW*|| : W € My, W*'W = L}
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iof and only if A+ 1B is unitarily similar to

a; + Zbl 0

) >
0 a4y + ibQ> in case of arby + agby > 0,

(i) the diagonal matriz (

(ii) the non-normal matric

(%1 6?2>+a2ia1 (_al(f/l{bz) ag(bﬁb2)>

with d = —(a1by + agbe)(a1by + asbhy) in case of a1bs + agby > 0.

ay 0
0 [¢5)
Hermitian matrix. As every 2 X 2 real Hermitian matrix with spectrum {b, by} has the form

_b1+b21+b2_b1< —5 \/1—52)
s

2 2 V1 —s2

Proof. By unitary similarity, we may assume that A = ( ) and B is a real

B, with s € [-1,1],

we proceed to find s that maximizes the norm of T, = A + iB, which can be computed
through the equality

1
I = 1T = g { /(e (F)? = 4det(T) + e (1T3)

Since tr (T:Ts) = tr (A2 + BE) = a? + a3 + b + b3 is independent of s and det(T;T;) =
|det(T,)[* = (a1a2 — bibe)* + [(a1 + a2) (b1 + by) — s(az — a1)(bo — b1)]?, we see that
max,e[_1,1] ||Ts|| occurs exactly when minge|_; 1) det(7;T;) occurs. There are two cases:

(i) Suppose a1bs + agb; > 0; equivalently, (a; + ag)(by + b2) > (az — a1)(by — by) > 0.
a + ib1 0

0 as + Zbg
norm as desired. (For the degenerate case a; = ap or by = by, s can be arbitrary as all T}

Then minge_1 3y det(T;Ty) occurs at s = 1 and T, = ( ) has the maximal

are unitarily similar, and the conclusion still holds.)

(ii) Suppose a1by +asb; < 0; equivalently (as —aq)(be —b1) > (a1 +a9)(by +b9) > 0. Then
mingep 1,1y det(7;7Ts) = (ar1a2 — bibe)? occurs at s = (a1 +az)(by + b2)/[(az — a1)(bo — by)] and
the corresponding Ty is the 2 x 2 matrix as specified. O

Proposition 2.5 Suppose A, B are n x n Hermitian matrices subject to a1l < a < axl and
biI < B < byl. Assume further that as > |a1| and by > |by].

(i) Suppose aiby + asby > 0. Then

|A+iB|| = /a3 + b3



if and only if A+ 1B is unitarily similar to Cy & Cy with C; € My, Cy € M,, ., where
k is a positive integer < n, ||Cs| < \/cm (here Cy is absent if k = n), and

(a) Cy is a normal matriz subject to o(C1) C {agy — iba, ag +ibo} if (a1,b1) = (ag, —be),
(b) C1 is a normal matriz subject to o(C1) C {—as+1iby, az+1ibs} if (a1,b1) = (—ag, by),
(c) Cy = (ag +1iby) Iy for all other cases.

(ii) Suppose a1bs + asby < 0. Then

. 1 1
1A +iBll = Sy/(a1 = a2)? + (b1 +b2)? + 5/ (a1 +a2)? + (b = by)?

if and only if A+ iB is unitarily similar to Cy & Cy, where Cy equals a direct sum of
k copies of the 2 X 2 matrix

TO:<a1 0>+ i (—al(b1+bz) Vd )
0 a as — ay Vd as(by + bs)

with 1 < k < n/2, d = —(a1by + asby)(a1by + asby), and Cy € M, o satisfying
|Ca|| < [|A+ iB|| (here Cy is absent if k =n/2).

Proof. By direct computation (or as calculated in the proof of Theorem 2.1 and Lemma
2.4), the 2 x 2 matrix Tj attains the norm bound. Thus, all of the “if” cases can be verified
readily.

Conversely, suppose ||A + iB|| has attained the upper bound as in Theorem 2.1. From
the proof of Theorem 2.1, there exists A\g € € be such that

A+ B = [[A+ XoI| + [[iB — AoI|];
so, there is a unit vector z € C" such that
|A+iB|| = ||(A+iB)z|| = ||(A+XoL)z+ (B =Xo)z|| < [|[A+NoI||+]||iB—=XoI|| = ||[A+iB]|.

Assume further |4 + AI|| # 0, ||iB — XoI|| # 0 in order to omit the trivial cases. Then
(A + XDzl = ||A+ XI||, ||[iB — MoD)z|| = ||iB — XoI||, and (A + XoI)z is a positive
multiple of (iB — A\oI)z; thus, span {z, Az} = span{z, Bx} = S, say. Since (4 + A\gI)*(A +
M)z = ||A+ NoI||?z, we have A%z = (|4 + XoI||2 — [Ao]|?)z — (Ao + Xo)Az; thus, S is an
invariant subspace, and hence a reducing subspace of the Hermitian matrix A. Similarly,
since (iB — X\oI)*(1B — XoI)x = ||iB — A\oI||?x, we see that S is a reducing subspace for B.
Therefore, S is a reducing subspace for A + iB. There are two possible situation.

(a) S is of dimension 1. Then A + iB can only attain the value ay + iby (or a; + iby or
as + ib; in the degenerate cases) as the possible reducing eigenvalue of maximal modulus.

(b) S is of dimension 2. By Lemma 2.4, we get a diagonal matrix or a non-normal matrix
as a direct summand of A + iB.

In both cases, we can extract as many copies of the norm attaining summand until the
remaining part has norm strictly less than ||A + iB||. O



3 The Sum of Two Unitary Matrices
Suppose U and V' are n X n unitary matrices with spectra & and V. Obviously,
max{|u+v|:uel,v €V} <max{||[U+WVW| W e M, WW=1I1}<2  (31)

It turns out that at least one of these two inequalities must be an equality. We need the
following observation to prove our main result.

Lemma 3.1 Suppose ui,us, vy, vy are complex numbers on the unit circle such that the line
segment joining uy, us, and the line segment joining vy, ve, intersect at w with |w| < 1. Then

w —uqugy/1 — |w|? w —v1v24/1 — |w|?
U= o vl and V = v [l
V31— |w? Uy U W V31— |w? V1V W

are unitary matrices with spectra o(U) = {ui,us}, (V) = {v1,v2} and ||U + V|| = 2.

Proof. Tt is readily seen that U is a unitary matrix with det(U) = ujuy. Write w =
tu; + (1 — t)ug, where t € [0,1]. Then wjuow = (1 — t)u; + tus, and hence trU = uy + uo,
and o(U) = {uy,us}. Similarly, V is unitary with eigenvalues v; and vy. The assertion
WU+ V|| =||(U+V)ei|| = 2 is clear. O

Theorem 3.2 Let U and V be n x n unitary matrices with spectra o(U) and o(V).

(i) If there is an arc T of the unit circle T such that
oU)CT and o(V)CT\T, (3.2)

then
U+ V| <max{|lu+v|:ueol),veaV)}.

(ii) If there does not exist an arc I' of the unit circle T satisfying (3.2), then

\U+V] <2

(iii) The bounds in (i) and (ii) are sharp as there exists a unitary matric W such that
\U +WVW?*|| attains the bound in each case.

Proof. Case (i) Suppose ug € o(U) and vy € (V) satisfy
lug + vo| = max{|u+v|:u € o(U) and v € o(V)}.
Since |u — v|* =2 — |u + v|?, it follows that
|ug — vo| = min{|u —v| : u € o(U) and v € o(V)} > 0.
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After a rotation, we may assume that there exists 65 € [0, 7) so that

{e,e7} Co(V) C{e”: 0 € [—0,,00]}.

Thus, vy = €% or e . Without loss of generality, we may assume further that v, = €.

Then uy = et with 6, € (0, 7], Thus,
Reu < Reuy < Revg < Rew
for all u € o(U) and v € o(V'). For any positive real numbers A, we have
lug + A> — |u+ A =2Re (ug — u)A >0 and |vg — A> = [v — A[> = —2Re (vy —v)A >0
for all uw € o(U) and v € o(V); thus
WU+ M| =|ug+ Al and ||V = A|| = |vg — Al

As the right half circle joining vy and —vg through the point 1 includes the points —ug, we
see that the line joining vy and —uy meets the real line at a positive real number ). In fact,
Ao = sin(f; — 05)/(sin; + sinfy), or 1 in the degenerate case if #; = 7 and 6, = 0. Hence,
ug + g and vy — Ao are two complex numbers of same argument. Therefore

U+ VI < U+ X[ + 1]V = Aol = [uo + Ao| + |vo = Ao| = [uo + o]

as desired.

Case (ii) is obvious.

(iii) The bound in (i) is sharp as we can find diagonal matrices U and V' with matching
eigenvalues to attain the norm. The bound in (ii) is sharp as the pair of 2 x 2 unitary
matrices in Lemma 3.1 attain the norm ||U + V|| = 2. O

Corollary 3.3 Let U and V' be n X n unitary matrices with spectra o(U) and o(V), and let
a and b be positive numbers.

(1) If there is an arc I' of the unit circle T such that 3.2 holds, then

laU + bV || < max{|au + bv|: v € o(U),v € a(V)}.

(ii) If there does not exist an arc I' of the unit circle T satisfying (3.2), then

laU + bV || < a + b.

(iii) The bounds in (i) and (ii) are sharp as there exists a unitary matric W such that
laU + bW VW*|| attains the bound in each case.



Proof. Since (aU~+bV )*(aU+bV) = (a—b)?+ab(U+V)*(U+V), we see that ||aU+bV||> =
(@ — b)? + ab||U + V|%. So, all of the results in Theorem 3.2 apply. O

Evidently, Theorem 3.2 is useful to estimate |[U — V|| for a pair of unitary matrices U
and V.

Corollary 3.4 Let U and V be n x n unitary matrices with spectra o(U) and (V). If there
exists an arc I' of the unit circle T such that

o(U)CTl and o(-V)CT\T, (3.3)

then
nax U —W*VW| = max{|u—v|:u € a(U), veaV)} (3.4)
otherwise, (i.e., (3.3) is not valid), we have

max ||U—-W'VW| = 2.
W W=I

Putting U = V in Corollary 3.4, we get the following formula for

max [|U - W UW/|,

WW=1
which is the diameter of the unitary orbit {W*UW : W*W = I} of U.

Corollary 3.5 Let U be an n x n unitary matriz. If its spectrum o(U) lies in an arc of the
unit circle with length less than w, then

max |[|U—- W UW| = max{|u —v|:u,v € o(U)};

W*W=I

otherwise,
max |[|U—-WUW| = 2.
WHW=I

In particular,
max |[|U—-WUW| < 2
WHW=I

if and only if o(U) lies in an arc of the unit circle with length less than .

In practice, there are different conditions ensuring that there exists an arc I' of the unit
circle T satisfying (3.3) so that (3.4) holds. For example, if there is an arc ' of the unit circle
T with length less than 7 containing o(U) U (V'), then condition (3.3) holds. In particular,
if U,V satisty

U1 <v2 and |V -I||<V?2,

then all the eigenvalues of U and V' lie in an open semi-circular arc of the unit circle symmetric
about the point 1. The above condition is particularly useful in studying the distance between
unitary matrices in a small neighborhood of I.
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Another condition implying the existence of an arc I' of the unit circle satisfying (3.3) is
that
max{|u —v|: u € o(U), v € o(V)} < V2.
To see this, assume that the hypothesis of Corollary 3.4 does not hold. Then there exists
e’ e € g(U) and e e € o(V) such that s; < t; < s < ty < 51 + 2m, i.e., the four
points divide the unit circle into 4 arcs. Thus, the largest arc must have length larger than

or equal to m/2, and the distance between the two end points of this arc is at least V2.
Again, this result is best possible as shown in the following example.

0 1 0 1
U_<1 0) and V_<—1 O)'

max{|ju —v|:u€ o), veos(V)}=v2 and |U-V| =2

Example 3.6 Let

Then

Yet, another condition implying the hypothesis of the Corollary 3.4 is that
max{|p —n| : p,n € o(U) Uo(V)} < V3.

In fact, if the above inequality holds, then for any e € o(U) U (V), all the other elements
in 0(U)Uc (V) can be written in the form e%!, ... e*r and e'!,... e so that p+q+1 = 2n,

51 < - Ksp Stg Sty < -- - <y

to < s1+2m/3, and t, <to+2m/3.

Since |e! — eifs| < /3, we see that t, < s, + 27/3. Thus, o(U) U o(V) lies in an open arc
of the unit circle with length less than 27/3. The above result is best possible as shown by
the following example.

Example 3.7 Let

01 0 0 -1 0
U=10 0 1 and V=0 0 -1
1 0 0 1 0 0

Then U and V are unitarily similar, o(U) = (V) = {1,w,w?} with w = €23, and

IU =V =2>V3=max{[up—n|:pneal))}
Note that the discussion in this section reveals that there are some sorts of discontinuity

phenomena concerning the spectral variation of unitary matrices. We summarize them in
the following.
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Proposition 3.8 Fort € |0,2], let
O(t) =max{||U -V| :U'U =1, =V*V, |u—v| <t whenever u € o(U), v e a(V)},
and
U(t) = max{||U - WUW*|| : U*U = I, = W*W, |u —v| <t whenever u,v € o(U)}.
(i) If n=1, then ®(t) =t for allt € [0,2]; if n > 2, then

_Jt fort< V2,
@(t)_{Q fort € [v/2,2].

(i) If n <2, then U(t) =t for allt € [0,2]; if n > 3, then

_Jt fort <3,
qj(t)_{Q fort €[v3,2].

Remark 3.9 It is helpful to use harmonic analysis (alias, the geometry of the circle) to
explain the underlying truth (or myth) associated with the discontinuity of ®(¢) in Proposi-
tion 3.8. Let (a1 (), as(t); B1(t), B2(t)) be four points on the unit circle moving continuously
with respect to time ¢. Assume further that the quadruple is (—1,1;,4,—7) at ¢ = 0 and

the quadruple is (1,1;1,1) at ¢t = 1. To measure the separation between o’s and f’s, we
introduce a function

g(t) = max{|e;(t) — Br(t)| : 1<j<2andl1<k<2}

with g(0) = v/2 and g(1) = 0. Then it is clear from the structure of the unit circle, there

exists ¢y € (0,1) such that g(¢y) = 2. Henceforth, we can describe such an astonishing
phenomenon as a paradox in harmonic analysis:

Paradox (for the continuous movement of a’s and 3’s on the unit circle). In order to come
closer, they should go farther apart. Before coming altogether, they should have already gone
farthest apart.

The discontinuity of W(¢) at t = /3 is also associated with a fascinating phenomenon
about the continuous movement of three points on the unit circle. Let (a;(t), aa(t), a3(t)) be
three points on the unit circle moving continuously with respect to time ¢. Assume further
that the triple is (1, e’2™/3,e"/3) at t = 0 and the triple is (1,1,1) at t = 1. To measure the
scattering of a’s, we introduce a continuous function

h(t) = max{|a;(t) — ax(t)| : 1< j <k <3} with h(0) = V3 and h(1) = 0.

Then from the special feature of the unit circle, there exists tq € (0,1) such that h(ty) = 2.
In other words, the initial position (1, e?7/3, *7/3) is a critical situation that prevents A from
decreasing. Indeed, starting from its local minimum A(0) = /3, the function A must climb,
all the way up to reach its absolute maximum h(ty) = 2, before falling down to its absolute

minimum A(1) = 0.
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As a supplement to Theorem 3.2, we provide below a detailed description of the situations
when the norm bounds in Theorem 3.2 are attained.

Lemma 3.10 Let U and V' be 2 x 2 unitary matrices with spectra o(U) = {u,u} and o(V) =
{v,v}. Assume further that Imu > 0 and Imv > 0. Then

U+ V| =max{||U+W*VW| : W € My, W'W = I}

. . . Y u+v 0
iof and only of U +V is unitarily similar to ( 0 i+ 17)'

u
0

U), each unitary matrix with spectrum {v, 7} is of the form

w —y/1— |w]?
V., = subject to |w| <1 and w4+ w =v+ 7.
. ( R ]

Equivalently, w is subjected to the condition w = v — isImv with s € [0,2]. We proceed to
find w that maximizes the norm of T, = U +V,,. Since T;;T,, = d,, I with

Proof. We may assume that U = ( 2) Then by unitary similarity (without changing

dy = |u+w*+1— |w?=2+2Retw = 2+ 2Re v — 2sIm ulm v,

v

9) as desired. O
0 v

it follows that max ||7,|| occurs at s =0 and w = v and V,, = (

Proposition 3.11 Let U and V be n x n unitary matrices with spectra o(U) and o(V').

(i) Suppose there is an arc I of the unit circle T such that (3.2) holds. Then
U+ V| =max{|lu+v|:ueal),veaV)}

if and only if U and V have a common eigenvector with respect to uy € o(U) and
vy € o(V) satisfying

lug + vo| = max{|u+v|:ue€a(U), vealV)}

(ii) Suppose there does not exist an arc T of the unit circle T satisfying (3.2). Then
U+ V|| =2 if and only U =V is a singular matriz.

Proof. Case (i) As in the proof of Theorem 3.2, we may assume, without loss of generality,
that there exist ug € o(U) and vy € o(V') such that

lugp + v9| = max{|u +v|:u € o(U), vea(V)}

13



and Imug > 0, Imvy > 0, and Reu < Reug < Revy < Rew for all u € ¢(U) and v € o(V).
Now suppose further that

U+ V|| =max{||U+WVW*||: W € M,, WW =1,} = |ug + vo|.

From the proof of Theorem 3.2 again, there is a positive real number Ay so that ||U + \oI|| =
[uo + Ao, |V = Aol| = |vg — Ao, and

U+ VI =IU+ X[+ [V = Ad].

Assume ug + Ag # 0 and ug — Ay # 0 to avoid trivial cases. Let x € C" be a unit vector so
that

IU+VI = U+ V)2l =[[(U+ D)z + (V= dol)z]]
< U+ XDzl + [[(V = AoD)z]| < [[U+ XoI|| + IV = o] = [|U + V.

Then ||(U+ )\0[)33“ = ||U+ )\0]” = |’U,() + )\0|, ||(V - )\0]).7)“ = ||V — )\0]” = |’UO — )\0|, and
(U + XoI)z is a positive multiple of (V' — AoI)x; thus span {z, Uz} = span{z,Vz} = S, say.
Since (U + X\I)*(U + XoI)x = |ug + Ag|%x, we see that U?x = —x + (ug + Ug)Uz; thus S is an
invariant subspace, and hence a reducing subspace for U. Similarly, (V — X\gI)*(V — Aol )z =

lvg — Ao|%z induces that S is a reducing subspace for V, too. Therefore S is a common
reducing subspace of U and V. There are two possible situations.

(a) Suppose S is of dimension 1. Then z is a common eigenvector for U and V' corre-
sponding to the eigenvalues u' € o(U) and v' € o(V') with |u' +v'| = |ug + vo| as desired.

(b) Suppose S is of dimension 2. Let Uy, Vi € M, be the restrictions of (U+Xg!)/|ug+ Ao
and (V — XoI)/|vo — Ao| to the common reducing subspace S. As U is a normal matrix of
norm 1 and ||Upz|| = 1 and z is not an eigenvector of ug, it follows that U must be a unitary
matrix with two distinct eigenvalues. Since o(Up) C {(u + Xo)/|uo + Xo| : u € o(U)}, and
Reu < Rewug and Ay > 0, we deduce that o(Up) = {(uo + o)/ |uo + Ao, (T + Ao)/|uo + Aol };
hence, the 2 x 2 matrix formed by U restrcted to S is a unitary matrix with spectrum {uyg, g}
such that Imug > 0. Similarly, V restriced to S is a unitary matrix with spectrum {vy, 7o}
such that Im vy > 0. Therefore, we can apply Lemma 3.10 to get the conclusion.

Note that ||[U + V|| = 2 means that there exists a unit vector z satisfying 2 = ||[U+ V|| =
|(U+V)z|| < ||[Uz| +]||Vz| <2, which yields Uz = Vz, and thus that U — V is singular. O

4 The Sum of two Normal Matrices
In this section, we prove that the quantity

min{ max |a+ Al + max —A
,\GC{aGU(A) | | Bea(B) 15 1}
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is the optimal norm bound for ||A+ B|| when A and B are normal matrices. It turns out that
the major structure theory is based on the solution of the following geometrical combinatorial
problem: Given two compact subsets A and B of the complex plane C, determine

i - A - A
;ré%l{rgea} o — Al + max [ — Al},
and the triples (ag, B, Ao) € A X B x C that attain the min-max value. In other words, we
are trying to find a point in € that minimizes the combined maximum distances to points
in the sets A and B.

In order to get a direct application to our setting of the summation of two normal
matrices, we replace (A, B) by (—.A, B) and consider

irélqrjl{glg} o + A+ max |6 — Al}-

Denote by T the unit circle in C. Each non-empty compact set S C C determines a compact
subset of elements of maximal modulus,

M(S)={peS:|u >|v|foralvesS}.
Let N(S) be the normalization of M (S), i.e., N(S) is a compact subset of T defined as

(T if S ={0},
N(S) = {{a/|a| ra€e M(S)} if S # {0}

Proposition 4.1 Suppose A and B are non-empty compact subsets of the complex plane C.
Then
iréi(rgl{rgeaglaJrAl+rggglﬁ—kl}=rgg}|a|+rggg|ﬁ|- (4.1)

iof and only if the following condition holds.

(I) There exist uy,us € N(A) and vi,vo € N(B) such that the line segment joining uq and
us meets the line segment joining v1 and vy at some point w with |w| < 1; equivalently,
there does not exist an arc I' of the unit circle T such that

N(A) CT and N(B)CT\T.
Note that if u; = up or v1 = vy in (I), then |w| =1 and
N(A)NN(B) # 0. (4.2)
Proof. Let
a = max{|a| : a € A} and  b=max{|8|: S € B}.

We assume that a,b > 0 to avoid trivial consideration.
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Suppose (4.1) holds. If there is an arc T" of the unit circle T such that N(A) C I" and
N(B) C T\T. We may apply a rotation to € and assume that T\ T' = {e" : t € (—t1,%)}
with ¢; € (0,7). Choose two real numbers s € (—1,1) and € € (0,1) such that

cosf; <cost; <s—¢e and s+ ¢ < cos by
for all u = a(cos b, +isiné,) € N(A) and v = b(cos by + isinfy) € N(B). Let
Ao={a€e A:Re(a)/a>s—¢c} and By={B € B:Re(B)/b<s+¢e}.

Since A, and B, are compact and aN(A) N Ay = ¢ = bN(B) N By, there exists § > 0
such that |a| < a(l — 6) and |3| < b(1 — §) for all « € Ay and 3 € By. Now for any
a = ay(cosb +isinb;) € A\ Ay and § = by(cosb, + isinby) € B\ By with a; € (0,a] and
by € (0,b], and cosf; < s —e < s+ € < cos by, we have

la+t? = af +2aitcost + 1
< @+ 2at(s —¢) + 12

= (a+1ts)* — 1?8 — (a — a))(a + ay + 2t(s — €)) — t(2ae — 1)

< (a+ts)?
when ¢ is a small positive real number. Hence we get |a + t| < a + ts and, similarly,
|f—t| < b—ts. Thus, for a sufficiently small ¢ > 0, we have |a+t|+|8—t| < (a+ts)+(b—ts) =
a+ b for every a € A\ Ag and 8 € B\ By. Also, for any o € A and 8 € By, we have
la+t/+|8—t| <a+t+b(1—108)+t<a+bif 2t < bd; for any o € Ay and 3 € B, we have
la+t|+ (8-t <a(l—=9)+t+b+1t <a+bif 2t < ad. Consequently, if ¢ > 0 is small
enough, we have |a+t|+ |3 —t| < a+b for any a € A and 8 € B. It will then follow that

max (o +t| + max |3 —t| < a+b,
acA BEB

which is a contradiction.
To prove the converse, suppose condition (I) holds. Let

w=ru; + (1 —r)ug = svy + (1 — s)vy
with 7, s € [0, 1], u1, us in N(A) and vy, v, in N(B). Then

max |a+ A| > max|au; + A|
acA j=1,2

max |a + Au;|
7j=1,2

rla + Ay | + (1 — 7)|a + Ag|
Ir(a+ AMiy) + (1 —7)(a + Adg)|
la + Aw|.

(AVARAY,
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Similarly,
max |8 — A > [b— A\@|.
BeB

Consequently, we have

max |+ Al + max |8 — A| > |a+ A\@| + [b — Aw| > a +b.
acA peB

Thus (4.1) holds. O

Corollary 4.2 Suppose A and B are non-empty compact subsets of the complex plane C.
Then
: < mi — . .
max{|a+ | : a € A, ,BEB}_;rélqgl{rgg}|a+A|+I};lgéc|ﬁ A} (4.3)

The inequality becomes an equality if and only if there exists (ap, fo, o) € A X B x C such
that cg + Ao and By — Ao are two complex numbers of the same argument, and

|t + Ao =r£gjc|a+/\0| and |Bo — Ao =I}j1élé(|ﬁ—/\0|. (4.4)

Proof. Evidently, for any «, 8, A € C,
oo+ B < fa+ Al + 18— Al
Thus (4.3) holds. Moreover, it is easy to check that inequality (4.3) becomes an equality
with
o + fo| = max |+ Ao| + max 5 — Ao| = g + Ao +[fo — Aol

if and only if the asserted condition holds for (v, 5o, Ag) € A x B x C. a

Theorem 4.3 Let A and B be n X n normal matrices with spectra A and B. Then

max ||A+ W*BW|| = min{||A + M|| + || B — AI||} = min{max | + A\| + max |3 — A|}.

Proof. 1t is clear that for each unitary W and each complex number A, we have
|A+W*BW| = ||A+ X +W*(B-A)W| < ||[A+ Xl| + ||B — M|}

So,
max{||A+ W*BW|| : W is unitary } < m1q1}1{||A + M| +||B = M|}
A€

To prove the theorem, we need only to show that there exists a unitary matrix W satisfying

I|A + W?*BW/|| = min{max |« + A| + max |5 — \|}.
v e BB
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We may assume that the expression on the right side attains its minimum at Ay = 0;
otherwise, replace (A, B) by (A + AoI, B — A\oI). Applying Proposition 4.1 to the spectrum
of A and that of B, we have two possibilities.

If condition (4.2) holds, let W, and W, be unitary so that W*AW; has aq as the (1,1)
entry, and W5 BW, has [, as the (1, 1) entry, where oy € o(A), By € o(B) and

|0 + Bo| = |eo| + [Fo] = [|A]l +[|B]|-
Then for W = WoW}, we have

|A+ W*BW|| = ||W; AW + W5 BW,||
> = ] - .
> oo + fol Ané%{rgeajlaJrAl +max|f — Al}

Suppose condition (I) in Proposition 4.1 holds. Let ux = ay/|og| and vy = B/|Bk| for
k =1,2, where a1,y € o(A) with |a1| = |ag| = ||4]|, and B1, B2 € o(B) with |B1]| = |52] =
||B||. Suppose the line segment joining u; and u, meets the line segment joining vy and vy
at w. Let W, and W, be unitary so that W}AW; = ||A||U & Ay and W3 BW, = ||B||V @ B,
where U and V satisfy the conclusion of Lemma 3.1. Then for W = WoW7, we have

|A+W*BW|| = |[(W; AW, + W5 BW;)e||
= |4l + 1]l = min{max o+ X| + magx 5 - A}

O
We note that the equality
max ||A+ W*BW]| = min{||A+ || + || B — M\||} (4.5)
WW=In reC

is actually valid for general matrices without the normality assumption as explored in details
in [6].

5 Extension to infinite dimensional cases

Let B(H) be the algebra of bounded linear operators acting on an infinite dimensional Hilbert
space H. Although the results in the previous sections are stated and proved for matrices
only, we can extend them to bounded linear operators in B(H). However, since the left hand

side of (4.5) may not be attainable as shown in the next example, we need to make some
adjustments in the statements of the results.

Example 5.1 Consider A = diag(0,1/2,2/3,3/4,...) and B = diag(1,0,0,...) acting on
H = ZQ. Then

2 = [[Al+B]
= min{||A+ M|+ ||B— M||: A€ C}
= sup{||[A+ W*BW]|| : W is unitary },

and the supremum is not attainable.
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We proceed to show that ||T|| < 2 if T'= A+ W*BW for some unitary W € B(H). Note
that A has norm 1 but it is strictly contractive in the sense ||Az|| < 1 for all unit vectors
x € H; thus |AC|| < 1 for all rank-1 norm-1 operator C. Now suppose "= A+W*BW is of

norm 2, then 72 is of norm 4. As the expansion of T2 is a sum of four operators where each
is of norm < 1, it follows that each of these four operators is of norm 1. But one of these
four operators is S = AW*BW ,so 1 = ||S|| = ||[AW*BW|| = ||AC|| < 1 where C = W*BW
is of rank-1 and norm 1. This leads to a contradiction.

To extend our results on M,, to B(H), we need the following lemma.

Lemma 5.2 Suppose A € B(H) is normal and has spectrum o(A). If ay, a0 € o(A),
then for any € > 0, there is a normal operator A such that a1, s are eigenvalues of A,
o(A) = o(A), and
|A - A] <e.
Proof. If @ € 0(A) is not an eigenvalue for a normal operator A, then by the spectral

theorem, A can be written as A; & Ay where Ay is acting on an infinite-dimensional Hilbert
space and ||[Ay — al|| < €/2. Rewrite Ay as @& ,C,,, where C},’s are acting on a common

identical Hilbert space. Let A=A @;’Lo:lé’n, with C; = al, and C’n = C,_y for n > 0.
Then « is an eigenvalue for A while 0(A4) = o(A) and |4 — A|| < e. The argument above

can be extended to get A with two prescribed eigenvalues oy and o, € (A). a

We illustrate how to use Lemma 5.2 to prove the infinite dimensional version of Theorem
4.3 in the following.

Theorem 5.3 Let A, B € B(H) be normal operators with spectra A and B. Then
su A+ W*BW|| = min{||A + AI|| + ||B — MI||} = min{max | + A\| + max |8 — A|}.
su | | = min|4 + M|+ [|B = A[]} = min{max o+ A|+ max |3 Al
Proof. 1t is clear that
sup{||[A + W*BW|| : W is unitary } < Inlél{“A + M|+ || B — M|}
Ae

To prove the theorem, we need only to show that for any ¢ > 0 there is a unitary operator
W € B(H) such that

|A+W?*BW|| + ¢ > min{max | + A| + max |5 — A|}.
)\E@ acA peB

We may assume that the expression on the right side attains its minimum at A\g = 0;
otherwise, replace (A, B) by (A + X\I,B — X\I). Applying Proposition 4.1 to o(A) and
o(B), we see that condition (I) in Proposition 4.1 holds. If (4.2) holds and «y (respectively,
Bo) is an eigenvalue of A (respectively, B), then we can use the same arguments in the proof
of Theorem 4.3 to conclude that there exists a unitary W such that

|A + W?*BW/|| = min{max |« + A| + max |5 — \|}.
)\E@ acA BeEB
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Similarly, we can prove this equality if (I) in Proposition 4.1 holds with N(A) N N(B) =0
and a1, s (respectively, 81, 52) are eigenvalues of A (respectively, B).
Suppose A and B do not have the desired eigenvalues. By Lemma 5.2, for any € > 0, there

exist normal operators A and B in B (H) such that A and B have the desired eigenvalues,

o(A) = o(A), ||A - A4]| < /2. o(B) = o(B), and |B — B|| < £/2. Then there exists a
unitary W such that

|A+W*BW| +¢ > ||A+ W*BW]| = min{max |a + \| + max |8 — A|}.
)\E@ acA peB

We can apply similar arguments to extend other results to B(H). Very often, we have
to replace “maximum” by “supremum” in the statements of results as done in Theorem 5.3.
For example, Theorem 2.1 can be extended to the following.

Theorem 5.4 Suppose A, B € B(H) are Hermitian operators satisfying a1l < A < asl and
b1l < B < byl. Assume further that as > |ay| and by > |by].

(1) If a1b2 + a261 Z 0, then

|A +iB|| < |ag + ibs| = \/a3 + b3.

(11) If a1b2 + a261 S 0, then
|A+:iB| <7+ 17,

where

1
T = ‘0,1 — Z()| = ‘0,2 — Z()‘ = 5\/(0/1 — 0,2)2 + (b1 + 62)2

and

. . 1
TI = ‘Zbl — Z()| = |Zbg — Zo‘ = 5\/(0;1 -+ 012)2 + (b1 — 62)2
with zZ0 = {(a1 + 0,2) + Z(b1 + bz)}/Q
(iii) The bounds in (i) and (ii) are sharp in the following sense: If {ai,a2} C o(A) and
{b1,b2} C o(B), then sup{||A+ iWBW*||: W € B(H) is unitary } attains the bound

in each case.

The extensions of other results to the infinite dimensional case can be done in a similar
fashion. We omit their discussion.
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