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Abstract

Let A and B be bounded linear operators acting on a Hilbert space H. It is shown that the
triangular inequality serves as the ultimate estimate of the upper norm bound for the sum of two
operators in the sense that

sup{‖U∗AU + V ∗BV ‖ : U and V are unitaries} = min{‖A + µI‖+ ‖B − µI‖ : µ ∈ C}.

Consequences of the result related to spectral sets, the von Neumann inequality, and normal dila-
tions are discussed. Furthermore, it is shown that the above equality can be used to characterize
those unitarily invariant norms that are multiples of the operator norm in the finite dimensional
case.

Keywords: Triangle inequalities, operator norm, unitarily invariant norm, normal dilations,
spectral circles.
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1 Introduction

Let H be a Hilbert space equipped with the inner product (x, y), and let B(H) be the algebra of
bounded linear operators acting on H equipped with the operator norm

‖A‖ = sup{‖Ax‖ : x ∈ H, (x, x) = 1}.

If H is n-dimensional, we identify H with Cn and B(H) with the algebra Mn of n × n complex
matrices.

Basically, the triangle inequality

‖A + B‖ ≤ ‖A‖+ ‖B‖

plays an important role in structure theory concerning the summation of matrices. In spite of the
complexity of the norm computation, we will show that there are effective ways to obtain the best
norm estimate for the sum of two operators.

For any A,B ∈ B(H), it is clear that

‖U∗AU + V ∗BV ‖ ≤ ‖U∗AU + µI‖+ ‖V ∗BV − µI‖ = ‖A + µI‖+ ‖B − µI‖

for all µ ∈ C and unitary U, V ∈ B(H). We show that this rather trivial inequality is the ultimate
estimate of the upper norm bound for A + B in the sense that

sup{‖U∗AU + V ∗BV ‖ : U and V are unitaries} = min{‖A + µI‖+ ‖B − µI‖ : µ ∈ C}. (1.1)

The inequality (1.1) is of great significance even when A and B are normal matrices. As
established in [3], a sharp bound is obtained for ‖A1 + iA2‖ where A1 and A2 are n× n Hermitian
matrices satisfying b1I ≤ A1 ≤ c1I and b2I ≤ A2 ≤ c2I.

Evidently, if the unitary similarity orbit of A ∈ B(H) is the collection of operators unitarily
similar to A, then the quantity in (1.1) can be viewed as a measure of (or a bound on) the distance
between the unitary similarity orbits of A and −B. In particular, replacing B by −B and µ by
−µ, we can rewrite equation (1.1) as

sup{‖U∗AU − V ∗BV ‖ : U and V are unitaries} = min{‖A + µI‖+ ‖B + µI‖ : µ ∈ C}.

Note that the supremum on the left side of (1.1) may not be attainable in the infinite-dimensional
case; see [3, Example 5.1] for the full justification of the following example.

Example 1.1 Consider A = diag (0, 1/2, 2/3, 3/4, . . .) and B = diag (1, 0, 0, . . .) acting on H = `2.
Then

2 = ‖A‖+ ‖B‖
= min{‖A + µI‖+ ‖B − µI‖ : µ ∈ C}
= sup{‖U∗AU + V ∗BV ‖ : U and V are unitaries},

and the supremum is not attainable.

We prove the equality (1.1) and show that the quantity in (1.1) is the same as

sup{‖AX + XB‖ : X ∈ B(H), ‖X‖ ≤ 1}.
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This may lead to a more direct proof of the result of Stampfli [7] concerning the norm of derivations.
Furthermore, the quantity in (1.1) is also the same as

sup
{∥∥∥∥(

(Ax, x)
{‖Ax‖2 − |(Ax, x)|2}1/2

)
+

(
(By, y)

{‖By‖2 − |(By, y)|2}1/2

)∥∥∥∥ : x, y ∈ H, ‖x‖ = ‖y‖ = 1
}

,

which is sort of optimal value of summation of two shells associated with A and B.
The equality in (1.1) may not hold if the Hilbert-space operator norm ‖ · ‖ is replaced by other

norms.

Example 1.2 Consider the Frobenius norm ν on M2, i.e., ν(T ) = {tr (T ∗T )}1/2. Let

A =
(

0 1
1 0

)
and B =

(
0 1
−1 0

)
.

Then for any two unitaries U, V ∈ M2, we have

tr (U∗A∗UV ∗BV + V ∗B∗V U∗AU) = tr (V ∗(B + B∗)V U∗AU) = 0,

and hence
ν(U∗AU + V ∗BV ) = {tr (U∗A∗AU + V ∗B∗BV )}1/2 = 2.

For any µ ∈ C, we have

ν(A + µI) ≥ ν(A) =
√

2 and ν(B − µI) ≥ ν(B) =
√

2.

Thus

sup{ν(U∗AU + V ∗BV ) : U and V are unitaries}

= 2 < 2
√

2 = min{ν(A + µI) + ν(B − µI) : µ ∈ C}.

We will show that condition (1.1) can actually be used to characterize unitarily invariant norms on
Mn that are multiples of the operator norm.

Suppose H ′ is a closed subspace of H, and P is the orthogonal projection of H onto H ′. Then
the operator A′ = PA|H′ : H ′ → H ′ is a compression of A (actually, A′ is the compression of A on
H ′), and A is called a dilation of A′.

Our paper is organized as follows. We prove our main theorem and some related results in
Section 2. Some consequences of the main theorem related to spectral sets, the von Neumann
inequality, and normal dilations are discussed in Section 3. In section 4, we use condition (1.1) to
characterize the operator norm on Mn.

2 The main theorem

For an operator T ∈ B(H), each unit vector x ∈ H determines a vector Tx = αx+ bx′ with α ∈ C,
b ∈ [0,∞), and x′ as a unit vector orthogonal to x. Hence,(

α
b

)
=

(
(Tx, x)

{‖Tx‖2 − |(Tx, x)|2}1/2

)
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is a vector in C×R of the same length as ‖Tx‖ and, the vector x′ ∈ H is uniquely determined by
x if b 6= 0 (equivalently, when x is not an eigenvector for T ). Thus, the set

Ω(T ) =
{(

(Tx, x)
{‖Tx‖2 − |(Tx, x)|2}1/2

)
: x ∈ H, (x, x) = 1

}
⊆ C× [0,∞) (2.1)

is a sort of shell associated with T capturing main effect of the norm and the quadratic form. (Cf.
the notion of a shell as introduced by Davis [4].) For a further exploration on Ω(T ), we note that

Ω(T + µI) =
{

u +
(

µ
0

)
: u ∈ Ω(T )

}
because

{‖Tx‖2 − |(Tx, x)|2}1/2 = {‖(T + µI)x‖2 − |((T + µI)x, x)|2}1/2.

Thus,
Ω(A) + Ω(B) = Ω(A + µI) + Ω(B − µI)

and so

sup{‖u + v‖ : u ∈ Ω(A), v ∈ Ω(B)} = sup{‖u + v‖ : u ∈ Ω(A + µI), v ∈ Ω(B − µI)},

for all µ ∈ C.
The following is the statement of the main theorem.

Theorem 2.1 Let A,B ∈ B(H). Then

sup{‖U∗AU + V ∗BV ‖ : U and V are unitaries} = min{‖A + µI‖+ ‖B − µI‖ : µ ∈ C}.

Moreover, the quantity in the above equality is the same as

sup{‖AX + XB‖ : X ∈ B(H), ‖X‖ ≤ 1},

which is also the same as
sup{‖u + v‖ : u ∈ Ω(A), v ∈ Ω(B)}.

Preparation for the proof of the main theorem

Let e1, e2 be two orthogonal vectors of length one in H. Suppose u ∈ Ω(A) and v ∈ Ω(B).
Then there exist unitary U, V ∈ B(H) such that

u =
(

(U∗AUe1, e1)
(U∗AUe1, e2)

)
and v =

(
(V ∗BV e1, e1)
(V ∗BV e1, e2)

)
.

Thus
‖u + v‖ = ‖(U∗AU + V ∗BV )e1‖ ≤ ‖U∗AU + V ∗BV ‖,

and hence

sup{‖u + v‖ : u ∈ Ω(A), v ∈ Ω(B)} ≤ sup{‖U∗AU + V ∗BV ‖ : U and V are unitaries}.

Clearly, for any contraction X ∈ B(H) and µ ∈ C,

‖AX + XB‖ ≤ ‖(A + µI)X‖+ ‖X(B − µI)‖ ≤ ‖A + µI‖+ ‖B − µI‖.
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Hence,

sup{‖U∗AU + V ∗BV ‖ : U and V are unitaries}
= sup{‖AUV ∗ + UV ∗B‖ : U and V are unitaries}
≤ sup{‖AX + XB‖ : ‖X‖ ≤ 1}
≤ min{‖A + µI‖+ ‖B − µI‖ : µ ∈ C}.

So, it remains to prove the following

Main Inequality

min{‖A + µI‖+ ‖B − µI‖ : µ ∈ C} ≤ sup{‖u + v‖ : u ∈ Ω(A), v ∈ Ω(B)}. (2.2)

We need some auxiliary results to prove this inequality. Denote by M+
n the set of positive

semi-definite matrices. It is well known that M+
n is a convex cone, and the extreme rays are rank

one matrices.

Lemma 2.2 Let m be a positive integer smaller than 4. Suppose S is the intersection of M+
n and

m real hyperplanes of the space of n × n Hermitian matrices; i.e., there are Hermitian matrices
F1, . . . , Fm and γ1, . . . , γm ∈ R such that

S = {A ∈ M+
n : tr AFj = γj , j = 1, . . . ,m}.

Then each extreme point of the convex set S has rank at most one.

Proof. Suppose P ∈ S has rank k such that k > 1. Let P = RR∗ such that R is n × k. Then
the real linear space

U = {RQR∗ : Q∗ = Q ∈ Mk}

has real dimension k2 > 3 ≥ m. Thus the subspace

V = {X ∈ U : tr XFj = 0, j = 1, . . . ,m}

is nonzero. So, there is a nonzero H ∈ V such that both P + H and P −H are in M+
n . It follows

that P , as the average of P + H and P −H in S is not an extreme point. 2

Lemma 2.3 Suppose A ∈ Mn and φ : Mn → C is a linear contractive map such that φ(A) = ‖A‖.
Then there is a unit vector x ∈ Cn such that ‖Ax‖ = ‖A‖ and (Ax, x) = φ(I)‖A‖.

Proof. Without loss of generality, we may assume that A is a nonzero operator and ‖A‖ = 1
(otherwise replace A by A/‖A‖). By the Riesz representation, there is C ∈ Mn such that φ(X) =
tr (CX) for all X ∈ Mn. Consider the polar decomposition C = PU with P ∈ M+

n and U unitary.
Then

trP = φ(U∗) ≤ ‖U∗‖ = 1 = φ(A) = tr (PUA).

Letting X = U∗P 1/2 and Y = AP 1/2, we have tr (X∗Y ) = tr (PUA) = 1, tr (X∗X) = tr (P ) ≤ 1,

tr (Y ∗Y ) = tr (P 1/2A∗AP 1/2) ≤ tr (P ) ≤ 1, and hence tr (X − Y )∗(X − Y ) ≤ 0; thus X = Y ,

tr (P ) = tr (X∗X) = tr (X∗Y ) = 1, and tr (AP ) = tr (U∗P ) = φ(I).
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From the fact P 2 = P 1/2X∗XP 1/2 = P 1/2Y ∗Y P 1/2 = PA∗AP , it follows that the range of P is
a k-dimensional linear subspace of {v ∈ Cn : ‖Av‖ = ‖v‖} with 1 ≤ k ≤ n. Let R be an n×k matrix
such that R∗R = Ik and RR∗ is the projection onto the range of P . Then PRR∗ = P = RR∗P ,
and R∗PR is a matrix in

S = {Q ∈ M+
k : tr Q = 1, tr (R∗ARQ) = φ(I)},

which is a non-empty compact convex set in the space of k × k Hermitian matrices obtained by
intersecting M+

k with three real hyperplanes. By Lemma 2.2, S contains a rank-1 matrix yy∗ with

y ∈ Ck such that ‖y‖2 = tr (yy∗) = 1 and (R∗ARy, y) = φ(I). Letting x = Ry, we get all desired
conditions of x. 2

Proposition 2.4 Let A and B be nonzero n× n matrices. The following are equivalent.

(a) There exist unit vectors x, y ∈ Cn such that

‖Ax‖ = ‖A‖, ‖By‖ = ‖B‖, and (Ax, x)/‖A‖ = (By, y)/‖B‖.

(b) There exist unit vectors x, y ∈ Cn such that ‖Ax‖ = ‖A‖, ‖By‖ = ‖B‖, and

‖Ax‖+ ‖By‖ ≤ ‖(A + µI)x‖+ ‖(B − µI)y‖ for all µ ∈ C.

(c) ‖A‖+ ‖B‖ ≤ ‖A + µI‖+ ‖B − µI‖ for all µ ∈ C.

Proof. (a) ⇒ (b): Suppose x and y satisfy condition (a). Then

‖Ax‖+ ‖By‖

=
∥∥∥∥(

(Ax, x)
{‖Ax‖2 − |(Ax, x)|2}1/2

)∥∥∥∥ +
∥∥∥∥(

(By, y)
{‖By‖2 − |(By, y)|2}1/2

)∥∥∥∥
=

∥∥∥∥(
(Ax, x)

{‖Ax‖2 − |(Ax, x)|2}1/2

)
+

(
(By, y)

{‖By‖2 − |(By, y)|2}1/2

)∥∥∥∥
=

∥∥∥∥(
((A + µI)x, x)

{‖(A + µI)x‖2 − |((A + µI)x, x)|2}1/2

)
+

(
((B − µI)y, y)

{‖(B − µI)y‖2 − |((B − µI)y, y)|2}1/2

)∥∥∥∥
≤

∥∥∥∥(
((A + µI)x, x)

{‖(A + µI)x‖2 − |((A + µI)x, x)|2}1/2

)∥∥∥∥ +
∥∥∥∥(

((B − µI)y, y)
{‖(B − µI)y‖2 − |((B − µI)y, y)|2}1/2

)∥∥∥∥
= ‖(A + µI)x‖+ ‖(B − µI)y‖.

(b) ⇒ (c): Clear.
(c) ⇒ (a): Consider the normed linear space (Mn ×Mn, ν) such that

ν(X, Y ) = ‖X‖+ ‖Y ‖.

Then the linear functional f on span {(A,B), (I,−I)} defined by f(A,B) = ‖A‖ + ‖B‖ and
f(I,−I) = 0 is contractive with respect to ν if and only if (c) holds. By the Hahn-Banach Theorem,
f can be extended to a contractive linear functional F on Mn ×Mn. Since

‖A‖+ ‖B‖ = F (A,B) ≤ |F (A, 0)|+ |F (0, B)| ≤ ‖A‖+ ‖B‖,
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it follows that
F (A, 0) = ‖A‖ and F (0, B) = ‖B‖.

Now, X 7→ F (X, 0) is contractive. By Lemma 2.3, there is a unit vector x ∈ Cn such that

‖Ax‖ = ‖A‖ and (Ax, x)/‖A‖ = F (I, 0).

Similarly, there exists a unit vector y ∈ Cn such that ‖By‖ = ‖B‖ and (By, y)/‖B‖ = F (0, I).
From the fact

0 = F (I,−I) = F (I, 0)− F (0, I),

we have F (I, 0) = F (0, I) and condition (a) holds. 2

Proposition 2.4 actually holds for A ∈ Mn and B ∈ Mm with n 6= m. Of course, we then have
x ∈ Cn and y ∈ Cm in conditions (a) and (b).

We are now ready to prove the main inequality (2.2).

If A or B is a scalar operator, the result is clear. We assume that neither A nor B is scalar.
First consider the finite dimensional case. Suppose

‖A + µ0I‖+ ‖B − µ0I‖ ≤ ‖A + µI‖+ ‖B − µI‖ for all µ ∈ C.

In view of the fact Ω(A)+Ω(B) = Ω(A+µI)+Ω(B−µI), we may assume that µ0 = 0 for simplicity.
By Proposition 2.4, there exist unit vectors x and y in Cn such that

‖Ax‖ = ‖A‖, ‖By‖ = ‖B‖, and (Ax, x)/‖A‖ = (By, y)/‖B‖.

Letting

u =
(

(Ax, x)
{‖Ax‖2 − |(Ax, x)|2}1/2

)
∈ Ω(A), v =

(
(By, y)

{‖By‖2 − |(By, y)|2}1/2

)
∈ Ω(B)

we get
‖u + v‖ = ‖u‖+ ‖v‖ = ‖Ax‖+ ‖By‖ = ‖A‖+ ‖B‖

as desired.
Next, we consider the infinite dimensional case. Suppose the main inequality (2.2) is not true;

i.e., there exists a positive real number ε such that

sup{‖u + v‖ : u ∈ Ω(A), v ∈ Ω(B)} < ‖A + µI‖+ ‖B − µI‖ − ε

for all µ ∈ C. We can find finitely many complex numbers λ1, . . . , λm such that

{µ ∈ C : |µ| ≤ ‖A‖+ ‖B‖} ⊆ ∪m
j=1{λ ∈ C : |λ− λj | < ε/4}.

Choose unit vectors x1, . . . , xm and y1, . . . , ym in H such that

‖(A + λjI)xj‖ > ‖A + λjI‖ − ε/4 and ‖(B − λjI)yj‖ > ‖B − λjI‖ − ε/4

for each j = 1, . . . ,m. Let H ′ be the finite-dimensional subspace of H spanned by the 4m vectors
x1, . . . , xm, y1, . . . , ym, and Ax1, . . . , Axm, By1, ..Bym, and let A′, B′ and I ′ be the compressions
of A, B and I on H ′. Applying the finite dimensional result on (A′, B′), we have

min{‖A′ + µI ′‖+ ‖B′ − µI ′‖ : µ ∈ C} = sup{‖u + v‖ : u ∈ Ω(A′), v ∈ Ω(B′)}
≤ sup{‖u + v‖ : u ∈ Ω(A), v ∈ Ω(B)}. (2.3)
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On the other hand, for each complex number µ with |µ| ≤ ‖A‖ + |B‖, there exists j so that
|µ− λj | < ε/4 and thus

‖A′ + µI ′‖ > ‖A′ + λjI
′‖ − ε/4 ≥ ‖(A′ + λjI

′)xj‖ − ε/4

= ‖(A + λjI)xj‖ − ε/4 > ‖A + λjI‖ − ε/2

and similarly,
‖B′ − µI ′‖ > ‖B − λjI‖ − ε/2;

so
‖A′ + µI ′‖+ ‖B′ − µI ′‖ > sup{‖u + v‖ : u ∈ Ω(A), v ∈ Ω(B)}.

Also for the case |µ| > ‖A‖+ ‖B‖, we have

‖A′+µI ′‖+‖B′−µI ′‖ ≥ ‖2µI ′‖−‖A′‖−‖B′‖ > ‖A‖+‖B‖ > sup{‖u+v‖ : u ∈ Ω(A), v ∈ Ω(B)}.

Hence, there is a contradiction to (2.3); therefore, the main inequality (2.2) is true. 2

3 Some consequences and related inequalities

3.1 Immediate corollaries

We can get many different formulas by putting special operators B in Theorem 2.1. For example,
the substitution of (B,µ) by (−B,−µ) yields the following equalities:

sup{‖U∗AU − V ∗BV ‖ : U and V are unitaries}
= min{‖A− µI‖+ ‖B − µI‖ : µ ∈ C} = sup{‖AX −XB‖ : X ∈ B(H), ‖X‖ ≤ 1}

for any A,B ∈ B(H). The second quantity is a measure of distance to indicate how near is the pair
(A,B) to the closest scalar operator, while the first quantity is a measure of the largest distance
between two unitary similarity orbits.

Setting B = −A with −µ in place of µ, we get the following equalities relating the diameter
(maximum distance between all pairs of elements) of the unitary similarity orbit of A, the distance
from A to the nearest scalar operator, and the operator norm of the derivation operator defined by
X 7→ AX −XA (see [1]):

sup{‖U∗AU − V ∗AV ‖ : U and V are unitaries}
= 2 min{‖A− µI‖ : µ ∈ C} = sup{‖AX −XA‖ : X ∈ B(H), ‖X‖ ≤ 1}.

Furthermore, let B = −eitA for each t ∈ [0, 2π), and define

gA(t) = sup{‖U∗AU − eitV ∗AV ‖ : U and V are unitaries}

= min{‖A− µI‖+ ‖eitA− µI‖ : µ ∈ C}

= min{‖A− µeit/2I‖+ ‖A− µe−it/2I‖ : µ ∈ C}.

Then gA is a continuous function satisfying gA(−t) = gA(t) for all t, and

2‖A‖ = gA(π) ≥ gA(t) ≥ gA(0) = 2 min
µ∈C

‖A− µI‖.
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Note that gA is a monotone function on the interval [0, π] in view of the triangle inequalities

‖T + λI‖+ ‖T − λI‖ ≥ r‖T + λI‖+ 2(1− r)‖T‖+ r‖T − λI‖ ≥ ‖T + rλI‖+ ‖T − rλI‖

for each real number r ∈ [0, 1]. Specifically, let θ be a fixed real number in (0, π/2) and suppose

gA(2θ) = ‖A− αeiθI‖+ ‖A− αe−iθI‖,

where α is a complex number. Letting

T = A− α cos(θ)I, and λ = −iα sin(θ),

we deuce that

gA(2θ) = ‖T + λI‖+ ‖T − λI‖ ≥ ‖T + rλI‖+ ‖T − rλI‖ = ‖A− β+‖+ ‖A− β−‖

with
β± = α(cos(θ)± ir sin(θ)),

and hence β+/β− is a complex number of modulus 1 with its argument ranging over the whole
interval [0, 2θ] for r ∈ [0, 1]. Therefore gA is a monotone function.

The following corollaries are statements about some delicate situations of the equality cases for
some simple inequalities.

Corollary 3.1 Let A,B ∈ B(H). Then

min{‖A + µI‖+ ‖B − µI‖ : µ ∈ C} ≤ ‖A‖+ ‖B‖.

The equality holds if and only if there exists a sequence of unitary operators U1, U2, . . . such that

‖A‖+ ‖B‖ = lim
m→∞

‖A + U∗
mBUm‖. (3.1)

Corollary 3.2 Let A,B ∈ B(H). Then

‖A + B‖ ≤ sup{‖U∗AU + V ∗BV ‖ : U and V are unitaries}. (3.2)

The equality holds if and only if there exists µ0 ∈ C such that

‖A + B‖ = ‖A + µ0I‖+ ‖B − µ0I‖. (3.3)

Several remarks concerning the above two corollaries are in order. In the finite dimensional
case, we can replace the terms in the sequence of unitary operators in (3.1) by a constant unitary
operator (matrix); also, the supremum of (3.2) can be replaced by maximum.
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3.2 Optimal spectral circles, unitary similarity orbits, and normal dilations

Theorem 2.1 has interesting implications to spectral sets, unitary similarity orbits, and dilations of
operators.

For µ ∈ C and r ≥ 0 let Γ(µ; r) = {z ∈ C : |z − µ| = r}. If ‖A − µI‖ ≤ r, then applying the
von Neumann inequality (e.g., see [8]) to an affine transformation of the unit circle, we have

‖f(A)‖ ≤ max{|f(z)| : z ∈ Γ(µ; r)} (3.4)

for any polynomial f(z).
Note that for each operator A ∈ B(H), there is a unique choice of µ0 ∈ C and r0 ≥ 0 so that

r0 = ‖A− µ0I‖ ≤ ‖A− µI‖ for every µ ∈ C. (3.5)

To see this, assume that the above inequality is true for µ0 = µ1 and µ−1 with µ1 6= µ−1. Then for
µ̃ = (µ1 + µ−1)/2, we have

2‖A− µ̃I‖2 ≥ ‖A− µ1I‖2 + ‖A− µ−1I‖2

≥ ‖(A− µ1I)∗(A− µ1I) + (A− µ−1I)∗(A− µ−1I)‖

= ‖2(A− µ̃I)∗(A− µ̃I) +
|µ1 − µ−1|2

2
I‖

= 2‖A− µ̃I‖2 + |µ1 − µ−1|2/2,

which is a contradiction.
By the above discussion, there is a unique optimal (with smallest radius) spectral circle Γ(µ0; r0)

satisfying (3.4), where µ0 and r0 are determined by (3.5). Furthermore, applying Theorem 2.1 to
the pair (A,−A), we have

2r0 = 2‖A− µ0I‖ = sup{‖U∗AU − V ∗AV ‖ : U and V are unitaries},

where the quantity at the right end is just the diameter of the unitary similarity orbit of A. In
particular, if A is a normal operator, then the optimal spectral circle Γ(µ0; r0) is the unique circle
with minimum radius enclosing the spectrum of A, denoted by σ(A); i.e.,

r0 = min
µ∈C

max{|α− µ| : α ∈ σ(A)} = max{|α− µ0| : α ∈ σ(A)}.

We can further extend the above discussion to two operators A,B ∈ B(H) and obtain the
following theorem concerning their joint spectral circles in connection with the distance between
their unitary similarity orbits.

Theorem 3.3 Let A,B ∈ B(H), and let µ0 ∈ C be such that

‖A− µ0I‖+ ‖B − µ0I‖ ≤ ‖A− µI‖+ ‖B − µI‖ for all µ ∈ C.

Set r1 = ‖A− µ0I‖ and r2 = ‖B − µ0I‖. Then

sup{‖A− U∗BU‖ : U unitary} = r1 + r2 (3.6)

and
‖f(A) + U∗g(B)U‖ ≤ max

z∈Γ(µ0;r1)
|f(z)|+ max

z∈Γ(µ0;r2)
|g(z)| (3.7)

for each unitary U and each pair of polynomials f(z) and g(z).
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Note that (3.6) can be viewed as the equality case of (3.7) for f(z) = z− µ0 and g(z) = µ0− z.
Proof. Suppose A,B ∈ B(H), and µ0, r1, r2 satisfy the hypotheses. Applying Theorem 2.1 to

the pair (A,−B), we see see that

sup{‖A− U∗BU‖ : U unitary} = ‖A− µ0I‖+ ‖B − µ0I‖ = r1 + r2

as asserted.
By the von Neumann inequality, we see that

‖f(A) + U∗g(B)U‖ ≤ ‖f(A)‖+ ‖g(B)‖ ≤ max
z∈Γ(µ0;r1)

|f(z)|+ max
z∈Γ(µ0;r2)

|g(z)|. 2

The next proposition gives a description for the set of complex numbers µ0 in the statement of
Theorem (3.3).

Proposition 3.4 Let A,B ∈ B(H), and let S(A,B) be the set of complex numbers µ0 satisfying

‖A− µ0I‖+ ‖B − µ0I‖ ≤ ‖A− µI‖+ ‖B − µI‖ for all µ ∈ C.

Then S(A,B) is a either a singleton or a closed line segment.

Proof. Evidently, the set S(A,B) is compact. Next, we show that S(A,B) is convex. To see
this, suppose µ1, µ2 ∈ S(A,B). Let µ0 = sµ1 + (1− s)µ2 with s ∈ (0, 1). Then

‖A− µ0I‖+ ‖B − µ0I‖
≤ s{‖A− µ1I‖+ ‖B − µ1I‖}+ (1− s){‖A− µ2I‖+ ‖B − µ2I‖}
≤ ‖A− µI‖+ ‖B − µI‖

for all µ ∈ C. Hence, µ0 ∈ S(A,B).
Now, we claim that S(A,B) cannot include any disk

D(µ0; r) = {µ ∈ C : |µ− µ0| ≤ r}

with r > 0. If D(µ0; r) ⊆ S(A,B), we may assume further that µ0 = 0 with (A,B) in place of
(A− µ0I, B − µ0I); thus,

‖A‖+ ‖B‖ = ‖A− µI‖+ ‖B − µI‖ for all µ ∈ D(0; r). (3.8)

As D(0; r) \ {0} is a connected set, and the function f : D(0; r) \ {0} → R defined by f(µ) =
‖A − µI‖ − ‖A + µI‖ is continuous and −f(µ) = f(−µ), it follows that there exists µ′ 6= 0 such
that f(µ′) = 0; i.e. ‖A− µ′I‖ = ‖A + µ′I‖. By (3.8), we also get that ‖B− µ′I‖ = ‖B + µ′I‖. But
the inequalities

2‖A− µ′I‖2 = ‖A− µ′I‖2 + ‖A + µ′I‖2

≥ ‖(A− µ′I)∗(A− µ′I) + (A + µ′I)∗(A + µ′I)‖

= 2‖A∗A + |µ′|2I‖

= 2
{
‖A‖2 + |µ′|2

}
> 2‖A‖2
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leads to ‖A− µ′I‖ > ‖A‖, and similarly, ‖B − µ′I‖ > ‖B‖; so we obtain

‖A‖+ ‖B‖ < ‖A− µ′I‖+ ‖B − µ′I‖,

a contradiction to (3.8). Therefore, we see that S(A,B) is a point or a closed line segment. 2

Recall that every contraction in B(H) has a unitary dilation. Applying affine transformations,

we see that if A ∈ B(H), µ ∈ C and r ≥ 0 satisfy ‖A − µI‖ ≤ r, then A has a normal dilation Ã

such that σ(Ã) ⊆ Γ(µ; r). Suppose Ã and B̃ are normal dilations of A and B. We have

sup{‖U∗AU − V ∗BV ‖ : U, V unitary} ≤ sup{‖Ũ∗ÃŨ − Ṽ ∗B̃Ṽ ‖ : Ũ , Ṽ unitary}; (3.9)

i.e., the distance between the unitary orbits of A and B is not larger than that of their normal
dilations. Nevertheless, the following theorem shows that there always exist appropriate normal
dilations whose unitary orbits are not farther apart.

Proposition 3.5 Suppose A,B ∈ B(H). Then

sup{‖U∗AU − V ∗BV ‖ : U and V are unitaries}

= min sup{‖Ũ∗ÃŨ − Ṽ ∗B̃Ṽ ‖ : Ũ and Ṽ are unitaries},

where min is taken over all possible normal dilations Ã and B̃ of A and B on a common Hilbert
space. Specifically, let µ0 ∈ C be such that

‖A− µ0I‖+ ‖B − µ0I‖ ≤ ‖A− µI‖+ ‖B − µI‖ for every µ ∈ C,

r1 = ‖A− µ0I‖, and r2 = ‖B − µ0I‖. Then the set

S = {(Ã, B̃) : Ã and B̃ are normal dilations of A and B on a common

Hilbert space with σ(Ã) ⊆ Γ(µ0; r1) and σ(B̃) ⊆ Γ(µ0; r2)}

is non-empty, and every pair (Ã, B̃) ∈ S satisfies

r1 + r2 = sup{‖U∗AU − V ∗BV ‖ : U and V are unitaries}

= sup{‖Ũ∗ÃŨ − Ṽ ∗B̃Ṽ ‖ : Ũ and Ṽ are unitaries}.

Proof. Let A,B, µ0, r1, r2 satisfy the hypotheses. Applying Theorem 2.1 to the pair (A,−B),
we have

r1 + r2 = sup{‖U∗AU − V ∗BV ‖ : U and V are unitaries}. (3.10)

By the discussion before the theorem, the set S is non-empty. Suppose (Ã, B̃) ∈ S. Then

‖Ũ∗ÃŨ − Ṽ ∗B̃Ṽ ‖ ≤ ‖Ã− µ0I‖+ ‖B̃ − µ0I‖ ≤ r1 + r2.

Combining with (3.9) and (3.10), we get the conclusion. 2
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3.3 Computation of the optimal values

In this subsection, we consider the problem of computing the four common quantities in Theorem
2.1. In the finite dimensional case, we can determine/approximate the quantity

sup{‖u + v‖ : u ∈ Ω(A), v ∈ Ω(B)}

by constructing the sets Ω(A) and Ω(B). For example, we can use standard algorithm (see [6,
Chapter 1]) to construct the numerical range W (T ) = {(Tx, x) : x ∈ Cn, (x, x) = 1} of T ∈ Mn;
then compute (µj , cj)t ∈ Ω(T ) for some selected grid points µj ∈ W (T ).

On the other hand, the computation of

min{‖A + µI‖+ ‖B − µI‖ : µ ∈ C} (3.11)

can be carried out for µ varying over a (small) compact region in C. As hidden in the proof of
Theorem 2.1 in the infinite dimensional case,

‖A + µ0I‖+ ‖B − µ0I‖ = min{‖A + µI‖+ ‖B − µI‖ : µ ∈ C}

occurs only for |µ| ≤ ‖A‖ + ‖B‖. Actually, there is a much smaller region as shown in the next
proposition wherein we denote by w(T ) = sup{|z| : z ∈ W (T )} the numerical radius of T ∈ B(H).

Proposition 3.6 Let A,B ∈ B(H). Suppose µ0 ∈ C satisfies

‖A + µ0I‖+ ‖B − µ0I‖ = min{‖A + µI‖+ ‖B − µI‖ : µ ∈ C}.

Then
|µ0| ≤ max{w(A), w(B)}.

Proof. Suppose λ is a complex number with |λ| > max{w(A), w(B)}. Then, there is a real
number r ∈ [0, 1) such that

r|λ| = max{(w(A), w(B)}.

Let T stand for A or B; then for each unit vector v ∈ H,

r|λ|2 ≥ |λ||(Tv, v)| = |(λTv, v)| ≥ ±Re(λTv, v).

Thus
2r|λ|2I ≥ ±λT ± λT ∗,

and

(T±λI)∗(T±λI)−(T±rλI)∗(T±rλI) = (1−r)(2r|λ|2I±λT±λT ∗)+(1−r)2|λ|2I ≥ (1−r)2|λ|2I;

hence,
‖T ± λI‖ > ‖T ± rλI‖.

This shows, in particular,

‖A + λI‖+ ‖B − λI‖ > ‖A + rλI‖+ ‖B − rλI‖ ≥ ‖A + µ0I‖+ ‖B − µ0I‖;
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so λ 6= µ0. Since λ is an arbitrary complex number satisfying |λ| > max{w(A), w(B)}, it follows
that

|µ0| ≤ max{w(A), w(B)}

as desired. 2

Given T ∈ B(H), computing ‖T‖ is easier than computing w(T ). So, we can use the larger
region

R′ = {z ∈ C : |z| ≤ max{‖A‖, ‖B‖}

instead of R = {z ∈ C : |z| ≤ max{w(A), w(B)}} to solve the minimization problem (3.11).

Note that for normal operators A,B ∈ B(H), the computation of the quantity in Theorem 2.1
reduces to a study of an optimization problem on C, (see [3, Theorem 4.3]).

Corollary 3.7 Suppose A,B ∈ B(H) are normal with spectra σ(A) and σ(B). Then

sup{‖U∗AU + V ∗BV ‖ : U and V are unitaries}
= min

µ∈C
max{|α + µ|+ |β − µ| : α ∈ σ(A), β ∈ σ(B)}.

4 Characterizations of the operator norm

Recall that a norm ν on B(H) is a unitarily invariant norm if ν(UXV ) = ν(X) for any X ∈ B(H)
and unitary U, V ∈ B(H). Clearly, the operator norm on B(H) is such a norm. We will show that
the optimal situation of the triangle inequality of two matrices can be used to characterize unitarily
invariant norms which are multiples of the operator norm on Mn.

For X ∈ Mn the singular values s1(X) ≥ · · · ≥ sn(X) are the nonnegative square roots of the
eigenvalues of X∗X. We begin with some auxiliary results, which are of independent interest.

Lemma 4.1 Let A,B ∈ Mn. We have

k∑
j=1

sj(A + B) ≤
k∑

j=1

(sj(A) + sj(B)) , k = 1, . . . , n.

For each fixed k ∈ {1, . . . , n}, the inequality becomes equality if and only if there are unitary matrices
X, Y ∈ Mn such that

X∗AY = A1 ⊕A2 and X∗BY = B1 ⊕B2

such that A1, B1 ∈ Mk are positive semi-definite with eigenvalues s1(A) ≥ · · · ≥ sk(A) and s1(B) ≥
· · · ≥ sk(B), respectively. (Here, A2 and B2 will be absent if k = n.)

Proof. The first statement is the well known Ky Fan inequality; the characterization of the
equality case is Proposition 1.1 in [2]. 2
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Lemma 4.2 Let k be a fixed integer in {1, . . . , n}. Then C ∈ Mn satisfy

k∑
j=1

sj(I + C) =
k∑

j=1

(sj(I) + sj(C)) (4.1)

if and only if s1(C), . . . , sk(C) are eigenvalues (counting multiplicities) of C.

Proof. Suppose (4.1) holds. By Lemma 4.1, there are unitary matrices X, Y ∈ Mn such that

X∗Y = U1 ⊕ U2 and X∗CY = C1 ⊕ C2

so that U1, C1 ∈ Mk are positive semi-definite with eigenvalues s1(I) = · · · = sk(I) and s1(C) ≥
· · · ≥ sk(C), respectively. Thus, U1 = Ik and the first k columns of X are the same as those of Y .
Therefore, Y ∗X = Ik ⊕W where W ∈ Mn−k is unitary, and

X∗CX = (X∗CY )(Y ∗X) = C1 ⊕ C2W ;

so s1(C) ≥ · · · ≥ sk(C) are eigenvalues of C. The converse is clear. 2

We denote the standard basis for Mn by {E11, E12, . . . , Enn}.

Lemma 4.3 Let ν be a unitarily invariant norm on Mn. For any A ∈ Mn we have

ν(s1(A)E11) ≤ ν(A) ≤ ν(s1(A)I).

Proof. The result follows from the fact that two matrices X, Y ∈ Mn satisfy ν(X) ≤ ν(Y ) for

all unitarily invariant norms ν on Mn if and only if
∑k

j=1 sj(X) ≤
∑k

j=1 sj(Y ) for all k = 1, . . . , n.
We give a short proof in the following.

Let X1 =
∑n

j=1 sj(A)Ejj and X2 = s1(A)E11 −
∑n

j=2 sj(A)Ejj . Then

s1(A)E11 = (X1 + X2)/2 and ν(s1(A)E11) ≤ (ν(X1) + ν(X2)) /2 = ν(A).

Also, let A0 =
(∑n

j=1 sj(A)Ejj

)
/s1(A). Then Y1 = A0 + i

√
I −A2

0 and Y2 = A0 − i
√

I −A2
0 are

unitary matrices. Moreover, A0 = (Y1 + Y2)/2 and

ν(A)/s1(A) = ν(A0) ≤ (ν(Y1) + ν(Y2)) /2 = ν(I). 2

We need one more proposition to prove our main theorem.

Proposition 4.4 Let ν be a unitarily invariant norm on Mn. The following are equivalent.

(a) ν is a (positive) multiple of the Hilbert-space operator norm.

(b) For every matrix C ∈ Mn such that s1(C) is an eigenvalue of C, we have

ν(I + C) = ν(I) + ν(C).

(c) There exists a rank-two matrix C ∈ Mn which is not positive semi-definite and satisfies

ν(I + C) = ν(I) + ν(C).
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(d) ν(I) = ν(E11).

Note that in view of condition (b), we can choose special matrices C such as C = E11 −E22 or
C = E11 + E23 to test the equality ν(I + C) = ν(I) + ν(C) in condition (c). Note also that if we
put C = diag (1,−1, . . . ,−1) in condition (b), the implication “(b) ⇒ (d)” follows immediately.

Proof of Proposition 4.4. The implications (a) ⇒ (b) ⇒ (c) are clear. Suppose (c) holds; i.e.,
C is an n× n matrix satisfying

ν(I + C) = ν(I) + ν(C)

and C has n singular values
c1 ≥ c2 > c3 = · · · = cn = 0,

where either c1 or c2 is not an eigenvalue of C. By Lemma 4.2, we have

s1(I + C) ≤ s1(I) + s1(C) = 1 + c1,

k∑
j=1

sj(I + C) <
k∑

j=1

(sj(I) + sj(C)) = k + c1 + c2 for k = 2, . . . , n.

Thus, there exist a positive real number ε < 1 such that

k∑
j=1

sj(I + C) < 1 + (1− ε)(k − 1) + c1 + c2 for k = 2, . . . , n.

Let D0, D1 and D2 be three diagonal n× n matrices specified as

D0 = c1E11 + c2E22, D1 =
n∑

j=1

sj(I + C)Ejj , D2 = (1− ε)I + εE11 + D0.

Then ν(D0) = ν(C), sj(D1) = sj(I + C) while s1(D2) = 1 + c1, s2(D2) = (1 − ε + c2), and
sk(D2) = 1− ε for k > 2. By the result in [5], we get ν(D1) ≤ ν(D2), but

ν(D1) = ν(I + C) = ν(I) + ν(C), ν(D2) ≤ (1− ε)ν(I) + εν(E11) + ν(C),

and hence ν(I) ≤ ν(E11). As 2E11 − I is unitary, we also have

ν(E11) ≤ ν(I)/2 + ν(2E11 − I)/2 = ν(I),

and therefore ν(E11) = ν(I). Thus, condition (d) is established. 2

We are now ready to present the main theorem of this section.

Theorem 4.5 Let ν be a unitarily invariant norm on Mn. The following are equivalent.

(a) ν is a (positive) multiple of the Hilbert-space operator norm.

(b) For all pairs of matrices A,B ∈ Mn,

max{ν(A + U∗BU) : U unitary} = min{ν(A + µI) + ν(B − µI) : µ ∈ C}. (4.2)
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(c) Equation (4.2) holds for the specified pair

A = E12 + E23 + · · ·+ En−1,n + En,1 and B = ξE11 − ξE22,

where ξ ∈ C with |ξ| = 1 and ξ2n 6= 1.

Proof. By Theorem 2.1, (a) ⇒ (b). The implication (b) ⇒ (c) is clear.

Suppose (c) holds. Let ω = e2πi/n. Then for k = 1, . . . , n−1, there is a unitary matrix Vk ∈ Mn

such that V ∗
k AVk = ωkA. Thus for any µ ∈ C, we have

ν(A + µI) = ν(V ∗
k (A + µI)Vk) = ν(ωkA + µI) = ν(A + ω−kµI),

and

ν(A) ≤ 1
n

n−1∑
k=0

ν(A + ω−kµI) = ν(A + µI).

So,
ν(A) = min{ν(A + µI) : µ ∈ C}.

Similarly, we can show that ν(B + µI) = ν(B − µI) for all µ ∈ C and hence

ν(B) = min{ν(B − µI) : µ ∈ C}.

Thus,
ν(A) + ν(B) = min{ν(A + µI) + ν(B − µI) : µ ∈ C}.

Assume that U ∈ Mn is unitary satisfying the condition (c) so that

ν(I) + ν(A∗U∗BU) = ν(A) + ν(B) = ν(A + U∗BU) = ν(I + A∗U∗BU).

Note that C = A∗U∗BU is a rank-2 matrix. We claim that C 6= C∗. If it is not true, then for
V = U∗BU we have

A∗V = C = C∗ = V ∗A = ξ̄2V A.

Since An = In, we see that

V = A∗nV = (A∗)n−1V (ξ̄2A) = · · · = V (ξ̄2A)n = ξ̄2nV.

Hence, ξ̄2n = 1, which is a contradiction. So, our claim is valid, and condition (c) of Proposition
4.4 holds. Therefore, ν is a multiple of the Hilbert-space operator norm, i.e., condition (a) holds.

2

It would be nice to extend Theorem 4.5 to other class of norms or show that such an extension
is impossible.
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