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ABSTRACT

Linear preserver problems concern the characterization of lincar operators on
matrix spaces that leave certain functions, subsets, relations, etc., invariant. The earliest
papers on linear preserver problems date back to 1897, and a great deul of effort has
been devoted to the study of this type of question since then. We present a brief picture
of the subject, aiming at giving a gentle introduction to the reader. Then we describe
some techniques used in our recent papers on this type of problem.

1. INTRODUCTION

One of the most active and fertile subjects in matrix theory during the past
one hundred years is the linear preserver problem (LPP), which concerns the
characterization of linear operators on matrix spaces that leave certain func-
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tions, subsets, relations, etc., invariant. The earliest papers such as [17] and
[24] on LPPs date back to 1897. Since then, a great deal of effort has been
devoted to the study of this type of question (for example, see the excellent
surveys [39, 40, 18] by Marcus and Grone). In this paper, we present a brief
picture of the subject and describe several techniques used in our recent
papers on this type of problem. As the LPP is a vast topic, we make no
attempt at a detailed survey of it in this short paper. In fact, coordinated by
Steve Pierce, a group of people (including the authors) are working on a
monograph on LPPs.

In Section 2 we describe some general types of LPPs. Then we discuss
some motivations for the study in Section 3. A brief list of some active
research topics is given in Section 4. Section 5 is a discussion on the
diversification and unification of the LPP. Finally, some special techniques are
described in Section 6. The content of these sections are based on our
experience with the subject. Other authors may have different emphasis or
opinions.

In the following we shall always assume ¢ to be a linear operator on the
matrix space ., which may be any one of the following:

B™*" the set of all m X n matrices over the ficld F, where [ is usually R
or ©,

S,(F): the set of all n X n symmetric matrices over 7,

K,(®): The set of all n X n skew-symmetric matrices over [7,

H,: the set of all hermitian matrices.

9. GENERAL TYPES OF LINEAR PRESERVER PROBLEMS

In this section we shall describe four general types of LPPs and give some
examples. Once again, we stress that no detailed survey of the results will be
given here. The objective is just to give a brief overview.

The first type of general question is concerned with the study of those
linear operators preserving certain functions.

Prosrem I. Let F be a (scalar-valued, vector-valued, or set-valued)
function on .#. Characterize those linear operators ¢ on ./ that satisfy

F(¢(A)) = F(A) forall Ae..

Probably the first problem of this kind was considered by Frobenius [17],
who proved that if .# = ©"*" and F(A) = det A, then ¢ must be of the form

(,b( A) = MAN forall Ae (1)
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or
d)(A) = MA'N forall Ae.# (2)

for some nonsingular matrices M, Ne €"*" with det MN = 1. In fact, for the
function F(A) = det A, he also considered the case when (i) .# is the space
of real symmetric (or odd order skew-symmetric) matrices, and (i) .4 = {Ae
©"*":tr A = 0}. It turns out that for both problems ¢ is also of the form
described in (1) or (2) with some additional assumptions on the matrices M
and N: in problem (i) N = uM"® for some constant p so that det MN = 1; in
problem (ii) N = uM~! for some constant y so that det MN = 1. As can be
seen in other examples in the sequel and the discussion in Section 4, it is very
common for people to extend or consider the same LPP on different matrix
spaces after certain initial results are obtained. Although the results on
different matrix spaces look very similar, the techniques involved for the proof
or the degree of difficulty of the problem may be very different. It is worth
mentioning that many linear preservers (in other LPPs) have the “usual form”
described in (1) or (2) with different conditions on the matrices M and N. In
some particular situations, it is interesting to find linear preservers which are
not of these usual forms.
A variation of Problem I is to consider ¢ on .# satisfying

G(d)(A)) = F( A) forall Ae #

for different functions G and F. Of course, for this question one has to answer
the existence question first. For example, it is shown in [41] that there does
not exist a linear operator on .4 = R"*" that satisfies per ¢( A) = det A for all
A€ .4, where per stands for the permanent.

A second type of general problem concerns those linear operators preserv-
ing certain subsets.

ProsLeEm II. Let #C 4. Characterize those linear operators ¢ on A
that satisfy

qS(f/)C.(/ or qb(y)):f/

Let .4 =@"*", and ¥ be the unitary group %,. In [38] Marcus showed
that a linear operator ¢ on .# satisfies ¢(.#) C % if and only if (1) or (2)
holds with M, Ne #,. This result was extended to rectangular matrices by
Grone [18]. It was shown that a linear operator ¢ on .# = €™ *" with m < n
satisfies ¢(.¥) C &, where & is the set of all matrices Ae.# satisfying
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AA* = I, if and only if (1) or (2) holds with Me %,, and Ne %,. Let RY
denote the collection of all vectors in R™ with nonnegative entries arranged in
descending order. For ¢ = (cy,...,c,)€RT, let ¥ (c) denote the set of
matrices in §™*" (assume w.l.o.g. that m < n) with singular values ¢y, .. ., ¢,
Then the set ¥ considered by Marcus and Grone can be regarded as
SL(1,...,1). It is natural to consider the structure of those linear operators
satisfying ¢(¥(c)) C #(c) for a certain fixed nonzero ¢ € R Very recently,
the authors [35] extended the result to any nonzero ceR7. Again, after
obtaining the results for complex matrices, people try to work on matrices
over other fields. In fact, the same problem over real matrices has also been
considered (see [35] and its references).

A variation of Problem II is to consider ¢ on ./ satisfying ¢(.%}) C &, or
#(F)) = S, for different subsets ¥, and %, of . For example, in [30,
34, 35], we have considered those linear operators ¢ on various matrix spaces
that map .%(c) into or onto ¥ (d) for fixed vectors ¢ and d in RT".

Another type of general question is the study of those linear operators
preserving certain relations.

PropLEM ITI. Let ~ be a relation or an equivalence relation on ..
Characterize those linear operators ¢ on .# that satisfy

qS( A) ~ d)(B) whenever A ~ B
or
d)( A) ~ d)(B) ifand only if A ~ B.

Let A = BE"*" where F is any field, and let ~ be defined by A ~ B if
AB = BA. Tt was shown (e.g. see [44]) that for n > 3, a nonsingular linear
operator ¢ on ./ satisfies ¢(A)$(B) = ¢(B)¢(A) whenever AB = BA if and
only if

o(A) = a X'AX +f(A)I forall Ae A (3)
or

¢(A) = aX'A'X +f(A)L  forall Aed, (4)
for some nonsingular matrix X € 4, o € R, and linear functional fon A.As

with most other LPPs, people have also considered the same problem in other
matrix spaces such as S (R) or H, (see [10]). It was shown that ¢ has the same
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structure except that X in (3) and (4) has to be real orthogonal or complex
unitary according as 4 = S, (R) or 4 = I,. In all cases, it has been shown
that if n = 2, then there are counterexamples of nonsingular linear preservers
of commutativity, which are not of the form (3) or (4). In [14], linear
preservers of commutativity without the nonsingularity assumption were stud-
ied. In many LPPs, after a result on linear preservers with an «a priori
nonsingularity assumption is obtained, removing the nonsingularity assumption
poses a new LPP. It is often more difficult to characterize singular linear
preservers or to prove that they cannot exist.

Notice that Problems I, II, and III are related in certain ways. First, given
a function F, one could define a subset % as F~!Y(T) for some subset 9" in
the range of F and study the linear operators preserving . For example, if
F(A) = det A, then %= F~1(0) is the set of all singular matrices and %=
F=Y@N{0}) is the set of all nonsingular matrices. In fact, in both cases the
corresponding set preserver problems have been studied (see, e.g., [15] and
[2]). On the other hand, if a set ¥ is given, one may consider a suitable
function F so that &% can be regarded as the inverse image F “HT) of a
certain subset 7. In this way linear preservers of F (i.e., Problem I type
preservers) can be related to linear preservers of % (i.e., Problem II type
preservers). Also, given a partition of .# into subsets %, one could define an
equivalence relation based on the disjoint subsets .%. This relates Problem I
with Problem III.

After our talk at the Conference was presented, G.H. Chan pointed out
that the study of those linear operators commuting with certain transformations
on A is also commonly regarded as a LPP:

ProsLEm IV. Given a transformation F: . #— 4 , characterize those
linear operators ¢ on 4 that satisfy

F(¢(A)) = ¢(F(4)) forall Ae.s. (5)
Notice that if ¢ is nonsingular, then (5) can be rewritten as
¢~ 'oFe¢ =F,

which means that the transformation F is preserved by a linear change of basis
#. The condition (5) might be considered as a generalization of this concept. It
turns out that the techniques used in solving this kind of problem and the
results obtained are very similar to those of the previous three problem types.
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Let 4 = @" " and F(A) = adj A, the adjoint of the matrix A. In [47]
Sinkhorn proved that a linear operator ¢ commutes with F if and only if

(i) ¢ is of the form (1) or (2) with MN = uI where p"™® = 1; or
(ii) n = 2 and $(A) is a linear combination of maps of the form PA(F(P))
and QA'(F(Q)) for some P,Qe /.

This result is extended in [13] to B"*", S (F), and K,(F) for arbitrary infinite
fields [F. Tn the same paper, characterizations are also given for linear maps ¢
on M =F" " or S, (F) with F = © or R that satisfy o(e?) = e® . It is shown
that such ¢ must be of the form (1) or (2) with MN = I if .#=F""", and
M=N'=N"'if #=SF). Very recently, Chan and Lim [12] have consid-
ered this type of problem when 4 = F"*" and F(A) = AF for some positive
integer k > 1, and they have shown that a linear operator ¢ on A commutes
with F if and only if it is of the form (1) or (2) with MN = uI where it =1,

3. SOME MOTIVATIONS

Many subjects in matrix analysis can be broadly classified into categories
such as functions on matrices, subsets of matrices, relations on matrices, and
transformations (not necessarily linear) on matrix spaces, etc. On the other
hand, since matrix spaces are linear spaces, the linear transformation is the
most natural among all transformations on them. These two observations
together give rise naturally to the LPP: as soon as the word “preserve” is
defined (and, in most cases, the definition of “preserve” is clear from the
context), one may ask what kind of linear operators would preserve a certain
function, a certain subset, a certain relation, or a certain transformation on a
matrix space. This suggests that the LPP is of fundamental theoretical interest
in matrix theory.

Apart from this, there are also other motivations for the study of the LPPs.
First, linear preserver problems arise naturally when one considers the con-
verse problems of some basic results in matrix theory. For example, suppose a
linear operator ¢ on @"*" is defined by ¢(A) = MAN or $(A) = MA'N for
some nonsingular matrices M, Ne @"*". Then it is clear that ¢ will preserve
the rank of a matrix. It is somewhat surprising that such ¢’s are the only linear
operators on @"*" that preserve rank (see, e.g., [42]). For another example,
consider a linear operator ¢ on @"*" defined by ¢(A) = U*AU or ¢(4A) =
U*A'U for some unitary matrix U. Then clearly ¢ preserves eigenvalues, the
determinant, the spectral norm, the unitary group, hermitian matrices, normal
matrices, the numerical range, inertia, ele. The interesting question is whether
any one of these properties is strong enough to force ¢ to be of the form
d(A) = U*AU or ¢(A) = U*AtU for some unitary matrix U. To answer this
question one clearly has to study various LPPs.
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In some cases, the solution of the LPP would suggest a practical tool for
simplifying some other mathematical problems. Historically, people were once
interested in knowing whether there exists a linear operator ¢ on R"™" that
satisfies per ¢(A) = det A [45]. This interest may have stemmed from the
observation that the computation of the permanent is in general more difficult
than that of the determinant when the order of the matrix is high. If there
were to exist such a linear ¢ that satisfies per ¢ A = det A, then the computa-
tion of the permanent would be made much easier via the linear transforma-
tion ¢. However, it was shown later that such a linear operalor canuot exist
(41]. Another example concerns the problem of solving a system of differential
equations. To simplify the problem, people would like to apply certain
transformations to the system before solving it. The transformation should be
simple and have some nice properties. For example, one might want to use a
linear transformation on a linear differential system and hope that it preserves
the eigenmodes or the stability of the system. This naturally gives rise to a
linear preserver problem.

Sometimes the aim of studying a LPP on a certain topic is to better
understand the subject under consideration. In many situations (such as the
study of systems theory or the theory of canonical forms of matrices) people
have to consider certain group actions on a matrix space. In such cases, the
focus will be on the orbits of matrices under the specific group action rather
than on a single matrix. One basic question would then be how one could
differentiate different orbits. A natural way to study this problem is to consider
functions between two given orbits. For example, one may ask whether there
is a function from the matrix space to itself that maps one orbit onto or into
another orbit. In particular, if one further restricts the functions to be linear,
then the question becomes a LPP. Such examples will be further discussed in
the final section when we describe some special techniques.

Some LPPs may also appear as particular cases of some more general
questions. For example, in studying Banach spaces one would like to know the
structure of the linear isometries on them. If the Banach space under consid-
eration is a matrix space, then the question can be regarded as a LPP. This
shows that a mathematical problem in a more general setting can sometimes
motivate the study of a particular LPP.

4. SOME ACTIVE TOPICS

As already indicated in the beginning of Section 3, any function on
matrices, subset of matrices, relation on matrices, or transformation of matrix
spaces will induce a LPP, once the term “preserve” is defined. Also, by
varying the underlying matrix space (say, by considering the different cases of




224 CHI-KWONG LI AND NAM-KIU TSING

M =@m*" R™*" H_, etc.), one can generate several different LPPs. More-
over, since LPPs can be considered in various contexts, the source of problems
is even richer. This may explain the large volume of research literature and
the intense research efforts on this subject. The following is a brief list of some
active research topics.

A. Rank Preservers

A linear operator ¢ on . is a rank k preserver for a positive integer k if
& maps the set of rank k matrices into itself. It is worth mentioning that the
proofs of many LPPs depend on the structure of rank one preservers. The
problem for rank k preservers is completely solved when A = @™*" [3], or
when k =1, A4 =F™*" and F is an algebraically closed field of characteristic
0 [42]. In both cases, a rank k preserver must have the form (1) or (2) for some
nonsingular matrices M and N. A related problem is the study of rank k
nonincreasing maps, i.e., those linear operators on A that map rank k
matrices to matrices of rank less than or equal to k, for a positive integer
k (see, e.g., [2])- These problems can also be extended from matrix spaces to
tensor spaces (see, e.g., [11, 16, 421).

B. Inertia Preservers

Let .4 = H, or S,(R). We say that a matrix Ae A hasinertia (r, s, t) if A
has r positive eigenvalues, s negative eigenvalues, and ¢ zero eigenvalues.
Denote by G(r, s, t) the set of matrices in A with inertia (r, s, t). A linear
operator ¢ on A is a G(r, 5, t) preserver if & maps G(r, s, t) into itself. The
problem of characterizing the G(n,0,0) preservers is open and generally
considered to be difficult. The following conjecture is due to Johnson and
Pierce [23]: For n 2 3, r > 0, s>0, ¢ isa G(r,s,t) preserver if and only if
(1) or (2) holds with M = uN* where p = 1if r#sand p= £1 if r=2.
This conjecture is true if one assumes that ¢ is nonsingular. Without this
additional nonsingularity assumption, it was confirmed by Loewy in [36] only
for the cases when r # s. For other related results on this topic, we refer to
the report of Loewy [37].

C. Algebraic Set Preservers

A subset & of A is an algebraic set if it is the set of common zeros of a
finite collection of polynomials in the entries of matrices. For example, the set
of all matrices with zero determinant is an algebraic set. A linear operator ¢
on M preserving & will then be an algebraic set preserver. For square
matrices, the set ¥ may be a multiplicative group. In this case ¢ is an
algebraic group preserver. It is also interesting to determine the structure of
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those linear operators ¢ on .# that preserve a fixed polynomial function on
the entries of matrices. For all these problems, it is natural to use the algebraic
geometry and algebra techniques. It turns out that the results of many
problems of this type are that ¢ must be of the form (1) or (2) with certain
additional conditions on M and N. We refer to the report [43] of Pierce for
further details on this topic.

D. Functions of Singular Values

A function F on 4 = @™*" or ®™*" is said to be unitarily invariant if its
function value depends only on the singular values of its argument, i.e., if
F(A) = F(B) whenever A and B have the same singular values. Of particular
interest is the study of unitarily invariant norms on .. There has been a great
deal of interest in determining the structure of those linear operators preserv-
ing certain functions on singular values of matrices. Clearly, if F is a unitarily
invariant function and if ¢ is of the form (1) or (2) for some unitary matrices M
and N, then ¢ preserves F. It is interesting to note that the converse also
holds for many unitarily invariant functions F. For a brief survey and a
unifying result, we refer the reader to [32]. An interesting problem in this area
is to determine the conditions on a unitarily invariant function F such that ¢
preserves F if and only if ¢ preserves the singular values of matrices. In this
case, ¢ must preserve & (c) for all c € ®}* and hence will be of the form (1) or
(2) for some unitary matrices M and N (see the discussion after Section 2,
Problem 11, and the results in [30] and [35]).

E. NUMERICAL RANGE AND NUMERICAL RADIUS PRESERVERS

Suppose 4 = ©"*" or H,. Let
W(A) = {x*Ax:2€@", 2¥x = 1}

be the numerical range (or field of values) of A, which can be regarded as a
set valued function on matrices. Associated with the numerical range is the
numerical radius of A defined by

r(A) = max{|z|: ze W(A)},
which is a scalar function on matrices. It was shown that a linear operator ¢

on .4 preserves the numerical range of matrices if and only if ¢ is of the form
(1) or (2) with M = N* and MN = I, and a linear operator ¢ preserves the
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numerical radius of matrices if and only if ¢ is a unit scalar multiple of a linear
operator that preserve the numerical range [26]. There are many generaliza-
tions of the numerical range and the numerical radius. The corresponding
LPPs are of wide interest. One may see [28] and its references for more
details. While many results on generalized numerical range preservers are
known, it would be interesting to prove or disprove that the corresponding
numerical radius preservers are precisely the unit multiples of them.

F.  Linear Preservers of Relations

In Section 2 we have mentioned the problem concerning preservers of
commutativity. Some authors have considered LPPs on other relations which
are equivalence relations and are related to canonical forms of matrices. For
example, Hiai [21] gives a complete characterization for the linear preservers
of similarity on @"*". A unified treatment for many similar problems was
given in [22]. It is observed that many LPPs on equivalence relations are
connected to certain group actions on matrices, and differential geometry
techniques are useful in solving them. A more detailed discussion of this is in
Section 5.

G.  Matrices over Rings and Boolean Algebras

Although the LPPs discussed so far are mostly on matrices over fields,
there is no reason why the same problem cannot be transported to matrices
over rings or boolean algebras. In fact, many interesting questions and tech-
niques have been brought into the subject when LPPs over such algebraic
structures have been considered. There is a fair amount of literature and many
current developments on these problems. One may see [4, 5, 49] and their
references.

5. DIVERSIFICATION AND UNIFICATION

The list of topics in the previous section, though brief, shows clearly that
the LPP has been divided into many different research areas, each with a
number of variations of problems. This is to be expected, because one can
easily generate new LPPs by considering different functions, subsets, relations,
transformations, etc., or by changing the underlying matrix spaces, or by
modifying certain conditions in the existing results. Moreover, one can gener-
alize a LPP to operator algebras or tensor spaces instead of staying within
matrix spaces.
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Certainly, different LPPs require different tools or techniques in solving
them. For example, the solution of the LPP on rank k preservers on @""
depends on the structures of matrix subspaces containing only rank k or zero
matrices [3], while the proof of Hiai’s result on similarity preservers uses a
tangent space argument [21]. Hence the diversification of an LPP leads to a
variety of different tools and techniques. Yet this same diversification also
points out some possibilities of the unification of the various LPPs. Take the
LPP on commutativity for example. The problem has been considered on
different matrix spaces [1, 10, 14, 44, 46, 48]. Only by knowing the proofs of
the various results (on different matrix spaces) can one identify the ingredients
of a proof of a general commutativity preserver problem.

There are several approaches to unifying different LPPs. The first is to find
a general technique or method to treat different problems. A good illustration
of this idea is the paper [44] by Pierce and Watkins, in which they use
projective geometry to solve two unrelated LPPs, namely, the characteriza-
tions of commutativity preservers and k-numerical range preservers on (CHEalN
Another example is the several papers [7, 8] by Botta, who uses results in
algebraic geometry to prove (or re-prove) many linear preserver results.
Recently, we have used a duality technique together with some results from
differential geometry (see the next section) to solve several linear isometry
problems [29-31, 33]. In fact, various tools such as operator theory, combina-
torics, graph theory, abstract algebra, and multilinear algebra, have been used
to handle different LPPs. As pointed out by C. R. Johnson, there even exist
some proofs of LPPs that do not depend on any other known linear preserver
results; the techniques used are different from those used in all other problems
(see, e.g., [6, 20]). However, despite the fact that there are many different
approaches, the results of most LPPs look very similar. One may wonder
whether there is a general principle behind all the proofs, and whether there is
a general method to treat all or most of the LPPs.

Another way to unify different LPPs is to find a general formulation for
them. Having a general formulation for several problems might lead to some
uniform technique or strategy to solve them. For example, when studying
algebraic set preservers it is natural to use algebraic geometry (see, e.g., [9));
to study linear isometries it is natural to study the unit balls with respect to the
norms (see, e.g., [19, 30]); to study linear operators preserving certain equiva-
lence relations it is natural to study the geometrical properties of those
equivalence classes (see, e.g., [22, 27)), etc.

Besides using general techniques or general formulations, there are other
ways to relate different LPPs. For example, as we proposed in [29], one nice
way to relate different LPPs is to study the dual transformation of a linear
preserver. Sometimes, the dual transformation gives rise to another type of
linear preserver. Thus one may increase the variety of tools that can be used to
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tackle the problem, and one may double the number of results obtained. More
details of this idea will be discussed in the next section.

6. SOME SPECIAL TECHNIQUES

A. Duality Techniques

One principle that we used in our recent papers on LPPs is the duality
technique. The idea is simply to study the dual transformation ¢* of ¢ as well
as ¢ itself. The idea of using the dual transformation to study the linear
preserver has also been used by other authors (see, e.g., [25]). We found that
this principle is especially useful when dealing with linear isometry problems.
Notice that a linear operator ¢ preserves a certain norm on .# if and only its
dual transformation ¢* preserves the dual norm. While the norm or the unit
norm ball under consideration may be complicated, the dual norm or the unit
dual norm ball may have simpler structures. So it might be easier to character-
ize the dual transformation and then determine the structure of ¢. Further-
more, after solving a LPP, one might get several additional results because of
the duality relations. To illustrate this we give the following result.

ProvosiTioNn 1. Let ¢ be a linear operator on ©"*". The following
conditions are equivalent:

(a) ¢ preserves the spectral norm.

(b) ¢ maps the set of unitary matrices onto itself.

(c) ¢* preserves the trace norm (i.e., the Ky Fan n-norm).

(d) ¢* maps the set of matrices with singular values 1,0, ..., 0, onto itself.

(e) ¢ is of the form
A— UAV or A— UA'V

for some unitary matrices U and V.

() o* is of the form
A— UAV or A— UA'V

for some unitary matrices U and V.

The equivalence of the first four conditions depends on three facts: unitary
matrices are the extreme points of the unit ball with respect to the spectral
norm; the trace norm is the dual norm of the spectral norm; and the matrices
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with singular values 1,0,... ,0, are the extreme points of the unit ball with
respect to the trace norm. The equivalence of the last two conditions can be
verified readily. The equivalence of conditions (¢) and (b) can be easily
deduced from the result by Marcus in [38] (see our discussion on Problem II in
Section 2).

In the above example, with the given structure (¢) of those linear operators
that satisfy condition (b), the other three types of linear preservers satisfying
(), (c), or (d) are also characterized because of the duality relations. Moreover,
since conditions (a) to (d) are equivalent, we have flexibility in choosing any
one of the conditions to work with in order to get the characterization of ¢.

Some other remarks are in order. First, sometimes one may concentrate on
either ¢ or ¢, but sometimes one may need to consider both ¢ and o
simultaneously throughout the proof of certain results (see, e.g., [30]). Sec-
ondly, if we are considering a linear isometry ¢, then naturally it preserves
some bounded sets such as the unit ball, or the set of extreme points of the
unit ball. On the other hand, if we are considering a set preserver problem,
especially when the set is compact, we may create a norm by generating a
norm ball form the set in a certain way. Then we may use the technique of
treating linear isometries to solve the problem. For example (see [30)),
consider ceR™ and #(c) as defined in Section 2. Then the convex hull of
¥ (c) can be regarded as the unit ball of a certain norm on €™*", and the
corresponding dual norm is just the c-spectral norm F,(A) of A defined by
F(A) = c'a(A), where o(A)€RY' is the vector of singular values of A. Thus a
linear operator ¢ satisfies ¢(& (c)) = Z(c) if and only if ¢* preserves the
c-spectral norm, and we could use some standard techniques of studying
isometries in order to study ¢. For another example (see [29)), let ceR", and
4 (c) denote the set of all n X n hermitian matrices whose vector of eigenval-
ues (arranged in a certain order) equals ¢. Then a linear operator ¢ on Chial

preserves % (c) if and only if ¢* preserves the c-numerical range of A, which
is defined as

W,(A) = {tr(diag(cy, - c) UAU*):U*U = I}

for all Ae@"*". Moreover, ¢ preserves the set #(c) = Uy, -1#% c) if and
only if ¢* preserves the c-numerical radius of A, which is defined as

for all A € @"*". Thus all these linear preservers are related, and any informa-
tion on one problem would be useful for the other problems.
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B. Differential Geometry and Other Techniques

Suppose ~ is an equivalence relation on . For any A€ ./, let [A]
denote the equivalence class of A under ~ . Two major types of LPPs
concerning the equivalence relation ~ are the following:

(i) Characterize those linear operators é on . that satisfy ¢(A) ~ ¢(B)
whenever A ~ B, or, equivalently,

o([A]) c [¢(A)] forall Aed. (6)

(ii) Given fixed A, By€ A, characterize those linear operators ¢ on ./
that satisfy ¢(X) ~ B, whenever X ~ A, or, equivalently,

o([ 40]) < [Bol- (7)

Notice that problem (i) is Problem III described in Section 2, and problem (ii)
is a particular case of Problem II. Many variations of the problems are
possible. For examples, one may restrict ¢ to be nonsingular in the above, or
replace the inclusions in (6) or (7) by equalities. Or, one may replace [ A ] and
[B,] in (7) by subsets which are unions of equivalence classes.

In view of (6) and (7), one sees that the LPPs at hand are concerned with
Jinear imbeddings of one equivalence class into another. Thus the lincar
algebraic and the geometric structure of the equivalence class are of great
importance. In many cases the equivalence classes are differentiable mani-
folds, and thus their dimensions or their tangent spaces may be considered to
help solve the LPPs. In fact, the equivalence classes are usually orbits of
matrices under a certain group action of an algebraic Lie group. For example,
let ~.., be the equivalence relation on ©"*" defined by A ~, B if and
only if rank A = rank B, or equivalently, B = MAN for some nonsingular
Me@™*™ and Ne®"*". Then (sce Section 4 of [22]) for any A e ®@™", the
equivalence class [ A is the orbit of A under the group action of

A — MAN

with nonsingular M e @™*™ and Ne @©"*" and the orbit is a differentiable
manifold of real dimension 2k(m + n — k), where k = rank A, and the tan-
gent space to [A] at A is the complex subspace

{XA + AY: Xe@™ ™, Ye@""}.
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For the sake of brevity, let us consider problem (i) with the restriction that
é is nonsingular. The following result, the proof of which is straightforward,
holds for all equivalence relations ~ for which the equivalence classes are
differentiable manifolds.

ProPOSITION 2. Suppose ¢ is a linear operator on M that satisfies
#([A]) C [¢(A)] for all Ae M. Let T, denote the tangent space to [ A] at A.
Then

(&) $(T3) C Tyay and
(b) if ¢ is nonsingular then dim[ A] = dim 7, < dim J 5 = dim[$(A)].

It turns out that the result in Proposition 2, though simple, is very useful in
solving some LPPs (see, e.g., [22, 27]). As a demonstration, we apply it to
prove the following.

ProposiTiON 3. Let ¢ be a nonsingular linear operator on gm*" that
satisfies rank ¢( A) = rank ¢(B) whenever rank A = rank B. Then ¢ is of the
form

(a) ¢(A) = MAN for all A€ B™>", or
(b) m = n and o(A) = MAthor all Ae@m>"

for some nonsingular matrices M € " ™ and Ne B"™".

Proof. Suppose ¢ satisfies the hypotheses of the proposition. For k =
0,...,1, where I = min{m, n}, let A; be a matrix in ™" of rank k. Then
©"*" is partitioned by the equivalence relation ~, into [ + 1 equivalence
classes [Ag], - - -, [4;]. Notice that

dim[ A)] = 2(m +n - 1) < 2k(m +n - k) = dim[ A;]

for all k > 1, where dim[ A] stands for the real dimension of the manifold [ A].
Since ¢ satisfies (6), by Proposition 2(b) we have

dim[d)'l(Al)] < dim[ A)] < dim[ Ag]

for all k> 1. It is clear that ¢~ '(A;)¢[A,] = {0}. Therefore we conclude
that [¢7'(A,)] = [A,]. Then, by (6),
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or, equivalently, ¢ maps the set of all rank 1 matrices in @"*" into itself. By a
cesult of Marcus and Moyls on rank 1 preservers (Theorem 1 in [42]), ¢ must
be of the form (a) or (b) described in the proposition.

In the above proof, one sees that the original LPP, which is of problem (i)
type, is transformed with the help of Proposition 2 to become a type (i)
problem, namely, of characterizing those ¢ that satisfy

o([4]) c LAl

In fact, this is the basic strategy in the proofs of the main results in [22, 27}
apply the dimension and tangent space arguments to transform a problem of
type (i) to a problem of type (ii) for which the answer is already known or is
casier to obtain. We got this idea of using the tangent space and the dimension
argument from [21].

Other properties of the equivalence class may also be useful in solving the
LPP. We list some of them here. Techniques in (a) and (b) below have been
used in [27]:

(a) Suppose ¢ satisfies (6). Then ¢(7,) C Ty a by Proposition 2. This can
be combined with (6) to deduce that

o([a] N 7) c [6(A)] N Taca

or other similar formulas. Then one may consider the linear algebraic or
geometric structure of [A] N, or other similar subsets to solve the LPP.

(b) As indicated above, the dimension of [ A] is a useful tool in distinguish-
ing between different equivalence classes. Other topological properties, such
as connectedness and boundedness, of [A] may also be considered. For
example, let ~g, be the equivalence relation on @"*" defined by A ~4n B
if A is similar to B. Let E;; denote the n X n matrix with 1 at the (i, j) entry
and elsewhere zero, and [ A] the equivalence class of A under ~, - Then
dim[E,,} = dim[E5), and hence the dimension alone cannot distinguish [E);]
from [E,,]}. However, the zero matrix is in the closure of [Ej;] but not [E1]
(because every element in [E,;] must have eigenvalues 1,0,...,0, and thus
[E,,] is bounded away from 0). As a result, there cannot exist a nonsingular
linear operator ¢ that satisfies

d)([Eli]) c [Enl]-

(c) Let (A) be the class of all subspaces contained in [ A] (or the closure
of [ A], or the pencil U,enrl Al etc.) with maximal dimension d(A). If ¢ is
nonsingular and satisfies

s([4]) c [B].
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then
¢(7(A)) c ¥(B) and d(A)<d(B).

These can be utilized to solve the LPP. In [3], maximal subspaces contained in
{0} U R, where Ry is the set of all rank k matrices in 8™ ", are considered
in characterizing the linear preservers of Ry.

The authors wish to thank the editor for his comments which helped to
improve the readability of the present paper.
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