Multiplicative Preservers on Semigroups of Matrices
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Abstract

We characterize multiplicative maps ¢ on semigroups of square matrices satisfying ¢(P) C
P for matrix sets P, such as rank &k (idempotent) matrices, totally nonnegative matrices, Py
matrices, My matrices, positive semidefinite matrices, Hermitian matrices, normal matrices,
and contractions. We also characterize multiplicative maps ¢ satisfying ¢(g(X)) = ¢(X)
for various functions g on square matrices, such as the spectrum, spectral radius, numerical
range, numerical radius, and matrix norms.
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1 Introduction

An active research area in matrix theory is the study of linear preservers, which concerns the
characterization of linear maps on matrix spaces with certain special properties; see [11, 14]
and their references for some general background. Typically, linear preservers on square
matrices have the form

A PAQ or A PAYQ,

for some invertible matrices P and (). In particular, if the preserver is unital, i.e., it maps the
identity matrix to identity matrix, then P is the inverse of (), and the preserver is an algebra
isomorphism or anti-isomorphism. It is interesting to observe that the linearity assumption
on the preservers leads to some interesting multiplicative properties. This naturally suggests
the study of multiplicative preservers, i.e., multiplicative maps with some special properties
on square matrices. In fact, such problems have attracted researchers in recent years; see,
for example, [2, 7, 9, 13].

In [10], the authors obtained general results on multiplicative maps ¢ : M,,(D) — M, (D),
where M,,(D) is the set of n x n matrices over a principal ideal domain D. They characterized
those multiplicative maps ¢ : M,(D) — M, (D) such that ¢(A) # 0 for some A € M, (D)
with det(A) = 0. In [12], the author determined when a multiplicative map between as-
sociative rings R is additive. The results in these two papers are very useful in studying
multiplicative preservers on algebras of square matrices or operators. However, if ¢ is just
defined on a group or a semigroup of square matrices, additional techniques are required to
characterize the associated multiplicative preservers; see [7].
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The purpose of this paper is to establish some general techniques that are used to prove
results for multiplicative maps on semigroups of square matrices. We refine the proofs
in [10] to obtain some basic results in Section 2. Then we apply these results to study
multiplicative preservers in Section 3, including the preservers of rank k matrices, rank
k idempotent matrices, totally nonnegative matrices, My matrices, Py matrices, normal
matrices, Hermitian matrices, contractions, etc. We also include characterizations for the
multiplicative preservers of spectrum, spectral radius, numerical range, numerical radius,
norms, etc.

Our results can also be applied in the study anti-multiplicative maps (i.e., those ¢ such
that ¥ (AB) = ¢(B)y(A)), by considering the multiplicative map X +— ¢»( A").

In the following discussion, we always assume that D is a principal ideal domain, which
can be a field IF. Let C, IR, Q) denote the complex, real, and rational numbers, respectively.
Denote by {e1,...,e,} a basis for the module D", and E;; = ¢;¢! the standard matrix unit

in M, (D). We always consider multiplicative maps ¢ : R — S, where R, S € M, (D) are
semigroups.

2 Basic Results

Recall that a square matrix X is an idempotent if X? = X; two idempotents X and Y are
orthogonal if XY =YX = 0. Clearly, if ¢ is a multiplicative map on square matrices, then

H(X)? = ¢(X?) = ¢(X) for any idempotent X, and if ¢(0) = 0 then for any X,V satisfying
XY =0 we have 0 = ¢(0) = ¢(XY) = ¢(X)o(Y); so, in particular, ¢ will send orthogonal

idempotents to orthogonal idempotents. It turns out that we can say much more.

Lemma 2.1 The matrices Xi,...,X,, € M,(D) are mutually orthogonal nonzero idempo-

tents if and only if there exists an invertible S € M,(D) such that X; = S™'E;;S for
1=1,...,n.

Proof. We follow the proof of [10, Theorem 1]. Since the ranks of orthogonal idempotents add
([1, p-89]), we see that X; = ¢;d! for some ¢;,d; € D" such that dic; = 1. Let S € M, (D) be
such that S = [dy|- - |d,]". Then the given assumption on X; implies that S[c1| - |¢,] = I,
ie, S7V=[¢] - |cy], and X; = ST'E; S for i = 1,...,n, as asserted. O

Suppose R C M,(D) is a semigroup such that {E;; | 1 < ¢ < n} C R. For any
i,7 €41,...,n}, let

E,','RE]‘]‘ = {E“XE]] : X e R} CRN {Oin]‘ to € D},
and consider the set of scalars
S,’j = {Oé eD: OzE,'j € R} (2.1)

We have the following result.



Proposition 2.2 Suppose R,S are semigroups of M,(D) such that

and S;; is defined as in (2.1). Let ¢ : R — S be a multiplicative map. Then the implications

a) = (b) <= (¢) <= (d) = (e) hold for the following conditions.
(a) = (b) (¢) (d) = (e)

(a) ¢ is injective.

(b) ¢(0),(E11),...,¢(En,) are distinct.

(c) &(0) # ¢(Ej;) forall j=1,....n
(d) {¢(Ei):1 <1< n} is aset of nonzero orthogonal idempotents in M, (D).
(e)

There is an invertible S € M, (D) such that ¢((ai;)) = S~ (fi;(ai;))S for all (a;;) € R,
where fi; : S;j — D satisfies

fir(ab) = fij(a)fix(b) ~ for any a € S;;,b € Sy,

e

and for 1 # j

f,'j(a + b) = f,'j(a) + f”(b) whenever Eu + CLE,']‘, E]‘]‘ + bE,] € R.

Proof. (d) = (b) and (a) = (b) = (¢): Clear. (¢) = (d): Let ¢(0) = X. Then
X$(Eii) = ¢(0)6(Ei) = ¢(0) = X, ¢(Ei))X = ¢(Eii)o(0) = 6(0) = X,
O(Ei)p(Ej;) = ¢(EiEjj) = ¢(0) = X fori#j, and X?=X.

Thus,
is a set of n nonzero mutually orthogonal idempotents in M, (D). By Lemma 2.1, we have
Y i(o(Ey) — X) = I. Since X(¢(E;;) — X) = 0 for all i, we see that X = 0. Hence,
P ={¢(Eii) : 1 <1i<n}isaset of nonzero orthogonal idempotents in M, (D).

(d) = (e): By Lemma 2.1, there exists an invertible S such that ¢(E;;) = S™'E;;S for
17=1,...,n

Replacing ¢ by the mapping X +— S¢(X)S™!, we may assume that ¢(E;;) = Ej; for all
j=1,...,n. For any A = (ai;), a;;Eij = E;;AE;; € R for all 1, j and the (7, j) entry of ¢(A)
can be deduced from

Eiip(A)Ej; = p(Eii)p(A)P(Ej;) = G(EiAE;;) = ¢(aij Eij).
Hence ¢(A) = (fij(aij)) for some f;; : S;; — D.

If a € S,;j and b € Sji, then (ab)Ey = (aE;j)(bEjx) and fir(ab) = fij(a)fjr(b). Moreover,
if B;;+aFE;j,E;j +bE;; € R, then (E;; + aE;;)(E;; + bE;;) = (a+ b)E;;. Applying ¢ on both
sides, we conclude that f;;(a +b) = fi;(a) + fi;(b). O

If ¢ satisfies Proposition 2.2 (e) and if there are additional assumptions on S,;, then one

can deduce more about the map ¢.



Proposition 2.3 Let R and S be semigroups of M,(D) such that (2.2) holds. Suppose
¢: R — S is a multiplicative map satisfying Proposition 2.2 (e).

(1) ]fl € S,']‘ and f”(l) = 1, then we have fk,(b) = fk](b) fO’I‘ bec SN Sk]‘ and fzk(b) =
f]k(b) fO?" be SN S]‘k; mn pCLTtiC’LLlLLT, f, (b) = fu(b) = f]](b) fO?" be S,']‘ NnsS; N S]‘j.

(2) If all the nonzero S;; are the same, say, equal to S, and if there is a collection of (p, q)
pairs covering the edges of a spanning tree of a graph with vertices in the index set
J CA{L,...,n}, so that fp,(1) is invertible in D for these (p,q) pairs, then there exist
a |J| x |J| diagonal matriz D and a multiplicative map f : S — D such that for any

|.J| X |J| matriz (a;;)i jes over S, we have

(fijaij)) = D' (f(ai))D. (2.3)
Furthermore, if |J| > 1, then f is additive.

Proof. The first assertion follows from the facts that fi;(b)fi;j(1) = fi;(b) and fi(b) =
fii(1) fix (D).

For the second assertion, we assume J = {1,...,n} for simplicity, and I' is the graph.
Pick a collection T of n — 1 (i,7) pairs corresponding to the edges of a tree in I' so that
fi;(1) is invertible for each (7, 7) pair in the collection. Note that if (i,j) € T, then either
S;i = {0} or f;;(1)f:;(1) = 1. Now, construct the matrix B € M,,(D) so that b;; = f;;(1) and
bi; = f;;(1)""if (i,5) € T, and b;; = 0 otherwise. Then there exists a diagonal D € M, (D)
such that all the nonzero entries of DBD™' equal 1 € D. If D(fi;(ai;))D™" = (gij(aij)),
then g¢,;(1) = 1 for those (i,7) € T. Using the first assertion, we see that all g,; are equal,
say, to f. If |.J| > 1, then there is p # ¢ in K. Since (Ep, + aE,q)(Eqq + bEpy) = (a + b)Epy,
applying ¢ on both sides, we see that f,, is additive, and so 1s f. a

Remark 2.4 Instead assuming (2.2) for R, we can assume in Propositions 2.2 and 2.3 that
R contains a set of mutually orthogonal nonzero (or rank one) idempotents Xy, ..., X,. By
Lemma 2.1, we have X; = S7'E;;S; for j = 1,...,n. One can then apply Propositions
2.2 and 2.3 to the mapping X — ¢(S7'XS) for X such that S7' XS € R. Also, in many
applications, the index set .J referred to in Proposition 2.3 (2) is typically the entire index
set {1,2,...,n}.

For our study of multiplicative preservers, we prove another general result.

Proposition 2.5 Let1 < m < n and R be a semigroup of M, (D) containing all the diagonal
matrices E; = Y ;c; Ej; whenever J C{1,...,n} satisfying [J| < m, here Eg = 0. Suppose
that for any two index sets J and K with |J| = |K| < m, there exists A, B € R such that

Y Ejj=A(> Ew)BEeR. (2.4)

JjEJ keK

If $ : R — M, (D) is a multiplicative map, then one of the following conditions hold.
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(1) ¢(Ey) = ¢(0) =0 for all (some) J C{1,...,n}, with |J| < m.

(2) ¢(Ey) = ¢(0) £ 0 for all J C {1,...,n}, with |J| < m. Moreover, if S € M,(D) is
invertible such that S¢(0)S™ = I, ©0,,_, with r > 0, then there ezists a multiplicative
map ¢ : R — M,_, (D), such that S$(X)S™" = I, & (X)) for any X € R.

(3) ¢(0) # ¢(E, ;) for all (any) j € {1,...,n}. In this case, Proposition 2.2 (b) — (e) hold.
(4) m=n—1, ¢(E;) =0 for all J C{1,...,n} with |J| <n—1, and
{o(I - Ej;):1<j<n}

1s a set of nonzero mutually orthogonal idempotents. Hence, there exists an invertible
S € M,(D) such that S6(I — E;;)S™ = Ej; for each j € {1,...,n}, and ¢(A(I — E;;))
and ¢((I — E;;)A) have rank at most one, for all A € R.

Proof. Assume that there exists .J C {1,...,n} with |.J| < m such that ¢(E;) = 0. Then for
any K C{1,...,n} (|K| =|J|) not equal to .J, there exist A, B € R such that Ex = AE;B,
and thus ¢(Ex) = ¢(A)d(Es)p(B) = 0. Now, for any K C {1,...,n} with |K| < |J|, we
can write Ex = Ej, --- Ej, for some Jy,...,J, C{1,...,n} with |J;| =--- = |J.| = |J|, and
thus ¢(Ex) = 0. In particular, ¢(0) = 0.

Now we show by induction that ¢(3,c; Ej;) = 0 for each index set J with |J| < n — 1.
Suppose it is true for index set of order less than k < n — 1. Then {¢(X,cs Ej;) : |J| =k}

is a set of (Z) idempotents. Since (Z) > n, there must exist at least one index set .J with

&(Xjes Ejj) = 0. By the assumption on By and Ex with |J| = |K|, we have ¢(3,c; E;;) = 0
for all |J| = k.

If m < n—1, we arrive at condition (1). If m = n — 1, then either condition (1) holds, or
{¢(I—E;;) : 1 <j<n}isaset of n mutually orthogonal idempotents. By the assumption
on Ej; and Ex with |J| = |K| and Lemma 2.1, either this set is zero or contains rank one
idempotents. Since ¢(I — E;;) # 0 for some 7 € {1,...,n}, we see that the latter condition
holds. Thus condition (4) follows.

Next, suppose there exists ¢ € {1,...,n} such that ¢(E;;) # 0. By the assumption on
E; and Ex with |J| = |K|, we have ¢(E;;) # 0 for each ¢ € {1,...,n}. If $(0) = 0, then
Proposition 2.2 (¢) holds, and hence condition (3) follows.

If $(0) = P # 0, then P? = P and ¢(X)P = P¢(X) for all X € R. Thus the
mapping ¢(X) = ¢(X) — P is multiplicative, such that ®(0) = 0. If ®(E;;) # 0 for some
i, then condition (3) holds for ® and hence ¢(E11),...,¢(E,,) are idempotents such that
{¢(Eii) — P : 1 <1 < n}is a set of nonzero mutually orthogonal idempotents, which is
impossible. Therefore ®(E;;) = 0 for all ¢ and the first assertion of (2) holds for ¢. Now, the
last assertion of (2) follows from the fact that ¢(X)P = PH(X) = P for all X € R. O

We conclude this section with the following result.



Proposition 2.6 Suppose R C M, (D) is a semigroup containing all the singular matrices
(or nonnegative singular matrices if D = IR or Q). If Proposition 2.5 (4) holds for a
multiplicative map ¢ : R — M,(D), then there exist an invertible S € M,(D) and an
additive multiplicative map f : D — D such that ¢ has the form

A ST f(det Ay))S,
where A;j is the submatriz of A obtained by deleting the ith row and jth column.

Proof. If R contains all singular matrices, then the result follows from [10, Theorem 1]. One
can modify the proof to cover the case of nonnegative matrices. O

3 Multiplicative Preservers

In this section, we use the results in the previous section to study multiplicative preservers
on semigroups of n X n matrices with n > 2. Let S = [0,00), @ N[0, 00), or a field F. We
often consider the following semigroups:

M, (S): n x n matrices with entries in S,
M (S): matrices in M,(S) with rank at most m € {1,...,n}.

Usually, the multiplicative preservers ¢ have one of the following standard forms for some
p7q€ {0’17...777/}:

(I) There exist an invertible matrix S € M,(S) and a nonzero additive multiplicative
mapping f : S — S such that ¢ has the form

(aij) — S™1(f(aiz))S. (3.1)

(IT) There exist an invertible S € M, (S) and a multiplicative map ¢ : M,,(S) — M,_,(S)
such that S¢(X)S™ = I, & ¢(X) for any X € M, (S), where ¢)(X) = 0 if rank X < p.

(ITII) There exist an invertible S € M, (S) and a nonzero additive multiplicative map f :
S — S such that ¢ has the form

A ST f(det A4))S, (3.2)
where A;; is the submatrix of A obtained by deleting the sth row and jth column.

(IV) ¢(X) = 0 whenever rank X < p.

In [10], multiplicative maps ¢ on M, (D) satisfying (IV) with p = n — 1 are called
degenerate mappings.

Remark 3.1 More can be inferred about the function f in (3.1) and (3.2) if more is known
about S. We have the following statements:



(A) if S is a field, then f field isomorphism;
(B) if S is the (nonnegative) reals or (nonnegative) rationals, then f is the identity map;

(C) if Sis a subfield of C, then f is a unital injective field homomorphism fixing all elements
imQnNSs;

(D) if S is a subfield of C satisfying S C @ + ¢@ or R C S such that f(IR) C R in the

latter case (for instance, this happens if f is continuous), then f must be of the form

Zr=Zz or Z = Z.

(E) If ¢ maps nonnegative matrices to nonnegative matrices, then S is a product of a
permutation matrix and a diagonal matrix with positive diagonal entries.

Proof. Condition (A) follows since any nonzero field homomorphism will be an isomorphism.
To see (B), note that a nonzero additive map f on IR satisfying f(1) = 1 will, in fact, fix all
rational numbers. Moreover, if z > 0 then ¢(z) = (¢(y/z))? > 0. Thus, if z; — 22 > 0 then
flz1) — f(z2) = f(x1 — x2) > 0, 50 f is increasing. Furthermore, for any real number z and
rational numbers zq, x2 such that x; > x > x5, we have f(z1) > f(z) > f(xq); so, f(z) = x.
For (C) and (D), see [15].

For (E), if (3.1) holds and ¢(E;;) are nonnegative for all j = 1,...,n, then S and S~*
can be chosen so both are nonnegative or both nonpositive. We can assume the former case
holds and thus S has the asserted form; if (3.2) holds and ¢(I — E;;) are nonnegative for all

j =1,...,n, then again we may conclude that S and S~! can be chosen to be nonnegative,
and thus S has the asserted form. O

3.1 Matrix Set Preservers

In this subsection, we study multiplicative maps ¢ : R — R that preserve certain subsets P
of a semigroup R, i.e.,

o(P) CP.

Theorem 3.2 Let S = [0,00), QN [0,00), or a field. Suppose 1 < m < n and R C M,(S)
is a semigroup containing M*(S), and suppose P is the set of rank m matrices or the set
of rank m idempotent matrices. Then a multiplicative map ¢ : R — R satisfies ¢(P) C P if
and only if ¢ has the standard form (I) so that (A) — (E) of Remark 3.1 hold, or ¢ has the
standard form (II) with m = p = q.

Proof. The sufficiency is clear. Conversely, suppose ¢(P) C P. Then either Proposition 2.5
(2) holds with » = m or Proposition 2.5 (3) holds. In the former case, we see that ¢ has
standard form (II) with m = p = ¢; In the latter case, we can apply Propositions 2.2 and
2.3 to demonstrate that ¢ has the standard form (I). O



Using arguments similar to those in the proof of the previous theorem, and Propositions
2.2 — 2.5, we have the next result concerning multiplicative maps having special properties
on rank p matrices.

Theorem 3.3 Let S = [0,00), Q N [0,00), or a field. Suppose 1 < p,q < n and R,S C
M, (S) such that MP(S) C R. The following conditions are equivalent for a multiplicative
map ¢ : R — S.

(a) ¢ maps rank p matrices to rank at most q matrices.

(b) ¢ maps rank p idempotents to rank at most q idempotents.

(c) One of the following holds:
(i) p = q and ¢ has the standard form (1) so that (A) — (E) hold.
ii) ¢ has the standard form (1I).

(i
(i) n =1 =p>q=1 and ¢ has the standard form (III) so that (A) — (E) hold.
(iv) ¢ has the standard form (IV).

Next, we consider multiplicative preservers of other matrix sets P. Very often, it is easy
to construct degenerate multiplicative maps ¢ having a desired property. For example, if
there i1s an idempotent P € P, we can have degenerate multiplicative maps of the form

A— P or A det(A)A.

So, we impose some additional assumptions on ¢ or R to obtain more reasonable results. If
we assume that ¢(0) # ¢(X) for some (or for all) rank one idempotent matrices, then we
can invoke Proposition 2.2 right away. Of course, one may replace this assumption by any of
the conditions (a) — (d) in Proposition 2.2, for example, we may assume that ¢ is injective
and ¢(P) C P. Another natural assumption is that ¢(P) = P. It turns out that any one
of these assumptions lead to nice characterization theorems for multiplicative preservers of
many important classes of matrices.

An n X n matrix is called totally nonnegative (TN) if all of its minors of all sizes are
nonnegative. From the classical identity of Cauchy and Binet, it follows that the product of
any two TN matrices is again a TN matrix. Here we study multiplicative preservers of TN
matrices. Denote by TN the set of TN matrices.

Theorem 3.4 Let m € {1,...,n}, and let P be the set of TN matrices with rank at most
m. Suppose R C M,(IR) is a semigroup containing P. The following are equivalent for a
multiplicative map ¢ : R — R.

(a) ¢(0) # ¢(X) for some rank one (idempotent) matriz X € P and ¢(P) C P.
(b) #(P)="P.

(c) There exist S = 337_ s;E;; or Y0_; 8;E 41 with s; > 0 for all j such that ¢ has
the form A S71AS.



Proof. 1t is clear that (c) implies (a) and (b). Note that for any semigroup that contains P,
condition (2.4) holds for any J, K € {1,...,n} with |J| = |K| < m. To this end, consider
I<n<ip<..<yu<mandl<jp <p<...<jgxy<m. Then E; ;, + -+ E
E; i + -+ Ej;, are both easily seen to be TN. Moreover,

Tk I and

Eilil +- Eikik = (Eiljl +o- Eikjk)(Ejljl +oeee Ejkik)(Ejlil +oeee EJklk)

Thus, Proposition 2.5 can be applied.

If (a) holds or if m < n and (b) holds, then Proposition 2.5 (3) follows. By Propositions
2.2 and 2.3, ¢((a;;)) = S™'(f(a;;))S for some invertible S, and an additive multiplicative
map f on the nonnegative real numbers with f(1) = 1. We then conclude that f is the
identity map and the invertible matrix S can only be of the required form.

Next, assume m = n and (b) holds. By Proposition 2.5 one of the conditions (1) with
m =n —1, or (3), or (4) holds. If (3) holds, then ¢ has the desired form. So suppose (1) or
(4) holds. Observe that if A is TN and singular, then by [4] A has a factorization into TN
bidiagonal matrices. Since A is singular, at least one of the bidiagonal factors, call it L, is
singular. Since bidiagonal matrices are triangular, it follows that at least one main diagonal
entry of L is zero. Then either L has a zero row or column, which includes a zero main
diagonal entry.

Thus if either (1) or (4) in Proposition 2.5 holds, then the multiplicative map ¢* will map
the set of TN matrices onto itself and map singular matrices to zero. Consider the family

S={I+E;:|i—jl=1a>0UD,

where D is the set of positive diagonal matrices. Then S generates all the invertible TN
matrices [6], and thus ¢(S) will generate all the nonzero matrices in the range. But then
¢*(8) contains matrices diagonally equivalent to those in §. Now, if A € TN is invertible,

then A is a product of matrices in § U D, and so must its image. So, ¢*(A) is invertible.
Thus, non-zero singular TN matrices have no preimages, which contradicts the fact that

¢*(TN) = TN. O
A superset of the TN matrices is the well-studied Py-matrices. An n X n matrix is called

a Py matrix if all of its principal minors (i.e., the minors whose row and column index sets
are the same) are nonnegative. Another class of matrices of interest is the My matrices, i.e.,
matrices of the form A = rI — N for a nonnegative matrix N and a positive number r which
is larger than or equal to the Perron (largest positive) eigenvalue of N; see [8, Chapter 2| for
background. We have the following preserver result.

Theorem 3.5 Let m € {1,...,n}, and let P be the set of Py matrices or the set of My
matrices with rank at most m. Suppose R C M,(IR) is a semigroup containing P. The
following are equivalent for a multiplicative map ¢ : R — R.

(a) ¢(0) # ¢(X) for some rank one (idempotent) X in P, and ¢(P) C P.

(b) ¢(P)="P.



(c) There exists S, which is a product of a positive diagonal matriz and a permutation
matriz such that ¢ has the form A s S7'AS.

Proof. We first consider P to be the set Pg of Py matrices. Again (c) implies (a) and (b) is
trivial. We can prove (2.4) for any J, K C {1,...,n} with the same argument in the proof
of the previous theorem. Thus, Proposition 2.5 can be applied.

If (a) holds, or if m < n and (b) holds, then Proposition 2.5 (3) follows. By Propositions
2.2 and 2.3, we see that &((a;;) = S™'(fij(ai;))S for some invertible S, f;;’s are additive and
fij(a) = fi1(a) for all nonnegative real number a. Again fi; is the identity map. Since f;; is
additive, fi;j(—a) = —fij(a) = —fi1(a) = —a for all nonnegative number a and so f;; is the
identity map also.

Assume m = n and ¢(Pg) = Po. We will follow along the same lines as in the proof of the
previous theorem. By Proposition 2.5 and the fact that ¢(Pg) = Py, one of the conditions
(1) with m = n — 1, or (3), or (4) in Proposition 2.5 holds. If (3) holds, then ¢ has the
desired form. So, as before, suppose (1) or (3) holds.

Suppose A is a singular Py-matrix. Then after simultaneous permutation of rows and
columns, we may assume that the last row is a nontrivial linear combination of the first n —1
rows. Hence there exists an (n — 1)-vector x such that

B:léf O]EPO and BA:C':[

Cy d
1 .

0 0

Hence A = B™'C, where B (and hence B™'), and C are both Py-matrices. Moreover, C has
a Zero row.

Thus, as before, if either (1) or (4) holds, then the multiplicative map ¢* will map the
set of Py matrices onto itself, and map singular matrices to zero. Suppose ¢?* takes singular
matrices to zero. Since the inverse of nonsingular Py matrices are Py matrices and the fact
that ¢*(Pg) = Pg implies ¢*(I) = I, we have ¢* maps invertible matrices to invertible
matrices. Thus ¢*(Pg) # P, which is a contradiction.

The proof of the My matrices preserving maps can be done similarly. The only additional
observation needed 1is:

In the proof of Po preservers, if N is a nonnegative matrix and r > 0 is such that
A =rl— N is a singular My matrix, then the last row z of B (above) satisfies 1A = 0, i.e.,
re = xN. So, x is a left Perron vector of the nonnegative matrix N. Thus, z is nonnegative.
It follows that A = B~'C such that B~' and C are M, matrices. O

Next, we consider the multiplicative maps that preserve the positive semidefinite matrices
(PSD), Hermitian matrices, normal matrices, or contractions, i.e., matrices with spectral

norm not larger than one. In what follows for a given complex matrix A, A denotes the
matrix obtained from A by conjugating each entry of A.

Theorem 3.6 Letm € {1,...,n}, and let P be the set of positive semidefinite matrices, the
set of Hermaitian matrices, the set of normal matrices, or the set of contractions with rank
at most m. Suppose R C M, (C) is a semigroup containing P. The following are equivalent
for a multiplicative map ¢: R — R.
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(a) ¢(0) # ¢(X) for some rank one (idempotent) X € P, and ¢(P) C P.

(b) #(P)="P.

(c) There exists a unitary matriz U € M, (C) such that ¢ has the form
A— UAU or A U AU.

Proof. We first consider the case of PSD matrices. Denote by PSD the set of PSD matrices.
Again, (c) implies (a) and (b) is trivial.

First, we show that if & < min{m,n —1}, then (2.4) holds for any J, K’ C {1,...,n} with
|J| = |K| = k. We first consider the case when |JN K| =k —1. Assume that p € J\ K and
q€ K\ J. Then P = Y ;cjux Ejj + Epg + Egp is a rank k positive semi-definite Hermitian
matrix. Thus A = Ex P, B = PEg € R satisfy Ex = AE;B. For general E; and Eg, we
can construct a finite sequence of index sets Jy,...,J. C{1,...,n} so that J =, J, = K,
|i| = - = ||, and |Js N Jeqq| =k — 1 for all s = 1,...,r — 1. We can then apply the
above results to show that

Ex = Ay AE;By - B,

for some Ay,..., A,_1,By,...,B,_1 € R. Now, Proposition 2.5 can be applied.

Assume (a) holds, or (b) holds with m < n. Then Proposition 2.5 (c¢) holds. By Proposi-
tions 2.2 and 2.3, we see that ¢((a;;) = S™(fi(a;;))S for some invertible S, f;;’s are additive
and fi;(a) = fi1(a) for all nonnegative real number a. Again fi; is the identity map on IR,
and thus ¢ has the form X + S7'XS or X — S71XS. Considering the images of X = vv*,

where v € C" is a unit vector, we see that S can be chosen to be unitary. Hence condition

(¢) holds.

Assume ¢(PSD) = PSD. Then again, by Proposition 2.5 and the fact that ¢(PSD) =
PSD, one of Proposition 2.5 (1) with m = n — 1, or (3), or (4) holds. If (3) holds, then ¢
has the desired form. So, as before, suppose (1) or (4) of Proposition 2.5 holds. Now assume
A is a singular PSD matrix. Then, following the argument in the Py matrix case and taking

into account of symmetry, it follows that there exists an n x n invertible Py matrix B such
that

Cy 0
_ p-1 1yt _ 1
wmewr- [ 0]
where C, and C are both PSD matrices. Applying a result of Ballantine [3], B~! can be
written as a product of at most five positive definite matrices.

Thus if either (1) or (4) in Proposition 2.5 holds, then the multiplicative map ¢?* will
satisfy ¢*(PSD) = PSD and map singular matrices to zero. Since the inverse of nonsingular

PSD matrices are PSD matrices and the fact that ¢*(PSD) = PSD implies ¢*(I) = I, we
have ¢ maps invertible matrices to invertible matrices. Thus ¢*(PSD) # PSD, which is a
contradiction.

The proofs for the cases of normal matrices, Hermitian matrices, and contractions can be

carried out similarly. Note that in each of these cases, condition (2.4) can be easily verified.
O
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3.2 Preservers of Functions

Suppose ¢ is a (scalar, vector, or set valued) function on matrices in M, (S). We consider
multiplicative maps ¢ : R — M,,(S) that preserve g, i.e.,

g(o(X)) = g(X) for all X.

If
9(0) # g(X) for all (or for some) rank one idempotent X, (3.3)

then one can always conclude that ¢ has standard form (I) so that (A) — (E) of Remark
3.1 hold. Very often, one can deduce additional conditions on S. For example, one can
use Theorem 3.2 to verify that the multiplicative preservers of the rank function have the
standard form (I). We illustrate this scheme in the following. Note that these results cover

some of those in [2, 7], and actually, many of the results can be deduced from those in [10].
The following result concerns preservers of spectra (counting or not counting multiplici-

ties) of matrices over a field.

Proposition 3.7 Suppose R C M, (IF) is a semigroup containing M!(S). Then a multi-
plicative map ¢ : R — R preserves the spectrum of (rank one idempotent) matrices in R if
and only if there exists an invertible S € M, (IF) such that ¢ has form

X — S571X8S.

Proof. The “if” part is clear. For the converse, if ¢ preserves the spectrum, then ¢(0) = 0,
and ¢ maps n mutually orthogonal rank one idempotents to n mutually orthogonal rank
one idempotents. By Theorem 3.2, ¢ has the standard form (I). Considering the image of
X = aFEy, we see that f must be the identity map. The result then follows. O

Using similar arguments, we have the following two results concerning multiplicative
preservers of the spectrum or Perron root (which is the same as the spectral radius or the

largest positive eigenvalue) of (rational) nonnegative matrices, and spectral radii of complex
matrices.

Proposition 3.8 Let S = [0,00) or Q N [0,00). Suppose R C M,(S) is a semigroup
containing M}(S). Then a multiplicative map ¢ : R — R preserve the spectrum or spectral
radius of (rank one idempotent) matrices in R if and only if there exists an invertible S €
M, (IR) such that ¢ has the form

X S'XS,
where S € M,(S) is a product of a permutation matriz and o diagonal matriz with positive
diagonal entries.

Proposition 3.9 Suppose R C M, (C) is a semigroup containing M(C). Then a multi-
plicative map ¢ : R — R preserve the spectral radius of (rank one or just rank one idempo-
tent) matrices in R if and only if there exists an invertible S € M, (C) such that ¢ has the
form

X = S1XS or X — S7'XS.
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The numerical range and numerical radius of A € M,(C) are defined and denoted by
W(A)={z"Az:2 € C", 2"z =1}  and  r(A) = max{|z|:z € W(A)}.
The spectral norm on M,(C) is defined by
|A|| = max{(z*A*Az)"/?: z € C", z*z = 1}.
For these notions we have the following result.

Proposition 3.10 Suppose R, S are semigroups of M, (C) such that M}!(C) C R. Let g(A)
denote W(A),r(A), or ||Al|. Then a multiplicative map ¢ : R — S satisfies g(¢(A)) = ¢(A)
for all A € R of and only if there is a unitary U such that

(i) ¢ has the form X — U*XU, or

(i) g(A) = r(A) or ||4]|, and ¢ has the form X s U*XU.

Proof. The “if” part can be easily checked. For the converse, note that the given condition
ensures that ¢(0) = 0 and rank one idempotents are mapped to nonzero idempotents. By

Propositions 2.2 and 2.3, ¢ has the standard form (I). Since g(¢(A)) = g(A) for all rank one
Hermitian matrices, we see that S is unitary, and f(IR) C IR. So, ¢ has the form A — U*AU
or A U*AU. If g(A) = W(A), one can consider W(¢(A)) for A = iE;; and conclude that

the latter case cannot occur. O

Remark 3.11 Similar results hold for many other functions g on square matrices satisfying
condition (3.3), including various functions on eigenvalues, singular values, and other many

different types of numerical ranges, numerical radii, and norms; see [14].
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