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Abstract

Structural theorems regarding linear preservers of the higher rank numerical
ranges are proved for the real linear space of bounded selfadjoint operators or
the complex linear space of bounded linear operators acting on a Hilbert space.
It is shown that the linear preservers of rank k-numerical ranges must be of the
standard form: unitary similarity or unitary similarity followed by transposition
with respect to a fixed orthonormal basis. Furthermore, it is shown that a linear
preserver of the rank k-numerical radius must be a unimodular scalar multiple of
a linear preserver of the rank k-numerical range.
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1 Introduction and statement of results

Let B(H) be the algebra of bounded linear operators acting on a complex Hilbert

space H. We identify B(H) with Mn, the algebra of n× n complex matrices, if H has
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dimension n. For a positive integer k < dimH , define the rank-k numerical range of

A ∈ B(H) by

Λk(A) = {λ ∈ C : PAP = λP for some rank k orthogonal projection P ∈ B(H)}.

Note that the cases when Λk(A) is empty are not excluded.

The following proposition is clear.

Proposition 1.1 Let A ∈ B(H) and k be a positive integer. The following conditions

are equivalent for a given λ ∈ C.

(a) λ ∈ Λk(A).

(b) H has an orthonormal basis such that λIk is the leading principal k×k submatrix

of the operator matrix of A with respect to the basis.

(c) There is X : Ck → H such that X∗X = Ik and X∗AX = λIk.

We will often use the two other equivalent formulations of Λk(A) in the above

proposition in our discussion.

When k = 1, the rank k-numerical range reduces to the classical numerical range

of A defined by

W (A) = {〈Au, u〉 : u ∈ H, 〈u, u〉 = 1},

which is useful in studying operators and matrices; for example see [2]. Motivated by

theory and applications, there are many generalizations of the numerical range, and

there has been a great deal of interest in studying linear preservers of a given general-

ized numerical range, i.e., linear operators which leave invariant the given generalized

numerical ranges, see [4].

The purpose of this paper is to characterize linear preservers of the rank k-numerical

range. It is clear from the definition that if U ∈ B(H) is unitary then a mapping of the

form

A 7→ U∗AU or A 7→ U∗AtU,

where At is the transpose of A ∈ B(H) under a fixed orthonormal basis, will leave

invariant the rank k-numerical range. We will prove that the converse is also true. In

quantum computing, a change of bases for the states represented as trace one positive

semidefinite operators correspond to a change of orthonormal bases and is achieved

by a unitary similarity transforms. Similar comments apply to a change of bases for
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the measurement operators, quantum channels, etc. So, our results imply that linear

preservers of rank k-numerical ranges are basically those operators corresponding to

the change of state bases. In addition to B(H), we also obtain results for (real) linear

preservers of the rank k-numerical range on the (real) linear space S(H) of bounded

selfadjoint operators in B(H). If dimH is finite, then for any A ∈ B(H) we have

Λk(A) = Λk(A), where S denotes the closure of S ⊆ C. But this may not be true if

dimH is infinite; see [5]. Our result also covers the linear preservers of the closure of

the rank k-numerical range on B(H) or S(H). Here is the statement of our first main

result.

Theorem 1.2 Let V = S(H) or V = B(H). The following statements are equivalent

for a surjective F-linear map φ : V → V, where F = R or C depending on V = S(H)

or V = B(H).

(a) Λk(A) = Λk(φ(A)) for all A ∈ V.

(b) Λk(A) = Λk(φ(A)) for all A ∈ V.

(c) There exists a unitary U ∈ B(H) such that

(1) φ(A) = U∗AU for all A ∈ V, or

(2) φ(A) = U∗AtU for all A ∈ V,

where At is the transpose of A with respect to a fixed orthonormal basis for H.

The surjective assumption on φ can be removed if dimH is finite.

We also extend the definition of the classical numerical radius

r(A) = sup{|µ| : µ ∈ W (A)}

to rank k-numerical radius defined by

rk(A) = sup{|µ| : µ ∈ Λk(A)}

with the convention that rk(A) = −∞ if Λk(A) = ∅, which may happen if dimH ≤
3k − 3; see [1] and [6]. Clearly, if ξ ∈ F satisfies |ξ| = 1 and φ is a linear preserver of

the rank k-numerical range on V = S(H) or B(H), then ξφ is a linear preserver of the

rank k-numerical radius. It turns out that the converse is true as well, which resemble

many existing results on preservers of generalized numerical ranges and radii; see [4].

Here is our result on rank k-numerical radius preservers.
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Theorem 1.3 Let V = S(H) or V = B(H). The following statements are equivalent

for a surjective F-linear map φ : V → V, where F = R or C depending on V = S(H)

or V = B(H).

(a) rk(A) = rk(φ(A)) for all A ∈ V.

(b) There exist a unitary U ∈ B(H) and ξ ∈ F with |ξ| = 1 such that

(1) φ(A) = ξU∗AU for all A ∈ V, or

(2) φ(A) = ξU∗AtU for all A ∈ V,

where At is the transpose of A with respect to a fixed orthonormal basis for H.

The surjective assumption on φ can be removed if dimH is finite.

We will give the proof of Theorem 1.2 for bounded selfadjoint operators in Section

2 and the proof of Theorem 1.2 for bounded operators in Section 3. The proof of

Theorem 1.3 will be given in Section 4.

The following notation will be used in our discussion.

• diag (x1, . . . , xm) denotes the m × m diagonal matrix with diagonal elements

x1, . . . , xm (in that order);

• rank (A) is the rank of an operator A ∈ B(H);

• <A = (A+ A∗)/2 and =A = (A− A∗)/(2i) are the real part and imaginary part

of A ∈ B(H);

• At is the transpose of A ∈ B(H) with respect to a fixed orthonormal basis.

If dimH = n, we will identify S(H) with the real linear space Hn of n×n Hermitian

matrices. The eigenvalues of A ∈ Hn will be denoted by λ1(A) ≥ · · · ≥ λn(A).

We will often use the facts about Λk(A).

• Λk(A) = Λk(A
t) = Λk(U

∗AU) for any unitary U ∈ B(H).

• Λk(αA+ βI) = αΛk(A) + β for any α, β ∈ C.

• If z ∈ Λk(A), then <z ∈ Λk(<A) and =z ∈ Λk(=A).

Since Theorems 1.2 and 1.3 are well known for k = 1 (for example, see [4]), we

always assume that k > 1 in our discussion. In particular, dimH ≥ 3.
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2 Proof of Theorem 1.2 for bounded selfadjoint op-

erators

We present the proof of Theorem 1.2 for bounded selfadjoint operators in this section.

It is easy to determine Λk(A) as follows; see [6, 8].

Proposition 2.1 Let A ∈ S(H). Suppose dimS(H) ≥ 2k − 1. Then Λk(A) is a

non-empty convex subset of R such that

Λk(A) = [Lk(A), Rk(A)]

with

Lk(A) = inf{λ1(X
∗AX) : X∗X = Ik} and Rk(A) = sup{λk(X

∗AX) : X∗X = Ik}.

In case dimH = n is finite and A has eigenvalues λ1(A) ≥ · · · ≥ λn(A), we have

Λk(A) = Λk(A), Lk(A) = λn−k+1(A) and Rk(A) = λk(A).

If dimH < 2k − 1, then either

(i) λk(A) < λn−k+1(A) and Λk(A) = ∅, or

(ii) λk(A) = λn−k+1(A) and Λk(A) = {λk(A)}.

To prove Theorem 1.2 for V = S(H), note that the implications (c) ⇒ (a) ⇒ (b)

are clear in Theorem 1.2. We focus on the proof of the implication (b) ⇒ (c).

To achieve this, we will first show that φ is injective. Then it will be bijective in the

finite dimensional case, and bijective under the surjective assumption of the theorem.

We will then show that φ maps the set of positive semidefinite operators onto itself if

dimH ≥ 2k, and φ maps the set of operators in S(H) with rank 2(n− k) to matrices

with rank at most 2(n − k) if dimH = n < 2k. We can then apply the following two

lemmas; see [7], [3, 9], and also [12], [11, Chapters 2 and 3].

Lemma 2.2 Let ψ : S(H) → S(H) be an invertible linear operator such that φ(I) = I.

Then ψ(P ) = P , where P ⊆ S(H) is either the set of positive semidefinite operators or

the set of positive definite invertible operators if and only if there is a unitary operator

S ∈ B(H) such that ψ has the form

(1) ψ(A) = S∗AS ∀ A ∈ S(H) or (2) ψ(A) = S∗AtS ∀ A ∈ S(H).
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Proof. The “if” part is obvious. For the “only if” part, note that for A ∈ S(H),

infW (A) = sup{t ∈ R : A− tI is positive (semi)definite}

and

supW (A) = inf{t ∈ R : A− tI is negative (semi)definite}.

Thus, the given assumption implies that W (A) and W (ψ(A)) always have the same

closure. The result then follows from [7, Theorem 2]. 2

Lemma 2.3 Suppose 1 ≤ r < n and n ≥ 3. Let ψ : Hn → Hn be an invertible linear

operator. Then ψ maps the set of matrices with rank r to matrices of rank at most r if

and only if there are ξ ∈ {1,−1} and an invertible matrix S ∈Mn such that ψ has the

form

A 7→ ξS∗AS ∀ A ∈ Hn or A 7→ ξS∗AtS ∀ A ∈ Hn.

If, in addition, ψ(I) = I, then ξ = 1 and S is unitary.

The next lemma and its proof take after [10, Lemma 2]. Let π(A) and ν(A) is

the number of positive and negative eigenvalues of a Hermitian matrix A respectively,

counted with multiplicities.

Lemma 2.4 Let r, s be positive integers such that r + s < n. Let ψ : Hn → Hn be a

linear map on Hn with the following property:

rank (ψ(A)) ≤ r + s whenever A ∈ Hn satisfies π(A) ≤ r and ν(A) ≤ s. (2.1)

Then rank (A) ≤ r + s implies rank (ψ(A)) ≤ r + s.

Proof. Let m = r + s. Since any A ∈ Hn with rank (A) < m can be approximated

with Hermitian matrices of rank m, it clearly suffices to show that rank (ψ(A)) ≤ m

whenever A ∈ Hn and rank (A) = m. Suppose first A ∈ Hn, π(A) = r + 1 and

ν(A) = s− 1. Then there exists an invertible S such that A = S∗DS, where

D = diag (a1, . . . , ar, ar+1,−b1,−b2, . . . ,−bs−1, 0, . . . , 0),

and a1, . . . , ar, ar+1, b1, . . . , bs−1 are positive. Let

Dε = diag (a1, . . . , ar, ε,−b1,−b2, . . . ,−bs−1, 0, . . . , 0), ε ∈ R,
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Bε = S∗DεS, Cε = ψ(Bε). Then, for any ε < 0, we have π(Bε) = r, ν(Bε) = s, therefore

rank (Cε) ≤ m. Hence every (m+ 1)× (m+ 1) minor of Cε which is a polynomial on ε

vanishes for all ε < 0. Therefore every such minor vanishes for all real ε, in particular

rankCar+1 ≤ m. But

ψ(A) = ψ(S∗Dar+1S) = ψ(Bar+1) = Car+1 ,

so rank (ψ(A)) ≤ m. Repeating the process one obtains rank (ψ(A)) ≤ m as soon as

rank (A) = m and π(A) > r. Analogously, we conclude that rank (ψ(A)) ≤ m whenever

rank (A) = m and ν(A) > s. 2

Next, we establish several lemmas characterizing some special operators in S(H)

in terms of the higher rank numerical range. The next lemma will also be useful for

discussion in Section 4.

Lemma 2.5 Suppose A ∈ S(H) satisfies rk(A) = 0. If A 6= 0 then there is B ∈ S(H)

with rk(B) ∈ {−∞, 0} such that

rk(A+B) > 0. (2.2)

Proof. Since A 6= 0, there is a unit vector u ∈ H such that 〈Au, u〉 = γ 6= 0. We

may assume that γ > 0. Otherwise, consider −A instead of A.

Suppose dimH ≥ 2k. Let H1 be a 2k dimensional subspace of H containing u, and

let A have operator matrix [
A11 A12

A∗12 A22

]
with respect to the decomposition H = H1 ⊕H⊥

1 . We may further assume that A11 =

diag (a1, . . . , a2k) with a1 ≥ · · · ≥ a2k by choosing a suitable orthonormal basis for H1.

Since Λk(A11) ⊆ Λk(A) = {0}, we see that ak = 0 = ak+1. Since u ∈ H1, we see that

a1 ≥ γ > 0. Let B ∈ S(H) have operator matrix B11 ⊕ 0H⊥1 with

B11 = diag (a1 − a1, a1 − a2, . . . , a1 − ak)⊕ 0k.

Then B is positive semidefinite with rank at most k− 1. By Proposition 2.1, Λk(B) =

{0} so that rk(B) = 0. But a1Ik is the leading principal submatrix of A11 +B11 so that

a1 ∈ Λk(A+B). Hence, rk(A+B) ≥ a1 > 0 = rk(B).

Suppose dimH = n < 2k. With a suitable orthonormal basis, we may assume that

A = diag (a1, . . . , an) with a1 ≥ · · · ≥ an. Then a1 ≥ 〈Au, u〉 = γ > 0. Let

B = diag (0, a1 − a2, . . . , a1 − ak, 0, . . . , 0).
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Then

λk(B) = 0 ≤ a1 − a2k−n = λn−k+1(B)

so that rk(B) ∈ {−∞, 0} by Proposition 2.1, and rk(A+B) = a1 > 0. 2

Lemma 2.6 Let A ∈ S(H) and α ∈ R. Then A = αI if and only if

Λk(A+X) = Λk(X) + α ∀ X ∈ S(H), (2.3)

or equivalently

Λk(A+X) = Λk(X) + α ∀ X ∈ S(H).

Proof. The “only if” part is clear from Proposition 2.1.

Assume (2.3) holds. Let Ã = A− αI. Then (2.3) implies that rk(Ã +X) = rk(X)

for all X ∈ S(H). By Lemma 2.5, we see that Ã = 0. Thus, A = αI. 2

Lemma 2.7 Suppose dimH ≥ 2k − 1. Then A ∈ S(H) with inf Λk(A) ≥ 0 is positive

semidefinite if and only if

inf Λk(B) ≤ inf Λk(A+B) ∀ B ∈ S(H). (2.4)

Proof. Let A ∈ S(H) be positive semidefinite. Suppose B ∈ S(H). Then for any

X : Ck → H satisfying X∗X = Ik, we have

λ1(X
∗BX) ≤ λ1(X

∗(A+B)X)

by the well known properties of positive semidefinite operators. Thus, (2.4) holds.

Conversely, if A is not positive semidefinite, then there is a unit vector u ∈ H such

that γ := 〈Au, u〉 < 0. Following the argument in the proof of Lemma 2.5, there is a

2k − 1 dimensional subspace H1 of H containing the vector u so that A has operator

matrix [
A11 A12

A∗12 A22

]
with respect to the decomposition H = H1 ⊕H⊥

1 . We may further assume that A11 =

diag (a1, . . . , a2k−1) with a1 ≥ · · · ≥ a2k−1 by choosing a suitable orthonormal basis for

H1. Since {ak} = Λk(A11) ⊆ Λk(A) ⊆ [0,∞), we see that ak ≥ 0. Since u ∈ H1, we see

that a2k−1 ≤ γ < 0. Let B ∈ S(H) be given by the operator matrix B11 ⊕ 0H⊥1 with
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B11 = 0k−1 ⊕−MIk−1 ⊕ [0], where M satisfies a2k−1 ≥ ak −M . Then Λk(B) = {0}, so

that inf Λk(B) = 0. But

inf Λk(A+B) ≤ inf Λk(A11 +B11) = a2k−1 < 0,

which contradicts (2.4). 2

Now, we are ready to present the

Proof of Theorem 1.2 for bounded selfadjoint operators

Suppose φ : S(H) → S(H) is a linear map that satisfies condition (b) of Theorem

1.2, and that φ is surjective in case dimH is infinite.

First, we show that φ is bijective. Under the assumption on φ, we need only prove

that φ is injective.

Let A ∈ S(H) be such that φ(A) = 0, so Λk(A) = Λk(φ(A)) = {0}. Then for any

B ∈ S(H) we have

rk(B) = rk(φ(B)) = rk(φ(B) + φ(A)) = rk(φ(A+B)) = rk(A+B). (2.5)

By Lemma 2.5, A = 0.

Now, φ is invertible. It is easy to see that φ−1 has the same property as φ has, i.e.,

Λk(B) = Λk(φ−1(B)) ∀ B ∈ S(H). (2.6)

Next, we show that φ(I) = I. To see this, note that Λk(I +X) = Λk(X) + 1 for all

X ∈ S(H). It follows that

Λk(φ(I) + Y ) = Λk(φ(I + φ−1(Y ))) = Λk(I + φ−1(Y )) = 1 + Λk(φ−1(Y )) = 1 + Λk(Y )

for all Y ∈ S(H). By Lemma 2.6, we see that φ(I) = I.

We divide the rest of the proof into two cases.

Case 1. Suppose dimH ≥ 2k − 1. This ensures that Λk(A) 6= ∅ for every A ∈ S(H).

Then we have

inf Λk(A) = inf Λk(φ(A)) ∀ A ∈ S(H). (2.7)

Let A ∈ S(H) be positive semidefinite. Then (2.4) in Lemma 2.7 holds. It follows that

inf Λk(Y ) ≤ inf Λk(φ(A) + Y ) ∀ Y ∈ S(H).
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Thus, φ(A) is positive semidefinite. Applying the argument to φ−1, we conclude that φ

maps the set of positive semidefinite operators in S(H) onto itself. Since we have shown

that φ(I) = I, by Lemma 2.2 there exists a unitary S such that either φ(A) = S∗AS

for all A ∈ Hn or φ(A) = S∗AtS for all A ∈ S(H).

Case 2 Suppose 2k − 1 > n ≥ 3. Identify S(H) with Hn. Consider the set

Γk := {A ∈ Hn : Λk(A) = {0}} = {A ∈ Hn : λn−k+1(A) = λk(A) = 0}.

Clearly, φ(Γk) ⊆ Γk. Applying Lemma 2.4 with r = s = n − k, we have rankφ(A) ≤
2(n− k) whenever A ∈ Hn and rankA ≤ 2(n− k). Since we have shown that φ(I) = I,

by Lemma 2.3 there exists a unitary S such that either φ(A) = S∗AS for all A ∈ Hn

or φ(A) = S∗AtS for all A ∈ Hn.

This concludes the proof of (b) ⇒ (c). 2

3 Proof of Theorem 1.2 for bounded operators

Similar to the discussion at the beginning of Section 2, we need only prove the impli-

cation (b) ⇒ (c) for Theorem 1.2 when V = B(H).

So, we assume that φ : B(H) → B(H) is linear and satisfies condition (a) in Theorem

1.2.

Our strategy is to show that φ is invertible. If dimH ≥ 2k, we will show that

φ(S(H)) ⊆ S(H). If dimH < 2k, we show that there is an invertible linear map

ψ : S(H) → S(H) associated with φ satisfying Λk(ψ(A)) = Λk(A) whenever A ∈ S(H)

with nonempty Λk(A). In both cases, we will then be able to use the results in Section

2 to obtain the structure of φ.

By the results in [5, 8], we have the following general description of Λk(A) for

A ∈ B(H), which implies the convexity of Λk(A) established in [1, 13].

Proposition 3.1 Let A ∈ B(H). For t ∈ [0, 2π), let

Rk,t(A) = Rk((e
itA+ e−itA∗)/2),

where for H ∈ S(H)

Rk(H) = sup{λk(X
∗HX) : X∗X = Ik}.

Then Λk(A) is a bounded convex set such that

Λk(A) = {µ ∈ C : <(eitµ) ≤ Rk,t(A) ∀ t ∈ [0, 2π)}.
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We begin with the following lemma which will also be useful in Section 4.

Lemma 3.2 Let A ∈ B(H) be such that rk(A) = 0. If A 6= 0, then there is B ∈ B(H)

with rk(B) ∈ {−∞, 0} such that

rk(A+B) > 0. (3.1)

Proof. Suppose A ∈ B(H) with rk(A) = 0. Then Λk(A) = {0} is non-empty.

Suppose A ∈ S(H). The result follows from Lemma 2.5. So, assume =A 6= 0.

If rk(<A) > 0, let B = <A− i=A so that

Λk(B) = {x− iy : x, y ∈ R, x+ iy ∈ Λk(A)}.

Then rk(B) = rk(A) = 0 and rk(A+B) = 2rk(<A) > 0.

Suppose rk(<A) = 0 so that Λk(<A) = {0}. By Lemma 2.5, there is C ∈ S(H)

such that rk(C) ∈ {−∞, 0} and rk(=A+ C) > 0. Let B = −<A+ iC. Then

Λk(B) ⊆ {x+ iy : x ∈ Λk(<A), y ∈ Λk(C)}

so that rk(A+B) = rk(=A+ C) > 0 ≥ rk(B). 2

Lemma 3.3 Let A ∈ Mn with H = <A and G = =A. Assume n ≥ 2k. Then Λk(A)

is a nondegenerate line segment in R if and only if Λk(A) contains at least two distinct

points and Λk(G) = {0}, i.e., λk(G) = 0 = λn−k+1(G).

Note that the hypothesis n ≥ 2k ensures that there exists A ∈ B(H) such that

Λk(A) has at least two points.

Proof. The “if” part is clear by Proposition 3.1.

We consider the “only if”’ part. Assume Λk(A) = [a, b] ⊆ R with a < b but that

Λk(G) 6= 0. We may replace A by αA + βI for suitable α, β ∈ R and assume that

Λk(A) = [−1, 1] and additionally λk(−G) = d > 0. We establish a contradiction by

constructing a pure imaginary number α = −im for m > 0 in the range. It suits this

purpose to only consider θ ∈ [0, π], because 0 ∈ Λk(A) implies

m sin(θ) < 0 ≤ λk(H cos(θ)−G sin(θ)) ∀ θ ∈ (π, 2π).

Since λk(H cos(θ) − G sin(θ)) depends continuously on θ, for ε = d/2, there exists

δ > 0 such that

|λk(H cos(θ)−G sin(θ))− d| < d/2
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whenever |θ − π/2| < δ. So

λk(H cos(θ)−G sin(θ)) > d/2 ∀ θ ∈ (π/2− δ, π/2 + δ).

Then for θ ∈ [0, π/2− δ], since 1 ∈ Λk(A) we have

0 < cos(π/2− δ) ≤ cos(θ) ≤ λk(H cos(θ)−G sin(θ)).

Similarly, since −1 ∈ Λk(A) we have

0 < cos(π/2− δ) = − cos(π/2 + δ) ≤ λk(H cos(θ)−G sin(θ))

for θ ∈ [π/2 + δ, π]. Now let m = min(d/2, cos(π/2− δ)). Then for α = −im, we have

sin(θ)m ≤ m ≤ λk(H cos(θ)−G sin(θ)) ∀ θ ∈ [0, π],

thus α ∈ Λk(A) which is a contradiction. So Λk(G) = 0. 2

Lemma 3.4 Suppose A ∈ B(H) where dimH ≥ 2k. Then A is selfadjoint if and only

if Λk(A) 6= ∅ and

Λk(A+B) ⊆ R whenever B ∈ B(H) and Λk(B) is a nondegenerate line segment in R.
(3.2)

Proof. Suppose A ∈ S(H). Then Λk(A) is non-empty subset of R by Proposition

2.1. Assume B ∈ B(H) is such that Λk(B) is a non-degenerate line segment in R, and

let µΛk(A + B). Select two distinct points b1, b2 in Λk(B), and let X, Y, Z : Ck → H
be such that X∗X = Y ∗Y = Z∗Z = Ik and

X∗(A+B)X = µIk, Y ∗BY = b1Ik, Z∗BZ = b2Ik.

Now, let V : Cm → H be such that V ∗V = Im and the range space of V contains the

range spaces of X, Y, Z. Here m is a suitable integer not exceeding 3k. Then

Λk(V
∗BV ) ⊆ Λk(B) ⊆ R,

and b1, b2 ∈ Λk(V
∗BV ), so by Lemma 3.3,

λk(=(V ∗BV )) = 0 = λn−k+1(=(V ∗BV )).
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Also, µ ∈ Λk(V
∗(A+B)V ). Now, A+B = (A+ <B) + i=B, and

=µ ∈ Λk(=(V ∗(A+B)V )) ⊆ Λk(=(V ∗BV )) = {0}.

Hence, Λk(A+B) ⊆ R.

We establish the converse by proving the contra-positive. Suppose (3.2) holds but

=A 6= 0. Then there is Z : C2k → H such that Z∗Z = I2k and the matrix Ã := Z∗AZ

has the properties =Ã 6= 0 and Λk(Ã) is a non-empty subset of Λk(A). Let H1 be the

range space of Z. Then we may assume that the operator matrix of A with respect to

the decomposition H1 ⊕H⊥
1 has the form

[
Ã ∗
∗ ∗

]
. We will construct B ∈ B(H) with

operator matrix

[
B̃ 0
0 0

]
such that B̃ ∈M2k satisfies

[−1, 1] ⊆ Λk(B̃) = Λk(B) and µ ∈ Λk(Ã+ B̃) ⊆ Λk(A+B)

for some µ ∈ C \ R. Then we get a contradiction.

For notational simplicity, we let dimH1 = 2k = n. First, we verify that Λk(Ã) is

real. Indeed, if (up to a unitary similarity) Ã =

[
wIk

∗

∗ ∗

]
with nonreal w, then letting

B̃ = Ik ⊕ (−Ik) we obtain a contradiction with (3.2).

Assume that X is n× k such that X∗X = Ik and X∗ÃX = aIk with a ∈ R. Since

=Ã 6= 0, we can append a column x0 to X to obtain a matrix X̂ = [X|x0] so that

Â := X̂∗ÃX̂ = H + iG =

[
aIk x
y∗ z

]
, H = <Â, G = =Â,

so that G 6= 0. Evidently, G can only have nonzero entries in the last row and last

column. Let U ∈Mk+1 be unitary having the form U1 ⊕ [1] such that U∗HU = H and

U∗GU only have nonzero elements at the (k, k), (k, k + 1), (k + 1, k) and (k + 1, k + 1)

entries. We can further find a unitary V ∈ Mk+1 have the form Ik−1 ⊕ V1 such that

V ∗U∗GUV is a diagonal matrix with nonzero (k, k) entry equal to g ∈ R. Then

V ∗U∗ÂUV =

[
aIk−1 A12

A∗12 A22

]
with A22 ∈M2. Applying a unitary similarity to Ã, we may assume that V ∗U∗ÂUV =

(aij) is the (k + 1)× (k + 1) upper left corner of the matrix Ã. Let

B̃ =

[
B11 Ik
Ik −B11

]
, where B11 =

[
igIk−1 −v
−v∗ −<(akk) + a

]
13



with v = (a1k, a2k, . . . , ak−1,k)
t. It follows that the leading k× k principal submatrix of

V ∗U∗ÂUV + B̃ is (a+ ig)Ik, and hence a+ ig ∈ Λk(Ã+ B̃). Note that

=B̃ = gIk−1 ⊕ [0]⊕ (−g)Ik−1 ⊕ [0], hence Λk(=B̃) = {0}. (3.3)

Furthermore, if

R =
1√
2

[
Ik Ik
Ik −Ik

]
,

then

R∗B̃R =

[
Ik B11

B11 −Ik

]
.

Thus, [−1, 1] ⊆ Λk(B̃). Hence Λk(B̃) ⊆ R in view of (3.3) and Lemma 3.3. So, we have

B̃ ∈ Mn such that Λk(B̃) is a non-degenerate line segment, and Λk(Ã + B̃) contains

a+ ig. Thus, Λk(Ã+ B̃) 6⊆ R, and the desired result follows. 2

Lemma 3.5 Suppose {A1, . . . , An2} is a basis for Mn. Then except for finitely many

γ ∈ R the set {<Aj + γ=Aj : 1 ≤ j ≤ n2} is a basis for Hn.

Proof. Write Aj = Hj + iGj for j = 1, . . . , n2 with Hj, Gj ∈ Hn. We identify the

n × n Hermitian matrices Hj and Gj with vectors uj and vj in Rn2
. Then Aj can be

identified with the vector uj + ivj in Cn2
. Define U and V by the n2 × n2 matrices

with uj and vj as the jth columns, respectively. Since {A1, . . . , An2} is a basis for Mn,

{u1 + iv1, . . . , un2 + ivn2} is a basis in Cn2
. In particular, we have det(U+ iV ) 6= 0. Then

the set {Hj +γGj : 1 ≤ j ≤ n2} is a basis for Hn if and only if p(γ) := det(U+γV ) 6= 0.

Note that p(α) is a not identically zero polynomial of α in C with degree at most n2.

The result follows. 2

We are now ready to present the

Proof of Theorem 1.2 for bounded operators

We need only to prove the implication (b) ⇒ (c). Similarly to the selfadjoint case,

we can show that φ is bijective using Lemma 3.2.

Now, φ is invertible. It is easy to see that φ−1 has the same property as φ has, i.e.,

Λk(B) = Λk(φ−1(B)) ∀ B ∈ B(H).

We consider two cases.

14



Case 1. Assume first dimH ≥ 2k. We show that φ(S(H)) ⊆ S(H). Let A ∈ S(H).

Then for every B ∈ B(H) such that Λk(B) = Λk(φ−1(B)) is a nondegenerate real

interval in R, by Lemma 3.3 we have Λk(=(φ−1(B))) = {0}, and moreover

Λk(φ(A) +B) = Λk(A+ φ−1(B)).

Since

A+ φ−1(B) = A+ <(φ−1(B)) + i=(φ−1(B)),

by Proposition 3.1 we have

Λk(φ(A) +B) = Λk(A+ φ−1(B)) ⊆ R.

Also, Λk(φ(A)) = Λk(A) 6= ∅. By Lemma 3.4 we conclude that φ(A) ∈ S(H). Now, we

can define ψ : S(H) → S(H) to be the restriction of φ onto S(H), i.e. ψ(A) = φ(A)

for all A ∈ S(H), which is linear and preserves the rank k numerical range. Then by

Theorem 1.2 for the selfadjoint case, there is a unitary U ∈ B(H) such that either

(1) φ(A) = U∗AU for all A ∈ S(H), or (2) φ(A) = U∗AtU for all A ∈ S(H).

Since φ(H + iG) = φ(H) + iφ(G) for any H,G ∈ S(H), we see that φ has the standard

form.

Case 2 Assume dimH = n < 2k. We identify B(H) asMn. Suppose B = {A1, . . . , An2}
is a basis for Hn. Then {φ(Aj) : 1 ≤ j ≤ n2} is a basis for Mn. By Lemma 3.5, except

for a finite number of γ, the set

Bγ = {<φ(Aj) + γ=φ(Aj) : 1 ≤ j ≤ n2}

is a basis for Hn. Hence the real linear map ψγ : Hn → Hn defined by

ψγ(A) = <φ(A) + γ=φ(A),

maps the basis B to the basis Bγ. Thus, ψγ is invertible.

Moreover, if A ∈ Hn satisfies Λk(A) = {α}, then Λk(φ(A)) = {α}. Thus, there is

an n× k matrix X satisfying X∗X = Ik and X∗φ(A)X = αIk. As a result,

X∗<φ(A)X = αIk and X∗=φ(A)X = 0k.

It follows that X∗(ψγ(A))X = αIk. Since n < 2k, Λk(ψγ(A)) must be a singleton and

equal to {α}. In particular, ψγ(Γk) ⊆ Γk, where

Γk := {A ∈ Hn : Λk(A) = {0}} = {A ∈ Hn : λn−k+1(A) = λk(A) = 0}.
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Following the proof of Case 2 of the selfadjoint case, we conclude that ψγ has the

standard form

A 7→ U∗γAUγ ∀ A ∈ Hn or A 7→ U∗γA
tUγ ∀ A ∈ Hn

for some unitary Uγ ∈Mn.

Next, we claim that =φ(A) = 0 for all A ∈ S(H). If it is not true and if there is

B ∈ S(H) such that =φ(B) 6= 0, then there exists a sufficiently large γ > 0 so that

‖ψγ(B)‖ = ‖<φ(B) + γ=φ(B)‖ > ‖B‖,

which contradicts the fact that ψγ is in standard form and will leave invariant the norms

of matrices in Hn.

By the above argument, we see that there is a unitary U ∈Mn such that either

(1) φ(A) = U∗AU for all A ∈ Hn, or (2) φ(A) = U∗AtU for all A ∈ Hn.

Since φ(H + iG) = φ(H) + iφ(G) for any H,G ∈ Hn, we see that φ has the standard

form. 2

4 Proof of Theorem 1.3

The purpose of this section is to prove Theorem 1.3.

The implication of (b) ⇒ (a) is clear, since rk(ξA) = |ξ|rk(A) for all A ∈ V and all

ξ ∈ F; by convention, |ξ|(−∞) = −∞ for all ξ ∈ F.

We focus on the converse. So, we assume the general statement that φ : V → V is

a linear map with rk(A) = rk(φ(A)) for all A ∈ V .

The key step is to show that φ(I) = ξI for some ξ ∈ C. We can then show that ξ−1φ

will be a linear preserver of the rank k-numerical range so that Theorem 1.2 applies.

We need three lemmas to prove Theorem 1.3.

Lemma 4.1 Let X = X1 ⊕ 0G, where X1 ∈Mk and G is a Hilbert space of dimension

at least k − 1. If 0 ∈ W (X1), then Λk(X) = {0}.

Proof. Write X = H + iG, H = H∗, G = G∗. Then H = H1 ⊕ 0G, where

H1 = H∗
1 ∈ Mk. Also, zero belongs to the numerical range of H1, so H1 cannot be

positive definite or negative definite. Thus, H1 has at most k − 1 positive eigenvalues

and at most k − 1 negative eigenvalues. So Λk(H) = {0}. Similarly, Λk(G) = {0}.
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Therefore Λk(X) ⊆ {0}. But it is easy to see that Λk(X) is nonempty, and we are

done. 2

Lemma 4.2 Let A ∈ V satisfy rk(A) > 0. Then following statements are equivalent.

(a) A is a scalar operator.

(b) For every B ∈ V such that Λk(B) 6= ∅ we have

rk(A) + rk(B) = sup{rk(ξA+B) : |ξ| = 1}. (4.1)

Proof. Note that for the case V = B(H), our unimodular coefficients ξ in (4.1) can

be drawn from the complex unit circle, whereas in the V = S(H) case ξ = ±1.

To prove (a) ⇒ (b), suppose A = µI ∈ V and let B ∈ V be such that Λk(B) 6= ∅.
Since

Λk(ξµI +B) = Λk(B) + ξµ,

we have rk(ξA+B) ≤ |µ|+ rk(B), hence

sup{rk(ξA+B) : |ξ| = 1} ≤ rk(A) + rk(B). (4.2)

Moreover, if {νm} is a sequence in Λk(B) converging to ν such that |ν| = rk(B), we

can choose ξ0 such that |ξ| = 1 (ξ = ±1 if V = S(H)) and

|ξ0µ+ ν| = |µ|+ |ν| = rk(A) + rk(B).

Then {ξ0µ+νm} is a sequence in Λk(ξ0µI+B) converging to ξ0µ+ν. (In the selfadjoint

case, this reduces to matching the sign of µ to that of ν by multiplying by −1 if

necessary.) Thus,

rk(A) + rk(B) ≤ rk(ξ0A+B) ≤ sup{rk(ξA+B) : |ξ| = 1}. (4.3)

To prove the converse, assume (b) holds. We consider two cases.

Case 1. Suppose dimH ≥ 2k − 1. We claim that |〈Ax, x〉| = rk(A) = γ for any unit

vector x ∈ H.

Assume first that there is a unit vector x ∈ H satisfying |〈Ax, x〉| > γ. Let X :

C2k−1 → H be such that X∗X = I2k−1 and x belongs to the range space of X, denoted

by H1. Since x ∈ H1, there is a unit vector y ∈ H1 such that

|〈Ay, y〉| = r(A11) ≥ |〈Ax, x〉| > γ.

17



We may replace A by eitA for a suitable t ∈ [0, 2π) and assume that

a1 = 〈Ay, y〉 = r(A11) > γ.

Decompose H as H1 ⊕ H⊥
1 . Choosing a suitable orthonormal basis for H1, we may

assume that A has operator matrix

[
A11 ∗
∗ ∗

]
, where

A11 = diag (a1, . . . , a2k−1) + iG

with

a1 = r(A11) > γ, a1 ≥ · · · ≥ a2k−1 real, G = G∗.

Since a1 = r(A11), the (1, 1) entry of G is zero. Now set

B11 = [diag (a1 − a1, . . . , a1 − ak)− iG1]⊕ 0k−1,

where G1 is the leading k× k principal submatrix of G. Then a1Ik is the leading k× k

principal submatrix of A11 +B11. The principal submatrix of B11 obtained by deleting

rows and columns with indices 2, . . . , k is 0k. So, letting B = B11 ⊕ 0H⊥1 , we see by

Lemma 4.1 that Λk(B) is the singleton {0}. Thus,

rk(A+B) ≥ rk(A11 +B11) ≥ a1 > γ = rk(A) + rk(B),

a contradiction with (4.1). So, we conclude that |〈Ax, x〉| ≤ γ for every unit vector

x ∈ H.

Now, assume that there is a unit vector x ∈ H such that

|〈Ax, x〉| = γ − δ for some δ > 0. (4.4)

Let X : Ck → H be such that X∗X = Ik and x lies in the range space of X. If

B = XX∗ ∈ S(H), then B is a rank k orthogonal projection. So, Λk(B) = [0, 1], or

Λk(B) = {1} if dimH = 2k − 1, and rk(B) = 1. We may invoke (4.1) and conclude

that there is a sequence {ξ̃m}∞m=1 with |ξ̃m| = 1 satisfying

γ + 1− 1/m = rk(A) + rk(B)− 1/m ≤ rk(ξ̃mA+B) ≤ rk(A) + rk(B) = γ + 1.

There exist a sequence of scalars ζm with |ζm| = 1 and a sequence of linear maps

Ym : Ck → H such that Y ∗mYm = Ik and

ζmY
∗
m(ξ̃mA+B)Ym = (γm + 1)I, (4.5)
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and

{γm + 1} converges to γ + 1. (4.6)

Note that |〈Bv, v〉| ≤ ‖B‖ = 1 for every unit vector v ∈ H, and we have shown that

|〈Au, u〉| ≤ γ for every unit vector u ∈ H. Let dj(C) denote the (j, j) entry of C ∈Mk

for j ∈ {1, . . . , k}. It follows from (4.5) that

(1) {dj(ζmY
∗
mBYm)} → 1, and (2) {dj(ζmξ̃mY

∗
mAYm)} → γ

as m→∞, for every j ∈ {1, . . . , k}. Since ‖ζmY ∗mBYm‖ ≤ 1, we have

k∑
j=1

|dj(Y
∗
mBYm)|2 ≤ tr(Y ∗mBYm)2 ≤ k.

By (1), {
∑k

j=1 |dj(Y
∗
mBYm)|2} → k. So{

tr(Y ∗mBYm)2 −
k∑

j=1

|dj(Y
∗
mBYm)|2

}
→ 0,

and hence {ζmY ∗mBYm} converges to a diagonal matrix with all diagonal entries ap-

proaching 1. Equivalently, {ζmY ∗mBYm} → Ik. Since Y ∗mBYm is positive semidefinite

with eigenvalues in [0, 1], we conclude that

{ζm} → 1 and {Y ∗mBYm} → Ik. (4.7)

Since {ζm} → 1, we have

{Y ∗m(ξ̃mA+B)Ym} → (γ + 1)I.

Since {Y ∗mBYm} → Ik, we have in view of (4.7)

{ξ̃mY ∗mAYm} = {ζ−1
m (γm + 1)Ik − Y ∗mBYm} → (γ + 1)Ik − Ik = γIk.

Let Zm = X∗Ym ∈Mk for m = 1, 2, . . . . Then

{Z∗mZm} = {Y ∗mXX∗Ym} = {Y ∗mBYm} → Ik.

Passing to subsequences if needed, we may assume that {Zm} converges to a matrix

U ∈ Mk. Since {Z∗mZm} → Ik, we see that U is unitary. Replacing Ym by YmU
∗, we

may assume that {Zm} → Ik. Let Rm : Cqm → H be such that

[X|Rm]∗[X|Rm] = Ik+qm ,
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and that [X|Rm] and [X|Ym] have the same range space. Since Y ∗mYm = Ik, there exist

Cm : Ck → Ck and Sm : Ck → Cqm satisfying

C∗mCm + S∗mSm = Ik and Ym = XCm +RmSm.

Indeed, Cm and Sm are taken from the equalities

[X|Rm]Qm = Ym, Qm =

[
Cm

Sm

]
,

for some (k + qm)× k matrix Qm. Since

{Cm} = {X∗(XCm +RmSm)} = {X∗Ym} = {Zm} → Ik,

we see that {‖Sm‖} → 0. Let Tm = X(Cm − Ik) + RmSm. Then Ym = X + Tm and

{‖Tm‖} → 0. Consequently,

ζ−1
m (γm + 1)Ik = Y ∗m(ξ̃mA+B)Ym = (X + Tm)∗(ξ̃mA+B)(X + Tm)

= X∗(ξ̃mA+B)X + Lm = ξ̃mX
∗AX + Ik + Lm

so that

[ζ−1
m (γm + 1)− 1]Ik = ξ̃mX

∗AX + Lm, (4.8)

where

{Lm} := {T ∗m(ξ̃mA+B)Tm − T ∗m(ξ̃mA+B)X −X∗(ξ̃mA+B)Tm} → 0.

Since x is in the range space of X, there is a unit vector v ∈ Ck such that x = Xv. By

(4.8), we have

ζ−1
m (γm+1)−1 = v∗([ζ−1

m (γm+1)−1]Ik)v = v∗X∗ξ̃mAXv+v
∗Lmv = 〈ξ̃mAx, x〉+v∗Lmv.

Note that {ζ−1
m (γm +1)− 1} → γ by (4.6) and (4.7), whereas {|〈ξ̃mAx, x〉+ v∗Lmv|} →

γ − δ by (4.4). We get a contradiction. So our claim is true, and

W (A) = {〈Ax, x〉 : x ∈ H, 〈x, x〉 = 1} ⊆ {γeit : t ∈ [0, 2π)}.

By the convexity ofW (A), we see thatW (A) = {α} is a singleton. So, W (A−αI) = {0}
and A = αI is a scalar operator.

Case 2 Suppose dimH = n < 2k − 1. Note that in this case, Λk(X) is either empty

or a singleton, for every X ∈ V . It is easy to see that the supremum is attained in
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(4.1). Moreover, if Λk(X) = {µ}, then Λk(<eitA) = {<eitµ} for every t ∈ [0, 2π). Now,

suppose A ∈ V satisfies rk(A) = γ > 0 and (4.1). Then Λk(A) = {γ}; otherwise,

replace A by eitA for a suitable t ∈ [0, 2π). Now, for any B ∈ V with Λk(B) = {β} such

that β ≥ 0, we have rk(e
itA+B) = γ+β for some t ∈ [0, 2π). Hence, Λk(A+B) = {µ}

with |µ| = γ + β.

We first show that <A = γI. If it is not true, there is a unitary U ∈Mn such that

<A = U∗diag (a1, . . . , an)U with an−k+1 ≥ · · · ≥ ak satisfying an−k+1 > ak. [Here we

use the assumption that n < 2k− 1 so that n− k+ 1 < k and the subscripts of an−k+1

and ak are in the right range; note that we do not assume a1 ≥ · · · ≥ an.] Then there

exist b1, β, b2 ∈ R such that

b1 > β > 0 > b2 and {β + aj : n− k + 1 ≤ j ≤ k} ⊆ (L,R)

with

R = min{b1 + aj : 1 ≤ j ≤ n− k} and L = max{b2 + aj : k < j ≤ n}.

Let

B = U∗(b1In−k ⊕ βI2k−n ⊕ b2In−k)U.

Since λn−k+1(B) = λk(B) = β, we have Λk(B) = {β}. However, Λk(A+B) = ∅ because

{λj(<(A+B)) : n− k < j ≤ k} = {aj + β : n− k < j ≤ k}

is not a singleton. This is a contradiction.

Now, if =A 6= 0, then up to a unitary similarity we may assume that

A = γI + idiag (g1, . . . , gn) with g1 6= 0. (4.9)

Let B = Ik ⊕ 0. By (4.1), there are t1, t2 ∈ [0, 2π) and an n× k matrix X such that

X∗X = Ik and eit1X∗(eit2A+B)X = (γ + 1)I. (4.10)

Since λk(<(ei(t1+t2)A)) = cos(t1 + t2)γ and λ1(<(eit1B)) = cos t1, we see that

γ + 1 = λk(<(eit1X∗(eit2A+B)X))

≤ λk(<(ei(t1+t2)A)) + λ1(<(eit1B)) = cos(t1 + t2)γ + cos t1,

where the inequality follows from the Courant-Fischer variational characterization of

eigenvalues of Hermitian matrices. It follows that cos(t1 + t2) = cos t1 = 1. Hence,

(4.10) yields

X∗(A+B)X = (γ + 1)Ik

21



which in turn implies (using (4.9)) that

Ik = X∗BX = X∗(Ik ⊕ 0n−k)X.

So, X∗ = [U∗|0k,n−k], where U ∈ Mk is unitary. But then by (4.9), we see that g1

is an eigenvalue of =(X∗(A + B)X) so that X∗(A + B)X 6= (γ + 1)Ik, which is a

contradiction. 2

Combining inequalities (4.2) and (4.3) we see that the supremum in (4.1) is attained,

i.e., it can be replaced by the maximum.

Lemma 4.3 Let A ∈ V, and let µ ∈ F, where F = R if V = S(H) and F = C if

V = B(H). Then µ /∈ Λk(A) if and only if there exists ξ ∈ F such that

rk(A− ξI) < |µ− ξ|.

Proof. If Λk(A) = ∅, the result is trivial, so suppose Λk(A) 6= ∅ in the rest of the

proof. The “if” part is easy: Let ξ be such that rk(A− ξI) < |µ− ξ|. Then

µ− ξ /∈ Λk(A− ξI) = Λk(A)− ξ,

so µ /∈ Λk(A). So we focus on the “only if” part.

Consider first the case V = S(H). Let µ ∈ R \ Λk(A), where Λk(A) = [L,R]. If

µ > R, then for ξ = L we have

rk(A− ξI) = R− L < µ− L = |µ− ξ|.

If µ < L, then for ξ = R we have

rk(A− ξI) = R− L < R− µ = |µ− ξ|.

Let A ∈ V with V = B(H). Suppose µ /∈ Λk(A) = K. Then by convexity of Λk(A)

there is a closed half space {z ∈ C : <(νz) ≥ α} containing K but not containing µ;

here ν ∈ C, α ∈ R. Thus, <(νµ) ≤ <(νζ)− ε for all ζ ∈ K, where ε > 0 is independent

of ζ. Now there is M > 0 such that

|µ−Mν∗|2 = |Mν|2− 2M<(νµ)+ |µ|2 ≥ |Mν|2− 2M<(νζ)+ |ζ|2 + ε = |ζ−Mν∗|2 + ε.

for all ζ ∈ K. Let ξ = Mν∗. Hence

rk(A− ξI) = sup{|ζ − ξ| : ζ ∈ Λk(A)} < |µ− ξ|.
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2

We are now ready to present the

Proof of Theorem 1.3.

First, we show that the map φ is bijective. By the assumption on φ, it suffices to

show that φ is injective. Suppose A 6= 0. By Lemmas 2.5 and 3.2, there is B such that

rk(φ(B)) = rk(B) ∈ {−∞, 0} such that rk(φ(A) + φ(B)) = rk(A + B) > 0. By the

same lemmas again, we conclude that φ(A) 6= 0. The injectivity of φ follows.

Next, we show that φ(αI) = νI for some |ν| = |α|. To see this, let A = αI, and we

may assume α 6= 0. For C ∈ V with Λk(C) 6= ∅ there exists B ∈ V such that φ(B) = C.

Then also Λk(B) 6= ∅, and by Lemma 4.2 we have

rk(φ(A)) + rk(C) = rk(A) + rk(B) = max{rk(ξA+B) : |ξ| = 1}

= max{rk(φ(ξA+B)) : |ξ| = 1}.

But

max{rk(φ(ξA+B)) : |ξ| = 1} = max{rk(ξφ(A) + C) : |ξ| = 1}.

Thus

rk(φ(A)) + rk(C) = max{ξφ(A) + C) : |ξ| = 1},

so φ(A) is a scalar matrix by Lemma 4.2. Note that rk(φ(A)) = |α|, thus φ(A) = νI

with |ν| = |α|.
By the above discussion, φ is invertible and φ(I) = ξI for some |ξ| = 1. Define a

map ψ : V → V such that ψ(A) = ξ−1φ(A). Then clearly ψ(I) = I.

Now, we prove that

Λk(A) = Λk(ψ(A)) ∀ A ∈ V . (4.11)

To this end, let A ∈ V = S(H). We proceed by showing the equivalent statement

R \ Λk(A) = R \ Λk(ψ(A)). Let µ ∈ R \ Λk(A), so µ /∈ Λk(A). So there exists ξ ∈ R
such that rk(A− ξI) < |µ− ξ|. But then

rk(A− ξI) = rk(ψ(A− ξI)) = rk(ψ(A)− ξψ(I)) = rk(ψ(A)− ξI).

So rk(ψ(A)− ξI) < |µ− ξ| and thus µ /∈ Λk(ψ(A)) by Lemma 4.3. Therefore

R \ Λk(A) ⊆ R \ Λk(ψ(A)). (4.12)
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Using the bijectivity of ψ, and applying (4.12) for ψ−1 we obtain the reverse inclusion.

Let A ∈ V = B(H). Let µ ∈ C \Λk(A). By Lemma 4.3 there exists ξ ∈ C such that

rk(A− ξI) < |µ− ξ|. But then

rk(A− ξI) = rk(ψ(A− ξI)) = rk(ψ(A)− ξψ(I)) = rk(ψ(A)− ξI).

So rk(ψ(A) − ξI) < |µ − ξ| and thus µ /∈ Λk(ψ(A)) by the same lemma. Therefore

C \Λk(A) ⊆ C \Λk(ψ(A)), and using invertibility of ψ we obtain the reverse inclusion.

Now, (4.11) is proved. By Theorem 1.2, there exists a unitary U such that ψ(A) =

U∗AU or ψ(A) = U∗AtU for all A ∈ V . It will then follow that φ(A) = ξU∗AU for all

A ∈ V or φ(A) = ξU∗AtU for all A ∈ V . 2
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