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Abstract

Various characterizations are given of real and complex Hilbert space opera-
tors with the numerical range in a closed halfplane.
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1 Introduction

LetH be a complex Hilbert space, and B(H) be the algebra of bounded linear operators
acting on H. The numerical range of an operator A ∈ B(H) is defined and denoted by

W (A) = {(Ax, x) ∈ C : x ∈ H, ‖x‖ = 1}.

It is easy to see that

W (A) = {((Px, x), (Qx, x)) ∈ R2 : x ∈ H, ‖x‖ = 1}, (1.1)

where

P =
1

2
(A + A∗) and Q =

1

2i
(A− A∗)

are the real and imaginary parts of A, respectively.
In this note we characterize the operators A whose numerical range lies in a closed

halfplane. By applying a shift A 7→ A+λI for a suitable scalar λ, we may assume that
the halfplane is defined by a line passing through the origin. Thus, we are interested
in the following property:

W (A) ⊂ {(x, y) ∈ R2 : ax + by ≥ 0}, (1.2)
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for some fixed a, b ∈ R not both zero. Note that the sectorial operators, that is the
operators A with the property that (1.2) holds with 0 replaced by some positive number
ε, are well known and widely used in differential equations (see, for example, [4], [2]).
By analogy, we say that an operator A with the property (1.2) is weakly sectorial.

We consider also a real Hilbert space Hr, and the real algebra B(Hr) of linear
bounded operators on Hr. In this case one defines the real joint numerical range
W (P, Q) of an ordered pair of selfadjoint operators P, Q ∈ B(Hr) by a formula analo-
gous to (1.1), i. e.,

Wr(P, Q) = {((Px, x), (Qx, x)) ∈ R2 : x ∈ Hr, ‖x‖ = 1}.

We characterize the pairs (P, Q) for which the real joint numerical range lies in a closed
halfplane that passes through the origin, in other words, the following inclusion holds
true:

Wr(P, Q) ⊂ {(x, y) ∈ R2 : ax + by ≥ 0}, (1.3)

for some fixed a, b ∈ R not both zero. As in the complex case, we say that the pair
(P, Q) of bounded selfadjoint operators in B(Hr) is real weakly sectorial if (1.3) holds
true.

We give various characterizations of real weakly sectorial pairs of selfadjoint oper-
ators. As it turns out, the characterizations in the real case are not entirely analogous
to the complex case.

2 Results and proofs: The complex case

In this section, H is a complex Hilbert space. We begin with the following well-known
equivalent conditions of weakly sectorial operators.

Proposition 1 Let A ∈ B(H), and let P and Q be the real and imaginary parts of A,
respectively. The following statements are equivalent:

(1) A is weakly sectorial.

(2) There exist a, b ∈ R not both zero such that aP + bQ is positive semidefinite.

(3) There exists a complex unimodular number µ such that µA+ µ̄A∗ is positive semi-
definite.

Next, we characterize weakly sectorial operators A ∈ B(H) in terms of low dimen-
sion compressions of A, i.e., operators of the form X∗AX for some X : H1 → H where
H1 is a low dimension subspace of H. Note that if W (X∗AX) lies in the same closed
half plane, then it is easy to show that W (A) lies in the same halfplane. Our theorem
shows that even if we only know that W (X∗AX) lies in a closed half plane which may
a priori depend on X, it will follow that W (A) and hence all W (X∗AX) lie in the same
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closed half plane. It is also shown that weakly sectorial operators A can be charac-
terized in terms of the linearly dependence of the vectors (A + A∗)x and (A− A∗)x if
(Ax, x) = 0.

Theorem 2 Let A ∈ B(H), and let P and Q be the real and imaginary parts of A,
respectively. Then A is weakly sectorial if and only if any one of the following four
equivalent statements holds:

(4) For any subspace H1 of H, and any bounded linear map X : H1 → H, the operator
X∗AX is weakly sectorial.

(5) For all integers k ≥ 2 we have the property that for every linear operator X :
Ck → H satisfying X∗X = Ik, the operator X∗AX ∈ B(Ck) is weakly sectorial.

(5′) For every linear operator X : C2 → H satisfying X∗X = I2, the operator X∗AX ∈
B(C2) is weakly sectorial.

(6) For every x ∈ H such that (Px, x) = (Qx, x) = 0, the two vectors Px and Qx are
R-linearly dependent.

In this statement, the equivalence of the weak sectoriality and condition (4) is trivial,
and is presented only for convenience. Conditions (5) and (5’) express the equivalence
of the “local weak sectoriality” and the “global weak sectoriality”.

Proof. Suppose H1 is a subspace of H and X : H1 → H. If aP + bQ is positive
semidefinite, then so is aX∗PX + bX∗QX. By condition (2) in Proposition 1, if A is
weakly sectorial, then so is X∗AX. Thus, condition (4) holds.

Using the same arguments as in the last paragraph, one sees that condition (4)
implies condition (5). In particular, the weaker condition (5’) follows as well.

Next, we assume the condition (5’). We prove that A is weakly sectorial. We assume
that the dimension ofH is larger than 2 to avoid trivial consideration. If A is not weakly
sectorial, then 0 is an interior point of W (A). So, there exist unit vectors x, y, z ∈ H
such that 0 lies in the interior of the convex hull of {(Ax, x), (Ay, y), (Az, z)}. Let
B be the compression of A on the space spanned by {x, y, z}. Then W (B) contains
{(Ax, x), (Ay, y), (Az, z)}, and hence B is not weakly sectorial. Hence, there exists
r > 0 such that reiθ ∈ W (B) for every θ ∈ [0, 2π). In other words, for every complex
unimodular number µ, there are unit vectors u and v (depending on µ) in C3 such
that (Bu, u) = rµ̄ and (Bv, v) = −rµ̄. Thus, there exists a 3 × 2 matrix X with
X∗X = I2 and W (X∗BX) containing ±rµ̄. Since W (X∗BX) lies in a half space
defined by a line passing through the origin, we see that µX∗BX is self-adjoint. So,
X∗(µB − µ̄B∗)X = 02, and hence µB − µ̄B∗ is singular for all complex numbers µ.
As a result, if B = H + iG with H = (B + B∗)/2, we have det(H + rG) = 0 for all
r ∈ R. So, det(B) = det(H + iG) = 0, i.e., 0 is an eigenvalue of B. If 0 is not an
orthogonally reducing eigenvalue of B, then there is a 3× 2 matrix X with X∗X = I2
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such that X∗BX =

[
0 a
0 b

]
with a 6= 0, and hence 0 lies in the interior of W (X∗BX)

by the elliptical range theorem (see, for example, [6]), which contradicts condition (5’).
If 0 is an orthogonally reducing eigenvalue of B, then B is unitarily similar to [0]⊕B0.
Since W (B) is the convex hull of {0}∪W (B0) (a well known property of the numerical
range, see, e.g., [3, Section 1.2]) containing 0 in its interior, it follows that 0 lies in the
interior of W (B0), which is again a contradiction.

Next, we turn to condition (6). Suppose A is weakly sectorial. Then condition
(2) of Proposition 1 holds. Let x ∈ H be such that (Px, x) = (Qx, x) = 0. Then
((aP + bQ)x, x) = 0, and since aP + bQ is positive semidefinite, we must have a(Px) +
b(Qx) = 0, i.e., Px and Qx are R-linearly dependent.

Conversely, suppose condition (6) holds. Assume that A is not weakly sectorial. By
condition (4), there is X : C2 → H such that X∗X = I2 and B = X∗AX is not weakly
sectorial. Hence, 0 is an interior point of W (B) and there is a unit vector v ∈ C2 such
that (Bv, v) = 0. Let x = Xv. Then

(Ax, x) = (Bv, v) = 0.

By condition (6), there exists a real vector (cos θ, sin θ) such that cos θPx+sin θQx = 0.
Hence,

(e−iθB + eiθB∗)v = cos θX∗PXv + sin θX∗QXv = 0.

Consequently, the real part of e−iθB is either positive semidefinite, or negative semidef-
inite. So, B is weakly sectorial, which is a contradiction. 2

In [5] an independent proof of the equivalence of Theorem 2 (6) and Proposition
1 (3) (for finite dimensional H) was given using canonical forms of pairs of hermitian
matrices.

An operator A ∈ B(H) is said to be essentially self-adjoint if there exist a, b ∈ C and
H = H∗ ∈ B(H) such that a 6= 0 and A = aH+bI. Clearly, A is essentially self-adjoint,
if and only if W (A) is a subset of a straight line. Similarly to Theorem 2, we have the
following result on equivalence of “local” and “global” essential selfadjointness, whose
finite dimensional version was proved in [7].

Theorem 3 Let A ∈ B(H). Then A is essentially self-adjoint if and only if any one
of the following two equivalent statements holds true:

(7) For all integers k ≥ 2 we have that for every linear operator X : Ck → H satisfying
X∗X = Ik, W (X∗AX) is a subset of a straight line.

(8) For every linear operator X : C2 → H satisfying X∗X = I2, W (X∗AX) is a
subset of a straight line.

The proof is analogous to that of (part of) Theorem 2, and therefore is omitted.
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3 Results and proofs: The real case

In this section Hr is a real Hilbert space. As in the complex case one verifies that a
pair (P, Q) of selfadjoint operators in B(Hr) is real weakly sectorial if and only if some
linear combination aP + bQ is positive semidefinite, where a, b are real numbers not
both zero.

The real analogue of Theorem 2 reads as follows:

Theorem 4 Let there be given a pair of selfadjoint operators (P, Q), P, Q ∈ B(Hr).
Then the following five statements are equivalent:

(9) (P, Q) is real weakly sectorial;

(10) For any subspace Hr1 of Hr, and any bounded linear map X : Hr1 → Hr, the pair
of operators (X∗PX, X∗QX) is real weakly sectorial.

(11) For all integers k ≥ 2 we have the property that for every linear operator X :
Rk → Hr satisfying X∗X = Ik, the pair (X∗PX, X∗QX) is real weakly sectorial.

(12) For every linear operator X : R2 → H2 satisfying X∗X = I2, the pair
(X∗PX, X∗QX) is real weakly sectorial.

(13) For every x ∈ Hr such that (Px, x) = (Qx, x) = 0, the two vectors Px and Qx
are R-linearly dependent, and at least one of the following conditions (i) and (ii)
fails:

(i) Ker P = Ker Q has codimension 2;

(ii) the dimension of Range (aP + bQ) is equal to 2 for every a, b ∈ R not both
zero.

Note that in contrast to the complex case, the condition

(14) For every x ∈ Hr such that (Px, x) = (Qx, x) = 0, the two vectors Px and Qx
are R-linearly dependent,

is generally not equivalent to (9) - (12), as it was observed in [5]. Namely, if

P =

[
µ ν
ν −µ

]
, Q =

[
0 1
1 0

]
, µ, ν ∈ R, µ 6= 0,

then (14) holds true (because only the zero vector x satisfies (Px, x) = (Qx, x) = 0),
but the pair (P, Q) is not real weakly sectorial. See also the proof of Proposition 5
below.

The proof of equivalence of (9) - (12) is basically the same as the proof of the
corresponding parts of Theorem 2, using the well-known real analogue (proved by
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Brickman [1]) of the Toeplitz-Hausdorff theorem on the convexity of the numerical
range, namely, that Wr(P, Q) is convex if dimHr ≥ 3 and is an ellipse if dimHr = 2.

The equivalence of (9) and (13) was proved in [5] for the case when Hr is finite
dimensional using the canonical form for pairs of hermitian matrices.

To proceed with the proof of Theorem 4, we start with a proposition.

Proposition 5 Assume that both conditions (i) and (ii) hold true. Then the pair
(P, Q) is not real weakly sectorial. Moreover, in this case

((Px, x), (Qx, x)) = (0, 0), x ∈ Hr, (3.1)

if and only if
Px = Qx = 0.

Proof. Suppose (i) and (ii) hold. With respect to the orthogonal decomposition
Hr = Ker P ⊕ Span {x} ⊕ Span {y}, for a suitable choice of orthonormal vectors x, y ∈
Hr, we have

Q =

 0 0 0
0 α 0
0 0 β

 , where α, β ∈ R \ {0}.

Replacing if necessary P by P + µQ for a suitable real µ we may assume that P has
the following form with respect to the same decomposition:

P =

 0 0 0
0 0 z
0 z γ

 , where z, γ ∈ R.

Here z 6= 0, otherwise a contradiction with (i) occurs. We claim that aP + bQ is
indefinite for all a, b ∈ R not both zero. It will then follow that the pair (P, Q) is not
weakly sectorial. If our claim is not true, then for the continuous curve

R(t) = (cos t)P + (sin t)Q, t ∈ R

there exists t0 ∈ R such that R(t0) is positive semidefinite, and R(t0 + π) is negative
semidefinite. By the continuity of eigenvalues, Ker R(t1) has codimenion less than 2 for
some t1 ∈ [t0, t0 + π], a contradiction with (ii). So, our claim holds.

Clearly, if Px = Qx = 0 then (3.1) holds. Conversely, assume that (3.1) holds true
for some x such that x /∈ KerP = KerQ. By the reduction in the proof at the beginning
of our proof, there exists x̂ = [x1, x2]

t ∈ R2 \ {0} such that

0 =

([
α 0
0 β

]
x̂, x̂

)
= αx2

1 + βx2
2 and 0 =

([
0 z
z γ

]
x̂, x̂

)
= 2zx1x2 + γx2

2.

It follows that

det

(
(zx1)

[
α 0
0 β

]
+ (βx2)

[
0 z
z γ

])
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= zαβγx1x2 + 2z2αβx2
1 − z2αβx2

1 − z2β2x2
2 = 0,

a contradiction with (ii). 2

The following lemma will be needed in this paper only in a particular situation,
but it is sufficiently interesting to be stated and proved in the more general case. We
denote by ProjN the orthogonal projection on a subspace N . The set of subspaces of
Hr of a fixed finite dimension m will be denoted by Grasm(Hr); it is a complete metric
space in the gap topology, i.e., with metric defined by the gap

θ(M,N ) = ‖ProjN − ProjM‖, M,N ∈ Grasm(Hr).

See, for example, [4] for more details on this topology.

Lemma 6 Let m and n be given positive integers, and let A ∈ B(Hr). Then the
set Ξ(A; m,n) of all subspaces M ∈ Grasm(Hr) such that the range of the operator
ProjMAProjM has dimension at least n is either empty or dense in Grasm(Hr), in the
gap topology.

The result of Lemma 6 also holds (with the same proof) for operators and subspaces
of a complex Hilbert space.

Proof. We can assume that

dim
(
Range ProjM0

AProjM0

)
≥ n (3.2)

for some M0 ∈ Grasm(Hr). By [8, Theorem 1], the set of subspaces of Hr which are
direct complements to M⊥

0 is dense in Grasm(Hr). (The statement and proof of [8,
Theorem 1] are given in [8] for the complex case; the proof applies without change to
the real case as well.) Denote

DM0 := {N ∈ Grasm(Hr) : N +̇M⊥
0 = Hr}.

Thus, it suffices to show that

DM0 ∩ Ξ(A; m, n) is dense in DM0 . (3.3)

Note that every N ∈ DM0 has the form

N = Range

[
I
X

]
,

[
I
X

]
: M0 → M0 ⊕M⊥

0 , (3.4)

for some bounded linear operator X : M0 → M⊥
0 , which is uniquely defined by

N . Moreover, the formula (3.4) establishes a homeomorphism between DM0 as a
subset of Grasm(Hr) with the induced topology and the Banach space B(M0,M⊥

0 ) of
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bounded linear operators from M0 to M⊥
0 with the operator topology. To verify the

homeomorphism property, use the formula for the orthogonal projection on N ∈ DM0 :

ProjN =

[
Y Y X∗

XY XY X∗

]
, Y = (I + X∗X)−1, (3.5)

where X is taken from (3.4).
We have reduced the proof to the following claim: The set of all operators X ∈

B(M0,M⊥
0 ) for which

dim Range

[
Y Y X∗

XY XY X∗

]
A

[
Y Y X∗

XY XY X∗

]
≥ n, Y = (I + X∗X)−1, (3.6)

is dense in B(M0,M⊥
0 ). Let X0 ∈ B(M0,M⊥

0 ), and consider a family of operators on
the m-dimensional space M0:

A(t) = [I tX∗
0 ]A

[
I

tX0

]
, t ∈ R.

We will represent A(t) as m × m matrices with respect to a fixed orthonormal basis
in M0. By (3.2), the dimension of the range of A(0) is at least n. Thus, there exists
an n × n submatrix, call it As(0), in A(0) with a nonzero determinant. Clearly, the
determinant of As(t) is a polynomial of t, and therefore for t 6= 1 arbitrarily close to 1,
the determinant of As(t) is also nonzero, hence the dimension of the range of A(t) is at
least n. A fortiori

dim Range

[
Y0 Y0tX

∗
0

tX0Y0 t2X0Y0X
∗
0

]
A

[
Y0 Y0tX

∗
0

tX0Y0 t2X0Y0X
∗
0

]
≥ n, Y0 = (I + t2X∗

0X0)
−1,

for t 6= 1 arbitrarily close to 1, and the claim is proved. 2

Proof of Theorem 4. In view of Proposition 5 and the remarks made after
Theorem 4, we need only to prove that (9) implies (14), and that if (13) holds then
(P, Q) is real weakly sectorial. The implication (9) =⇒ (14) is easy, because if aP + bQ
is positive semidefinite for some real a and b not both zero, and if (Px, x) = (Qx, x) = 0,
then ((aP + bQ)x, x) = 0, and in view of positive semidefiniteness of aP + bQ, we have
(aP + bQ)x = 0, i.e., Px and Qx are linearly dependent.

Assuming that (13) holds, we will prove that the pair (P, Q) is real weakly sectorial.
We suppose that H is infinite dimensional, as the result in the finite dimensional case
was proved in [5]. It is easy to check, and will be used in the sequel, that for every
subspace N ⊆ Hr, the pair

(ProjNPProjN , ProjNQProjN ),

considered as a pair of selfadjoint operators on N , also satisfies condition (13).
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Suppose first that the codimension of Ker P is larger than 2. Then there exists
a subspace M0 of Hr of dimension at most six and at least three (spanned by three
linearly independent vectors x1, x2, x3 in the range of P , and by three vectors y1, y2, y3

such that Py1 = x1, Py2 = x2, Py3 = x3) such that the range of the linear transforma-
tion ProjM0

PProjM0
on M0 has dimension at least 3. Denote by κ the dimension of

M0. By the finite dimensional result of [5], the pair

(ProjM0
PProjM0

, ProjM0
QProjM0

) (3.7)

is real weakly sectorial. By Lemma 6, the set of all κ dimensional subspaces M such
that

dim (Range ProjMPProjM) ≥ 3

is dense in Grasκ(Hr). Therefore, by continuity we obtain that the pair (3.7) is real
weakly sectorial for every κ dimensional subspace of Hr. Now (P, Q) is real weakly
sectorial by the equivalence of (12) and (9). We are similarly done if the codimension
of Ker Q is larger than 2.

If the codimension of both Ker Q and Ker P is equal 2, but

Ker Q 6= Ker P,

or if (i) holds true but (ii) does not, then with respect to the orthogonal decomposition

Hr = (Ker P ∩Ker Q)⊕ (Ker P ∩Ker Q)⊥

write the operators in the block matrix form

P =

[
0 0

0 P̂

]
, Q =

[
0 0

0 Q̂

]
.

Thus, it will suffice to prove that the pair (P̂ , Q̂) is real weakly sectorial. But since
(Ker P ∩Ker Q)⊥ is finite dimensional we are done by the result of [5]. 2

References

[1] L. Brickman. On the field of values of a matrix. Proc. of Amer. Math. Soc., 12
(1961), 61-66.

[2] D. E. Edmunds, and W. D. Evans, Spectral Theory and Differential Operators,
Oxford University Press, New York, 1987.

[3] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University
Press, Cambridge, 1991.

9



[4] T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, 1995.
(Reprint of 1980 edition.)

[5] P. Lancaster and L. Rodman, Canonical forms for hermitian matrix pairs under
strict equivalence and congruence, submitted for publication.

[6] C. K. Li, A simple proof of the elliptical range theorem. Proc. Amer. Math. Soc.
124 (1996), 1985-1986.

[7] C. K. Li and N. K. Tsing, On the k-th matrix range, Linear and Multilinear
Algebra 28 (1991), 229-239.

[8] L. Rodman, On global geometric properties of subspaces in Hilbert space, Journal
of Functional Analysis, 45 (1982), 226-235.

10


