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Abstract

Let Mn be the semigroup of n× n complex matrices under the usual multiplication, and let
S be different subgroups or semigroups in Mn including the (special) unitary group, (special)
general linear group, the semigroups of matrices with bounded ranks. Suppose Λk(A) is the
rank-k numerical range and rk(A) is the rank-k numerical radius of A ∈ Mn. Multiplicative
maps φ : S → Mn satisfying rk(φ(A)) = rk(A) are characterized. From these results, one can
deduce the structure of multiplicative preservers of Λk(A).
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1 Introduction

Let Mn be the algebra of n × n complex matrices regarded as linear operators acting on the
n-dimensional Hilbert space Cn. In the context of quantum information theory, if the quan-
tum states are represented as matrices in Mn, then a quantum channel is a trace preserving
completely positive linear map L : Mn → Mn, that is, we have the following operator sum
representation

L(A) =
r∑
j=1

EjAE
∗
j ,

where E1, . . . , Er ∈Mn satisfy
∑r
j=1E

∗
jEj = In; see [4, 5, 10, 11, 21]. The matrices E1, . . . , Er

are known as error operators of the quantum channel L. A subspace V of Cn is a quantum error
correction code for the channel L if there is another quantum channel R : Mn →Mn such that
the composite map R ◦L maps A to a multiple of A for any A ∈Mn satisfying PAP = A where
P ∈Mn is the orthogonal projection with range space V . By the result in [10] (see also [21]),
the channel R exists if and only if PE∗i EjP = γijP for all i, j ∈ {1, . . . , r}. In this connection,
for 1 ≤ k < n researchers define the rank-k numerical range of A ∈Mn by

Λk(A) = {λ ∈ C : PAP = λP for some rank k-orthogonal projection P},
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and the joint rank-k numerical range of A1, . . . , Am ∈Mn by Λk(A1, . . . , Am) to be the collection
of complex vectors (a1, . . . , am) ∈ C1×m such that PAjP = ajP for a rank-k orthogonal projec-
tion P ∈Mn. Evidently, there is a quantum error correction code V of dimension k for the quan-
tum channel L described above if and only if Λk(A1, . . . , Am) is non-empty for (A1, . . . , Am) =
(E∗1E1, E

∗
1E2, . . . , E

∗
rEr). It is easy to check that (a1, . . . , am) ∈ Λk(A1, . . . , Am) if and only if

any one of the following conditions holds.

• There is a unitary U ∈Mn such that the leading k × k principal submatrix of U∗AjU is
ajIk for j = 1, . . . ,m.

• There is an n× k matrix X such that X∗X = Ik and X∗AjX = ajIk for j = 1, . . . ,m.

It is also clear that if (a1, . . . , am) ∈ Λk(A1, . . . , Am) then aj ∈ Λk(Aj) for j = 1, . . . ,m.
Even for a single matrix A ∈ Mn, the study of Λk(A) is highly non-trivial. Recently,

interesting results have been obtained for the rank-k numerical range and the joint rank-k
numerical range; see [2, 3, 4, 5, 7, 14, 15, 16, 17, 19, 24]. In particular, an explicit description
of the rank-k numerical range of A ∈Mn is given in [19], namely,

Λk(A) =
⋂

ξ∈[0,2π)

{µ ∈ C : e−iξµ+ eiξµ ≤ λk(e−iξA+ eiξA∗)}, (1)

where λk(X) is the kth largest eigenvalue of a Hermitian matrix X. For a normal matrix
A ∈Mn with eigenvalues a1, . . . , an, we have

Λk(A) =
⋂

1≤j1<···<jn−k+1≤n

conv {aj1 , . . . , ajn−k+1}, (2)

where “convS” denotes the convex hull of the set S. In [17], a complete description of Λk(A)
for quadratic operators A is given.

When k = 1, Λk(A) reduces to the classical numerical range defined and denoted by

W (A) = {x∗Ax ∈ C : x ∈ Cn with x∗x = 1},

which is a useful concept in studying matrices and operators; see [9]. In the study of the classical
numerical range and its generalizations, researchers are interested in studying their preservers,
i.e., maps φ on matrices such that A and φ(A) always have the same (generalized) numerical
range; see [1, 8, 12]. For example, a linear map φ : Mn → Mn satisfies W (φ(A)) = W (A) for
all A ∈Mn if and only if there is a unitary U ∈Mn such that φ has the form

A 7→ U∗AU or A 7→ U∗AtU. (3)

Define the numerical radius of A ∈Mn by

r(A) = max{|µ| : µ ∈W (A)}.

It is known that a linear map φ : Mn → Mn satisfies r(φ(A)) = r(A) for all A ∈ Mn if and
only if there are ξ ∈ C with |ξ| = 1 and a unitary U ∈Mn such that φ has the form

A 7→ ξU∗AU or A 7→ ξU∗AtU. (4)

In particular, a linear preserver of the numerical radius must be a scalar multiple of a linear
preserver of the numerical range.
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In [6], linear preservers of the rank-k numerical range are characterized. In particular, it is
shown that a linear map φ : Mn →Mn satisfies

Λk(φ(A)) = Λk(A) for all A ∈Mn

if and only if there is a unitary U ∈ Mn such that φ has the form (3). Define the rank-k
numerical radius of A ∈Mn by

rk(A) = sup{|µ| : µ ∈ Λk(A)}.

If Λk(A) = ∅, we use the convention that rk(A) = −∞. [In our discussion, we do not need to
perform any arithmetic involving −∞. Our results and proofs are valid as long as Λk(A) = ∅ if
and only if Λk(φ(A)) = ∅. So, we may actually let rk(A) to be any quantity not in [0,∞).) It
is shown in [6] that a linear map φ : Mn →Mn satisfies

rk(φ(A)) = rk(A) for all A ∈Mn

if and only if there are ξ ∈ C with |ξ| = 1 and a unitary U ∈ Mn such that φ has the form
(4). Once again, a linear preserver of the rank-k numerical radius must be a scalar multiple of
a linear preserver of the rank-k numerical range.

Let S be a semigroup of matrices in Mn. A map φ : S →Mn is multiplicative if

φ(AB) = φ(A)φ(B) for all A,B ∈ S.

In this paper, we determine the structure of multiplicative preservers of the rank-k numerical
range(radius). In the context of quantum error correction, one needs to consider the rank-k
numerical range of matrices of the form A = E∗i Ej . In some quantum channels such as the
randomized unitary channels and the Pauli channels, the error operators E1, . . . , Er actually
come from a certain (semi)group of matrices in Mn; see [21]. Moreover, if the quantum states

go through two channels with operator sum representations L(A) =
∑r
j=1EjAE

∗
j and L̃(A) =∑r̃

j=1 ẼjAẼ
∗
j , then the combined effect will be a quantum channel of the form L̃ ◦ L(A) =∑r̃

i=1

∑r
j=1 ẼiEjAE

∗
j Ẽ
∗
i . Thus, it is natural to consider multiplicative maps φ : S →Mn which

preserve the rank-k numerical radius or the rank-k numerical range. In the following, we denote
by

GLn: the group of invertible matrices in Mn;
SLn: the group of matrices in GLn of determinant 1;
Un: the group of unitary matrices in Mn;
SUn: the group of matrices in Un of determinant 1;

M(m)
n : the semigroup of matrices in Mn with rank at most m.

Let D = {z ∈ C : |z| ≤ 1} and ∂D = {z ∈ C : |z| = 1}. Here are our main theorems.

Theorem 1.1. Let k ∈ {1, . . . , n − 1} with n > 1 and S ∈ {Un,SUn,GLn,SLn,M
(m)
n } with

m ∈ {k, . . . , n}. A multiplicative map φ : S →Mn satisfies

rk(φ(A)) = rk(A) for all A ∈ S

if and only if there exists a multiplicative map f : C→ ∂D such that one of the following holds.

(a) There exists U ∈ Un such that φ has the form

A 7→ f(detA)U∗AU or A 7→ f(detA)U∗AU.
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(b) k = 1, S ∈ {SUn,Un}, and there is a non-zero Hermitian idempotent P ∈Mn such that
φ has the form

A 7→ f(detA)P.

(c) S ∈ {U2,SU2}, and φ(S) is a subgroup of U2.

Theorem 1.2. Let k ∈ {1, . . . , n − 1} with n > 1 and S ∈ {Un,SUn,GLn,SLn,M
(m)
n } with

m ∈ {k, . . . , n}. A multiplicative map φ : S →Mn satisfies

Λk(A) = Λk(φ(A)) for all A ∈ S

if and only if there exists U ∈ Un such that φ has the form

A 7→ U∗AU.

Note that Λk(A) ⊆ {0} if A has rank smaller than k. Thus, we assume m ∈ {k, . . . , n} if

S = M(m)
n to avoid trivial consideration in the above theorems.

It is easy to deduce from Theorem 1.2 that an anti-multiplicative map φ : S →Mn satisfies
Λk(A) = Λk(φ(A)) if and only if there exists a unitary matrix U such that φ has the form
A 7→ U∗AtU .

It is clear that a linear preserver of the rank-k numerical range (radius) on Mn is either
a multiplicative preserver or an anti-multiplicative preserver of the rank-k numerical range
(radius).

We will present some preliminary results on multiplicative maps on matrix (semi)groups in
Section 2, and then prove the theorems in Sections 3 and 4. To avoid trivial consideration, we
always assume that n ≥ 2.

2 Preliminary results

In [25] the authors define an almost homomorphism g : D → C as a nonzero map such that
g(a+ b) = g(a) + g(b) for all a, b ∈ D with a+ b ∈ D, and g(ab) = g(a)g(b) for all a, b ∈ D. We
have the following observation.

Lemma 2.1. An almost homomorphism g : D → C can be extended to a field homomorphism
on C.

Proof. Suppose g : D→ C is an almost homomorphism. Notice that g(1) = 1 and it can be
checked that g(r) = r for all r ∈ Q ∩ D.

For any z ∈ C, there is a nonzero r ∈ Q ∩ D such that rz ∈ D. Define h : C→ C by

h(z) = r−1g(rz).

We claim that the map h is well defined. To see this, suppose there are nonzero r, s ∈ Q ∩ D
such that rz, sz ∈ D. Without loss of generality, we assume |r| ≤ |s|. Then r/s ∈ Q ∩ D and
g(r/s) = r/s. Thus,

(r/s)g(sz) = g(r/s)g(sz) = g(rz) ⇒ s−1g(sz) = r−1g(rz).

Now for any z1, z2 ∈ C, there is a nonzero r ∈ Q ∩ D such that rz1, rz2, r(z1 + z2) ∈ D. Then

h(z1 + z2) = r−1g(r(z1 + z2)) = r−1g(rz1 + rz2) = r−1g(rz1) + r−1g(rz2) = h(z1) + h(z2)
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and as r2z1z2 = (rz1)(rz2) ∈ D,

h(z1z2) = r−2g(r2z1z2) = r−2g((rz1)(rz2)) = (r−1g(rz1))(r−1g(rz2)) = h(z1)h(z2).

Thus, h is a homomorphism on C. Furthermore, we see that h(z) = g(z) for all z ∈ D. 2

Lemma 2.2. Let τ : C→ C be a field homomorphism. The following are equivalent.

(a) τ is either the identity map or the conjugate map.

(b) |τ(z)| = 1 whenever |z| = 1.

(c) For any r, s ∈ Q with s 6= 0 and z ∈ C such that |r + sz| = 1, we have |r + sτ(z)| = 1.

Proof. The implications (a) ⇒ (b) ⇒ (c) are clear. The implication (c) ⇒ (a) follows from
[8, Lemma 3.1]. 2

Let Aτ = [τ(aij)]. In view of Lemma 2.1, we may restate [25, Theorem 3].

Theorem 2.3. Suppose n ≥ 3. A multiplicative map φ : Un → Mn has one of the following
forms:

(a) There are S ∈ GLn, a multiplicative map f : ∂D→ C, and a nonzero field endomorphism
τ on C such that φ has the form

A 7→ f(detA)SAτS−1.

(b) There are S ∈ GLn and a multiplicative map g : ∂D→ GLr for some r ∈ {0, . . . , n} such
that φ has the form

A 7→ S(g(detA)⊕ 0n−r)S−1.

Recall that a nonzero field endomorphism is always as a field monomorphism. Theorem 2.3
can also be extended to show that multiplicative maps on SUn are simply the restrictions of
multiplicative maps on Un.

Theorem 2.4. Suppose n ≥ 3. A multiplicative map φ : SUn →Mn has one of the following
forms:

(a) There are S ∈ GLn and a nonzero field endomorphism τ on C such that φ has the form

A 7→ SAτS
−1.

(b) There are S ∈ GLn and r ∈ {0, . . . , n} such that φ(A) = S(Ir⊕0n−r)S−1 for all A ∈ SUn.

Proof. We will extend the map φ to a multiplicative map ψ : Un →Mn so that Theorem 2.3
is applicable. To this end, let ω = e2πi/n. Since (φ(ωIn))n+1 = φ(ωIn), the minimal polynomial
p(λ) of the matrix φ(ωIn) is a factor of λn+1 − λ. Thus, the minimal polynomial of φ(ωIn) has
linear factors, and therefore φ(ωIn) is diagonalizable. Hence, there exist an invertible S ∈Mn,
positive integers n1, . . . , nr with n1 + · · ·+ nr = n, and 1 ≤ p1 < · · · < pr−1 ≤ n such that

φ(ωIn) = S(ωp1In1 ⊕ · · · ⊕ ωpr−1Inr−1 ⊕ 0nr )S−1.

For any A ∈ SUn, φ(A) and φ(ωIn) commute and therefore φ(A) must have the form

S(A1 ⊕ · · · ⊕Ar)S−1
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with Aj ∈Mnj . We define a map ψ : Un →Mn as follows. For any µ ∈ ∂D, take

ψ(µIn) = S(µp1In1 ⊕ · · · ⊕ µpr−1Inr−1 ⊕ 0nr
)S−1.

For each non-scalar matrix A ∈ Un, there exists µ ∈ ∂D such that µA ∈ SUn. We define

ψ(A) = ψ(µ−1In)φ(µA).

Clearly, ψ(µνIn) = ψ(µIn)ψ(νIn) for all µ, ν ∈ ∂D and ψ(µIn)φ(A) = φ(A)ψ(µIn) for all
µ ∈ ∂D and A ∈ SUn. Now suppose there are µ, ν ∈ ∂D such that both µA and νA are in SUn.
Then µν−1In ∈ SUn and

ψ(µ−1In)φ(µA) = ψ(µ−1In)φ(µν−1In)φ(νA)

= ψ(µ−1In)ψ(µν−1In)φ(νA) = ψ(ν−1In)φ(νA).

Thus, ψ is well-defined. In particular, we have ψ(A) = φ(A) for all A ∈ SUn. Now for any
A,B ∈ Un, there are µ, ν ∈ ∂D such that µA, νB ∈ SUn. Then µνAB ∈ SUn and

ψ(AB) = ψ(µ−1ν−1In)φ(µνAB) = ψ(µ−1In)ψ(ν−1In)φ(µA)φ(νB)
= φ(µ−1In)φ(µA)ψ(ν−1In)φ(νB) = ψ(A)ψ(B).

Therefore, ψ is a multiplicative map form Un to Mn and ψ(A) = φ(A) for all A ∈ SUn. Then
the result follows from Theorem 2.3. 2

Multiplicative maps φ : S → Mn for S ∈ {SLn,GLn,M
(m)
n } have been studied by many

authors. We have the following result; for example, see [8, Theorems 2.5 & 2.7], [1, Remark
3.1], [26, Theorems 1 & 2] and their references.

Theorem 2.5. Suppose φ : S → Mn is a multiplicative map, where S ∈ {GLn,SLn,M
(m)
n }.

Then there exist S ∈ GLn, a multiplicative map f : C→ C, and a field endomorphism τ : C→ C
such that φ has one of the following forms.

(a) A 7→ f(detA)SAτS−1.

(b) A 7→ f(detA)S((adjA)t)τS−1, where adjA denotes the adjoint matrix of A.

(c) A 7→ S(Ir ⊕ g(detA)⊕ 0n−r−s)S−1, where r ∈ {0, . . . , n}, s ∈ {0, . . . , n− r}, and g : C→
Ms is a multiplicative map such that (g(0), g(1)) = (0s, Is).

Note that we may assume that f(1) = 1 if S = SLn, and f(0) = 1 if S = M(m)
n with m < n.

Also, the map g in (c) is vacuous when S ∈ {SLn,M
(m)
n }. Further, if S = M(m)

n with m < n−1,
then the map in (b) becomes the zero map.

The following results on the classical numerical range of A ∈M2 will be used; see [9, Chapter
1].

• Let A ∈M2. Then A = U∗RU for unitary U and R =
[
λ1 γ
0 λ2

]
, and W (A) is an elliptical

disk with foci λ1, λ2 and minor radius |γ|.

• Let A,B ∈ M2. Then W (A) = W (B) if and only if there exists a unitary U such that
A = U∗BU .

6



3 Proof of Theorem 1.1

The sufficiency of the theorem is clear. We focus on the necessity part. Suppose φ : S →Mn is
a multiplicative map satisfying rk(φ(A)) = rk(A) for all A ∈ S.

3.1 The case when S ∈ {SUn,Un}

Case 1 Assume that k > 1 so that n > 2. Then φ has the form in Theorems 2.3 or 2.4. First,
we show that a map of the form in Theorem 2.3 (b) or 2.4 (b) cannot preserve the rank-k
numerical radius. Assume that it is not true and φ has such a form and preserves the rank-
k numerical radius. Consider the identity matrix In and the special unitary diagonal matrix

W = diag (w, . . . , wn), where w is the n(n+1)
2 th root of unity. Then Λk(W ) belongs to the

interior of D by (2), and hence rk(In) > rk(W ). However, we have φ(In) = φ(W ) so that
rk(φ(In)) = rk(φ(W )), which is a contradiction.

Suppose φ has the form in Theorem 2.3 (a) or 2.4 (a), i.e., φ(A) = f(detA)SAτS−1 for all
A ∈ S such that f(detA) = f(1) = 1 for all A ∈ SUn.

Write S = QR with unitary Q and upper triangular R. Now for each µ ∈ ∂D, take X =
[µ1−n]⊕ µIn−1 ∈ SUn. Then

φ(X) = QR

[
τ(µ1−n) 0

0 τ(µ)In−1

]
R−1Q∗ = Q

[
τ(µ1−n) ∗

0 τ(µ)In−1

]
Q∗.

Notice that when k > 1, Λk(X) = {µ} and Λk(φ(X)) = {τ(µ)}. Then

|τ(µ)| = rk(φ(X)) = rk(X) = 1.

Therefore, |τ(µ)| = 1 for all µ ∈ ∂D. By Lemma 2.2, τ is either the identity map or the conjugate
map on D.

Next, we show that S is a multiple of a unitary matrix. By replacing φ with A 7→ φ(Ā),
if necessary, we may assume that τ is the identity map. Now write S = UDV for unitary
U and V and diagonal D = diag (d1, . . . , dn) with positive diagonal entries. We claim that
D is a scalar matrix. Suppose not, without loss of generality, we assume that d1 6= d2. Let

B =
[

0 d1/d2

d2/d1 0

]
. Then Λ1(B) is an non-degenerate elliptical disk with foci 1 and −1, and

hence Λ1(B) ∩ (∂D \ {1,−1}) is nonempty. Take w ∈ Λ1(B) ∩ (∂D \ {1,−1}). Choose α ∈ ∂D
and distinct wk+2, . . . , wn ∈ ∂D \ {1,−1, w} so that −αnwk−1wk+2 · · ·wn = 1. Let

X = αV ∗
([

0 1
1 0

]
⊕ wIk−1 ⊕W

)
V with W = diag (wk+2, . . . , wn).

Then X ∈ SUn. By (2), Λk(X) lies in the interior of D and hence rk(X) < 1. On the other
hand,

φ(X) = αU (B ⊕ wIk−1 ⊕W )U∗.

Then αw ∈ Λk(φ(X)) and hence rk(φ(X)) ≥ |αw| = 1, which is a contradiction. Therefore, S
is a multiple of some unitary matrix. Replacing (S, S−1) by (γS, (γS)−1) for a suitable γ > 0,
we may assume that S is unitary. Thus condition (a) of Theorem 1.1 follows for S = SUn.
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In the case when S = Un, for any A ∈ Un,

rk(A) = rk(f(detA)SAS−1) = |f(detA)|rk(A).

Thus, f is a multiplicative map on ∂D. Finally f can be extended to a multiplicative map from
C to ∂D by setting f(0) = 0 and f(z) = f(z/|z|) for all z ∈ C \ ∂D. Then condition (a) of
Theorem 1.1 holds for S = Un.

Case 2 Assume that k = 1 and n > 2. Recall that r1(A) reduces to the classical numerical
radius r(A).

Let S = SUn. If Theorem 2.4 (b) holds, then φ(In) is unitarily similar to Y =
[
Ir Y12

0 0n−r

]
.

If Y12 is nonzero, then Y have a principal submatrix B =
[
1 γ
0 0

]
so that W (B) is an elliptical

disk with 1 as an interior point and hence r(Y ) ≥ r(B) > 1, which is a contradiction. So, Y12

is zero and hence φ(In) is a Hermitian idempotent. Thus, Theorem 1.1 (b) holds.
Next, suppose Theorem 2.4 (a) holds. Then for any µ ∈ ∂D and X = [µ1−n] ⊕ µIn−1, we

have φ(X) = SXτS
−1. Denote by ρ(Y ) the spectral radius of Y ∈Mn. Then

1 = r(X) = r(φ(X)) ≥ ρ(φ(X)) = max{|τ(µ)|, |τ(µ)|1−n}.

Thus, |τ(µ)| = 1 for all µ ∈ ∂D. By Lemma 2.2, τ has the form µ 7→ µ or µ 7→ µ̄. Now using an
argument similar to those in Case 1, we see that S is a multiple of some unitary matrix. Hence
Theorem 1.1 (a) holds.

Suppose S = Un. Considering the restriction of φ on SUn, the restriction map on SUn has
the form A 7→ UAU∗ or A 7→ UAU∗ for some unitary matrix U . We can then get the desired
conclusion using the argument in the last paragraph in Case 1.

Case 3 Suppose (k, n) = (1, 2). Let S ∈ {SU2,U2}. Since φ(I2)2 = φ(I2), we see that φ(I2) is
idempotent, which may have rank 0, 1 or 2. If φ(I2) = 0, then 1 = r(I2) = r(φ(I2)) = r(0) = 0,
which is a contradiction. Now, suppose φ(I2) = I2. For any A ∈ S, φ(A)φ(A−1) = φ(I2) = I2,
and r(φ(A)) = r(φ(A−1)) = r(φ(A)−1) = 1. It follows that ρ(φ(A)) = ρ((φ(A))−1) = 1 and
φ(A) is normal. Thus, φ(A) ∈ U2. Then φ(S) is a subgroup U2, and condition (c) of Theorem
1.1 holds.

Finally, if φ(I2) has rank 1, then φ(I2) = U∗
[
1 a
0 0

]
U for some unitary matrix U so that

W (φ(I2)) is an elliptical disk with foci 0, 1 and minor axis with length |a|. Since r(φ(I2)) =
r(I2) = 1, we see that a = 0. Replacing φ by the map X 7→ Uφ(X)U∗, we may assume that
φ(I2) = E11. Now, φ(A) = φ(I2AI2) = φ(I2)φ(A)φ(I2), we see that φ(A) = g(A)E11 for some
multiplicative map g : S → ∂D. Note that ∂D is an Abelian group. So, Ker(g) contains the
commutator subgroup of S. Clearly, Ker(g) is a subgroup of SU2. Note that every A ∈ SU2

can be written as V ∗diag (a, ā)V for some V ∈ SU2 and a ∈ ∂D. Let b ∈ ∂D be such that
b2 = a. Then D = diag (a, ā) = BXB−1X−1 with

B = B−1 =
[
0 b
b̄ 0

]
and X = X−1 =

[
0 1
1 0

]
.

Thus, A = V ∗DVD−1BXB−1X−1 belongs to the commutator subgroup. Hence, SU2 is the
commutator subgroup and Ker(g) = SU2. As a result, g(A) = 1 for every A ∈ SU2. When
S = U2, for any X,Y ∈ U2 with det(X) = det(Y ). Then XY −1 ∈ SU2 and

g(X)g(Y )−1E11 = g(X)g(Y −1)E11 = φ(X)φ(Y −1) = φ(XY −1) = g(XY −1)E11 = E11.
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Thus, g(X) = g(Y ) and hence g(A) is function of determinant of A. 2

3.2 The case when S ∈ {GLn,SLn,M
(m)
n }

Suppose k = 1. If S = M(m)
n , the result is proved in [1, Proposition 3.10]. If S ∈ {SLn,GLn},

the result follows from [8, Theorem 3.8].
Assume k > 1. Then φ has one of the form (a) – (c) in Theorem 2.5. Since there is A ∈ S

such that 0 < rk(A) = rk(φ(A)), we see that φ is not the zero map. Thus, f(0) = 1.

First, we show that φ cannot have the form in Theorem 2.5 (c). If S = M(m)
n with m <

n, let X = Ik ⊕ 0n−k and Y = diag (1, w, . . . , wk−1) ⊕ 0n−k such that w = e2πi/k; if S ∈
{SLn,GLn,Mn}, let X = In and Y = diag (1, w, . . . , wn−1) such that w = e4πi/n(n−1). In this
case, det(Y ) = 1. By (2), 1 = rk(X) > rk(Y ). If φ has the form (c), then φ(X) = φ(Y ) so that
rk(X) = rk(φ(X)) = rk(φ(Y )) = rk(Y ), which is a contradiction.

Second, we show that φ cannot have the form in Theorem 2.5 (b). Suppose S = M(m)
n

with m ∈ {k, . . . , n}. Then for A = Ik ⊕ 0, we have rk(φ(A)) = 0 and rk(A) = 1, which is
a contradiction. Suppose S ∈ {GLn,SLn}, and φ has the form in Theorem 2.5 (b). Since
f(1)p = f(1) for all positive integer p, we have f(1) ∈ {0, 1}. Since φ is not the zero map, we
have f(1) = 1. Let A = (1/2)In−1 ⊕ [2n−1]. Then rk(A) = 1/2 and rk(φ(A)) = 2, which is a
contradiction.

Now, suppose φ has the form in Theorem 2.5 (a). If S = M(m)
n with m < n, then f(0) = 1.

For Aµ = µIk ⊕ 0n−k with µ ∈ ∂D, we have

1 = rk(Aµ) = rk(φ(Aµ)) = rk(τ(µ)φ(A1)) = |τ(µ)|rk(A1) = |τ(µ)|.

Thus, |τ(µ)| = 1 for all µ ∈ ∂D. By Lemma 2.2, τ is the identity map or the conjugation map.
Next, we show that all the singular values of S are the same. If it is not true, assume that
S = UDV such that U, V are unitary, and D = diag (d1, d2, . . . , dn) such that d1/d2 = d > 1.

Let B =
[

1 d1/d2

d2/d1 1

]
. Then Λ1(B) is an non-degenerate elliptical disk with foci 2 and 0,

and hence Λ1(B) ∩ (∂D \ {1}) is nonempty. Take w ∈ Λ1(B) ∩ (∂D \ {1}) and let

X = V ∗
([

1 1
1 1

]
⊕ wIk−1 ⊕ 0n−k−1

)
V

Then X ∈M(k)
n ⊆M(m)

n . By (2), Λk(X) ⊆ {0} and hence rk(X) < 1. On the other hand,

φ(X) = U (B ⊕ wIk−1 ⊕ 0n−k−1)U∗.

Then w ∈ Λk(φ(X)) and hence rk(φ(X)) ≥ |w| = 1, which is a contradiction.
If S ∈ {GLn,SLn,Mn}, we may consider φ(A) for A ∈ SUn to conclude that S is unitary

and τ is either the identity map or the conjugate map using the argument in Section 3.1. Further,
in the case when S = GLn or Mn, for any A ∈ S,

rk(A) = rk(f(detA)SAS−1) = |f(detA)|rk(A).

Thus, f is a multiplicative map form C to ∂D and condition (a) of Theorem 1.1 holds. 2
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4 Proof of Theorem 1.2

Again, the sufficiency is clear. We prove the necessity part. Suppose φ : S → Mn is a multi-
plicative map satisfying Λk(φ(A)) = Λk(A) for all A ∈ S.

Case 1 Suppose S ∈ {SUn,Un} and n ≥ 3. Then rk(φ(A)) = rk(A), so by Theorem 1.1 φ is
of the prescribed form. Suppose φ is of the form 1.1 (b). Then in particular φ(A) = φ(B) and

so Λk(A) = Λk(B) for all A,B ∈ SUn. However, if A = In and B = ωIn with ω = e2πi/n, then
Λk(A) 6= Λk(B). This is a contradiction, so φ must be of the form in Theorem 1.1 (a).

Suppose there exists U ∈ Un such that φ(A) = f(detA)U∗ĀU for all A ∈ S. Choose

A = ωIn with ω = e2πi/n. Then Λk(A) = {ω} 6= {ω} = Λk(A) = Λk(φ(A)), and hence a
contradiction.

Finally suppose there exists U ∈ Un such that φ(A) = f(detA)U∗AU for all A ∈ S. Then
for any µ ∈ ∂D, µ = eiθ for some θ ∈ [0, 2π). Then

{eiθ/n} = Λk(eiθ/nIn) = Λk(f(µ)eiθ/nIn) = {f(µ)eiθ/n}.

Then f(µ) = 1 for all µ ∈ ∂D and the result follows.

Case 2 Suppose S ∈ {U2,SU2}. For any A ∈ SU2, since W (φ(A)) = W (A) is always a
line segment joining two points (can be the same) in the unit circle, φ(A) ⊆ SU2 and hence

φ(SU2) ⊆ SU2. Let X =
[
i 0
0 −i

]
. Then W (φ(X)) = W (X) = conv {i,−i}. Hence, φ(X) =

U∗XU for some U ∈ U2. Replacing φ by the map A 7→ Uφ(A)U∗, we may and we will assume
that φ(X) = X.

Note that for any A ∈ S, A satisfies −XAX = A if and only if A is diagonal. Thus for any
diagonal matrix A = diag (a1, a2) ∈ S, we have φ(A) = diag (b1, b2). Since W (φ(Z)) = W (Z)
for Z = A and XA, we see that {a1, a2} = {b1, b2} and {ia1,−ia2} = {ib1,−ib2}. It follows
that (a1, a2) = (b1, b2). i.e., φ(A) = A for all diagonal matrices A ∈ S.

Next, observe that for any A ∈ SU2, A satisfies XAX = A if and only if A =
[

0 α
−ᾱ 0

]
for

some α ∈ ∂D. As a result, if Y =
[

0 1
−1 0

]
, then there exists |β| = 1 such that φ(Y ) =

[
0 β
−β̄ 0

]
.

Now, replacing φ by the map A 7→ D∗φ(A)D with D = diag (β, 1), we may assume that
φ(A) = A for A = Y and any diagonal matrix A ∈ S.

For any θ ∈ [0, 2π), let Rθ =
[

cos θ sin θ
− sin θ cos θ

]
. In particular, Rπ/2 = Y . Then W (Rθ) =

conv {eiθ, e−iθ}. Notice that for any A ∈ SU2, −Y AY = A if any only if A = Rθ for some
θ. Then for each θ ∈ [0, 2π), φ(Rθ) ∈ {Rθ, R−θ}. Suppose there is a θ ∈ (0, 2π) such that
φ(Rθ) = R−θ. Then

R−θ+π/2 = R−θRπ/2 = φ(Rθ)φ(Rπ/2) = φ(RθRπ/2) = φ(Rθ+π/2) ∈ {Rθ+π/2, R−θ−π/2},

which is is impossible. Therefore, φ(Rθ) = Rθ for all θ ∈ [0, 2π).

Now, for any A ∈ SU2, there exist α, β ∈ D with |α|2 + |β|2 = 1 such that A =
[
α β
−β̄ ᾱ

]
.

Let α = aeiω and β = beiϕ such that ω, ϕ ∈ [0, 2π) and a, b > 0. Then 1 = |α|2 + |β|2 = a2 + b2,
so in particular we can choose θ ∈ [0, 2π) such that a = cos θ, b = sin θ. So

A =
[
eiω cos θ eiϕ sin θ
−e−iϕ sin θ e−iω cos θ

]
=
[
ei(ω+ϕ)/2 0

0 e−i(ω+ϕ)/2

]
Rθ

[
ei(ω−ϕ)/2 0

0 e−i(ω−ϕ)/2

]
.
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Then, we see that φ(A) = A. If S = U2, and B ∈ U2 \ SU2, then B = µA with some µ ∈ ∂D
and A ∈ SU2. Since φ(µI2) = µI2 and φ(A) = A, we can conclude that φ(B) = B as well.

Case 3 Suppose S ∈ {SLn,GLn,M
(m)
n } with m ∈ {k, . . . , n} and φ : S → Mn preserves the

rank-k numerical range. Then it also preserves the rank-k numerical radius, and has the form
described in Theorem 1.1. We may consider φ(X) for X ∈ SUn and conclude that φ on S has

the form A 7→ f(detA)U∗AU . For S ∈ {SLn,M
(m)
n } with m < n, the result follows. Suppose

S ∈ {GLn,Mn}. For any z = reiθ with r > 0 and θ ∈ [0, 2π), let A = r1/neiθ/nIn where r1/n

is the positive real nth root of r. Then

{r1/neiθ/n} = Λk(A) = Λk(φ(A)) = Λk(f(z)A) = {f(z)r1/neiθ/n}.

Hence f(z) = 1 and the result follows. 2
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