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A NOTE ON EXTREME CORRELATION MATRICES*

CHI-KWONG LIt anp BIT-SHUN TAM?

Abstract. An n X n complex Hermitian or real symmetric matrix is a correlation matrix if it
is positive semidefinite and all its diagonal entries equal one. The collection of all n X n correlation
matrices forms a compact convex set. The extreme points of this convex set are called extreme
correlation matrices. In this note, elementary techniques are used to obtain a characterization of
extreme correlation matrices and a canonical form for correlation matrices. Using these results,
the authors deduce most of the existing results on this topic, simplify a construction of extreme
correlation matrices proposed by Grone, Pierce, and Watkins, and derive an efficient algorithm for
checking extreme correlation matrices.
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Let M = H,, or Sy, the real linear space of all n x n Hermitian matrices and the
real linear space of all n x n symmetric matrices, respectively. A positive semidefinite
matrix A = (ai;) € M with a11 = -+ = ann = 1 is called a correlation matriz. The
term correlation matrix comes from statistics, where the entries of a real correlation
matrix occur as correlations between pairs of random variables. It is easy to see that
the collection of n X n correlation matrices forms a compact convex set, and we are
interested in its extreme points. Recall that an element z in a convex set S is an
extreme point if z =ty + (1 — t)z for y,z € S and 0 < ¢t < 1 implies y = z = =z, that
is, if  cdn be a convex combination of points of S in only trivial ways.

We shall call an extreme point of the set of correlation matrices an exireme
correlation matriz. This concept has been studied in (1}, [4], and [2]. In those papers,
different approaches were used to determine all possible ranks of extreme correlation
matrices, to construct extreme correlation matrices of different ranks, and to give
simple characterizations of extreme correlation matrices in low dimensional cases. In
this note, we use an elementary approach to prove several results on the subject. Using
our results, one can deduce easily all of the main results in the three papers mentioned
above. Moreover, we simplify a construction of extreme correlation matrices proposed
in [2], derive an efficient algorithm for checking extreme correlation matrices, and
compare our condition with the one given in [4]. A question posed in [2] is also
discussed.

In the following we shall concentrate mainly on the Hermitian case, the slightly
more difficult case. For the real case, we also give some results that have no analogs
in the Hermitian case.

1. Basic results. Given an n X n correlation matrix A, a nonzero Hermitian
matrix B is said to be a perturbation of A if A+ tB are correlation matrices for some
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(and hence for all sufficiently small) ¢ > 0. Clearly, A is not extreme if and only if A
has a perturbation. In fact, if A = (A;+ A2)/2 for two distinct correlation matrices A;
and Ag, then B := (A; — A2)/2 is such that A+ B are correlation matrices. We give a
characterization of perturbations of a given correlation matrix and a characterization
of extreme correlation matrices in the following theorem.

THEOREM 1. Let A € H, be an n x n correlation matriz of rank r. Suppose that
A=XQX*, where X € C**" and Q € H,. Then

(a) B € Hy is a perturbation of A if and only if all diagonal entries of B equal
zero and B = X RX* for some nonzero R € H,, and

(b) A is extreme if and only if

span{z;z} : 1< j < n} =Hr,

where x; is the jth column of X*.

Proof. With the notation of the theorem, one sees easily that rank X = r and Q
is positive_ definite.

(a) Let B be a matrix with all diagonal entries equal to zero and of the form
XRX* for some nonzero R € H,. Since X is a matrix of full column rank, we have
rank X RX* = rank R > 0. Thus B is nonzero. Since @ is positive definite, Q £ tR is
positive semidefinite for all sufficiently small ¢ > 0. It follows that B is a perturbation
of A. Conversely, suppose B is a perturbation of A. Evidently, all diagonal entries
of B equal zero. Append to X an n X (n — r) matrix Y such that the n x n matrix
V = (X|Y) is nonsingular. Clearly A can be expressed as V(Q ® 0,—)V*. Write B
as VCV*, where C € H,. Partition C in the same way as Q ® O,_,. Since B is a
perturbation of A, (Q @ On—,) £ ¢C is positive semidefinite for some ¢ > 0. It follows
that except for its (1,1) block, which we denote by R, the blocks of C are all zero.
Hence B is of the form XRX*, with 0 # R € H,.

(b) Since A is not extreme if and only if it has a perturbation, by part (a) one
sees that A is extreme if and only if for any R € H,, R = 0 whenever all diagonal
entries of X RX* equal zero. In terms of the usual inner product on H, defined
by (X,Y) = tr(XY), we can reformulate the last condition as: R = 0 whenever
(R,zjz}) = 0 for all 4, 1 < j < n; or equivalently, span{zr;z} : 1 < j < n} = H,.
Thus our result follows. 0O

Notice that for a given rank r positive semidefinite matrix A, there are two
standard ways to decompose it as XQX*. One way is to take @ to be a diagonal
matrix whose diagonal entries are all the nonzero eigenvalues of A and form the matrix
X whose columns are the corresponding eigenvectors. Another way is to find X such
that A = X X*, i.e., to take Q = I;. In both cases, there are standard algorithms and
computer programs to do the decomposition.

From Theorem 1 and its real analog, one easily deduces the following result proved
in {1} (for the Hermitian case) and [2] (for the real case).

COROLLARY 2. If A is an n xn extreme Hermitian (respectively, real symmetric)
correlation matriz of rank r, then r2 < n (respectively, r(r + 1) < 2n).

In [4] and [2] it is shown that if r satisfies the inequality in the corollary, then
there exists a rank r extreme correlation matrix. One can verify the constructions of
extreme correlation matrices in those papers using our Theorem 1. We shall suggest
a construction after proving Theorem 3. To state the result, we need the following
definition and notation. A matrix is a (real) generalized permutation matrix if it is a
unitary (respectively, real orthogonal) matrix with exactly one nonzero entry in each
row and each column. Denote by J s the r X s matrix all of whose entries equal 1.
For simplicity we use J. to represent J; .
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THEOREM 3. Let A € H,. Then A is a correlation matriz if and only if there
ezists a generalized permutation matriz P such that PAP* = (Bg:), a pxp block matriz
with Bst = bstJi(s) k(t), (k(1)+---+k(p) = n), where (bst) € Hp is a correlation matriz
all of whose off-diagonal entries have moduli less than one. Furthermore, we have

(a) rank A = rank (bst);

(b) A is extreme if and only if (bst) is extreme.

Proof. To prove the “only if” part, express A in the form X X*, where X € C™*"
and r = rank A. Denote the jth column of X* by z;. Since each diagonal entry of A
is equal to 1, each z; is a vector of unit length. Now permute the rows of X and then
multiply each row with a suitable scalar of absolute value one so that rows of X that
differ by unit multiples are grouped together and become equal. The resulting effect
on X is equivalent to applying a generalized permutation similarity to A. Since the
inner product between any two linearly independent unit vectors always has modulus
less than one, A is transformed to the required form. That (bs:) is a correlation matrix
follows from the observation that it is a principal submatrix of A of the required form.

To prove the “If” part, suppose A = (Bs:) as described in the theorem. It is clear
that A € H, and its main diagonal entries are all equal to one. Note that we can
write Ji(s) k(t) 88 ék(s)é’fc(t), where €; denotes the j x 1 vector of all 1’s. If z; € kD)
for j = 1,...,p, then by direct calculations, the value of the quadratic form of A at
z with o* = (z7,...,2p) is equal to the value of the quadratic form of (bs) € H, at
z= (éz(l)xl, ... ,é};(p)mp)t and so is nonnegative.

It is not difficult to show that rank A = rank (bs;). That A is extreme if and only
if (bst) is extreme follows readily from Theorem 1. 0

Notice that the real analog of Theorem 3 also holds. To obtain the statement
and the proof for the real case, one only needs to replace H, by S, generalized
permutation matrices by real generalized permutation matrices, complex scalars by
real scalars, etc.

Notice that the matrix (Bst) in Theorem 3 is a block Kronecker product of the
matrices (bst) and (Ji(s),k(r))- We refer the readers to [3] and its references for the
definition and properties of this product.

2. A construction and an algorithm. There are at least two ways that The-
orem 3 can help to study extreme correlation matrices. First, it helps to reduce the
dimension of a problem under consideration. Second, if one can find an n X n rank r
extreme correlation matrix, then one can use Theorem 3 to construct an m X m rank
r extreme correlation matrices for any m > n. We illustrate the latter idea by de-
scribing a construction of extreme correlation matrices. (Note that this construction
is a modification of the one given in [2].)

2.1. Construction of extreme correlation matrices. By the preceding dis-
cussion, for a given 7 it suffices to construct an n x n rank r extreme correlation matrix
for n = r2 in the Hermitian case, and for n = r(r + 1)/2 in the real case. Then one
can get an m X m rank r extreme correlation matrix for any m > n. We shall again
use e; to denote the jth column of I,.

For the Hermitian case, assume n = r2. Set 4 = X X* with X € €™*" such that
the first 7 columns of X* form I, the next r(r —1)/2 columns consist of vectors of the
form (es+e:)/v2 with 1 < s <t < r, and the rest of the r(r — 1)/2 columns consist of
vectors of the form (es + ie:)/v/2. Using Theorem 1, one verifies readily that A € H,
is an extreme correlation matrix.

For the real case, assume n = r(r + 1)/2. Let A = X X* where X is obtained
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from X constructed in the Hermitian case by deleting the last r(r — 1)/2 rows. Again
by Theorem 1, one can show easily that A € S, is an extreme correlation matrix.

2.2. An algorithm for checking extreme correlation matrices. By Theo-
rems 1, 3 (and its proof), and Corollary 2, one derives readily the following algorithm
to determine whether a given Hermitian correlation matrix is extreme. A similar
algorithm also holds for the real case.

Step 1. Express A as X X*, where X € C™*", r = rank A.

Step 2. Form a matrix Y from the distinct (up to unit multiples) rows of X. Say
Y € CP*". (Then YY* is equal to the matrix (bst) as given in Theorem 3)

Step 3. Determine rank Y. If rank Y = r satisfies 72 > p, then A is not extreme.
Otherwise, proceed to Step 4.

Step 4. Determine the dimension of span{yjy;-‘ : 1 < j < p}, where y; is the jth
column of Y*. It is r2 if and only if A is extreme.

An efficient way to perform Step 4 is to construct a px 72 matrix F as follows. For
each j between 1 and p, the first r entries of the jth row of F' are lyi112, lysel2, - - - lyirl%
arranged in the natural order, and its remaining T2 — 7 entries y;xT;, Yju¥it, 1 <
k < | < r (indexed by ordered pairs (k,), and with conjugate entries adjacent) are
arranged in the usual lexicographic order. Then rank ' = dim span{yjy;-‘ :1<5<p}

Ezplanation. Consider the following real subspace of C:
W = {(t1,...,t2)t:t; €ER, j=1,...,m and
trtom—1 = bri2m, m=1,...,(r2 —-7)/2}

Note that the real span of the row vectors of F' is included in W, and is isomorphic
with the subspace of H, spanned by {yjy;‘ :1 < j < p}. But any set of vectors
in W that is linearly independent over IR is also linearly independent over C, so
rank F' = dimspan{y;y; : 1 < j < P}

Notice that the equivalent condition in [4] for an extreme correlation matrix can
also be deduced readily as follows. Denote by f; the jth row of F. Note that the
vectors fi,...,fp all lie in the (real) hyperplane {f = (f1,.-., fr)teW: Y i fi=
1} of W (since the row vectors of ¥ are of unit length, as YY* is a correlation matrix).
But this hyperplane does not contain the zero vector, so we have

dimspan{f; : 1 <J <p}=1+dimspan{f; — fp:1<j<p—1}
=1+dimspan{f; — fi+1:1<j<p-1}.

Denote by D4 the (p— 1) x r2 matrix whose jth row is (f; — fj+1)t. Then A is extreme
if and only if 2 = dimspan{f; : 1 < j < p}(=rank F) if and only if rank D4 = r2—1,
which is the condition given in [4]. (In [4] the matrix D4 is obtained from the matrix
X instead of from Y. But this does not affect our argument.)

3. Further results. We first consider two results that are valid only for the real
case.

COROLLARY 4. Let A € S, be a rank two correlation matriz. Suppose P is a real
generalized permutation matriz such that PAP* 1s equal to (Bst), a p X p block matriz
that satisfies the conditions as given in Theorem 3. Then A is extreme if and only if
p=3.

Proof. “Only if” part. Since rank A = rank(bst), p cannot be 1. If p = 2, then
(bst) is not extreme since it is nonsingular, and hence A is also not extreme according
to Theorem 3.
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“If” part. Suppose that A is not extreme. Since rank A = 2, each (relative)
boundary point of the face (of the set of n x n correlation matrices) generated by A
is a matrix of rank one. So there exist two rank one correlation matrices A;, Az such
that A = AA; + (1 — M)Az for some A with 0 < A < 1. By applying a generalized
permutation similarity to A, we may assume that A; = J, and

Ay = ( Jk —Jk,n——k)
—Jkn—k  JIn-k
for some k between 1 and n — 1. But then we have
A= ( Jk aJk,n—k>
aJnkk  In-k )’
where @ = X + (—1)(1 — A) is of absolute value less than one. So in this case,
p=2. 0

COROLLARY 5. A 3 x 3 real symmetric correlation matriz of rank two is extreme
if and only if its off-diagonal entries all have absolute values less than one.

Two remarks are in order. First, by Corollaries 4 and 5, one sees that a rank two
correlation matrix A € S, is extreme if and only if A has a principal submatrix that
is an extreme 3 X 3 correlation matrix.

Second, the “if” parts of Corollaries 4 and 5 are both invalid in the Hermitian
case. Indeed, for any n > 2, if we take A, to be the matrix (J, + uu*)/2, where u =
(1, 4y ..., p»= 1), p a primitive nth root of unity, then A, is a nonextreme Hermitian
correlation matrix of rank two, all of whose off-diagonal entries have moduli less than
one.

By Theorem 1, we have the following observation for rank two correlation matrices
in Hy.

OBSERVATION. Suppose A = XQX* € Hy, with X € C**? and Q € Hz is a rank
two correlation matriz. Let S be a 2 X 2 nonsingular submatriz of X*. Then A is
extreme if and only if there are two column vectors u = (uy,u2)t and v = (v1,v2)t of
the matriz S—1X*, such that Tius and Tive are complex numbers that are not nonzero
real multiples of each other.

In the lemma in [2], it was shown that an equivalent condition for a real symmetric
correlation matrix to be extreme is that its nullspace is maximal among the nullspaces
of all correlation matrices. (The corresponding result for the Hermitian case also
holds.) Clearly another equivalent condition is that the range space of the matrix
is minimal among the range spaces of all correlation matrices. In [2] the authors
also posed the question of determining the structure of the nullspace of a correlation
matrix. Below we give an answer to the dual question of characterizing the linear
subspaces of €™ (also IR™) that can be the range space of a correlation matrix.

THEOREM 6. A subspace of C" (or R™) is the range space of a correlation matriz
if and only if it has a basis (or a spanning set) {vi,...,vr} such that Z;=1 vj0T; =
(1,...,1)t € R", where T denotes the complex conjugate of the vector x, and z oy
denotes the Schur (Hadamard/entrywise) product of x and y.

Proof. Suppose W is the range space of the correlation matrix A. Let A = X X*
with X € €™*", where r = rank A. Then the columns of X form a basis for W that
satisfies the required properties.

Conversely, if W is a subspace that has a spanning set as described in the theorem,
then A = X X*, where the columns of X € €C™*" are the vectors from the spanning
set, is the required correlation matrix. 0
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COROLLARY 7. A subspace of C™ (or R"™) is the nullspace of a correlation matriz
if and only if its orthogonal complement has a spanning set satisfying the condition in
Theorem 6.

Note added in proof. After the paper had been accepted for publication, the
authors found that a slight modification of the proof of Theorem 1 yields the following
result that covers {1, Thm. 3].

THEOREM 8. Under the hypotheses and notation of Theorem 1, the face of the
convez set of n X n correlation matrices generated by A is of dimension

2 — dimspan {z;z} : 1 < j < n}.

Proof. Tt is clear that the dimension of the face generated by A is equal to the
dimension of the space generated by the perturbations of A. According to Theorem
1(a) (or its proof), a nonzero matrix is a perturbation of A if and only if it is of the
form XRX*, where X is n x r and R is r x r lying in the orthogonal complement of
span{z;z} : 1 < j < n}. Since X has full column rank, the mapping R — XRX* is a
linear isomorphism. 0
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