Multiplicative Preservers of C-Numerical Ranges and Radii

Chi-Kwong Li and Leiba Rodman *
Department of Mathematics, College of William and Mary, PO Box 8795, Williamsburg, VA 23187-8795
E-mail: ckli@math.wm.edu lxrodm@math.wm.edu

Abstract

Multiplicative preservers of C-numerical ranges and radii on certain groups and semigroups of complex $n \times n$ matrices are characterized. The general and special linear groups are considered, as well as the semigroups of matrices having ranks not exceeding k, with k fixed in advance. For a fixed C, it turns out that typically the multiplicative preservers of the C-numerical range (or radius) have the form $A \mapsto f(\operatorname{det} A) U A U^{*}$ or, for certain matrices C, the form $A \mapsto f(\operatorname{det} A) U \bar{A} U^{*}$, for some unitary U and multiplicative map f from the group of nonzero complex numbers to the unit circle.

Keywords: Multiplicative preserver, C-numerical range, C-numerical radius. 2000 Mathematics Subject Classification: 15A60, 47A12.

1 Introduction

Let M_{n} be the algebra of complex $n \times n$ matrices. Given a nonzero $C \in M_{n}$, the C-numerical range and the C-numerical radius of $A \in M_{n}$ are defined by

$$
W_{C}(A)=\left\{\operatorname{tr}\left(C U A U^{*}\right): U \text { unitary }\right\}
$$

and

$$
w_{C}(A)=\max \left\{|z|: z \in W_{C}(A)\right\} .
$$

The concepts of C-numerical range and C-numerical radius were introduced by Goldberg and Strauss; see [5] and [6]. When C is a rank one Hermitian orthogonal projection, $W_{C}(A)$ and $w_{C}(A)$ reduce to the classical numerical range $W(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}$ and the classical numerical radius $w(A)=\max \{|z|: z \in W(A)\}$, which are useful concepts in studying matrices and operators; see, for example, [11]. The C-numerical range and the C numerical radius are also very useful in studying matrices and operators, and have attracted

[^0]the attention of many researchers; see [12] and its references. For example, it was proved in [16] that C-numerical radii can be viewed as the building blocks of unitary similarity invariant norms $\|\cdot\|$ on M_{n}, i.e., norms on M_{n} satisfying $\|A\|=\left\|U^{*} A U\right\|$ for any $A \in M_{n}$ and unitary U, in the sense that for any unitary similarity invariant norm $\|\cdot\|$ on M_{n} there is a compact subset $S \subseteq M_{n}$ such that
$$
\|A\|=\max \left\{w_{C}(A): C \in S\right\}
$$

An interesting topic in the study of C-numerical range and C-numerical radius is characterizing linear maps $\phi: M_{n} \rightarrow M_{n}$ such that $F(\phi(A))=F(A)$ for all $A \in M_{n}$, where $F(A)=w_{C}(A)$ or $W_{C}(A)$; see $[12,14,15,20]$. Such maps are called linear preservers of $F(A)$. If $w_{C}(A)$ is a norm, then linear preservers of $w_{C}(A)$ are just linear isometries of $w_{C}(A)$. Furthermore, in most of the cases linear preservers of $W_{C}(A)$ have the form

$$
A \mapsto U^{*} A U, \quad U \text { is a fixed unitary matrix, }
$$

which is also multiplicative, i.e., $\phi(A B)=\phi(A) \phi(B)$ for all $A, B \in M_{n}$.
Recently, there has been considerable interest also in studying multiplicative maps on groups and semigroups of matrices that leave invariant some special functions, sets, and relations, see, for example, $[10,2,7,8,9]$. The approach undertaken in $[9]$ is based on the classical results of Borel - Tits on automorphisms of linear groups.

In this paper, we characterize multiplicative preservers of C-numerical ranges and radii on the following semigroups of M_{n} :
$S L_{n}$: the group of matrices in M_{n} with determinant 1,
$G L_{n}$: the group of invertible matrices in M_{n},
$M_{n}^{(k)}$: the semigroup of matrices in M_{n} with rank at most k.
In more detail, for a fixed $C \in M_{n}$, we characterize those multiplicative maps $\phi: \mathbf{H} \longrightarrow M_{n}$, where \mathbf{H} is one of $S L_{n}, G L_{n}$, or $M_{n}^{(k)}$, that have the property

$$
\begin{equation*}
w_{C}(\phi(A))=w_{C}(A) \quad \text { for every } A \in \mathbf{H} \tag{1.1}
\end{equation*}
$$

or the property

$$
\begin{equation*}
W_{C}(\phi(A))=W_{C}(A) \quad \text { for every } A \in \mathbf{H} \tag{1.2}
\end{equation*}
$$

Multiplicative maps with the property (1.1), resp. (1.2), will be called multiplicative preservers of $w_{C}(A)$, resp. of $W_{C}(A)$.
The following notation will be used.
\mathbb{C} the complex field.
$\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ the multiplicative group of nonzero complex numbers.
T the unit circle in \mathbb{C}.
$\sigma: \mathbb{C} \longrightarrow \mathbb{C}$ a complex field embedding.
$\left\{E_{1,1}, E_{1,2}, \ldots, E_{n, n}\right\}$ the standard basis for M_{n}.
I_{m} (or I with m understood) the $m \times m$ identity matrix.
0_{m} (or 0 with m understood) the $m \times m$ zero matrix.
$w(A)$ the numerical radius of $A \in M_{n}$.
$\operatorname{tr} A$ the trace of $A \in M_{n}$.
A^{t} the transpose of A.
$\tau(A)=\left(A^{-1}\right)^{t}$, for an invertible matrix A.
\bar{A} the entrywise complex conjugate of a matrix A.
$A^{*}=(\bar{A})^{t}$.
$s_{1}(X) \geq s_{2}(X) \geq \cdots \geq s_{n}(X)$ the singular values of a matrix $X \in M_{n}$.
$\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ diagonal matrix with the diagonal entries a_{1}, \ldots, a_{n} (in that order).
If $C=\mu I, \mu \neq 0$, then $W_{C}(A)=\{\mu \operatorname{tr}(A)\}$. So, the problem of describing the multiplicative preservers of $w_{C}(A)$ or of $W_{C}(A)$ reduces to the multiplicative preservers of $|\operatorname{tr} A|$ or of $\operatorname{tr} A$ which was treated in [9] for the cases of $S L_{n}$ and of $G L_{n}$ and followed readily from Proposition 3.7 in [2] for the case of $M_{n}^{(k)}$. For $\operatorname{tr} A$, the multiplicative preservers have the form:
(i) $A \mapsto S A S^{-1}$ for some $S \in S L_{n}$.

For $|\operatorname{tr} A|$, the multiplicative preservers have form (i) or the following forms:
(ii) $A \mapsto S \bar{A} S^{-1}$,
(iii) $A \mapsto f(\operatorname{det}(A)) S A S^{-1}$ or $A \mapsto f(\operatorname{det}(A)) S \bar{A} S^{-1}$ for preservers on $G L_{n}$,
for some $S \in S L_{n}$ and multiplicative map $f: \mathbb{C}^{*} \rightarrow \mathbf{T}$.
Thus, in the sequel we always implicitly assume that C is not a scalar matrix. Also, we will always assume that $n \geq 2$ to avoid trivial considerations.

2 Preliminaries

The following easily verified property of the C-numerical ranges will be used:

$$
\begin{equation*}
\overline{W_{\bar{C}}(A)}=W_{C}(\bar{A}), \quad A \in M_{n} \tag{2.1}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
w_{\bar{C}}(A)=w_{C}(\bar{A}), \quad A \in M_{n} \tag{2.2}
\end{equation*}
$$

We need also Proposition 2.1 and Lemma 2.3 below from [9], and a well-known (and easily proved) Lemma 2.2.

Proposition 2.1 Let ϕ be a multiplicative map on $S L_{n}$ or $G L_{n}$. Then either $\phi\left(S L_{n}\right)$ is a singleton or there exist a field embedding $\sigma: \mathbb{C} \rightarrow \mathbb{C}$, a matrix $S \in S L_{n}$, and a multiplicative map $f: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ such that ϕ has the form

$$
A \mapsto f(\operatorname{det}(A)) S \sigma(A) S^{-1} \quad \text { or } \quad A \mapsto f(\operatorname{det}(A)) S \tau(\sigma(A)) S^{-1}
$$

Lemma 2.2 Suppose k is a positive integer, and $f: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ is a group homomorphism such that $f(\mu)^{k}=1$ for all $\mu \in \mathbb{C}^{*}$. Then $f(\mu)=1$ for all $\mu \in \mathbb{C}^{*}$.

Lemma 2.3 Let $S \in S L_{n}$. If $S E_{i j} S^{-1}$ has singular values $1,0, \ldots, 0$ for all $i, j \in\{1, \ldots, n\}$ with $i \neq j$, then S is unitary.

The following characterization of the continuous complex field embeddings is useful; see, e.g., [22].

Lemma 2.4 The following statements for a complex field embedding $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ are equivalent:
(a) either $\sigma(z)=z$ for every $z \in \mathbb{C}$ or $\sigma(z)=\bar{z}$ for every $z \in \mathbb{C}$.
(b) $|\sigma(z)|=|z|$ for every $z \in \mathbb{C}$.
(c) $\sigma(z)>0$ for every positive z.
(d) σ is continuous.

3 -numerical radius preservers on $S L_{n}$ and $G L_{n}$

We need the following lemma to characterize multiplicative preservers of C-numerical radius.
Lemma 3.1 Let $C \in M_{n}$. Then $w_{C}(A)=w_{C}(\bar{A})$ for all $A \in M_{n}$ if and only if C is unitarily similar to $\mu \bar{C}$ for some $\mu \in \mathbf{T}$.

Proof. Since

$$
w_{A}(C)=w_{C}(A)=w_{C}(\bar{A})=w_{\bar{C}}(A)=w_{A}(\bar{C}) \quad \text { for all } A \in M_{n}
$$

by Theorem 2.1 in [16], we see that \bar{C} is in the convex hull of the set

$$
\begin{equation*}
\left\{\mu U^{*} C U: \mu \in \mathbf{T}, U^{*} U=I_{n}\right\} \tag{3.1}
\end{equation*}
$$

Thus, \bar{C} is a convex combination of a finite subset of the set (3.1). Since $\mu U^{*} C U$ (for $|\mu|=1$ and unitary U) and \bar{C} have the same Frobenius norm, and the Frobenius norm is strictly convex, we must have that $\bar{C}=\mu U^{*} C U$ for some $\mu \in \mathbf{T}$ and unitary U.

Theorem 3.2 Let $\mathbf{H}=S L_{n}$ or $G L_{n}$, and let $C \in M_{n}$ be a fixed non-scalar matrix. A multiplicative $\operatorname{map} \phi: \mathbf{H} \rightarrow M_{n}$ satisfies $w_{C}(\phi(A))=w_{C}(A)$ for all $A \in \mathbf{H}$ if and only if there is a unitary $U \in S L_{n}$ and a multiplicative map $f: \mathbb{C}^{*} \rightarrow \mathbf{T}$ such that one of the following conditions holds true:
(a) ϕ has the form $A \mapsto f(\operatorname{det}(A)) U A U^{*}$.
(b) There exists $\mu \in \mathbf{T}$ such that C and $\mu \bar{C}$ are unitarily similar, and ϕ has the form $A \mapsto f(\operatorname{det}(A)) U \bar{A} U^{*}$.

Note that $f(\operatorname{det}(A))=1$ for every $A \in S L_{n}$.

Proof. The "if" part can be verified with the help of Lemma 3.1. We focus on the converse. Suppose $\operatorname{tr}(C) \neq 0$. Then $w_{C}(A)$ is a unitary similarity invariant norm; see [6], also [16]. By [9, Theorem 3.8], ϕ has the asserted form, and the form of ϕ in (b) holds if and only if $w_{C}(A)=w_{C}(\bar{A})$ for all $A \in \mathbf{H}$. Since every $A \in G L_{n}$ is a scalar multiple of $B \in S L_{n}$, and $G L_{n}$ is dense in M_{n}, by continuity of the norm function w_{C} we see that if $w_{C}(A)=w_{C}(\bar{A})$ for all $A \in \mathbf{H}$, then $w_{C}(A)=w_{C}(\bar{A})$ for all $A \in M_{n}$. By Lemma 3.1, we see that \bar{C} is unitarily similar to μC for some $\mu \in \mathbf{T}$.

Now, suppose that $\operatorname{tr}(C)=0$. Since C is not a scalar matrix,

$$
\gamma=w_{C}\left(E_{1,2}\right)=w_{C}\left(E_{i, j}\right)>0, \quad i \neq j
$$

For any A unitarily similar to $I+\nu E_{n 1}$, we have:

$$
\begin{align*}
w_{C}(A) & =\max \left\{\left|\operatorname{tr}\left(C V A V^{*}\right)\right|: V \text { is unitary }\right\} \\
& =\max \left\{\mid \operatorname{tr}\left(V^{*} C V\left(I+\nu E_{n 1}\right) \mid: V \text { is unitary }\right\}\right. \\
& =|\nu| \gamma \tag{3.2}
\end{align*}
$$

Suppose $\mathbf{H}=S L_{n}$. Clearly, ϕ is non-trivial on \mathbf{H}, and hence by Proposition 2.1ϕ has the standard form

$$
A \mapsto S \sigma(A) S^{-1} \quad \text { or } \quad A \mapsto S \tau(\sigma(A)) S^{-1}
$$

for some $S \in S L_{n}$. Suppose S is not unitary. By Lemma 2.3, there is $E_{i, j}$ with $i \neq j$ such that $S E_{i, j} S^{-1}$ has trace zero and singular values $r, 0, \ldots, 0$ with $r \neq 1$. But then for $A=I+E_{i, j}$, we have by (3.2):

$$
w_{C}(A)=1+\gamma \neq 1+r \gamma=w_{C}(\phi(A))
$$

which is a contradiction. Hence, S is unitary. Furthermore, for any $z \in \mathbb{C}$, if $A_{z}=I+z E_{1, n}$ then again by (3.2)

$$
\gamma|z|=w_{C}\left(A_{z}\right)=w_{C}(\phi(A))=\gamma|\sigma(z)| .
$$

So, by Lemma 2.4σ has the form $z \mapsto z$ or $z \mapsto \bar{z}$.
For $n>2$ we show that ϕ cannot have the form $A \mapsto S \tau(\sigma(A)) S^{-1}$. (For $n=2$ the form $A \mapsto S \tau(\sigma(A)) S^{-1}$ is essentially the same as the form $A \mapsto S A S^{-1}$.) Note that there is a unitary matrix V such that $V^{*} C V=\left(\gamma_{i j}\right)$ with $\left|\gamma_{11}\right|=w(C)$. If

$$
A=\operatorname{diag}\left(m^{2}, 1 / m, 1 / m, 1, \ldots, 1\right)
$$

for sufficiently large m, then

$$
\begin{equation*}
w_{C}(A) \geq\left|\operatorname{tr}\left(V^{*} C V A\right)\right| \geq m^{2}\left|\gamma_{11}\right|-\sum_{j=2}^{n}\left|\gamma_{j j}\right|>w(C)\left(m^{2}-n\right) \tag{3.3}
\end{equation*}
$$

On the other hand, if a unitary U having columns u_{1}, \ldots, u_{n} is such that

$$
w_{C}\left(S \tau(A) S^{-1}\right)=\left|\operatorname{tr}\left(U^{*} C U \tau(A)\right)\right|
$$

then

$$
\begin{aligned}
w_{C}\left(S \tau(A) S^{-1}\right) & \leq \frac{1}{m^{2}}\left|u_{1}^{*} C u_{1}\right|+m\left|u_{2}^{*} C u_{2}\right|+m\left|u_{3}^{*} C u_{3}\right|+\left|u_{4}^{*} C u_{4}\right|+\cdots+\left|u_{n}^{*} C u_{n}\right| \\
& \leq w(C)\left(\frac{1}{m^{2}}+2 m+n-3\right),
\end{aligned}
$$

which is smaller than the right hand side of (3.3). So, ϕ has the asserted form

$$
\begin{equation*}
A \mapsto U A U^{*} \quad \text { or } \quad A \mapsto U \bar{A} U^{*} \tag{3.4}
\end{equation*}
$$

for some unitary matrix U. If the latter holds, then $w_{C}(A)=w_{C}(\bar{A})$ for all $A \in S L_{n}$. By continuity and homogeneity, $w_{C}(A)=w_{C}(\bar{A})=w_{\bar{C}}(A)$ for all $A \in M_{n}$. By Lemma 3.1, we see that C and $\mu \bar{C}$ are unitarily similar for some $\mu \in \mathbf{T}$.

Now, suppose $\mathbf{H}=G L_{n}$. Then by Proposition 2.1ϕ has the form

$$
\begin{equation*}
A \mapsto f(\operatorname{det}(A)) U A U^{*} \quad \text { or } \quad A \mapsto f(\operatorname{det}(A)) U \bar{A} U^{*}, \tag{3.5}
\end{equation*}
$$

where the latter case holds when $w_{C}(A)=w_{C}(\bar{A})$ for all $A \in M_{n}$, and where $f: \mathbb{C}^{*} \longrightarrow \mathbb{C}^{*}$ is a multiplicative map. Then for any $z \in \mathbb{C}^{*} \backslash\{-1\}$ and $A_{z}=I+z E_{1,1}$,

$$
\begin{aligned}
w_{C}(A) & =\max \left\{\left|\operatorname{tr}\left(C U^{*} A U\right)\right|: U \text { is unitary }\right\} \\
& =\max \left\{\left|z \operatorname{tr}\left(C U^{*} E_{1,1} U\right)\right|: U \text { is unitary }\right\} \\
& =w(z C)
\end{aligned}
$$

Similarly, $w_{C}(\phi(A))=|f(1+z)| w(z C)$. Thus, $|f(\mu)|=1$ for all $\mu \in \mathbb{C}^{*}$.

$4 C$-numerical range preservers on $S L_{n}$ and $G L_{n}$

We need some additional facts to state and prove the results on multiplicative preservers of C-numerical range. First, recall that a block matrix $\left(X_{i j}\right)$ is in block shift form if all the diagonal blocks are square matrices (may be of different sizes) and $X_{i j}=0$ whenever $j \neq i+1$. This is a generalization of the weighted shift matrix where all $X_{i j}$ are one by one. We have the following result; see [17].

Lemma 4.1 The following conditions are equivalent for a non-scalar matrix C:
(a) C is unitarily similar to a matrix in block shift form.
(b) $W_{C}(A)$ is a circular disk centered at the origin for all $A \in M_{n}$.
(c) $W_{C}\left(C^{*}\right)$ is a circular disk centered at the origin.

Theorem 4.2 Let $\mathbf{H}=S L_{n}$ or $G L_{n}$, and let $C \in M_{n}$ be a non-scalar matrix. A multiplicative $\operatorname{map} \phi: \mathbf{H} \rightarrow M_{n}$ satisfies $W_{C}(\phi(A))=W_{C}(A)$ for all $A \in \mathbf{H}$ if and only if there is a unitary $U \in S L_{n}$ and a multiplicative map $f: \mathbb{C}^{*} \rightarrow \mathbf{T}$ such that one of the following holds true.
(a) ϕ has the form $A \mapsto U A U^{*}$.
(b) C is unitarily similar to a matrix in block shift form and ϕ has the form

$$
A \mapsto f(\operatorname{det}(A)) U A U^{*}
$$

(c) C is unitarily similar to a matrix in block shift form, as well as unitarily similar to $\mu \bar{C}$ for some $\mu \in \mathbf{T}$, and ϕ has the form $A \mapsto f(\operatorname{det}(A)) U \bar{A} U^{*}$.

Proof. The "if" part can be verified readily with the help of Lemmas 3.1 and 4.1. We consider the converse.

Suppose $\mathbf{H}=S L_{n}$. Note that the $W_{C}(A)$ preservers must also be $w_{C}(A)$ preservers. Thus, ϕ has the form described in Theorem 3.2. Suppose ϕ has the form

$$
A \mapsto U \bar{A} U^{*}, \quad U \text { unitary }
$$

and C is unitarily similar to $\mu \bar{C}$ for some $\mu \in \mathbf{T}$. Now, for any $A \in S L_{n}$, then

$$
\begin{equation*}
W_{C}(A)=W(\phi(A))=W_{C}(\bar{A})=\mu W_{\bar{C}}(\bar{A})=\mu \overline{W_{C}(A)} . \tag{4.1}
\end{equation*}
$$

We claim that C is unitarily similar to a matrix in block shift form. First, we show that $\operatorname{tr} C=0$. Note for $\xi=e^{i 2 \pi / n}, \xi I \in S L_{n}$ and

$$
\{\xi \operatorname{tr} C\}=W_{C}(\xi I)=W_{C}(\bar{\xi} I)=\{\bar{\xi} \operatorname{tr} C\} .
$$

Thus, $\xi^{2} \operatorname{tr} C=\operatorname{tr} C$. If $n>2$, then $\operatorname{tr} C=0$. If $n=2$, then (see [19] and [13, Theorem 1]) $W_{C}(A)$ is an elliptical disk centered at $(\operatorname{tr} C)(\operatorname{tr} A) / 2$. If $\operatorname{tr} C \neq 0$, one can choose

$$
A=\left(\begin{array}{cc}
\mu & \mu^{2}-1 \\
1 & \mu
\end{array}\right) \in S L_{2}
$$

such that $\mu \operatorname{tr} C \neq \bar{\mu} \operatorname{tr} C$. Thus, $W_{C}(A) \neq W_{C}(\bar{A})$, which is a contradiction.
Now, $\operatorname{tr} C=0$. Suppose $A \in G L_{n}$ with eigenvalues $\alpha_{1}, \ldots, \alpha_{n}$. For any $\gamma \in \mathbb{C}$ which does not coincide with any of $-\alpha_{j}$, we have

$$
X:=\frac{A+\gamma I}{\left[\prod_{j}\left(\alpha_{j}+\gamma\right)\right]^{1 / n}} \in S L_{n}
$$

Thus, using the property that $\operatorname{tr} C=0$ and (4.1), we have

$$
\begin{aligned}
{\left[\prod_{j}\left(\alpha_{j}+\gamma\right)\right]^{-1 / n} W_{C}(A) } & =\left[\prod_{j}\left(\alpha_{j}+\gamma\right)\right]^{-1 / n} W_{C}(A+\gamma I) \\
& =W_{C}(X)=W_{C}(\bar{X})=\left[\overline{\prod_{j}\left(\alpha_{j}+\gamma\right)}\right]^{-1 / n} W_{C}(\bar{A})
\end{aligned}
$$

Letting $\delta=\left(\left(\alpha_{1}+\gamma\right) \ldots\left(\alpha_{n}+\gamma\right)\right)^{-1 / n}$, it now follows that

$$
(\delta / \bar{\delta}) W_{C}(A)=W_{C}(\bar{A})
$$

It is easy to see that $\delta / \bar{\delta}$ can be made equal to any prescribed number in \mathbf{T}, for a suitable choice of γ. Since $W_{C}(A)$ is start-shaped (see [3]), it follows that $W_{C}(A)$ is a circular disk centered at the origin. Now, for any $A \in M_{n}$, there is $\lambda \in \mathbb{C}$ such that $A+\lambda I \in G L_{n}$, and

$$
W_{C}(A)=W_{C}(A+\lambda I)
$$

is a circular disk centered at origin. By Lemma $4.1, C$ is unitarily similar to a matrix in block shift form.

Next, suppose $\mathbf{H}=G L_{n}$. Since ϕ preserves $w_{C}(A)$, by Theorem 3.2ϕ has the form

$$
\begin{equation*}
A \mapsto f(\operatorname{det}(A)) U A U^{*} \quad \text { or } \quad A \mapsto f(\operatorname{det}(A)) U \bar{A} U^{*} \tag{4.2}
\end{equation*}
$$

for some multiplicative map $f: \mathbb{C}^{*} \rightarrow \mathbf{T}$, and some unitary U. If ϕ has the second form in (4.2), then by restricting ϕ to $S L_{n}$, and applying the result on $S L_{n}$ we already proved, we conclude that C is unitarily similar to a block shift form, as well as to $\mu \bar{C}$ for some $\mu \in \mathbf{T}$.

It remains to show that if ϕ has the form $A \mapsto f(\operatorname{det}(A)) U A U^{*}$, where f is non-trivial, then C is unitarily similar to a block shift form. By Lemma 2.2 , it is easy to see that the range of f is dense in \mathbf{T}. For every $z \in \mathbb{C}^{*}$ and every $A \in G L_{n}$, we have:

$$
z W_{C}(A)=W_{C}(z A)=W_{C}(\phi(z A))=f\left(z^{n}(\operatorname{det} A)\right) W_{C}(z A)=z f\left(z^{n}(\operatorname{det} A)\right) W_{C}(A)
$$

Thus, $f\left(z^{n}(\operatorname{det} A)\right) W_{C}(A)=W_{C}(A)$, and by the denseness of the range of f we conclude that

$$
\nu W_{C}(A)=W_{C}(A) \quad \text { for every } \nu \in \mathbf{T}
$$

Since $W_{C}(A)$ is start-shaped (see [3]), it follows that $W_{C}(A)$ is a circular disk centered at the origin. Now, $\{\nu \operatorname{tr} C\}=\nu W_{C}(I)=W_{C}(I)=\{\operatorname{tr} C\}$ for every $\nu \in \mathbf{T}$; so, $\operatorname{tr} C=0$. Furthermore, for any $A \in M_{n}$, there is $\lambda \in \mathbb{C}$ such that $A+\lambda I \in G L_{n}$; then

$$
W_{C}(A)=W_{C}(A+\lambda I)
$$

is a circular disk centered at origin. By Lemma 4.1, C is unitarily similar to a matrix in block shift form.

In connection with Theorem 4.2 the following example is instructive.

Example 4.3 We construct here a family of examples of block shift matrices A such that A is not unitarily similar to $\mu \bar{A}$, for any $\mu \in \mathbf{T}$; in particular, A not unitarily similar to any real matrix.

We start with general observations:

1. Every diagonalizable matrix with positive eigenvalues is a product of two positive definite matrices.

This fact is well-known; for a proof note that if $X=S^{-1} D S$, where S is invertible and D is diagonal with positive numbers on the diagonal, then $X=S^{-1}\left(S^{-1}\right)^{*} \cdot S^{*} D S$ is a product of two positive definite matrices.

A word $w(X, Y)$, where X and Y are $n \times n$ matrices, is any matrix of the form

$$
w(X, Y)=X^{\alpha_{1}} Y^{\beta_{1}} X^{\alpha_{2}} Y^{\beta_{2}} \cdots X^{\alpha_{p}} Y^{\beta_{p}}
$$

where α_{j}, β_{j} are nonnegative integers. The integer $\sum_{j=1}^{p}\left(\alpha_{j}-\beta_{j}\right)$ will be called the index of $w(X, Y)$.
2. If C is unitarily similar to $\mu \bar{C}$, for some $\mu \in \mathbf{T}$, then $\operatorname{tr}\left(w\left(C^{*}, C\right)\right)$ is real for every word $w\left(C^{*}, C\right)$ with zero index.

The proof is elementary: Assume $C=U(\mu \bar{C}) U^{*}$ for some unitary U and $\mu \in \mathbf{T}$. Then

$$
w\left(C^{*}, C\right)=U w\left(\bar{\mu} C^{t}, \mu \bar{C}\right) U^{*}=\overline{\bar{U}\left(w\left(\mu \overline{C^{t}}, \bar{\mu} C\right)\right) \bar{U}^{*}}=\overline{\bar{U}\left(w\left(\mu C^{*}, \bar{\mu} C\right)\right) \bar{U}^{*}}
$$

which is equal to $\overline{\bar{U}\left(w\left(C^{*}, C\right)\right) \bar{U}^{*}}$, assuming that the index of $w\left(C^{*}, C\right)$ is zero. Thus, $\operatorname{tr} w\left(C^{*}, C\right)=\overline{\operatorname{tr} w\left(C^{*}, C\right)}$, and 2. follows.

To construct the matrix A as required, we let A_{1}, A_{2}, A_{3} be 2×2 positive definite matrices such that

$$
A_{1} A_{2}=\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)
$$

where a and c are distinct positive numbers and $b \neq 0$ is real, and the off-diagonal entries of A_{3} are non-real (the existence of A_{1} and A_{2} with the required properties follows from Fact 1.). Then

$$
\begin{equation*}
\operatorname{tr}\left(A_{1} A_{2} A_{3}\right) \notin \mathbb{R} . \tag{4.3}
\end{equation*}
$$

Next, let $A_{1,2}, A_{2,3}$ and $A_{3,4}$ be such that

$$
A_{2,3} A_{2,3}^{*}=A_{1}, \quad A_{1,2}^{*} A_{1,2}=A_{2}, \quad A_{2,3} A_{3,4}^{*} A_{3,4} A_{2,3}^{*}=A_{3}
$$

and finally

$$
A=\left(\begin{array}{cccc}
0 & A_{1,2} & 0 & 0 \\
0 & 0 & A_{2,3} & 0 \\
0 & 0 & 0 & A_{3,4} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

A computation shows that

$$
\operatorname{tr}\left(A\left(A^{*}\right)^{2} A^{3}\left(A^{*}\right)^{2}\right)=\operatorname{tr}\left(A_{1} A_{2} A_{3}\right)
$$

and by Fact 2 . and (4.3), A cannot be unitarily similar to $\mu \bar{A}$ for any $\mu \in \mathbf{T}$.

5 Results on $M_{n}^{(k)}$

We start with a preliminary result. Matrices $X_{1}, \ldots, X_{n} \in M_{n}$ are said to be mutually orthogonal rank one idempotents if $X_{i}^{2}=X_{i}$ and $X_{i} X_{j}=0$ for any $i, j \in\{1, \ldots, n\}$ with $i \neq j$. We have the following fact from [2, Propositions 2.2 and 2.3].

Proposition 5.1 Let $\phi: M_{n}^{(k)} \rightarrow M_{n}$ be a multiplicative map. Then there exist mutually orthogonal rank one idempotents X_{1}, \ldots, X_{n} such that $\phi\left(X_{i}\right) \neq \phi(0)$ for $i=1, \ldots, n$ if and only if there exist $S \in S L_{n}$ and a field embedding $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ such that ϕ has the form

$$
\left(a_{i j}\right) \mapsto S\left(\sigma\left(a_{i j}\right)\right) S^{-1}
$$

Our main result on multiplicative preservers of the C-numerical ranges and radii on $M_{n}^{(k)}$ reads as follows.

Theorem 5.2 Let $C \in M_{n}$ be a non-scalar matrix, and let $F_{C}(A)=w_{C}(A)$ or $W_{C}(A)$. A multiplicative $\operatorname{map} \phi: M_{n}^{(k)} \rightarrow M_{n}$ satisfies $F_{C}(\phi(A))=F_{C}(A)$ for all $A \in M_{n}^{(k)}$ if and only if there is a unitary $U \in S L_{n}$ such that one of the following conditions holds true:
(a) ϕ has the form $A \mapsto U A U^{*}$.
(b) $F_{C}(A)=F_{C}(\bar{A})$ for all $A \in M_{n}^{(k)}$, and ϕ has the form $A \mapsto U \bar{A} U^{*}$.

Proof. The "if" part can be verified readily. We focus on the converse.
For $i=1, \ldots, n$, we have $w_{C}\left(E_{i, i}\right)=w(C) \neq 0=w_{C}(0)$. Thus, $\phi\left(E_{i, i}\right) \neq \phi(0)$ for $i=1, \ldots, n$. By Proposition 5.1ϕ has the form

$$
\phi(A)=S \sigma(A) S^{-1}, \quad A \in M_{n}^{(k)}
$$

where $S \in S L_{n}$. Suppose S is not unitary. By Lemma 2.3, there is $E_{i, j}$ with $i \neq j$ such that $S E_{i, j} S^{-1}$ is unitarily similar to $r E_{1,2}$ with some positive real number $r \neq 1$. Since C is not a scalar matrix, we have

$$
0<w_{C}\left(E_{i, j}\right) \neq r w_{C}\left(E_{1,2}\right)=w_{C}\left(\phi\left(E_{i, j}\right)\right)
$$

which is a contradiction. Hence, S is unitary. Furthermore, for any $z \in \mathbb{C}$,

$$
|z| w_{C}\left(E_{1,2}\right)=w_{C}\left(z E_{1,2}\right)=w_{C}\left(\sigma(z) E_{1,2}\right)=|\sigma(z)| w_{C}\left(E_{1,2}\right) .
$$

So, by Lemma 2.4σ has the form $z \mapsto z$ or $z \mapsto \bar{z}$. The result follows.
Theorem 5.2 is not entirely satisfactory as we do not have a complete characterization of the sets of matrices C such that $F_{C}(A)=F_{C}(\bar{A})$ for all $A \in M_{n}^{(k)}$, for various k. Some information on these sets is contained in the next proposition.

Proposition 5.3 Let $\psi_{n}^{(k)}$ be the set of matrices $C \in M_{n}$ such that

$$
w_{C}(A)=w_{C}(\bar{A}) \quad \text { for all } \quad A \in M_{n}^{(k)} .
$$

Then

$$
\begin{equation*}
\psi_{n}^{(n)} \subseteq \psi_{n}^{(n-1)} \subseteq \cdots \subseteq \psi_{n}^{(1)}=M_{n} \tag{5.1}
\end{equation*}
$$

(a) Suppose C has rank at most k. Then $C \in \psi_{n}^{(k)}$ if and only if C is unitarily similar to $\mu \bar{C}$ for some $\mu \in \mathbf{T}$. Consequently, $\psi_{n}^{(n)}$ consists of those $C \in M_{n}$ such that C and $\mu \bar{C}$ are unitarily similar for some $\mu \in \mathbf{T}$.
(b) Assume $8 k \leq n$, and suppose C is unitarily similar to $\left(C_{1} \otimes I_{4 k}\right) \oplus C_{2}$ with $C_{1}=$ $\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right)$ such that $W\left(C_{2}\right) \subseteq W\left(C_{1}\right)$. Then $C \in \psi_{n}^{(k)}$.

Part (b) illustrates that a complete characterization of the set $\psi_{n}^{(k)}$ (if $k<n$) may be not transparent.

Proof. The inclusions in (5.1) are trivial. To prove the equality $\psi_{n}^{(1)}=M_{n}$, fix $C \in M_{n}$, and let $A=x y^{*}$ be a rank one matrix, and let U be a unitary matrix. Define $\mu=\left(\overline{y^{*}} \bar{x}\right) /\left(y^{*} x\right)$ if $y^{*} x \neq 0$, and $\mu=1$ otherwise. Then

$$
\overline{y^{*}} \bar{x}=y^{*}(\mu x)=(U y)^{*}(U(\mu x)),
$$

and therefore there exists a unitary V such that $V \bar{x}=\mu U x$ and $V \bar{y}=U y$. Thus,

$$
\operatorname{tr}\left(C U A U^{*}\right)=\operatorname{tr}\left(C U x y^{*} U^{*}\right)=\mu \operatorname{tr}\left(C V \bar{x} \overline{y^{*}} V^{*}\right)=\operatorname{tr}\left(C V \bar{A} V^{*}\right),
$$

and since U was an arbitrary unitary matrix, we have $w_{C}(A) \leq w_{C}(\bar{A})$. The equality $w_{C}(A)=w_{C}(\bar{A})$ follows by reversing the roles of A and \bar{A}, and using (2.2) we obtain $\psi_{n}^{(1)}=M_{n}$.

For statement (a), the "if" part follows from Lemma 3.1. Conversely, suppose C has rank at most k. If $C \in \psi_{n}^{(k)}$, then $w_{C}\left(C^{*}\right)=w_{C}\left(C^{t}\right)$. Denote by $\|X\|_{F}=\left(\operatorname{tr} X X^{*}\right)^{1 / 2}$ the Frobenius norm on M_{n}. Then there exists a unitary U such that

$$
\operatorname{tr}\left(C C^{*}\right) \leq w_{C}\left(C^{*}\right)=w_{C}\left(C^{t}\right)=\left|\operatorname{tr} C U C^{t} U^{*}\right| \leq\|C\|_{F}\left\|U C^{t} U^{*}\right\|_{F}=\operatorname{tr}\left(C C^{*}\right)
$$

Using the equality case of Cauchy-Schwartz inequality, we see that $U C^{t} U^{*}=\mu C^{*}$ for some $\mu \in \mathbf{T}$. Hence C and $\mu \bar{C}$ is unitarily similar. The second statement in (a) is clear.

Next, we turn to statement (b). Assume that $C=\left(C_{1} \otimes I_{4 k}\right) \oplus C_{2}$. For simplicity, we assume that $a=2$, i.e., $C_{1}=\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right)$. Suppose $A \in M_{n}^{(k)}$. Up to unitary similarity, we may assume that $A=A_{1} \oplus 0_{n-2 k}$, where A_{1} is $2 k \times 2 k$. We claim that $W_{C}(A)=W_{C_{0}}\left(A_{0}\right)$ and $W_{C}(\bar{A})=W_{C_{0}}\left(\overline{A_{0}}\right)$, where $C_{0}=C_{1} \otimes I_{4 k}$ and $A_{0}=A_{1} \oplus 0_{6 k}$. Since C_{0} is in block shift form, it will then follow by Lemma 4.1 that

$$
W_{C}(A)=W_{C_{0}}\left(A_{0}\right)=W_{C_{0}}\left(\overline{A_{0}}\right)=W_{C}(\bar{A}),
$$

and therefore also $w_{C}(A)=w_{C}(\bar{A})$.
To prove our claim, we first establish $W_{C_{0}}\left(A_{0}\right) \subseteq W_{C}(A)$. If $V \in M_{8 k}$ and $z=$ $\operatorname{tr}\left(V C_{0} V^{*} A_{0}\right) \in W_{C} C_{0}\left(A_{0}\right)$, then for $\tilde{V}=V \oplus I_{n-8 k}$ we have $z=\operatorname{tr}\left(\tilde{V} C \tilde{V}^{*} A\right) \in W_{C}(A)$.

Next, we consider the reverse inclusion. Let $V \in M_{n}$ be unitary, and let

$$
V^{*} C V=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)
$$

with $C_{11} \in M_{2 k}$ so that

$$
\begin{equation*}
\operatorname{tr}\left(C V A V^{*}\right)=\operatorname{tr}\left(V^{*} C V A\right)=\operatorname{tr}\left(C_{11} A_{1}\right) . \tag{5.2}
\end{equation*}
$$

Now, $W\left(C_{11}\right) \subseteq W(C)=W\left(C_{1}\right)$. By a result in [1] (see also [4]), $C_{11}=X^{*}\left(C_{1} \otimes I_{r}\right) X$ for some positive integer $r>0$ and some $2 r \times 2 k$ matrix X such that $X^{*} X=I_{2 k}$.

If $r \leq 4 k$, there is a unitary matrix $V \in M_{8 k}$ such that the first $2 k$ rows of V^{*} have the form $\left[X^{*} \mid 0_{2 k, 8 k-2 r}\right]$. Let $\tilde{C}_{0}=\left(C_{1} \otimes I_{r}\right) \oplus\left(C_{1} \otimes I_{4 k-r}\right)$. Then

$$
\operatorname{tr}\left(C_{11} A_{1}\right)=\operatorname{tr}\left(V^{*} \tilde{C}_{0} V A_{0}\right) \in W_{\tilde{C}_{0}}\left(A_{0}\right)=W_{C_{0}}\left(A_{0}\right),
$$

where the last equality holds because \tilde{C}_{0} and C_{0} are unitarily similar.
Suppose $r>4 k$. Partition $X^{*}=\left[X_{1}^{*} \mid X_{2}^{*}\right]$, where each X_{i}^{*} is $2 k \times r$. Let $U \in M_{r}$ be a unitary matrix such that the linear span of the first $4 k$ rows of U^{*} contains all the rows of X_{1}^{*} and those of X_{2}^{*}. Then $X_{i}^{*} U=\left[Y_{i}^{*} \mid 0\right], i=1,2$, where Y_{i}^{*} is $2 k \times 4 k$. Thus,

$$
\begin{aligned}
C_{11} & =\left[X_{1}^{*} \mid X_{2}^{*}\right]\left(\begin{array}{cc}
0_{r} & 2 I_{r} \\
0_{r} & 0_{r}
\end{array}\right)\left[\begin{array}{c}
X_{1} \\
X_{2}
\end{array}\right] \\
& =\left[X_{1}^{*} \mid X_{2}^{*}\right]\left(\begin{array}{cc}
U & 0 \\
0 & U
\end{array}\right)\left(\begin{array}{cc}
U^{*} & 0 \\
0 & U^{*}
\end{array}\right)\left(\begin{array}{cc}
0_{r} & 2 I_{r} \\
0_{r} & 0_{r}
\end{array}\right)\left(\begin{array}{cc}
U & 0 \\
0 & U
\end{array}\right)\left(\begin{array}{cc}
U^{*} & 0 \\
0 & U^{*}
\end{array}\right)\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \\
& =\left[Y_{1}^{*}|0| Y_{2}^{*} \mid 0\right]\left(\begin{array}{cc}
0_{r} & 2 I_{r} \\
0_{r} & 0_{r}
\end{array}\right)\left[\begin{array}{c}
Y_{1} \\
0 \\
Y_{2} \\
0
\end{array}\right] \\
& =\left[Y_{1}^{*} \mid Y_{2}^{*}\right]\left(\begin{array}{cc}
0_{4 k} & 2 I_{4 k} \\
0_{4 k} & 0_{4 k}
\end{array}\right)\left[\begin{array}{c}
Y_{1} \\
Y_{2}
\end{array}\right] .
\end{aligned}
$$

Note that $\left[Y_{1}^{*} \mid Y_{2}^{*}\right]\left[\begin{array}{l}Y_{1} \\ Y_{2}\end{array}\right]=I_{2 k}$. Suppose $R \in M_{8 k}$ is unitary such that the first $2 k$ rows of R^{*} equal $\left[Y_{1}^{*} \mid Y_{2}^{*}\right]$. Then by (5.2)

$$
\operatorname{tr}\left(V^{*} C V A\right)=\operatorname{tr}\left(C_{1} A_{1}\right)=\operatorname{tr}\left(R^{*} C_{0} R A_{0}\right) \in W_{C_{0}}\left(A_{0}\right) .
$$

Hence $W_{C}(A) \subseteq W_{C_{0}}\left(A_{0}\right)$.
Combining the above arguments, we see that $W_{C_{0}}\left(A_{0}\right)=W_{C}(A)$. Similarly, one can prove that $W_{C_{0}}\left(\overline{A_{0}}\right)=W_{C}(\bar{A})$. Our claim is proved and the result follows.

Proposition 5.4 Let $\Psi_{n}^{(k)}$ be the set of matrices $C \in M_{n}$ such that

$$
W_{C}(A)=W_{C}(\bar{A}) \quad \text { for all } \quad A \in M_{n}^{(k)}
$$

Then

$$
\Psi_{n}^{(n)} \subseteq \Psi_{n}^{(n-1)} \subseteq \cdots \subseteq \Psi_{n}^{(1)} .
$$

(a) Suppose C has rank at most k. Then $C \in \Psi_{n}^{(k)}$ if and only if C is unitarily similar to a block shift matrix as well as unitarily similar to $\mu \bar{C}$ for some $\mu \in \mathbf{T}$. Consequently, $\Psi_{n}^{(n)}$ consists of those $C \in M_{n}$ such that C is unitarily similar to a block shift matrix as well as to $\mu \bar{C}$ for some $\mu \in \mathbf{T}$.
(b) Assume that $8 k \leq n$, and suppose C is unitarily similar to $\left(C_{1} \otimes I_{4 k}\right) \oplus C_{2}$ with $C_{1}=$ $\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right)$ such that $W\left(C_{2}\right) \subseteq W\left(C_{1}\right)$. Then $C \in \Psi_{n}^{(k)}$.

Proof. The inclusion relation is clear. For statement (a), the "if' part follows from Lemmas 3.1 and 4.1. For the converse, the fact that C is unitarily similar to $\mu \bar{C}$ for some $\mu \in \mathbf{T}$ follows from Proposition 5.3 (a). Now, for any $\nu \in \mathbf{T}$,

$$
\bar{\nu} W_{C}\left(C^{*}\right)=W_{C}\left(\bar{\nu} C^{*}\right)=W_{C}\left(\nu C^{t}\right)=\nu W_{C}\left(C^{t}\right)
$$

Thus, $W_{C}\left(C^{*}\right)=\nu^{2} W_{C}\left(C^{t}\right)$ for all $\nu \in \mathbf{T}$. Since $W_{C}\left(C^{*}\right)$ is star-shaped (see [3]), it is a circular disk centered at the origin. By Lemma 4.1, C is unitarily similar to a block shift matrix.

The proof of (b) is contained in that of Proposition 5.3 (b).

Remark 5.5 Note that by the proof of Proposition 5.4, if $W_{C}(A)=W_{C}(\bar{A})$ for all $A \in M_{n}^{(k)}$ then $W_{C}(A)$ is a circular disk for all $A \in M_{n}^{(k)}$.

Remark 5.6 A characterization of matrices in the set $\Psi_{n}^{(k)}$ seems to be even more elusive than that of $\psi_{n}^{(k)}$. Even for $\Psi_{n}^{(1)}$ the situation is not as nice as for $\psi_{n}^{(1)}=M_{n}$. In fact, if $A \in M_{n}$ has rank 1 , then A is unitarily similar to $\|A\|\left(q E_{1,1}+\sqrt{1-|q|^{2}} E_{1,2}\right)$, for some $q \in \mathbb{C}$, $|q| \leq 1$, and therefore $W_{C}(A)=\|A\| W_{q}(C)$, where

$$
W_{q}(C)=\left\{q x^{*} C x+\sqrt{1-|q|^{2}} x^{*} C y: x, y \in \mathbb{C}^{n}, x^{*} x=1=y^{*} y, x^{*} y=0\right\}
$$

is the q-numerical range of C; see $[18,21,13]$. Moreover, it is known that

$$
W_{q}(C)=\cup_{z \in W(C)} R(z),
$$

where

$$
\begin{aligned}
& R(z)=\left\{q z+\sqrt{1-|q|^{2}} \mu \in \mathbb{C}:|\mu|^{2}+|z|^{2} \leq\|C h\|^{2}\right. \\
& \\
& \text { for some } \left.x \in \mathbb{C}^{n} \text { with }\left(x^{*} x, x^{*} C x\right)=(1, z)\right\} .
\end{aligned}
$$

Here $\|C x\|$ is the Euclidean length of the vector $C x$. By the above discussion and Remark 5.5 we see that $C \in \Psi_{n}^{(1)}$ if the outer boundary of the set

$$
S_{h}=\left\{x^{*} C x: x \in \mathbb{C}^{n}, \quad x^{*} x=1, \quad\|C x\|=h\right\}
$$

is a circle or empty for any $h \geq 0$.
For example, if C is unitarily similar to a block shift matrix, or if C is unitarily similar to a matrix of the form

$$
\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right) \oplus B, \quad w(B) \leq 1
$$

then C satisfies the above condition on the outer boundary, i.e., $C \in \Psi_{n}^{(1)}$.
We conclude the paper with an open problem.
Problem 5.7 Obtain intrinsic characterizations of the classes $\psi_{n}^{(k)}$ and $\Psi_{n}^{(k)}$ in the general situation.

References

[1] T. Ando, Structure of operators with numerical radius one, Acta Sci. Math. (Szeged) 34 (1973), 11-15.
[2] W. S. Cheung, S. Fallat, and C. K. Li, Multiplicative preservers on semigroups of matrices, Linear Algebra Appl. 355 (2002), 173-186.
[3] W. S. Cheung and N. K. Tsing, The C-numerical range of matrices is star-shaped, Linear and Multilinear Algebra 41 (1996), 245-250.
[4] M. D. Choi and C. K. Li, Numerical ranges and dilations, Linear and Multilinear Algebra 47 (2000), 35-48.
[5] M. Goldberg and E. G. Straus, Elementary inclusion relations for generalized numerical ranges, Linear Algebra Appl. 18 (1977), 1 - 24.
[6] M. Goldberg and E. G. Straus, Some properties of C-numerical radii, Linear Algebra Appl. 24 (1979), 113-131.
[7] R. M. Guralnick, Invertible preservers and algebraic groups. II. Preservers of similarity invariants and overgroups of $\mathrm{PSL}_{n}(F)$, Linear and Multilinear Algebra 43 (1997), 221-255.
[8] R. M. Guralnick and C. K. Li, Invertible preservers and algebraic groups. III. Preservers of unitary similarity (congruence) invariants and overgroups of some unitary subgroups, Linear and Multilinear Algebra 43 (1997), 257-282.
[9] R. M. Guralnick, C. K. Li, and L. Rodman, Multiplicative maps on invertible matrices that preserve matricial properties, submitted for publication.
[10] S. H. Hochwald, Multiplicative maps on matrices that preserve spectrum, Linear Algebra Appl. 212/213 (1994) 339-351.
[11] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985.
[12] C. K. Li, C-Numerical ranges and C-numerical radii, Linear and Multilinear Algebra 37 (1994), 51-82.
[13] C. K. Li, Some convexity theorems for the generalized numerical ranges, Linear and Multilinear Algebra 40 (1996), 235-240.
[14] C. K. Li, P. P. Mehta, and L. Rodman, A generalized numerical range: The range of a constrained sesquilinear form, Linear and Multilinear Algebra 37 (1994), 25-49.
[15] C. K. Li and N. K. Tsing, Duality between some linear preservers problems: The invariance of the C-numerical range, the C-numerical radius and certain matrix sets, Linear and Multilinear Algebra 23 (1988), 353-362.
[16] C. K. Li and N. K. Tsing, Norms that are invariant under unitary similarities and the C-numerical radii, Linear and Multilinear Algebra 24 (1989), 209-222.
[17] C. K. Li and N. K. Tsing, Matrices with circular symmetry on their unitary orbits and C-numerical ranges, Proc. Amer. Math. Soc. 111 (1991), 19-28.
[18] M. Marcus and P. Andresen, Constrained extrema of bilinear functionals, Monatsh. Math. 84 (1977), 219-235.
[19] H. Nakazato, The C-numerical range of a 2×2 matrix, Sci. Rep. Hirosaki Univ. 41 (1994), 197-206.
[20] S. Pierce et al., A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992) 1-129.
[21] N. K. Tsing, The constrained bilinear form and the C-numerical range, Linear Algebra Appl. 56 (1984), 195-206.
[22] P. B. Yale, Automorphisms of the complex numbers, Math. Magazine 39 (1966), 135-141.

[^0]: *The authors gratefully acknowledge the support of NSF grants DMS-0071944 and DMS-9988579.

