Multiplicative Preservers of C-Numerical Ranges and Radii

Chi-Kwong Li and Leiba Rodman * Department of Mathematics, College of William and Mary, PO Box 8795, Williamsburg, VA 23187-8795 E-mail: ckli@math.wm.edu lxrodm@math.wm.edu

Abstract

Multiplicative preservers of C-numerical ranges and radii on certain groups and semigroups of complex $n \times n$ matrices are characterized. The general and special linear groups are considered, as well as the semigroups of matrices having ranks not exceeding k, with kfixed in advance. For a fixed C, it turns out that typically the multiplicative preservers of the C-numerical range (or radius) have the form $A \mapsto f(\det A)UAU^*$ or, for certain matrices C, the form $A \mapsto f(\det A)U\overline{A}U^*$, for some unitary U and multiplicative map f from the group of nonzero complex numbers to the unit circle.

Keywords: Multiplicative preserver, C-numerical range, C-numerical radius. 2000 Mathematics Subject Classification: 15A60, 47A12.

1 Introduction

Let M_n be the algebra of complex $n \times n$ matrices. Given a nonzero $C \in M_n$, the C-numerical range and the C-numerical radius of $A \in M_n$ are defined by

$$W_C(A) = \{ \operatorname{tr} (CUAU^*) : U \text{ unitary } \}$$

and

$$w_C(A) = \max\{|z| : z \in W_C(A)\}.$$

The concepts of C-numerical range and C-numerical radius were introduced by Goldberg and Strauss; see [5] and [6]. When C is a rank one Hermitian orthogonal projection, $W_C(A)$ and $w_C(A)$ reduce to the classical numerical range $W(A) = \{x^*Ax : x \in \mathbb{C}^n, x^*x = 1\}$ and the classical numerical radius $w(A) = \max\{|z| : z \in W(A)\}$, which are useful concepts in studying matrices and operators; see, for example, [11]. The C-numerical range and the Cnumerical radius are also very useful in studying matrices and operators, and have attracted

^{*}The authors gratefully acknowledge the support of NSF grants DMS-0071944 and DMS-9988579.

the attention of many researchers; see [12] and its references. For example, it was proved in [16] that *C*-numerical radii can be viewed as the building blocks of unitary similarity invariant norms $\|\cdot\|$ on M_n , i.e., norms on M_n satisfying $\|A\| = \|U^*AU\|$ for any $A \in M_n$ and unitary *U*, in the sense that for any unitary similarity invariant norm $\|\cdot\|$ on M_n there is a compact subset $S \subseteq M_n$ such that

$$||A|| = \max\{w_C(A) : C \in S\}.$$

An interesting topic in the study of C-numerical range and C-numerical radius is characterizing linear maps $\phi : M_n \to M_n$ such that $F(\phi(A)) = F(A)$ for all $A \in M_n$, where $F(A) = w_C(A)$ or $W_C(A)$; see [12, 14, 15, 20]. Such maps are called linear preservers of F(A). If $w_C(A)$ is a norm, then linear preservers of $w_C(A)$ are just linear isometries of $w_C(A)$. Furthermore, in most of the cases linear preservers of $W_C(A)$ have the form

 $A \mapsto U^* A U$, U is a fixed unitary matrix,

which is also multiplicative, i.e., $\phi(AB) = \phi(A)\phi(B)$ for all $A, B \in M_n$.

Recently, there has been considerable interest also in studying multiplicative maps on groups and semigroups of matrices that leave invariant some special functions, sets, and relations, see, for example, [10, 2, 7, 8, 9]. The approach undertaken in [9] is based on the classical results of Borel - Tits on automorphisms of linear groups.

In this paper, we characterize multiplicative preservers of C-numerical ranges and radii on the following semigroups of M_n :

 SL_n : the group of matrices in M_n with determinant 1,

 GL_n : the group of invertible matrices in M_n ,

 $M_n^{(k)}$: the semigroup of matrices in M_n with rank at most k.

In more detail, for a fixed $C \in M_n$, we characterize those multiplicative maps $\phi : \mathbf{H} \longrightarrow M_n$, where **H** is one of SL_n , GL_n , or $M_n^{(k)}$, that have the property

$$w_C(\phi(A)) = w_C(A)$$
 for every $A \in \mathbf{H}$, (1.1)

or the property

$$W_C(\phi(A)) = W_C(A)$$
 for every $A \in \mathbf{H}$. (1.2)

Multiplicative maps with the property (1.1), resp. (1.2), will be called *multiplicative pre*servers of $w_C(A)$, resp. of $W_C(A)$.

The following notation will be used.

 \mathbb{C} the complex field. $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ the multiplicative group of nonzero complex numbers. \mathbf{T} the unit circle in \mathbb{C} . $\sigma : \mathbb{C} \longrightarrow \mathbb{C}$ a complex field embedding. $\{E_{1,1}, E_{1,2}, \ldots, E_{n,n}\}$ the standard basis for M_n . I_m (or I with m understood) the $m \times m$ identity matrix. 0_m (or 0 with m understood) the $m \times m$ zero matrix. w(A) the numerical radius of $A \in M_n$. tr A the trace of $A \in M_n$. A^t the transpose of A. $\tau(A) = (A^{-1})^t$, for an invertible matrix A. \overline{A} the entrywise complex conjugate of a matrix A. $\overline{A}^* = (\overline{A})^t$. $s_1(X) \ge s_2(X) \ge \cdots \ge s_n(X)$ the singular values of a matrix $X \in M_n$. diag (a_1, \ldots, a_n) diagonal matrix with the diagonal entries a_1, \ldots, a_n (in that order). If $C = \mu I$, $\mu \ne 0$, then $W_C(A) = \{\mu \operatorname{tr}(A)\}$. So, the problem of describing the multiplicative preservers of $w_C(A)$ or of $W_C(A)$ reduces to the multiplicative preservers of $|\operatorname{tr} A|$ or of tr A which was treated in [9] for the cases of SL_n and of GL_n and followed readily from Proposition 3.7 in [2] for the case of $M_n^{(k)}$. For tr A, the multiplicative preservers have the

(i) $A \mapsto SAS^{-1}$ for some $S \in SL_n$.

For $|\operatorname{tr} A|$, the multiplicative preservers have form (i) or the following forms:

(ii)
$$A \mapsto S\overline{A}S^{-1}$$
,
(iii) $A \mapsto f(\det(A))SAS^{-1}$ or $A \mapsto f(\det(A))S\overline{A}S^{-1}$ for preservers on GL_n

for some $S \in SL_n$ and multiplicative map $f : \mathbb{C}^* \to \mathbf{T}$.

Thus, in the sequel we always implicitly assume that C is not a scalar matrix. Also, we will always assume that $n \ge 2$ to avoid trivial considerations.

2 Preliminaries

The following easily verified property of the C-numerical ranges will be used:

$$\overline{W_{\overline{C}}(A)} = W_C(\overline{A}), \qquad A \in M_n, \tag{2.1}$$

,

and therefore

form:

$$w_{\overline{C}}(A) = w_C(\overline{A}), \qquad A \in M_n.$$
 (2.2)

We need also Proposition 2.1 and Lemma 2.3 below from [9], and a well-known (and easily proved) Lemma 2.2.

Proposition 2.1 Let ϕ be a multiplicative map on SL_n or GL_n . Then either $\phi(SL_n)$ is a singleton or there exist a field embedding $\sigma : \mathbb{C} \to \mathbb{C}$, a matrix $S \in SL_n$, and a multiplicative map $f : \mathbb{C}^* \to \mathbb{C}^*$ such that ϕ has the form

$$A \mapsto f(\det(A))S\sigma(A)S^{-1}$$
 or $A \mapsto f(\det(A))S\tau(\sigma(A))S^{-1}$.

Lemma 2.2 Suppose k is a positive integer, and $f : \mathbb{C}^* \to \mathbb{C}^*$ is a group homomorphism such that $f(\mu)^k = 1$ for all $\mu \in \mathbb{C}^*$. Then $f(\mu) = 1$ for all $\mu \in \mathbb{C}^*$.

Lemma 2.3 Let $S \in SL_n$. If $SE_{ij}S^{-1}$ has singular values $1, 0, \ldots, 0$ for all $i, j \in \{1, \ldots, n\}$ with $i \neq j$, then S is unitary.

The following characterization of the continuous complex field embeddings is useful; see, e.g., [22].

Lemma 2.4 The following statements for a complex field embedding $\sigma : \mathbb{C} \to \mathbb{C}$ are equivalent:

- (a) either $\sigma(z) = z$ for every $z \in \mathbb{C}$ or $\sigma(z) = \overline{z}$ for every $z \in \mathbb{C}$.
- (b) $|\sigma(z)| = |z|$ for every $z \in \mathbb{C}$.
- (c) $\sigma(z) > 0$ for every positive z.
- (d) σ is continuous.

3 *C*-numerical radius preservers on SL_n and GL_n

We need the following lemma to characterize multiplicative preservers of C-numerical radius.

Lemma 3.1 Let $C \in M_n$. Then $w_C(A) = w_C(\overline{A})$ for all $A \in M_n$ if and only if C is unitarily similar to $\mu \overline{C}$ for some $\mu \in \mathbf{T}$.

Proof. Since

$$w_A(C) = w_C(A) = w_C(\overline{A}) = w_{\overline{C}}(A) = w_A(\overline{C})$$
 for all $A \in M_n$,

by Theorem 2.1 in [16], we see that \overline{C} is in the convex hull of the set

$$\{\mu U^* CU : \mu \in \mathbf{T}, \ U^* U = I_n\}.$$
(3.1)

Thus, \overline{C} is a convex combination of a finite subset of the set (3.1). Since μU^*CU (for $|\mu| = 1$ and unitary U) and \overline{C} have the same Frobenius norm, and the Frobenius norm is strictly convex, we must have that $\overline{C} = \mu U^*CU$ for some $\mu \in \mathbf{T}$ and unitary U.

Theorem 3.2 Let $\mathbf{H} = SL_n$ or GL_n , and let $C \in M_n$ be a fixed non-scalar matrix. A multiplicative map $\phi : \mathbf{H} \to M_n$ satisfies $w_C(\phi(A)) = w_C(A)$ for all $A \in \mathbf{H}$ if and only if there is a unitary $U \in SL_n$ and a multiplicative map $f : \mathbb{C}^* \to \mathbf{T}$ such that one of the following conditions holds true:

- (a) ϕ has the form $A \mapsto f(\det(A))UAU^*$.
- (b) There exists $\mu \in \mathbf{T}$ such that C and $\mu \overline{C}$ are unitarily similar, and ϕ has the form $A \mapsto f(\det(A))U\overline{A}U^*$.

Note that $f(\det(A)) = 1$ for every $A \in SL_n$.

Proof. The "if" part can be verified with the help of Lemma 3.1. We focus on the converse.

Suppose tr $(C) \neq 0$. Then $w_C(A)$ is a unitary similarity invariant norm; see [6], also [16]. By [9, Theorem 3.8], ϕ has the asserted form, and the form of ϕ in (b) holds if and only if $w_C(A) = w_C(\overline{A})$ for all $A \in \mathbf{H}$. Since every $A \in GL_n$ is a scalar multiple of $B \in SL_n$, and GL_n is dense in M_n , by continuity of the norm function w_C we see that if $w_C(A) = w_C(\overline{A})$ for all $A \in \mathbf{H}$, then $w_C(A) = w_C(\overline{A})$ for all $A \in M_n$. By Lemma 3.1, we see that \overline{C} is unitarily similar to μC for some $\mu \in \mathbf{T}$.

Now, suppose that $\operatorname{tr}(C) = 0$. Since C is not a scalar matrix,

$$\gamma = w_C(E_{1,2}) = w_C(E_{i,j}) > 0, \quad i \neq j.$$

For any A unitarily similar to $I + \nu E_{n1}$, we have:

$$w_{C}(A) = \max\{|\operatorname{tr}(CVAV^{*})| : V \text{ is unitary}\} \\ = \max\{|\operatorname{tr}(V^{*}CV(I + \nu E_{n1})| : V \text{ is unitary}\} \\ = |\nu|\gamma.$$
(3.2)

Suppose $\mathbf{H} = SL_n$. Clearly, ϕ is non-trivial on \mathbf{H} , and hence by Proposition 2.1 ϕ has the standard form

$$A \mapsto S\sigma(A)S^{-1}$$
 or $A \mapsto S\tau(\sigma(A))S^{-1}$

for some $S \in SL_n$. Suppose S is not unitary. By Lemma 2.3, there is $E_{i,j}$ with $i \neq j$ such that $SE_{i,j}S^{-1}$ has trace zero and singular values $r, 0, \ldots, 0$ with $r \neq 1$. But then for $A = I + E_{i,j}$, we have by (3.2):

$$w_C(A) = 1 + \gamma \neq 1 + r\gamma = w_C(\phi(A)),$$

which is a contradiction. Hence, S is unitary. Furthermore, for any $z \in \mathbb{C}$, if $A_z = I + zE_{1,n}$ then again by (3.2)

$$\gamma|z| = w_C(A_z) = w_C(\phi(A)) = \gamma|\sigma(z)|.$$

So, by Lemma 2.4 σ has the form $z \mapsto z$ or $z \mapsto \overline{z}$.

For n > 2 we show that ϕ cannot have the form $A \mapsto S\tau(\sigma(A))S^{-1}$. (For n = 2 the form $A \mapsto S\tau(\sigma(A))S^{-1}$ is essentially the same as the form $A \mapsto SAS^{-1}$.) Note that there is a unitary matrix V such that $V^*CV = (\gamma_{ij})$ with $|\gamma_{11}| = w(C)$. If

$$A = \text{diag}(m^2, 1/m, 1/m, 1, \dots, 1)$$

for sufficiently large m, then

$$w_C(A) \ge |\operatorname{tr}(V^*CVA)| \ge m^2 |\gamma_{11}| - \sum_{j=2}^n |\gamma_{jj}| > w(C)(m^2 - n).$$
 (3.3)

On the other hand, if a unitary U having columns u_1, \ldots, u_n is such that

$$w_C(S\tau(A)S^{-1}) = |\operatorname{tr}(U^*CU\tau(A))|_{\mathcal{H}}$$

then

$$w_{C}(S\tau(A)S^{-1}) \leq \frac{1}{m^{2}}|u_{1}^{*}Cu_{1}| + m|u_{2}^{*}Cu_{2}| + m|u_{3}^{*}Cu_{3}| + |u_{4}^{*}Cu_{4}| + \dots + |u_{n}^{*}Cu_{n}|$$

$$\leq w(C)(\frac{1}{m^{2}} + 2m + n - 3),$$

which is smaller than the right hand side of (3.3). So, ϕ has the asserted form

$$A \mapsto UAU^* \quad \text{or} \quad A \mapsto U\overline{A}U^*$$
 (3.4)

for some unitary matrix U. If the latter holds, then $w_C(A) = w_C(A)$ for all $A \in SL_n$. By continuity and homogeneity, $w_C(A) = w_C(\overline{A}) = w_{\overline{C}}(A)$ for all $A \in M_n$. By Lemma 3.1, we see that C and $\mu \overline{C}$ are unitarily similar for some $\mu \in \mathbf{T}$.

Now, suppose $\mathbf{H} = GL_n$. Then by Proposition 2.1 ϕ has the form

$$A \mapsto f(\det(A))UAU^*$$
 or $A \mapsto f(\det(A))U\overline{A}U^*$, (3.5)

where the latter case holds when $w_C(A) = w_C(\overline{A})$ for all $A \in M_n$, and where $f : \mathbb{C}^* \longrightarrow \mathbb{C}^*$ is a multiplicative map. Then for any $z \in \mathbb{C}^* \setminus \{-1\}$ and $A_z = I + zE_{1,1}$,

$$w_C(A) = \max\{|\operatorname{tr} (CU^*AU)| : U \text{ is unitary}\}\$$

= max{|ztr (CU^*E_{1,1}U)| : U is unitary}
= w(zC).

Similarly, $w_C(\phi(A)) = |f(1+z)|w(zC)$. Thus, $|f(\mu)| = 1$ for all $\mu \in \mathbb{C}^*$.

4 *C*-numerical range preservers on SL_n and GL_n

We need some additional facts to state and prove the results on multiplicative preservers of *C*-numerical range. First, recall that a block matrix (X_{ij}) is in *block shift form* if all the diagonal blocks are square matrices (may be of different sizes) and $X_{ij} = 0$ whenever $j \neq i+1$. This is a generalization of the weighted shift matrix where all X_{ij} are one by one. We have the following result; see [17].

Lemma 4.1 The following conditions are equivalent for a non-scalar matrix C:

- (a) C is unitarily similar to a matrix in block shift form.
- (b) $W_C(A)$ is a circular disk centered at the origin for all $A \in M_n$.

(c) $W_C(C^*)$ is a circular disk centered at the origin.

Theorem 4.2 Let $\mathbf{H} = SL_n$ or GL_n , and let $C \in M_n$ be a non-scalar matrix. A multiplicative map $\phi : \mathbf{H} \to M_n$ satisfies $W_C(\phi(A)) = W_C(A)$ for all $A \in \mathbf{H}$ if and only if there is a unitary $U \in SL_n$ and a multiplicative map $f : \mathbb{C}^* \to \mathbf{T}$ such that one of the following holds true.

- (a) ϕ has the form $A \mapsto UAU^*$.
- (b) C is unitarily similar to a matrix in block shift form and ϕ has the form

$$A \mapsto f(\det(A))UAU^*.$$

(c) C is unitarily similar to a matrix in block shift form, as well as unitarily similar to $\mu \overline{C}$ for some $\mu \in \mathbf{T}$, and ϕ has the form $A \mapsto f(\det(A))U\overline{A}U^*$.

Proof. The "if" part can be verified readily with the help of Lemmas 3.1 and 4.1. We consider the converse.

Suppose $\mathbf{H} = SL_n$. Note that the $W_C(A)$ preservers must also be $w_C(A)$ preservers. Thus, ϕ has the form described in Theorem 3.2. Suppose ϕ has the form

$$A \mapsto U\overline{A}U^*, \qquad U \text{ unitary},$$

and C is unitarily similar to $\mu \overline{C}$ for some $\mu \in \mathbf{T}$. Now, for any $A \in SL_n$, then

$$W_C(A) = W(\phi(A)) = W_C(\overline{A}) = \mu W_{\overline{C}}(\overline{A}) = \mu \overline{W_C(A)}.$$
(4.1)

We claim that C is unitarily similar to a matrix in block shift form. First, we show that $\operatorname{tr} C = 0$. Note for $\xi = e^{i2\pi/n}$, $\xi I \in SL_n$ and

$$\{\xi \operatorname{tr} C\} = W_C(\xi I) = W_C(\overline{\xi}I) = \{\overline{\xi} \operatorname{tr} C\}.$$

Thus, $\xi^2 \operatorname{tr} C = \operatorname{tr} C$. If n > 2, then $\operatorname{tr} C = 0$. If n = 2, then (see [19] and [13, Theorem 1]) $W_C(A)$ is an elliptical disk centered at $(\operatorname{tr} C)(\operatorname{tr} A)/2$. If $\operatorname{tr} C \neq 0$, one can choose

$$A = \begin{pmatrix} \mu & \mu^2 - 1 \\ 1 & \mu \end{pmatrix} \in SL_2$$

such that $\mu \operatorname{tr} C \neq \overline{\mu} \operatorname{tr} C$. Thus, $W_C(A) \neq W_C(\overline{A})$, which is a contradiction.

Now, tr C = 0. Suppose $A \in GL_n$ with eigenvalues $\alpha_1, \ldots, \alpha_n$. For any $\gamma \in \mathbb{C}$ which does not coincide with any of $-\alpha_j$, we have

$$X := \frac{A + \gamma I}{\left[\prod_{j} (\alpha_{j} + \gamma)\right]^{1/n}} \in SL_{n}.$$

Thus, using the property that $\operatorname{tr} C = 0$ and (4.1), we have

$$\left[\prod_{j} (\alpha_{j} + \gamma)\right]^{-1/n} W_{C}(A) = \left[\prod_{j} (\alpha_{j} + \gamma)\right]^{-1/n} W_{C}(A + \gamma I)$$
$$= W_{C}(X) = W_{C}(\overline{X}) = \left[\overline{\prod_{j} (\alpha_{j} + \gamma)}\right]^{-1/n} W_{C}(\overline{A}).$$

Letting $\delta = ((\alpha_1 + \gamma) \dots (\alpha_n + \gamma))^{-1/n}$, it now follows that

$$\left(\delta/\overline{\delta}\right)W_C(A) = W_C(\overline{A}).$$

It is easy to see that $\delta/\overline{\delta}$ can be made equal to any prescribed number in **T**, for a suitable choice of γ . Since $W_C(A)$ is start-shaped (see [3]), it follows that $W_C(A)$ is a circular disk centered at the origin. Now, for any $A \in M_n$, there is $\lambda \in \mathbb{C}$ such that $A + \lambda I \in GL_n$, and

$$W_C(A) = W_C(A + \lambda I)$$

is a circular disk centered at origin. By Lemma 4.1, C is unitarily similar to a matrix in block shift form.

Next, suppose $\mathbf{H} = GL_n$. Since ϕ preserves $w_C(A)$, by Theorem 3.2 ϕ has the form

$$A \mapsto f(\det(A))UAU^*$$
 or $A \mapsto f(\det(A))U\overline{A}U^*$ (4.2)

for some multiplicative map $f : \mathbb{C}^* \to \mathbf{T}$, and some unitary U. If ϕ has the second form in (4.2), then by restricting ϕ to SL_n , and applying the result on SL_n we already proved, we conclude that C is unitarily similar to a block shift form, as well as to $\mu \overline{C}$ for some $\mu \in \mathbf{T}$.

It remains to show that if ϕ has the form $A \mapsto f(\det(A))UAU^*$, where f is non-trivial, then C is unitarily similar to a block shift form. By Lemma 2.2, it is easy to see that the range of f is dense in **T**. For every $z \in \mathbb{C}^*$ and every $A \in GL_n$, we have:

$$zW_C(A) = W_C(zA) = W_C(\phi(zA)) = f(z^n(\det A))W_C(zA) = zf(z^n(\det A))W_C(A).$$

Thus, $f(z^n(\det A))W_C(A) = W_C(A)$, and by the denseness of the range of f we conclude that

$$\nu W_C(A) = W_C(A)$$
 for every $\nu \in \mathbf{T}$.

Since $W_C(A)$ is start-shaped (see [3]), it follows that $W_C(A)$ is a circular disk centered at the origin. Now, $\{\nu \operatorname{tr} C\} = \nu W_C(I) = W_C(I) = \{\operatorname{tr} C\}$ for every $\nu \in \mathbf{T}$; so, $\operatorname{tr} C = 0$. Furthermore, for any $A \in M_n$, there is $\lambda \in \mathbb{C}$ such that $A + \lambda I \in GL_n$; then

$$W_C(A) = W_C(A + \lambda I)$$

is a circular disk centered at origin. By Lemma 4.1, C is unitarily similar to a matrix in block shift form.

In connection with Theorem 4.2 the following example is instructive.

Example 4.3 We construct here a family of examples of block shift matrices A such that A is not unitarily similar to $\mu \overline{A}$, for any $\mu \in \mathbf{T}$; in particular, A not unitarily similar to any real matrix.

We start with general observations:

1. Every diagonalizable matrix with positive eigenvalues is a product of two positive definite matrices.

This fact is well-known; for a proof note that if $X = S^{-1}DS$, where S is invertible and D is diagonal with positive numbers on the diagonal, then $X = S^{-1}(S^{-1})^* \cdot S^*DS$ is a product of two positive definite matrices.

A word w(X, Y), where X and Y are $n \times n$ matrices, is any matrix of the form

$$w(X,Y) = X^{\alpha_1} Y^{\beta_1} X^{\alpha_2} Y^{\beta_2} \cdots X^{\alpha_p} Y^{\beta_p}$$

where α_j , β_j are nonnegative integers. The integer $\sum_{j=1}^{p} (\alpha_j - \beta_j)$ will be called the *index* of w(X, Y).

2. If C is unitarily similar to $\mu \overline{C}$, for some $\mu \in \mathbf{T}$, then tr $(w(C^*, C))$ is real for every word $w(C^*, C)$ with zero index.

The proof is elementary: Assume $C = U(\mu \overline{C})U^*$ for some unitary U and $\mu \in \mathbf{T}$. Then

$$w(C^*,C) = Uw(\overline{\mu}C^t,\mu\overline{C})U^* = \overline{\overline{U}(w(\mu\overline{C^t},\overline{\mu}C))\overline{U}^*} = \overline{\overline{U}(w(\mu C^*,\overline{\mu}C))\overline{U}^*},$$

which is equal to $\overline{\overline{U}(w(C^*, C))}\overline{\overline{U}^*}$, assuming that the index of $w(C^*, C)$ is zero. Thus, $\operatorname{tr} w(C^*, C) = \overline{\operatorname{tr} w(C^*, C)}$, and 2. follows.

To construct the matrix A as required, we let A_1 , A_2 , A_3 be 2×2 positive definite matrices such that

$$A_1 A_2 = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix},$$

where a and c are distinct positive numbers and $b \neq 0$ is real, and the off-diagonal entries of A_3 are non-real (the existence of A_1 and A_2 with the required properties follows from Fact 1.). Then

$$\operatorname{tr}\left(A_1 A_2 A_3\right) \notin \mathbb{R}.\tag{4.3}$$

Next, let $A_{1,2}$, $A_{2,3}$ and $A_{3,4}$ be such that

$$A_{2,3}A_{2,3}^* = A_1, \quad A_{1,2}^*A_{1,2} = A_2, \quad A_{2,3}A_{3,4}^*A_{3,4}A_{2,3}^* = A_3,$$

and finally

$$A = \begin{pmatrix} 0 & A_{1,2} & 0 & 0 \\ 0 & 0 & A_{2,3} & 0 \\ 0 & 0 & 0 & A_{3,4} \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

A computation shows that

$$\operatorname{tr}(A(A^*)^2 A^3 (A^*)^2) = \operatorname{tr}(A_1 A_2 A_3),$$

and by Fact 2. and (4.3), A cannot be unitarily similar to $\mu \overline{A}$ for any $\mu \in \mathbf{T}$.

5 Results on $M_n^{(k)}$

We start with a preliminary result. Matrices $X_1, \ldots, X_n \in M_n$ are said to be *mutually* orthogonal rank one idempotents if $X_i^2 = X_i$ and $X_i X_j = 0$ for any $i, j \in \{1, \ldots, n\}$ with $i \neq j$. We have the following fact from [2, Propositions 2.2 and 2.3].

Proposition 5.1 Let $\phi : M_n^{(k)} \to M_n$ be a multiplicative map. Then there exist mutually orthogonal rank one idempotents X_1, \ldots, X_n such that $\phi(X_i) \neq \phi(0)$ for $i = 1, \ldots, n$ if and only if there exist $S \in SL_n$ and a field embedding $\sigma : \mathbb{C} \to \mathbb{C}$ such that ϕ has the form

$$(a_{ij}) \mapsto S(\sigma(a_{ij}))S^{-1}.$$

Our main result on multiplicative preservers of the C-numerical ranges and radii on $M_n^{(k)}$ reads as follows.

Theorem 5.2 Let $C \in M_n$ be a non-scalar matrix, and let $F_C(A) = w_C(A)$ or $W_C(A)$. A multiplicative map $\phi : M_n^{(k)} \to M_n$ satisfies $F_C(\phi(A)) = F_C(A)$ for all $A \in M_n^{(k)}$ if and only if there is a unitary $U \in SL_n$ such that one of the following conditions holds true:

(a) ϕ has the form $A \mapsto UAU^*$.

(b)
$$F_C(A) = F_C(\overline{A})$$
 for all $A \in M_n^{(k)}$, and ϕ has the form $A \mapsto U\overline{A}U^*$.

Proof. The "if" part can be verified readily. We focus on the converse.

For i = 1, ..., n, we have $w_C(E_{i,i}) = w(C) \neq 0 = w_C(0)$. Thus, $\phi(E_{i,i}) \neq \phi(0)$ for i = 1, ..., n. By Proposition 5.1 ϕ has the form

$$\phi(A) = S\sigma(A)S^{-1}, \qquad A \in M_n^{(k)},$$

where $S \in SL_n$. Suppose S is not unitary. By Lemma 2.3, there is $E_{i,j}$ with $i \neq j$ such that $SE_{i,j}S^{-1}$ is unitarily similar to $rE_{1,2}$ with some positive real number $r \neq 1$. Since C is not a scalar matrix, we have

$$0 < w_C(E_{i,j}) \neq rw_C(E_{1,2}) = w_C(\phi(E_{i,j})),$$

which is a contradiction. Hence, S is unitary. Furthermore, for any $z \in \mathbb{C}$,

$$|z|w_C(E_{1,2}) = w_C(zE_{1,2}) = w_C(\sigma(z)E_{1,2}) = |\sigma(z)|w_C(E_{1,2}).$$

So, by Lemma 2.4 σ has the form $z \mapsto z$ or $z \mapsto \overline{z}$. The result follows.

Theorem 5.2 is not entirely satisfactory as we do not have a complete characterization of the sets of matrices C such that $F_C(A) = F_C(\overline{A})$ for all $A \in M_n^{(k)}$, for various k. Some information on these sets is contained in the next proposition. **Proposition 5.3** Let $\psi_n^{(k)}$ be the set of matrices $C \in M_n$ such that

$$w_C(A) = w_C(\overline{A}) \quad for \ all \quad A \in M_n^{(k)}.$$

Then

$$\psi_n^{(n)} \subseteq \psi_n^{(n-1)} \subseteq \dots \subseteq \psi_n^{(1)} = M_n.$$
(5.1)

- (a) Suppose C has rank at most k. Then $C \in \psi_n^{(k)}$ if and only if C is unitarily similar to $\mu \overline{C}$ for some $\mu \in \mathbf{T}$. Consequently, $\psi_n^{(n)}$ consists of those $C \in M_n$ such that C and $\mu \overline{C}$ are unitarily similar for some $\mu \in \mathbf{T}$.
- (b) Assume $8k \leq n$, and suppose C is unitarily similar to $(C_1 \otimes I_{4k}) \oplus C_2$ with $C_1 = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$ such that $W(C_2) \subseteq W(C_1)$. Then $C \in \psi_n^{(k)}$.

Part (b) illustrates that a complete characterization of the set $\psi_n^{(k)}$ (if k < n) may be not transparent.

Proof. The inclusions in (5.1) are trivial. To prove the equality $\psi_n^{(1)} = M_n$, fix $C \in M_n$, and let $A = xy^*$ be a rank one matrix, and let U be a unitary matrix. Define $\mu = (\overline{y^*}\overline{x})/(y^*x)$ if $y^*x \neq 0$, and $\mu = 1$ otherwise. Then

$$\overline{y^*}\overline{x} = y^*(\mu x) = (Uy)^*(U(\mu x)),$$

and therefore there exists a unitary V such that $V\overline{x} = \mu Ux$ and $V\overline{y} = Uy$. Thus,

$$\operatorname{tr}\left(CUAU^*\right) = \operatorname{tr}\left(CUxy^*U^*\right) = \mu \operatorname{tr}\left(CV\overline{x}\overline{y^*}V^*\right) = \operatorname{tr}\left(CV\overline{A}V^*\right),$$

and since U was an arbitrary unitary matrix, we have $w_C(A) \leq w_C(\overline{A})$. The equality $w_C(A) = w_C(\overline{A})$ follows by reversing the roles of A and \overline{A} , and using (2.2) we obtain $\psi_n^{(1)} = M_n$.

For statement (a), the "if" part follows from Lemma 3.1. Conversely, suppose C has rank at most k. If $C \in \psi_n^{(k)}$, then $w_C(C^*) = w_C(C^t)$. Denote by $||X||_F = (\operatorname{tr} XX^*)^{1/2}$ the Frobenius norm on M_n . Then there exists a unitary U such that

$$\operatorname{tr}(CC^*) \le w_C(C^*) = w_C(C^t) = |\operatorname{tr} CUC^t U^*| \le ||C||_F ||UC^t U^*||_F = \operatorname{tr}(CC^*).$$

Using the equality case of Cauchy-Schwartz inequality, we see that $UC^tU^* = \mu C^*$ for some $\mu \in \mathbf{T}$. Hence C and $\mu \overline{C}$ is unitarily similar. The second statement in (a) is clear.

Next, we turn to statement (b). Assume that $C = (C_1 \otimes I_{4k}) \oplus C_2$. For simplicity, we assume that a = 2, i.e., $C_1 = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$. Suppose $A \in M_n^{(k)}$. Up to unitary similarity, we may assume that $A = A_1 \oplus 0_{n-2k}$, where A_1 is $2k \times 2k$. We claim that $W_C(A) = W_{C_0}(A_0)$ and $W_C(\overline{A}) = W_{C_0}(\overline{A_0})$, where $C_0 = C_1 \otimes I_{4k}$ and $A_0 = A_1 \oplus 0_{6k}$. Since C_0 is in block shift form, it will then follow by Lemma 4.1 that

$$W_C(A) = W_{C_0}(A_0) = W_{C_0}(\overline{A_0}) = W_C(\overline{A}),$$

and therefore also $w_C(A) = w_C(A)$.

To prove our claim, we first establish $W_{C_0}(A_0) \subseteq W_C(A)$. If $V \in M_{8k}$ and z =tr $(VC_0V^*A_0) \in W_CC_0(A_0)$, then for $\tilde{V} = V \oplus I_{n-8k}$ we have $z = \text{tr}(\tilde{V}C\tilde{V}^*A) \in W_C(A)$. Next, we consider the reverse inclusion. Let $V \in M_n$ be unitary, and let Ne

ext, we consider the reverse inclusion. Let
$$V \in M_n$$
 be unitary, and be

$$V^*CV = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

with $C_{11} \in M_{2k}$ so that

$$\operatorname{tr}(CVAV^*) = \operatorname{tr}(V^*CVA) = \operatorname{tr}(C_{11}A_1).$$
 (5.2)

Now, $W(C_{11}) \subseteq W(C) = W(C_1)$. By a result in [1] (see also [4]), $C_{11} = X^*(C_1 \otimes I_r)X$ for some positive integer r > 0 and some $2r \times 2k$ matrix X such that $X^*X = I_{2k}$.

If $r \leq 4k$, there is a unitary matrix $V \in M_{8k}$ such that the first 2k rows of V^* have the form $[X^*|_{0_{2k,8k-2r}}]$. Let $\tilde{C}_0 = (C_1 \otimes I_r) \oplus (C_1 \otimes I_{4k-r})$. Then

$$\operatorname{tr}(C_{11}A_1) = \operatorname{tr}(V^*\tilde{C}_0 V A_0) \in W_{\tilde{C}_0}(A_0) = W_{C_0}(A_0),$$

where the last equality holds because \tilde{C}_0 and C_0 are unitarily similar.

Suppose r > 4k. Partition $X^* = [X_1^* | X_2^*]$, where each X_i^* is $2k \times r$. Let $U \in M_r$ be a unitary matrix such that the linear span of the first 4k rows of U^* contains all the rows of X_1^* and those of X_2^* . Then $X_i^* U = [Y_i^*|0], i = 1, 2$, where Y_i^* is $2k \times 4k$. Thus,

$$C_{11} = [X_1^*|X_2^*] \begin{pmatrix} 0_r & 2I_r \\ 0_r & 0_r \end{pmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

= $[X_1^*|X_2^*] \begin{pmatrix} U & 0 \\ 0 & U \end{pmatrix} \begin{pmatrix} U^* & 0 \\ 0 & U^* \end{pmatrix} \begin{pmatrix} 0_r & 2I_r \\ 0_r & 0_r \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & U \end{pmatrix} \begin{pmatrix} U^* & 0 \\ 0 & U^* \end{pmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$
= $[Y_1^*|0|Y_2^*|0] \begin{pmatrix} 0_r & 2I_r \\ 0_r & 0_r \end{pmatrix} \begin{bmatrix} Y_1 \\ 0 \\ Y_2 \\ 0 \end{bmatrix}$
= $[Y_1^*|Y_2^*] \begin{pmatrix} 0_{4k} & 2I_{4k} \\ 0_{4k} & 0_{4k} \end{pmatrix} \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}.$

Note that $[Y_1^*|Y_2^*] \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = I_{2k}$. Suppose $R \in M_{8k}$ is unitary such that the first 2k rows of R^* equal $[Y_1^*|Y_2^*]$. Then by (5.2)

$$\operatorname{tr}(V^*CVA) = \operatorname{tr}(C_1A_1) = \operatorname{tr}(R^*C_0RA_0) \in W_{C_0}(A_0).$$

Hence $W_C(A) \subseteq W_{C_0}(A_0)$.

Combining the above arguments, we see that $W_{C_0}(A_0) = W_C(A)$. Similarly, one can prove that $W_{C_0}(\overline{A_0}) = W_C(\overline{A})$. Our claim is proved and the result follows.

Proposition 5.4 Let $\Psi_n^{(k)}$ be the set of matrices $C \in M_n$ such that

$$W_C(A) = W_C(\overline{A}) \quad for \ all \quad A \in M_n^{(k)}$$

Then

$$\Psi_n^{(n)} \subseteq \Psi_n^{(n-1)} \subseteq \dots \subseteq \Psi_n^{(1)}.$$

- (a) Suppose C has rank at most k. Then $C \in \Psi_n^{(k)}$ if and only if C is unitarily similar to a block shift matrix as well as unitarily similar to $\mu \overline{C}$ for some $\mu \in \mathbf{T}$. Consequently, $\Psi_n^{(n)}$ consists of those $C \in M_n$ such that C is unitarily similar to a block shift matrix as well as to $\mu \overline{C}$ for some $\mu \in \mathbf{T}$.
- (b) Assume that $8k \leq n$, and suppose C is unitarily similar to $(C_1 \otimes I_{4k}) \oplus C_2$ with $C_1 = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$ such that $W(C_2) \subseteq W(C_1)$. Then $C \in \Psi_n^{(k)}$.

Proof. The inclusion relation is clear. For statement (a), the "if' part follows from Lemmas 3.1 and 4.1. For the converse, the fact that C is unitarily similar to $\mu \overline{C}$ for some $\mu \in \mathbf{T}$ follows from Proposition 5.3 (a). Now, for any $\nu \in \mathbf{T}$,

$$\overline{\nu}W_C(C^*) = W_C(\overline{\nu}C^*) = W_C(\nu C^t) = \nu W_C(C^t).$$

Thus, $W_C(C^*) = \nu^2 W_C(C^t)$ for all $\nu \in \mathbf{T}$. Since $W_C(C^*)$ is star-shaped (see [3]), it is a circular disk centered at the origin. By Lemma 4.1, C is unitarily similar to a block shift matrix.

The proof of (b) is contained in that of Proposition 5.3 (b).

Remark 5.5 Note that by the proof of Proposition 5.4, if $W_C(A) = W_C(\overline{A})$ for all $A \in M_n^{(k)}$ then $W_C(A)$ is a circular disk for all $A \in M_n^{(k)}$.

Remark 5.6 A characterization of matrices in the set $\Psi_n^{(k)}$ seems to be even more elusive than that of $\psi_n^{(k)}$. Even for $\Psi_n^{(1)}$ the situation is not as nice as for $\psi_n^{(1)} = M_n$. In fact, if $A \in M_n$ has rank 1, then A is unitarily similar to $||A||(qE_{1,1} + \sqrt{1 - |q|^2}E_{1,2})$, for some $q \in \mathbb{C}$, $|q| \leq 1$, and therefore $W_C(A) = ||A||W_q(C)$, where

$$W_q(C) = \{qx^*Cx + \sqrt{1 - |q|^2}x^*Cy : x, y \in \mathbb{C}^n, x^*x = 1 = y^*y, x^*y = 0\}$$

is the q-numerical range of C; see [18, 21, 13]. Moreover, it is known that

$$W_q(C) = \bigcup_{z \in W(C)} R(z),$$

where

$$R(z) = \left\{ qz + \sqrt{1 - |q|^2} \mu \in \mathbb{C} : |\mu|^2 + |z|^2 \le \|Ch\|^2$$

for some $x \in \mathbb{C}^n$ with $(x^*x, x^*Cx) = (1, z) \right\}.$

Here ||Cx|| is the Euclidean length of the vector Cx. By the above discussion and Remark 5.5 we see that $C \in \Psi_n^{(1)}$ if the outer boundary of the set

$$S_h = \{x^*Cx : x \in \mathbb{C}^n, x^*x = 1, \|Cx\| = h\}$$

is a circle or empty for any $h \ge 0$.

For example, if C is unitarily similar to a block shift matrix, or if C is unitarily similar to a matrix of the form

$$\begin{pmatrix} 0 & 2\\ 0 & 0 \end{pmatrix} \oplus B, \qquad w(B) \le 1,$$

then C satisfies the above condition on the outer boundary, i.e., $C \in \Psi_n^{(1)}$.

We conclude the paper with an open problem.

Problem 5.7 Obtain intrinsic characterizations of the classes $\psi_n^{(k)}$ and $\Psi_n^{(k)}$ in the general situation.

References

- T. Ando, Structure of operators with numerical radius one, Acta Sci. Math. (Szeged) 34 (1973), 11-15.
- [2] W. S. Cheung, S. Fallat, and C. K. Li, Multiplicative preservers on semigroups of matrices, Linear Algebra Appl. 355 (2002), 173-186.
- [3] W. S. Cheung and N. K. Tsing, The C-numerical range of matrices is star-shaped, Linear and Multilinear Algebra 41 (1996), 245–250.
- [4] M. D. Choi and C. K. Li, Numerical ranges and dilations, Linear and Multilinear Algebra 47 (2000), 35-48.
- [5] M. Goldberg and E. G. Straus, Elementary inclusion relations for generalized numerical ranges, Linear Algebra Appl. 18 (1977), 1 - 24.
- [6] M. Goldberg and E. G. Straus, Some properties of C-numerical radii, Linear Algebra Appl. 24 (1979), 113 - 131.
- [7] R. M. Guralnick, Invertible preservers and algebraic groups. II. Preservers of similarity invariants and overgroups of $PSL_n(F)$, Linear and Multilinear Algebra 43 (1997), 221–255.

- [8] R. M. Guralnick and C. K. Li, Invertible preservers and algebraic groups. III. Preservers of unitary similarity (congruence) invariants and overgroups of some unitary subgroups, Linear and Multilinear Algebra 43 (1997), 257–282.
- [9] R. M. Guralnick, C. K. Li, and L. Rodman, Multiplicative maps on invertible matrices that preserve matricial properties, submitted for publication.
- [10] S. H. Hochwald, Multiplicative maps on matrices that preserve spectrum, Linear Algebra Appl. 212/213 (1994) 339-351.
- [11] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985.
- [12] C. K. Li, C-Numerical ranges and C-numerical radii, Linear and Multilinear Algebra 37 (1994), 51-82.
- [13] C. K. Li, Some convexity theorems for the generalized numerical ranges, Linear and Multilinear Algebra 40 (1996), 235-240.
- [14] C. K. Li, P. P. Mehta, and L. Rodman, A generalized numerical range: The range of a constrained sesquilinear form, Linear and Multilinear Algebra 37 (1994), 25-49.
- [15] C. K. Li and N. K. Tsing, Duality between some linear preservers problems: The invariance of the *C*-numerical range, the *C*-numerical radius and certain matrix sets, Linear and Multilinear Algebra 23 (1988), 353-362.
- [16] C. K. Li and N. K. Tsing, Norms that are invariant under unitary similarities and the *C*-numerical radii, Linear and Multilinear Algebra 24 (1989), 209-222.
- [17] C. K. Li and N. K. Tsing, Matrices with circular symmetry on their unitary orbits and C-numerical ranges, Proc. Amer. Math. Soc. 111 (1991), 19-28.
- [18] M. Marcus and P. Andresen, Constrained extrema of bilinear functionals, Monatsh. Math. 84 (1977), 219-235.
- [19] H. Nakazato, The C-numerical range of a 2 × 2 matrix, Sci. Rep. Hirosaki Univ. 41 (1994), 197-206.
- [20] S. Pierce et al., A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992) 1-129.
- [21] N. K. Tsing, The constrained bilinear form and the C-numerical range, Linear Algebra Appl. 56 (1984), 195-206.
- [22] P. B. Yale, Automorphisms of the complex numbers, Math. Magazine 39 (1966), 135–141.