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Abstract

Multiplicative preservers of C-numerical ranges and radii on certain groups and semi-
groups of complex n X n matrices are characterized. The general and special linear groups
are considered, as well as the semigroups of matrices having ranks not exceeding k, with &
fixed in advance. For a fixed C| it turns out that typically the multiplicative preservers of
the C-numerical range (or radius) have the form A — f(det A)UAU* or, for certain matrices
C, the form A — f(det A)\UAU*, for some unitary U and multiplicative map f from the
group of nonzero complex numbers to the unit circle.
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1 Introduction

Let M, be the algebra of complex n x n matrices. Given a nonzero C' € M,,, the C-numerical
range and the C-numerical radius of A € M,, are defined by

We(A) = {tr (CUAU") : U unitary }

and

we(A) = max{|z| : z € We(A)}.
The concepts of C-numerical range and C-numerical radius were introduced by Goldberg
and Strauss; see [5] and [6]. When C'is a rank one Hermitian orthogonal projection, W (A)
and we(A) reduce to the classical numerical range W(A) = {a*Az : ¢ € C", 2%z = 1} and
the classical numerical radius w(A) = max{|z| : z € W(A)}, which are useful concepts in

studying matrices and operators; see, for example, [11]. The C-numerical range and the C-
numerical radius are also very useful in studying matrices and operators, and have attracted
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the attention of many researchers; see [12] and its references. For example, it was proved
in [16] that C-numerical radii can be viewed as the building blocks of unitary similarity
invariant norms || - || on M,, i.e., norms on M, satisfying ||A| = |[U*AU|| for any A € M,
and unitary U, in the sense that for any unitary similarity invariant norm || - || on M, there
1s a compact subset S C M,, such that

|A|| = max{wc(A) : C € S}.

An interesting topic in the study of C-numerical range and C-numerical radius is charac-
terizing linear maps ¢ : M, — M, such that F(¢(A)) = F(A) for all A € M, where
F(A) = we(A) or We(A); see [12, 14, 15, 20]. Such maps are called linear preservers of
F(A). If we(A) is a norm, then linear preservers of we(A) are just linear isometries of
we(A). Furthermore, in most of the cases linear preservers of W¢(A) have the form

A U"AU, U is a fixed unitary matrix,

which is also multiplicative, i.e., p(AB) = ¢(A)p(B) for all A, B € M,.

Recently, there has been considerable interest also in studying multiplicative maps on
groups and semigroups of matrices that leave invariant some special functions, sets, and
relations, see, for example, [10, 2, 7, 8, 9]. The approach undertaken in [9] is based on the
classical results of Borel - Tits on automorphisms of linear groups.

In this paper, we characterize multiplicative preservers of C'-numerical ranges and radii
on the following semigroups of M,,:

SL,: the group of matrices in M,, with determinant 1,
GL,: the group of invertible matrices in M,
M(®): the semigroup of matrices in M, with rank at most k.

In more detail, for a fixed C' € M,,, we characterize those multiplicative maps ¢ : H — M,
where H is one of SL,,, GL,, or M¥)| that have the property

we(p(A)) = we(A) for every A € H, (1.1)

or the property
We(p(A)) = We(A) for every A € H. (1.2)

Multiplicative maps with the property (1.1), resp. (1.2), will be called multiplicative pre-
servers of we(A), resp. of We(A).

The following notation will be used.

C the complex field.

C* = €\ {0} the multiplicative group of nonzero complex numbers.
T the unit circle in C.

o0 :C — C a complex field embedding.

{E11,FE19,...,E,,} the standard basis for M,,.

I, (or I with m understood) the m x m identity matrix.
0., (or 0 with m understood) the m x m zero matrix.
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w(A) the numerical radius of A € M,,.
tr A the trace of A € M,,.
At the transpose of A.

7(A) = (A7), for an invertible matrix A.

A the entrywise complex conjugate of a matrix A.

A* = (A)L.
$1(X) > s9(X) > -+ > 5,(X) the singular values of a matrix X € M,.
diag (ay, . ..,a,) diagonal matrix with the diagonal entries ay, ..., a, (in that order).

If C=ul, p#0, then We(A) = {utr (A)}. So, the problem of describing the multiplicative

preservers of wa(A) or of We(A) reduces to the multiplicative preservers of [tr A| or of
tr A which was treated in [9] for the cases of SL, and of GL, and followed readily from

Proposition 3.7 in [2] for the case of M. For tr A, the multiplicative preservers have the
form:

(i) A— SAS~! for some S € SL,.
For [tr A|, the multiplicative preservers have form (i) or the following forms:
(i) A — SAS™
(iii) A — f(det(A))SAS™t or A f(det(A))SAS™! for preservers on GL,,
for some S € SL, and multiplicative map f: C* — T.

Thus, in the sequel we always implicitly assume that C' is not a scalar matriz. Also, we
will always assume that n > 2 to avoid trivial considerations.

2 Preliminaries
The following easily verified property of the C-numerical ranges will be used:
Wg(A) = Wc(Z), AeM,, (21)

and therefore

We need also Proposition 2.1 and Lemma 2.3 below from [9], and a well-known (and
easily proved) Lemma 2.2.

Proposition 2.1 Let ¢ be a multiplicative map on SL,, or GL,. Then either ¢(SL,) is a
singleton or there exist a field embedding o : C — C, a matriz S € SL,, and a multiplicative
map [ : C* — C* such that ¢ has the form

A f(det(A)Sa(A)S™  or A f(det(A))ST(o(A))S™ .

Lemma 2.2 Suppose k is a positive integer, and f : C* — C* is a group homomorphism
such that f(u)* =1 for all u € C*. Then f(u) =1 for all p € C*.
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Lemma 2.3 Let S € SL,. If SE;;S™" has singular values 1,0,...,0 for alli,j € {1,...,n}
with i # j, then S is unitary.

The following characterization of the continuous complex field embeddings is useful; see,
e.g., [22].

Lemma 2.4 The following statements for a complex field embedding o : C — C are equiva-
lent:

(a) either o(z) = z for every z € C or o(z) =z for every z € C.
(b) |o(2)| = || for every z € C.
(¢) o(z) > 0 for every positive z.

(d) o is continuous.

3 (C-numerical radius preservers on SL, and GL,

We need the following lemma to characterize multiplicative preservers of C-numerical radius.

Lemma 3.1 Let C' € M,,. Then we(A) = we(A) for all A € M, if and only if C' is unitarily
similar to uC for some p € T.

Proof. Since
wa(C) = we(A) = we(4) = wz(A) = wa(C) for all A € M,
by Theorem 2.1 in [16], we see that C' is in the convex hull of the set
{pu*CU : peT, U'U = 1,}. (3.1)

Thus, C is a convex combination of a finite subset of the set (3.1). Since pU*CU (for |u| =1
and unitary U) and C have the same Frobenius norm, and the Frobenius norm is strictly
convex, we must have that C = pU*CU for some p € T and unitary U. |

Theorem 3.2 Let H = SL,, or GL,, and let C € M, be a fixed non-scalar matriz. A
multiplicative map ¢ : H — M, satisfies we(p(A)) = we(A) for all A € H if and only
if there is a unitary U € SL, and a multiplicative map [ : C* — T such that one of the
following conditions holds true:

(a) ¢ has the form A f(det(A))UAU".

(b) There exists p € T such that C and pC are unitarily similar, and ¢ has the form
A f(det(A))UAU*.



Note that f(det(A)) =1 for every A € SL,,.

Proof. The “if” part can be verified with the help of Lemma 3.1. We focus on the converse.
Suppose tr (C) # 0. Then we(A) is a unitary similarity invariant norm; see [6], also [16].
By [9, Theorem 3.8], ¢ has the asserted form, and the form of ¢ in (b) holds if and only if

we(A) = we(A) for all A € H. Since every A € GL, is a scalar multiple of B € SL,, and
GL, is dense in M, by continuity of the norm function we we see that if we(A) = we(A)

for all A € H, then wg(A) = we(A) for all A € M,,. By Lemma 3.1, we see that C is
unitarily similar to puC' for some u € T.
Now, suppose that tr (C') = 0. Since C' is not a scalar matrix,

Y= wc(ELg) = wc<Ei7j) > 0, 7 7& j
For any A unitarily similar to I + vE,;, we have:

we(A) = max{|tr (CVAV™)|:V is unitary}
= max{|tr (V*CV (I +vE,)|:V is unitary}
= Ivlr (3.2)

Suppose H = SL,,. Clearly, ¢ is non-trivial on H, and hence by Proposition 2.1 ¢ has the
standard form

A So(A)S™ or A St(o(A))S™!

for some S € SL,. Suppose S is not unitary. By Lemma 2.3, there is E;; with i # j
such that SFE;;S™! has trace zero and singular values r,0,...,0 with » # 1. But then for
A =1+ E,;, we have by (3.2):

wo(A) =1+v# 1+ 71y =we(d(A)),

which is a contradiction. Hence, S is unitary. Furthermore, for any z € C,if A, =1+ 2E;,
then again by (3.2)
Yzl = we(Az) = we(¢(A)) = ~lo(2)].
So, by Lemma 2.4 ¢ has the form z +— z or z — Z.
For n > 2 we show that ¢ cannot have the form A — S7(c(A))S™!. (For n = 2 the form
A — St(0(A))S™! is essentially the same as the form A — SAS™!.) Note that there is a
unitary matrix V such that V*CV = (v,;) with |y1| = w(C). If

A = diag (m?*,1/m,1/m,1,...,1)

for sufficiently large m, then

we(A) > [t (VOVA) = m? | Z sl > w(C)(m? —n). (3.3)



On the other hand, if a unitary U having columns uy, ..., u, is such that
we(ST(A)S™Y) = |tr (U*CUT(A))|,

then

IA

1
we(ST(A)S™) W|u“{0u1| + m|u;Cug| + m|uzCus| + |uzCuy| + - - - + |u) Cuy |

IA

1
w(C’)(W +2m+n—3),
which is smaller than the right hand side of (3.3). So, ¢ has the asserted form

A—UAU* or A UAU* (3.4)

for some unitary matrix U. If the latter holds, then we(A) = we(A) for all A € SL,,. By

continuity and homogeneity, we(A) = we(A) = wg(A) for all A € M,,. By Lemma 3.1, we

see that C' and pC are unitarily similar for some p € T.
Now, suppose H = GL,,. Then by Proposition 2.1 ¢ has the form

A f(det(A)UAU*  or A f(det(A)UAU, (3.5)

where the latter case holds when wo(A) = we(A) for all A € M, and where f: C* — C*
is a multiplicative map. Then for any z € C*\ {—1} and A, = I + zE 1,

we(A) = max{|tr (CU*AU)| : U is unitary}
= max{|ztr (CU*E,,U)| : U is unitary}
= w(zC).

Similarly, we(¢(A)) = | f(1 + 2)|w(zC). Thus, |f(u)| =1 for all u € C”. |

4 (C-numerical range preservers on SL, and GL,

We need some additional facts to state and prove the results on multiplicative preservers
of C-numerical range. First, recall that a block matrix (Xj;;) is in block shift form if all

the diagonal blocks are square matrices (may be of different sizes) and X;; = 0 whenever
J # i+ 1. This is a generalization of the weighted shift matrix where all X;; are one by one.
We have the following result; see [17].

Lemma 4.1 The following conditions are equivalent for a non-scalar matriz C':

(a) C is unitarily similar to a matriz in block shift form.

(b) We(A) is a circular disk centered at the origin for all A € M,.
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(¢) We(C*) is a circular disk centered at the origin.

Theorem 4.2 Let H = SL, or GL,, and let C' € M,, be a non-scalar matriz. A multiplica-
tive map ¢ : H — M, satisfies We(p(A)) = We(A) for all A € H if and only if there is a
unitary U € SL,, and a multiplicative map f : C* — T such that one of the following holds
true.

(a) ¢ has the form A — UAU*.

(b) C is unitarily similar to a matriz in block shift form and ¢ has the form

A f(det(A))UAU™.

(c) C is unitarily similar to a matriz in block shift form, as well as unitarily similar to uC
for some yu € T, and ¢ has the form A — f(det(A))UAU*.

Proof. The “if” part can be verified readily with the help of Lemmas 3.1 and 4.1. We
consider the converse.

Suppose H = SL,. Note that the Wx(A) preservers must also be wg(A) preservers.
Thus, ¢ has the form described in Theorem 3.2. Suppose ¢ has the form

A — UAU*, U unitary,

and C' is unitarily similar to uC for some p € T. Now, for any A € SL,, then

Wo(A) = W(g(A)) = We(A) = uWa(A) = pWo(A). (4.1)

We claim that C' is unitarily similar to a matrix in block shift form. First, we show that
tr C' = 0. Note for &£ = ¢?™/" €¢I € SL,, and

{&tr C} = We(8l) = Wo(El) = {Etr C}

Thus, &trC = trC. If n > 2, then tr C = 0. If n = 2, then (see [19] and [13, Theorem 1])
We(A) is an elliptical disk centered at (tr C')(tr A)/2. If tr C' # 0, one can choose

2
(o=
A_(l ) )eSL2

such that utr C' # mtr C. Thus, Wo(A) # We(A), which is a contradiction.
Now, trC = 0. Suppose A € GL, with eigenvalues ay,...,q,. For any v € C which
does not coincide with any of —a;, we have

A+I

X = 77
[T +9)]

€ SL,.



Thus, using the property that tr C' = 0 and (4.1), we have

—1/n

—-1/n
We(A) = [H(%’""Y) We(A+A1)

J

{H(%’ +7)

J

—1/n

= We(X) = WeX) = |[](e; +7) We(A).

J

—1/n

Letting 6 = ((a1 +7) ... (an + 7)) ", it now follows that

(6/8) We(A) = We(A),

It is easy to see that 6/ can be made equal to any prescribed number in T, for a suitable
choice of . Since W (A) is start-shaped (see [3]), it follows that W (A) is a circular disk
centered at the origin. Now, for any A € M,,, there is A € C such that A+ A\ € GL,,, and

We(A) = We(A+ M)
is a circular disk centered at origin. By Lemma 4.1, C' is unitarily similar to a matrix in
block shift form.
Next, suppose H = GL,,. Since ¢ preserves wa(A), by Theorem 3.2 ¢ has the form

A f(det(A)UAU* or A f(det(A)UAU* (4.2)
for some multiplicative map f : C* — T, and some unitary U. If ¢ has the second form in

(4.2), then by restricting ¢ to SL,, and applying the result on SL,, we already proved, we

conclude that C' is unitarily similar to a block shift form, as well as to uC for some p € T.

It remains to show that if ¢ has the form A — f(det(A))UAU*, where f is non-trivial,
then C' is unitarily similar to a block shift form. By Lemma 2.2, it is easy to see that the
range of f is dense in T. For every z € C* and every A € GL,,, we have:

2We(A) = We(zA) = We(p(zA)) = f(2"(det A))We(zA) = zf(2"(det A))We(A).

Thus, f(z"(det A))Wc(A) = We(A), and by the denseness of the range of f we conclude
that
vWe(A) = We(A) for every v € T.

Since W¢(A) is start-shaped (see [3]), it follows that W (A) is a circular disk centered at
the origin. Now, {vtrC'} = vWe(I) = We(I) = {trC} for every v € T; so, trC = 0.
Furthermore, for any A € M, there is A € C such that A+ A\l € GL,; then

Weo(A) = Wo(A + M)

is a circular disk centered at origin. By Lemma 4.1, C' is unitarily similar to a matrix in
block shift form. n

In connection with Theorem 4.2 the following example is instructive.
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Example 4.3 We construct here a family of examples of block shift matrices A such that
A is not unitarily similar to yA, for any pu € T; in particular, A not unitarily similar to any
real matrix.

We start with general observations:

1. Every diagonalizable matriz with positive eigenvalues is a product of two positive definite
matrices.

This fact is well-known; for a proof note that if X = S='DS, where S is invertible and D
is diagonal with positive numbers on the diagonal, then X = S~1(S71)*. S*DS is a product
of two positive definite matrices.

A word w(X,Y), where X and Y are n X n matrices, is any matrix of the form
w(X,Y) =Xy xeyr. .. xoryb,
where a;, (; are nonnegative integers. The integer >7_; (a; — ;) will be called the index of
w(X,Y).

2. If C is unitarily similar to uC, for some u € T, then tr (w(C*,C)) is real for every word
w(C*, C) with zero index.
The proof is elementary: Assume C' = U(uC)U* for some unitary U and p € T. Then

w(C*, C) = Uw(aC", uC)U* = U(w(uC", 7C))U" = U(w(uC*, 7C))U",

which is equal to U(w(C*, C))U ", assuming that the index of w(C*,C) is zero. Thus,
trw(C*, C) = trw(C*, ), and 2. follows.

To construct the matrix A as required, we let A;, Ay, A3 be 2x 2 positive definite matrices
such that
a b
AjAy =
1 2 < 0 C> )

where a and ¢ are distinct positive numbers and b # 0 is real, and the off-diagonal entries of
Asz are non-real (the existence of A; and A, with the required properties follows from Fact

1.). Then
tr (AlAQAg) ¢ R. (43)

Next, let Ay 9, Ao and Az 4 be such that

* * * *
A2,3A2,3 = A17 A172A1,2 = A2> A2,3A3,4A3,4A273 - A3a

and finally
0 A, 0 0
10 0 Az O
A= 0 O 0 Ass
0 0 0 0



A computation shows that
tr (A(A*)2A3(A*)?) = tr (A, Az A3),

and by Fact 2. and (4.3), A cannot be unitarily similar to uA for any u € T.

5 Results on M¥)

We start with a preliminary result. Matrices Xy,...,X,, € M, are said to be mutually
orthogonal rank one idempotents if X? = X; and X;X; = 0 for any i, € {1,...,n} with
i # j. We have the following fact from [2, Propositions 2.2 and 2.3].

Proposition 5.1 Let ¢ : Mr(lk) — M, be a multiplicative map. Then there exist mutually

orthogonal rank one idempotents Xy, ..., X, such that ¢(X;) # ¢(0) fori=1,...,n if and
only if there exist S € SL, and a field embedding o : C — C such that ¢ has the form

(aij) — S(o(ay))S™.

Our main result on multiplicative preservers of the C-numerical ranges and radii on M,(Lk)
reads as follows.

Theorem 5.2 Let C' € M, be a non-scalar matriz, and let Fo(A) = we(A) or We(A). A
multiplicative map ¢ : M®) — M, satisfies Fo(¢(A)) = Fo(A) for all A € M®) if and only
if there is a unitary U € SL, such that one of the following conditions holds true:

(a) ¢ has the form A— UAU*.

(b) Fo(A) = Fo(A) for all A€ M® | and ¢ has the form A UAU*.

Proof. The “if” part can be verified readily. We focus on the converse.
For i = 1,...,n, we have we(E;;) = w(C) # 0 = we(0). Thus, ¢(E;;) # ¢(0) for
1 =1,...,n. By Proposition 5.1 ¢ has the form
P(A) = So(A)S™H, Ae MW,

where S € SL,. Suppose S is not unitary. By Lemma 2.3, there is F; ; with ¢ # j such that
SE; ;S™! is unitarily similar to rFE; » with some positive real number r # 1. Since C' is not
a scalar matrix, we have

0 < we(Eiy) # rwe(Erp) = we(d(Eiy)),
which is a contradiction. Hence, S is unitary. Furthermore, for any z € C,
zlwe (B ) = we(2E12) = we(o(2)Erz) = |o(2)|we(Er).
So, by Lemma 2.4 ¢ has the form 2z — z or z +— z. The result follows. |

Theorem 5.2 is not entirely satisfactory as we do not have a complete characterization

of the sets of matrices C such that Fo(A) = Fo(A) for all A € M®| for various k. Some
information on these sets is contained in the next proposition.
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Proposition 5.3 Let 1)¥) be the set of matrices C € M, such that

we(A) = we(A)  forall Ae MW,
Then

n — n —

w(n) C ¢(n_1) C...C @/)7(11) = M,,. (5.1)

(a) Suppose C has rank at most k. Then C € ¥¥) if and only if C is unitarily similar to

pC for some p € T. Consequently, ™) consists of those C € M,, such that C and uC
are unitarily similar for some p € T.

(b) Assume 8k < n, and suppose C is unitarily similar to (Cy @ Ly) & Cy with C; =

(8 8) such that W (Cy) C W(C,). Then C € %),

Part (b) illustrates that a complete characterization of the set ¢*) (if k& < n) may be not
transparent.

Proof. The inclusions in (5.1) are trivial. To prove the equality ¥!) = M,,, fix C € M,,,

and let A = zy* be a rank one matrix, and let U be a unitary matrix. Define p = (y*7)/(y*z)
if y*z # 0, and pu = 1 otherwise. Then

y*T =y (px) = (Uy)"(U(px)),

and therefore there exists a unitary V' such that VZ = pUx and Vy = Uy. Thus,

tr (CUAU*) = tr (CUzy*U*) = utr (CVZy*V™*) = tr (CVAV*),

and since U was an arbitrary unitary matrix, we have we(A) < we(A). The equality
we(A) = we(A) follows by reversing the roles of A and A, and using (2.2) we obtain
1/)7(11) = M,.

For statement (a), the “if” part follows from Lemma 3.1. Conversely, suppose C has

rank at most k. If C' € ¥, then we(C*) = we(C?). Denote by || X |z = (tr XX*)Y/2 the
Frobenius norm on M,,. Then there exists a unitary U such that

tr (CC*) < we(C*) = we(C) = [tr CUCU*| < ||C||#|UCTU* || » = tr (CC).

Using the equality case of Cauchy-Schwartz inequality, we see that UC'U* = uC* for some
p € T. Hence C and uC is unitarily similar. The second statement in (a) is clear.
Next, we turn to statement (b). Assume that C' = (C} ® Iy) @ Cy. For simplicity, we

8 g) Suppose A € M¥). Up to unitary similarity, we may

assume that A = Ay @ 0,,_ok, where A; is 2k x 2k. We claim that Wo(A) = We,(Ay) and
We(A) = We, (Ag), where Cy = Cy @ Iy, and Ag = Ay @ 0. Since Cp is in block shift form,
it will then follow by Lemma 4.1 that

assume that a = 2, i.e., C7 = (

We(A) = We,(Ao) = We, (Ag) = We(A),
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and therefore also we(A) = we(A).
To prove our claim, we first establish Wg, (A4g) C We(A). If V € Mg, and 2z =

tr (VCV*Ag) € WeCo(Ay), then for V =V @ I, _g;, we have z = tr (VCV*A) € We(A).
Next, we consider the reverse inclusion. Let V' € M,, be unitary, and let

Cll 012
VOV = ( )
021 022
with C;; € My, so that
tr (CVAV*) = tr (V*OV A) = tr (CpAy). (5.2)

Now, W(Cy;) € W(C) = W(C4). By a result in [1] (see also [4]), C1; = X*(C, ® I,)X for
some positive integer » > 0 and some 2r X 2k matrix X such that X*X = [y.
If r < 4k, there is a unitary matrix V' € Mg, such that the first 2k rows of V* have the

form [X*|02k,8k—2r]~ Let éo = (01 X ]r) D (Cl X ]4k—r)~ Then
tr (CHAl) =tr (V*CYOVAO) € WC'O(AO) = WCO (Ao),

where the last equality holds because Cy and Cj are unitarily similar.

Suppose r > 4k. Partition X* = [X|X;], where each X} is 2k x r. Let U € M, be a
unitary matrix such that the linear span of the first 4k rows of U* contains all the rows of
X7 and those of X;. Then XU = [Y;*|0], i = 1,2, where Y;* is 2k x 4k. Thus,

* * 07" 2]7’ Xl
[X1|X2] (Or O'r' > [X2:|
. s (U 0 U* 0 0, 21, U 0 U* 0 X4
= [X”X?](o U)(o U*)(or or)<o U>(o U*)[XJ
Y
0, 21r> 0

0, 0./ | Y2
0

= [Yl'm(mk ARAE

Cll

= [yi01v o) (

Y;
Ys
equal [Y{*|Y5]. Then by (5.2)

Note that [Y{*|Y5] [ } = Iy Suppose R € Mgy is unitary such that the first 2k rows of R*
tr (V*CVA) =tr (C14;) = tr (R*CoRAp) € We,(Ap).

Hence We(A) C We, (Aop).
Combining the above arguments, we see that W, (Ag) = We(A). Similarly, one can
prove that W, (Ag) = We(A). Our claim is proved and the result follows. |
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Proposition 5.4 Let U®) be the set of matrices C € M,, such that

Weo(A) = We(A)  forall Ae M®,

Then
g cpnb oo cpl),

(a) Suppose C has rank at most k. Then C € WX if and only if C is unitarily similar to
a block shift matriz as well as unitarily similar to pC for some u € T. Consequently,
U consists of those C € M, such that C is unitarily similar to a block shift matriz
as well as to pC for some p € T.

(b) Assume that 8k < n, and suppose C' is unitarily similar to (Cy @ Iy) & Cy with Cy =

(8 g) such that W (Cy) C W(C,). Then C € W),

Proof. The inclusion relation is clear. For statement (a), the “if” part follows from Lemmas

3.1 and 4.1. For the converse, the fact that C is unitarily similar to uC for some p € T
follows from Proposition 5.3 (a). Now, for any v € T,

?Wc(c*) = WC(VC*) = Wc(VCt) = VWC(Ct).
Thus, We(C*) = 2We(C?) for all v € T. Since We(C*) is star-shaped (see [3]), it is a
circular disk centered at the origin. By Lemma 4.1, ' is unitarily similar to a block shift

matrix.
The proof of (b) is contained in that of Proposition 5.3 (b). |

Remark 5.5 Note that by the proof of Proposition 5.4, if W (A) = We(A) for all A € M*)
then W (A) is a circular disk for all A € M.

Remark 5.6 A characterization of matrices in the set ¥*) seems to be even more elusive

than that of ). Even for W(1) the situation is not as nice as for 1)) = M,. In fact, if
A € M, has rank 1, then A is unitarily similar to ||Al|(¢E11++/1 — |¢|*E} 2), for some g € C,
l¢| <1, and therefore We(A) = || A||W,(C), where

W,(C) ={qz"Cx + /1 —|¢|?2"Cy : x,y € C",z"x =1 = y'y,x"y = 0}
is the g-numerical range of C; see [18, 21, 13]. Moreover, it is known that
Wq(c) = UzeW(C)R(z)7

where
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R) = {az + 1= laPu e € uf 412 < ChJ?
for some x € C" with (z*z,2*Cx) = (1, z)}

Here ||Cz| is the Euclidean length of the vector Cx. By the above discussion and Remark
5.5 we see that C' € W if the outer boundary of the set

Sp={2"Cx : 2 €C", z'z=1, ||Cz| =h}

s a circle or empty for any h > 0.
For example, if C' is unitarily similar to a block shift matrix, or if C' is unitarily similar
to a matrix of the form

0 2

<
(y o)eB  wBm<1,
then C satisfies the above condition on the outer boundary, i.e., C' € ¥,

We conclude the paper with an open problem.

Problem 5.7 Obtain intrinsic characterizations of the classes wff) and \Ilgf) in the general
situation.
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