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Abstract
Multiplicative preservers of C-numerical ranges and radii on certain groups and semi-

groups of complex n × n matrices are characterized. The general and special linear groups
are considered, as well as the semigroups of matrices having ranks not exceeding k, with k
fixed in advance. For a fixed C, it turns out that typically the multiplicative preservers of
the C-numerical range (or radius) have the form A 7→ f(detA)UAU∗ or, for certain matrices

C, the form A 7→ f(detA)UAU∗, for some unitary U and multiplicative map f from the
group of nonzero complex numbers to the unit circle.
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1 Introduction

Let Mn be the algebra of complex n×n matrices. Given a nonzero C ∈Mn, the C-numerical
range and the C-numerical radius of A ∈Mn are defined by

WC(A) = {tr (CUAU∗) : U unitary }

and
wC(A) = max{|z| : z ∈ WC(A)}.

The concepts of C-numerical range and C-numerical radius were introduced by Goldberg
and Strauss; see [5] and [6]. When C is a rank one Hermitian orthogonal projection, WC(A)

and wC(A) reduce to the classical numerical range W (A) = {x∗Ax : x ∈ Cn, x∗x = 1} and

the classical numerical radius w(A) = max{|z| : z ∈ W (A)}, which are useful concepts in

studying matrices and operators; see, for example, [11]. The C-numerical range and the C-
numerical radius are also very useful in studying matrices and operators, and have attracted
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the attention of many researchers; see [12] and its references. For example, it was proved

in [16] that C-numerical radii can be viewed as the building blocks of unitary similarity

invariant norms ‖ · ‖ on Mn, i.e., norms on Mn satisfying ‖A‖ = ‖U∗AU‖ for any A ∈ Mn

and unitary U , in the sense that for any unitary similarity invariant norm ‖ · ‖ on Mn there
is a compact subset S ⊆Mn such that

‖A‖ = max{wC(A) : C ∈ S}.

An interesting topic in the study of C-numerical range and C-numerical radius is charac-
terizing linear maps φ : Mn → Mn such that F (φ(A)) = F (A) for all A ∈ Mn, where

F (A) = wC(A) or WC(A); see [12, 14, 15, 20]. Such maps are called linear preservers of

F (A). If wC(A) is a norm, then linear preservers of wC(A) are just linear isometries of

wC(A). Furthermore, in most of the cases linear preservers of WC(A) have the form

A 7→ U∗AU, U is a fixed unitary matrix,

which is also multiplicative, i.e., φ(AB) = φ(A)φ(B) for all A,B ∈Mn.
Recently, there has been considerable interest also in studying multiplicative maps on

groups and semigroups of matrices that leave invariant some special functions, sets, and
relations, see, for example, [10, 2, 7, 8, 9]. The approach undertaken in [9] is based on the
classical results of Borel - Tits on automorphisms of linear groups.

In this paper, we characterize multiplicative preservers of C-numerical ranges and radii
on the following semigroups of Mn:

SLn: the group of matrices in Mn with determinant 1,
GLn: the group of invertible matrices in Mn,

M (k)
n : the semigroup of matrices in Mn with rank at most k.

In more detail, for a fixed C ∈Mn, we characterize those multiplicative maps φ : H −→ Mn,

where H is one of SLn, GLn, or M (k)
n , that have the property

wC(φ(A)) = wC(A) for every A ∈ H, (1.1)

or the property
WC(φ(A)) = WC(A) for every A ∈ H. (1.2)

Multiplicative maps with the property (1.1), resp. (1.2), will be called multiplicative pre-

servers of wC(A), resp. of WC(A).

The following notation will be used.

C the complex field.
C∗ = C \ {0} the multiplicative group of nonzero complex numbers.
T the unit circle in C.
σ : C −→ C a complex field embedding.
{E1,1, E1,2, . . . , En,n} the standard basis for Mn.

Im (or I with m understood) the m×m identity matrix.

0m (or 0 with m understood) the m×m zero matrix.
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w(A) the numerical radius of A ∈Mn.
trA the trace of A ∈Mn.
At the transpose of A.

τ(A) = (A−1)t, for an invertible matrix A.

A the entrywise complex conjugate of a matrix A.

A∗ = (A)t.

s1(X) ≥ s2(X) ≥ · · · ≥ sn(X) the singular values of a matrix X ∈Mn.

diag (a1, . . . , an) diagonal matrix with the diagonal entries a1, . . . , an (in that order).

If C = µI, µ 6= 0, then WC(A) = {µtr (A)}. So, the problem of describing the multiplicative

preservers of wC(A) or of WC(A) reduces to the multiplicative preservers of |trA| or of

trA which was treated in [9] for the cases of SLn and of GLn and followed readily from

Proposition 3.7 in [2] for the case of M (k)
n . For trA, the multiplicative preservers have the

form:

(i) A 7→ SAS−1 for some S ∈ SLn.

For |trA|, the multiplicative preservers have form (i) or the following forms:

(ii) A 7→ SAS−1,

(iii) A 7→ f(det(A))SAS−1 or A 7→ f(det(A))SAS−1 for preservers on GLn,

for some S ∈ SLn and multiplicative map f : C∗ → T.

Thus, in the sequel we always implicitly assume that C is not a scalar matrix. Also, we
will always assume that n ≥ 2 to avoid trivial considerations.

2 Preliminaries

The following easily verified property of the C-numerical ranges will be used:

WC(A) = WC(A), A ∈Mn, (2.1)

and therefore
wC(A) = wC(A), A ∈Mn. (2.2)

We need also Proposition 2.1 and Lemma 2.3 below from [9], and a well-known (and

easily proved) Lemma 2.2.

Proposition 2.1 Let φ be a multiplicative map on SLn or GLn. Then either φ(SLn) is a
singleton or there exist a field embedding σ : C → C, a matrix S ∈ SLn, and a multiplicative
map f : C∗ → C∗ such that φ has the form

A 7→ f(det(A))Sσ(A)S−1 or A 7→ f(det(A))Sτ(σ(A))S−1.

Lemma 2.2 Suppose k is a positive integer, and f : C∗ → C∗ is a group homomorphism

such that f(µ)k = 1 for all µ ∈ C∗. Then f(µ) = 1 for all µ ∈ C∗.
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Lemma 2.3 Let S ∈ SLn. If SEijS
−1 has singular values 1, 0, . . . , 0 for all i, j ∈ {1, . . . , n}

with i 6= j, then S is unitary.

The following characterization of the continuous complex field embeddings is useful; see,
e.g., [22].

Lemma 2.4 The following statements for a complex field embedding σ : C → C are equiva-
lent:

(a) either σ(z) = z for every z ∈ C or σ(z) = z for every z ∈ C.

(b) |σ(z)| = |z| for every z ∈ C.

(c) σ(z) > 0 for every positive z.

(d) σ is continuous.

3 C-numerical radius preservers on SLn and GLn

We need the following lemma to characterize multiplicative preservers of C-numerical radius.

Lemma 3.1 Let C ∈Mn. Then wC(A) = wC(A) for all A ∈Mn if and only if C is unitarily

similar to µC for some µ ∈ T.

Proof. Since

wA(C) = wC(A) = wC(A) = wC(A) = wA(C) for all A ∈Mn,

by Theorem 2.1 in [16], we see that C is in the convex hull of the set

{µU∗CU : µ ∈ T, U∗U = In}. (3.1)

Thus, C is a convex combination of a finite subset of the set (3.1). Since µU∗CU (for |µ| = 1

and unitary U) and C have the same Frobenius norm, and the Frobenius norm is strictly

convex, we must have that C = µU∗CU for some µ ∈ T and unitary U .

Theorem 3.2 Let H = SLn or GLn, and let C ∈ Mn be a fixed non-scalar matrix. A
multiplicative map φ : H → Mn satisfies wC(φ(A)) = wC(A) for all A ∈ H if and only

if there is a unitary U ∈ SLn and a multiplicative map f : C∗ → T such that one of the
following conditions holds true:

(a) φ has the form A 7→ f(det(A))UAU∗.

(b) There exists µ ∈ T such that C and µC are unitarily similar, and φ has the form

A 7→ f(det(A))UAU∗.
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Note that f(det(A)) = 1 for every A ∈ SLn.

Proof. The “if” part can be verified with the help of Lemma 3.1. We focus on the converse.
Suppose tr (C) 6= 0. Then wC(A) is a unitary similarity invariant norm; see [6], also [16].

By [9, Theorem 3.8], φ has the asserted form, and the form of φ in (b) holds if and only if

wC(A) = wC(A) for all A ∈ H. Since every A ∈ GLn is a scalar multiple of B ∈ SLn, and

GLn is dense in Mn, by continuity of the norm function wC we see that if wC(A) = wC(A)

for all A ∈ H, then wC(A) = wC(A) for all A ∈ Mn. By Lemma 3.1, we see that C is
unitarily similar to µC for some µ ∈ T.

Now, suppose that tr (C) = 0. Since C is not a scalar matrix,

γ = wC(E1,2) = wC(Ei,j) > 0, i 6= j.

For any A unitarily similar to I + νEn1, we have:

wC(A) = max{|tr (CV AV ∗)| : V is unitary}
= max{|tr (V ∗CV (I + νEn1)| : V is unitary}
= |ν|γ. (3.2)

Suppose H = SLn. Clearly, φ is non-trivial on H, and hence by Proposition 2.1 φ has the
standard form

A 7→ Sσ(A)S−1 or A 7→ Sτ(σ(A))S−1

for some S ∈ SLn. Suppose S is not unitary. By Lemma 2.3, there is Ei,j with i 6= j

such that SEi,jS
−1 has trace zero and singular values r, 0, . . . , 0 with r 6= 1. But then for

A = I + Ei,j, we have by (3.2):

wC(A) = 1 + γ 6= 1 + rγ = wC(φ(A)),

which is a contradiction. Hence, S is unitary. Furthermore, for any z ∈ C, if Az = I + zE1,n

then again by (3.2)

γ|z| = wC(Az) = wC(φ(A)) = γ|σ(z)|.

So, by Lemma 2.4 σ has the form z 7→ z or z 7→ z̄.

For n > 2 we show that φ cannot have the form A 7→ Sτ(σ(A))S−1. (For n = 2 the form

A 7→ Sτ(σ(A))S−1 is essentially the same as the form A 7→ SAS−1.) Note that there is a

unitary matrix V such that V ∗CV = (γij) with |γ11| = w(C). If

A = diag (m2, 1/m, 1/m, 1, . . . , 1)

for sufficiently large m, then

wC(A) ≥ |tr (V ∗CV A)| ≥ m2|γ11| −
n∑

j=2

|γjj| > w(C)(m2 − n). (3.3)

5



On the other hand, if a unitary U having columns u1, . . . , un is such that

wC(Sτ(A)S−1) = |tr (U∗CUτ(A))|,

then

wC(Sτ(A)S−1) ≤ 1

m2
|u∗1Cu1|+m|u∗2Cu2|+m|u∗3Cu3|+ |u∗4Cu4|+ · · ·+ |u∗nCun|

≤ w(C)(
1

m2
+ 2m+ n− 3),

which is smaller than the right hand side of (3.3). So, φ has the asserted form

A 7→ UAU∗ or A 7→ UAU∗ (3.4)

for some unitary matrix U . If the latter holds, then wC(A) = wC(A) for all A ∈ SLn. By

continuity and homogeneity, wC(A) = wC(A) = wC(A) for all A ∈ Mn. By Lemma 3.1, we

see that C and µC are unitarily similar for some µ ∈ T.
Now, suppose H = GLn. Then by Proposition 2.1 φ has the form

A 7→ f(det(A))UAU∗ or A 7→ f(det(A))UAU∗, (3.5)

where the latter case holds when wC(A) = wC(A) for all A ∈ Mn, and where f : C∗ −→ C∗

is a multiplicative map. Then for any z ∈ C∗ \ {−1} and Az = I + zE1,1,

wC(A) = max{|tr (CU∗AU)| : U is unitary}
= max{|ztr (CU∗E1,1U)| : U is unitary}
= w(zC).

Similarly, wC(φ(A)) = |f(1 + z)|w(zC). Thus, |f(µ)| = 1 for all µ ∈ C∗.

4 C-numerical range preservers on SLn and GLn

We need some additional facts to state and prove the results on multiplicative preservers
of C-numerical range. First, recall that a block matrix (Xij) is in block shift form if all

the diagonal blocks are square matrices (may be of different sizes) and Xij = 0 whenever

j 6= i+ 1. This is a generalization of the weighted shift matrix where all Xij are one by one.

We have the following result; see [17].

Lemma 4.1 The following conditions are equivalent for a non-scalar matrix C:

(a) C is unitarily similar to a matrix in block shift form.

(b) WC(A) is a circular disk centered at the origin for all A ∈Mn.
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(c) WC(C∗) is a circular disk centered at the origin.

Theorem 4.2 Let H = SLn or GLn, and let C ∈Mn be a non-scalar matrix. A multiplica-
tive map φ : H → Mn satisfies WC(φ(A)) = WC(A) for all A ∈ H if and only if there is a

unitary U ∈ SLn and a multiplicative map f : C∗ → T such that one of the following holds
true.

(a) φ has the form A 7→ UAU∗.

(b) C is unitarily similar to a matrix in block shift form and φ has the form

A 7→ f(det(A))UAU∗.

(c) C is unitarily similar to a matrix in block shift form, as well as unitarily similar to µC

for some µ ∈ T, and φ has the form A 7→ f(det(A))UAU∗.

Proof. The “if” part can be verified readily with the help of Lemmas 3.1 and 4.1. We
consider the converse.

Suppose H = SLn. Note that the WC(A) preservers must also be wC(A) preservers.
Thus, φ has the form described in Theorem 3.2. Suppose φ has the form

A 7→ UAU∗, U unitary,

and C is unitarily similar to µC for some µ ∈ T. Now, for any A ∈ SLn, then

WC(A) = W (φ(A)) = WC(A) = µWC(A) = µWC(A). (4.1)

We claim that C is unitarily similar to a matrix in block shift form. First, we show that

trC = 0. Note for ξ = ei2π/n, ξI ∈ SLn and

{ξtrC} = WC(ξI) = WC(ξI) = {ξtrC}.

Thus, ξ2trC = trC. If n > 2, then trC = 0. If n = 2, then (see [19] and [13, Theorem 1])

WC(A) is an elliptical disk centered at (trC)(trA)/2. If trC 6= 0, one can choose

A =
(
µ µ2 − 1
1 µ

)
∈ SL2

such that µtrC 6= µtrC. Thus, WC(A) 6= WC(A), which is a contradiction.
Now, trC = 0. Suppose A ∈ GLn with eigenvalues α1, . . . , αn. For any γ ∈ C which

does not coincide with any of −αj, we have

X :=
A+ γI[∏

j(αj + γ)
]1/n

∈ SLn.
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Thus, using the property that trC = 0 and (4.1), we have

∏
j

(αj + γ)

−1/n

WC(A) =

∏
j

(αj + γ)

−1/n

WC(A+ γI)

= WC(X) = WC(X) =

∏
j

(αj + γ)

−1/n

WC(A).

Letting δ = ((α1 + γ) . . . (αn + γ))−1/n, it now follows that(
δ/δ

)
WC(A) = WC(A).

It is easy to see that δ/δ can be made equal to any prescribed number in T, for a suitable

choice of γ. Since WC(A) is start-shaped (see [3]), it follows that WC(A) is a circular disk
centered at the origin. Now, for any A ∈Mn, there is λ ∈ C such that A+ λI ∈ GLn, and

WC(A) = WC(A+ λI)

is a circular disk centered at origin. By Lemma 4.1, C is unitarily similar to a matrix in
block shift form.

Next, suppose H = GLn. Since φ preserves wC(A), by Theorem 3.2 φ has the form

A 7→ f(det(A))UAU∗ or A 7→ f(det(A))UAU∗ (4.2)

for some multiplicative map f : C∗ → T, and some unitary U . If φ has the second form in
(4.2), then by restricting φ to SLn, and applying the result on SLn we already proved, we

conclude that C is unitarily similar to a block shift form, as well as to µC for some µ ∈ T.
It remains to show that if φ has the form A 7→ f(det(A))UAU∗, where f is non-trivial,

then C is unitarily similar to a block shift form. By Lemma 2.2, it is easy to see that the
range of f is dense in T. For every z ∈ C∗ and every A ∈ GLn, we have:

zWC(A) = WC(zA) = WC(φ(zA)) = f(zn(detA))WC(zA) = zf(zn(detA))WC(A).

Thus, f(zn(detA))WC(A) = WC(A), and by the denseness of the range of f we conclude
that

νWC(A) = WC(A) for every ν ∈ T.

Since WC(A) is start-shaped (see [3]), it follows that WC(A) is a circular disk centered at

the origin. Now, {νtrC} = νWC(I) = WC(I) = {trC} for every ν ∈ T; so, trC = 0.
Furthermore, for any A ∈Mn, there is λ ∈ C such that A+ λI ∈ GLn; then

WC(A) = WC(A+ λI)

is a circular disk centered at origin. By Lemma 4.1, C is unitarily similar to a matrix in
block shift form.

In connection with Theorem 4.2 the following example is instructive.
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Example 4.3 We construct here a family of examples of block shift matrices A such that

A is not unitarily similar to µA, for any µ ∈ T; in particular, A not unitarily similar to any
real matrix.

We start with general observations:

1. Every diagonalizable matrix with positive eigenvalues is a product of two positive definite
matrices.

This fact is well-known; for a proof note that if X = S−1DS, where S is invertible and D

is diagonal with positive numbers on the diagonal, then X = S−1(S−1)∗ ·S∗DS is a product
of two positive definite matrices.

A word w(X, Y ), where X and Y are n× n matrices, is any matrix of the form

w(X, Y ) = Xα1Y β1Xα2Y β2 · · ·XαpY βp ,

where αj, βj are nonnegative integers. The integer
∑p

j=1(αj − βj) will be called the index of

w(X, Y ).

2. If C is unitarily similar to µC, for some µ ∈ T, then tr (w(C∗, C)) is real for every word

w(C∗, C) with zero index.

The proof is elementary: Assume C = U(µC)U∗ for some unitary U and µ ∈ T. Then

w(C∗, C) = Uw(µCt, µC)U∗ = U(w(µCt, µC))U
∗

= U(w(µC∗, µC))U
∗
,

which is equal to U(w(C∗, C))U
∗
, assuming that the index of w(C∗, C) is zero. Thus,

trw(C∗, C) = trw(C∗, C), and 2. follows.

To construct the matrix A as required, we let A1, A2, A3 be 2×2 positive definite matrices
such that

A1A2 =
(
a b
0 c

)
,

where a and c are distinct positive numbers and b 6= 0 is real, and the off-diagonal entries of
A3 are non-real (the existence of A1 and A2 with the required properties follows from Fact

1.). Then

tr (A1A2A3) 6∈ IR. (4.3)

Next, let A1,2, A2,3 and A3,4 be such that

A2,3A
∗
2,3 = A1, A∗

1,2A1,2 = A2, A2,3A
∗
3,4A3,4A

∗
2,3 = A3,

and finally

A =


0 A1,2 0 0
0 0 A2,3 0
0 0 0 A3,4

0 0 0 0

 .
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A computation shows that

tr (A(A∗)2A3(A∗)2) = tr (A1A2A3),

and by Fact 2. and (4.3), A cannot be unitarily similar to µA for any µ ∈ T.

5 Results on M (k)
n

We start with a preliminary result. Matrices X1, . . . , Xn ∈ Mn are said to be mutually

orthogonal rank one idempotents if X2
i = Xi and XiXj = 0 for any i, j ∈ {1, . . . , n} with

i 6= j. We have the following fact from [2, Propositions 2.2 and 2.3].

Proposition 5.1 Let φ : M (k)
n → Mn be a multiplicative map. Then there exist mutually

orthogonal rank one idempotents X1, . . . , Xn such that φ(Xi) 6= φ(0) for i = 1, . . . , n if and
only if there exist S ∈ SLn and a field embedding σ : C → C such that φ has the form

(aij) 7→ S(σ(aij))S
−1.

Our main result on multiplicative preservers of the C-numerical ranges and radii on M (k)
n

reads as follows.

Theorem 5.2 Let C ∈ Mn be a non-scalar matrix, and let FC(A) = wC(A) or WC(A). A

multiplicative map φ : M (k)
n → Mn satisfies FC(φ(A)) = FC(A) for all A ∈ M (k)

n if and only
if there is a unitary U ∈ SLn such that one of the following conditions holds true:

(a) φ has the form A 7→ UAU∗.

(b) FC(A) = FC(A) for all A ∈M (k)
n , and φ has the form A 7→ UAU∗.

Proof. The “if” part can be verified readily. We focus on the converse.
For i = 1, . . . , n, we have wC(Ei,i) = w(C) 6= 0 = wC(0). Thus, φ(Ei,i) 6= φ(0) for

i = 1, . . . , n. By Proposition 5.1 φ has the form

φ(A) = Sσ(A)S−1, A ∈M (k)
n ,

where S ∈ SLn. Suppose S is not unitary. By Lemma 2.3, there is Ei,j with i 6= j such that

SEi,jS
−1 is unitarily similar to rE1,2 with some positive real number r 6= 1. Since C is not

a scalar matrix, we have

0 < wC(Ei,j) 6= rwC(E1,2) = wC(φ(Ei,j)),

which is a contradiction. Hence, S is unitary. Furthermore, for any z ∈ C,

|z|wC(E1,2) = wC(zE1,2) = wC(σ(z)E1,2) = |σ(z)|wC(E1,2).

So, by Lemma 2.4 σ has the form z 7→ z or z 7→ z̄. The result follows.

Theorem 5.2 is not entirely satisfactory as we do not have a complete characterization

of the sets of matrices C such that FC(A) = FC(A) for all A ∈ M (k)
n , for various k. Some

information on these sets is contained in the next proposition.
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Proposition 5.3 Let ψ(k)
n be the set of matrices C ∈Mn such that

wC(A) = wC(A) for all A ∈M (k)
n .

Then
ψ(n)

n ⊆ ψ(n−1)
n ⊆ · · · ⊆ ψ(1)

n = Mn. (5.1)

(a) Suppose C has rank at most k. Then C ∈ ψ(k)
n if and only if C is unitarily similar to

µC for some µ ∈ T. Consequently, ψ(n)
n consists of those C ∈Mn such that C and µC

are unitarily similar for some µ ∈ T.

(b) Assume 8k ≤ n, and suppose C is unitarily similar to (C1 ⊗ I4k) ⊕ C2 with C1 =(
0 a
0 0

)
such that W (C2) ⊆ W (C1). Then C ∈ ψ(k)

n .

Part (b) illustrates that a complete characterization of the set ψ(k)
n (if k < n) may be not

transparent.

Proof. The inclusions in (5.1) are trivial. To prove the equality ψ(1)
n = Mn, fix C ∈ Mn,

and let A = xy∗ be a rank one matrix, and let U be a unitary matrix. Define µ = (y∗x)/(y∗x)
if y∗x 6= 0, and µ = 1 otherwise. Then

y∗x = y∗(µx) = (Uy)∗(U(µx)),

and therefore there exists a unitary V such that V x = µUx and V y = Uy. Thus,

tr (CUAU∗) = tr (CUxy∗U∗) = µtr (CV xy∗V ∗) = tr (CV AV ∗),

and since U was an arbitrary unitary matrix, we have wC(A) ≤ wC(A). The equality

wC(A) = wC(A) follows by reversing the roles of A and A, and using (2.2) we obtain

ψ(1)
n = Mn.

For statement (a), the “if” part follows from Lemma 3.1. Conversely, suppose C has

rank at most k. If C ∈ ψ(k)
n , then wC(C∗) = wC(Ct). Denote by ‖X‖F = (trXX∗)1/2 the

Frobenius norm on Mn. Then there exists a unitary U such that

tr (CC∗) ≤ wC(C∗) = wC(Ct) = |trCUCtU∗| ≤ ‖C‖F‖UCtU∗‖F = tr (CC∗).

Using the equality case of Cauchy-Schwartz inequality, we see that UCtU∗ = µC∗ for some

µ ∈ T. Hence C and µC is unitarily similar. The second statement in (a) is clear.

Next, we turn to statement (b). Assume that C = (C1 ⊗ I4k) ⊕ C2. For simplicity, we

assume that a = 2, i.e., C1 =
(

0 2
0 0

)
. Suppose A ∈M (k)

n . Up to unitary similarity, we may

assume that A = A1 ⊕ 0n−2k, where A1 is 2k × 2k. We claim that WC(A) = WC0(A0) and

WC(A) = WC0(A0), where C0 = C1 ⊗ I4k and A0 = A1 ⊕ 06k. Since C0 is in block shift form,
it will then follow by Lemma 4.1 that

WC(A) = WC0(A0) = WC0(A0) = WC(A),
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and therefore also wC(A) = wC(A).

To prove our claim, we first establish WC0(A0) ⊆ WC(A). If V ∈ M8k and z =

tr (V C0V
∗A0) ∈ WCC0(A0), then for Ṽ = V ⊕ In−8k we have z = tr (Ṽ CṼ ∗A) ∈ WC(A).

Next, we consider the reverse inclusion. Let V ∈Mn be unitary, and let

V ∗CV =
(
C11 C12

C21 C22

)

with C11 ∈M2k so that

tr (CV AV ∗) = tr (V ∗CV A) = tr (C11A1). (5.2)

Now, W (C11) ⊆ W (C) = W (C1). By a result in [1] (see also [4]), C11 = X∗(C1 ⊗ Ir)X for
some positive integer r > 0 and some 2r × 2k matrix X such that X∗X = I2k.

If r ≤ 4k, there is a unitary matrix V ∈ M8k such that the first 2k rows of V ∗ have the

form [X∗|02k,8k−2r]. Let C̃0 = (C1 ⊗ Ir)⊕ (C1 ⊗ I4k−r). Then

tr (C11A1) = tr (V ∗C̃0V A0) ∈ WC̃0
(A0) = WC0(A0),

where the last equality holds because C̃0 and C0 are unitarily similar.
Suppose r > 4k. Partition X∗ = [X∗

1 |X∗
2 ], where each X∗

i is 2k × r. Let U ∈ Mr be a
unitary matrix such that the linear span of the first 4k rows of U∗ contains all the rows of
X∗

1 and those of X∗
2 . Then X∗

i U = [Y ∗
i |0], i = 1, 2, where Y ∗

i is 2k × 4k. Thus,

C11 = [X∗
1 |X∗

2 ]
(

0r 2Ir
0r 0r

) [
X1

X2

]

= [X∗
1 |X∗

2 ]
(
U 0
0 U

) (
U∗ 0
0 U∗

) (
0r 2Ir
0r 0r

) (
U 0
0 U

) (
U∗ 0
0 U∗

) [
X1

X2

]

= [Y ∗
1 |0|Y ∗

2 |0]
(

0r 2Ir
0r 0r

) 
Y1

0
Y2

0


= [Y ∗

1 |Y ∗
2 ]

(
04k 2I4k

04k 04k

) [
Y1

Y2

]
.

Note that [Y ∗
1 |Y ∗

2 ]
[
Y1

Y2

]
= I2k. Suppose R ∈M8k is unitary such that the first 2k rows of R∗

equal [Y ∗
1 |Y ∗

2 ]. Then by (5.2)

tr (V ∗CV A) = tr (C1A1) = tr (R∗C0RA0) ∈ WC0(A0).

Hence WC(A) ⊆ WC0(A0).

Combining the above arguments, we see that WC0(A0) = WC(A). Similarly, one can

prove that WC0(A0) = WC(A). Our claim is proved and the result follows.
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Proposition 5.4 Let Ψ(k)
n be the set of matrices C ∈Mn such that

WC(A) = WC(A) for all A ∈M (k)
n .

Then
Ψ(n)

n ⊆ Ψ(n−1)
n ⊆ · · · ⊆ Ψ(1)

n .

(a) Suppose C has rank at most k. Then C ∈ Ψ(k)
n if and only if C is unitarily similar to

a block shift matrix as well as unitarily similar to µC for some µ ∈ T. Consequently,

Ψ(n)
n consists of those C ∈ Mn such that C is unitarily similar to a block shift matrix

as well as to µC for some µ ∈ T.

(b) Assume that 8k ≤ n, and suppose C is unitarily similar to (C1 ⊗ I4k)⊕ C2 with C1 =(
0 a
0 0

)
such that W (C2) ⊆ W (C1). Then C ∈ Ψ(k)

n .

Proof. The inclusion relation is clear. For statement (a), the “if’ part follows from Lemmas

3.1 and 4.1. For the converse, the fact that C is unitarily similar to µC for some µ ∈ T
follows from Proposition 5.3 (a). Now, for any ν ∈ T,

νWC(C∗) = WC(νC∗) = WC(νCt) = νWC(Ct).

Thus, WC(C∗) = ν2WC(Ct) for all ν ∈ T. Since WC(C∗) is star-shaped (see [3]), it is a
circular disk centered at the origin. By Lemma 4.1, C is unitarily similar to a block shift
matrix.

The proof of (b) is contained in that of Proposition 5.3 (b).

Remark 5.5 Note that by the proof of Proposition 5.4, if WC(A) = WC(A) for all A ∈M (k)
n

then WC(A) is a circular disk for all A ∈M (k)
n .

Remark 5.6 A characterization of matrices in the set Ψ(k)
n seems to be even more elusive

than that of ψ(k)
n . Even for Ψ(1)

n the situation is not as nice as for ψ(1)
n = Mn. In fact, if

A ∈Mn has rank 1, then A is unitarily similar to ‖A‖(qE1,1+
√

1− |q|2E1,2), for some q ∈ C,

|q| ≤ 1, and therefore WC(A) = ‖A‖Wq(C), where

Wq(C) = {qx∗Cx+
√

1− |q|2x∗Cy : x, y ∈ Cn, x∗x = 1 = y∗y, x∗y = 0}

is the q-numerical range of C; see [18, 21, 13]. Moreover, it is known that

Wq(C) = ∪z∈W (C)R(z),

where
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R(z) =
{
qz +

√
1− |q|2µ ∈ C : |µ|2 + |z|2 ≤ ‖Ch‖2

for some x ∈ Cn with (x∗x, x∗Cx) = (1, z)
}
.

Here ‖Cx‖ is the Euclidean length of the vector Cx. By the above discussion and Remark

5.5 we see that C ∈ Ψ(1)
n if the outer boundary of the set

Sh = {x∗Cx : x ∈ Cn, x∗x = 1, ‖Cx‖ = h}

is a circle or empty for any h ≥ 0.
For example, if C is unitarily similar to a block shift matrix, or if C is unitarily similar

to a matrix of the form (
0 2
0 0

)
⊕B, w(B) ≤ 1,

then C satisfies the above condition on the outer boundary, i.e., C ∈ Ψ(1)
n .

We conclude the paper with an open problem.

Problem 5.7 Obtain intrinsic characterizations of the classes ψ(k)
n and Ψ(k)

n in the general
situation.
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