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Abstract
The unitary orbit U(A) of an n×n complex matrix A is the set consisting of matrices unitarily

similar to A. Given two n × n complex matrices A and B, ranks and determinants of matrices of
the form X +Y with (X, Y ) ∈ U(A)×U(B) are studied. In particular, a lower bound and the best
upper bound of the set R(A,B) = { rank (X + Y ) : X ∈ U(A), Y ∈ U(B)} are determined. It is
shown that ∆(A,B) = {det(X +Y ) : X ∈ U(A), Y ∈ U(B)} has empty interior if and only if the set
is a line segment or a point; the algebraic structure of matrix pairs (A,B) with such properties are
described. Other properties of the sets R(A,B) and ∆(A,B) are obtained. The results generalize
those of other authors, and answer some open problems. Extensions of the results to the sum of
three or more matrices from given unitary orbits are also considered.
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1 Introduction

Let A ∈ Mn. The unitary orbit of A is denoted by

U(A) = {UAU∗ : U∗U = In}.

Evidently, if A is regarded as a linear operator acting on Cn, then U(A) consists of the matrix
representations of the same linear operator under different orthonormal bases. Naturally, U(A)
captures many important features of the operator A. For instance, A is normal if and only if
U(A) has a diagonal matrix; A is Hermitian (positive semi-definite) if and only if U(A) contains
a (nonnegative) real diagonal matrix; A is unitary if and only if U(A) has a diagonal matrix with
unimodular diagonal entries. There are also results on the characterization of diagonal entries and
submatrices of matrices in U(A); see [14, 20, 23, 31] and their references. In addition, the unitary
orbit of A has a lot of interesting geometrical and algebraic properties, see [11].

Motivated by theory as well as applied problems, there has been a great deal of interest in
studying the sum of two matrices from specific unitary orbits. For example, eigenvalues of UAU∗+
V BV ∗ for Hermitian matrices A and B were completely determined in terms of those of A and B
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(see [16] and its references); the optimal norm estimate of UAU∗+V BV ∗ was obtained (see [10] and
its references); the range of values of det(UAU∗ + V BV ∗) for Hermitian matrices A,B ∈ Mn was
described, see [15]. Later, Marcus and Oliveira [26, 30] conjectured that if A,B ∈ Mn are normal
matrices with eigenvalues a1, . . . , an and b1, . . . , bn, respectively, then for any unitary U, V ∈ Mn,
det(UAU∗ + V BV ∗) always lies in the convex hull of

P (A,B) =


n∏

j=1

(aj + bσ(j)) : σ is a permutation of {1, . . . , n}

 . (1.1)

In connection to this conjecture, researchers [2, 3, 4, 5, 7, 8, 12, 13] considered the determinantal
range of A,B ∈ Mn defined by

∆(A,B) = {det(A + UBU∗) : U is unitary}.

This can be viewed as an analog of the generalized numerical range of A and B defined by

W (A,B) = {tr (AUBU∗) : U is unitary},

which is a useful concept in pure and applied areas; see [18, 21, 25] and their references.
In this paper, we study some basic properties of the matrices in

U(A) + U(B) = {X + Y : (X, Y ) ∈ U(A)× U(B)}.

The focus will be on the rank and the determinant of these matrices.
Our paper is organized as follows. In Section 2, we obtain a lower bound and the best upper

bound for the set
R(A,B) = { rank (X + Y ) : X ∈ U(A), Y ∈ U(B)};

moreover, we characterize those matrix pairs (A,B) such that R(A,B) is a singleton, and show that
the set R(A,B) has the form {k, k + 1, . . . , n} if A and −B have no common eigenvalues. On the
contrary if A and −B are orthogonal projections, then the rank values of matrices in U(A) +U(B)
will either be all even or all odd. In Section 3, we characterize matrix pairs (A,B) such that
∆(A,B) has empty interior, which is possible only when ∆(A,B) is a singleton or a nondegenerate
line segment. This extends the results of other researchers who treated the case when A and B are
normal; see [2, 3, 4, 9]. In particular, our result shows that it is possible to have normal matrices
A and B such that ∆(A,B) is a subset of a line, which does not pass through the origin. This
disproves a conjecture in [9]. In [3], the authors showed that if A,B ∈ Mn are normal matrices such
that the union of the spectra of A and −B consists of 2n distinct elements, then every nonzero
sharp point of ∆(A,B) is an element in P (A,B). (See the definition of sharp point in Section 3.)
We showed that every (zero or nonzero) sharp point of ∆(A,B) belongs to P (A,B) for arbitrary
matrices A,B ∈ Mn. In Section 4, we consider the sum of three or more matrices from given
unitary orbits, and matrix orbits corresponding to other equivalence relations.

In the literature, some authors considered the set

D(A,B) = {det(X − Y ) : X ∈ U(A), Y ∈ U(B)}

instead of ∆(A,B). Evidently, we have D(A,B) = ∆(A,−B). It is easy to translate results on
D(A,B) to those on ∆(A,B), and vice versa. Indeed, for certain results and proofs, it is more
convenient to use the formulation of D(A,B). We will do that in Section 3. On the other hand, it
is more natural to use the summation formulation to discuss the extension of the results to matrices
from three or more unitary orbits.
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2 Ranks

2.1 Maximum and Minimum Rank

In [10], the authors obtained optimal norm bounds for matrices in U(A) + U(B) for two given
matrices A,B ∈ Mn. By the triangle inequality, we have

max{‖UAU∗ + V BV ∗‖ : U, V unitary} ≤ min{‖A− µIn‖+ ‖B + µIn‖ : µ ∈ C}.

It was shown in [10] that the inequality is actually an equality. For the rank functions, we have

max{ rank (UAU∗ + V BV ∗) : U, V unitary} ≤ min{ rank (A− µIn) + rank (B + µIn) : µ ∈ C}.

Of course, the right side may be strictly larger than n, and thus equality may not hold in general.
It turns out that this obstacle can be overcome easily as shown in the following.

Theorem 2.1 Let A,B ∈ Mn and

m = min{ rank (A− µIn) + rank (B + µIn) : µ ∈ C}
= min{ rank (A− µIn) + rank (B + µIn) : µ is an eigenvalue of A⊕−B}.

Then
max{ rank (UAU∗ + V BV ∗) : U, V unitary} = min{m,n}.

Proof. If µ is an eigenvalue of A ⊕ −B, then rank (A − µIn) + rank (B + µIn) ≤ 2n − 1;
if µ is not an eigenvalue of A ⊕ −B, then rank (A − µIn) + rank (B + µIn) = 2n. As a result,
rank (A−µIn) + rank (B + µIn) will attain its minimum at an eigenvalue µ of the matrix A⊕−B.

It is clear that

max{ rank (UAU∗ + V BV ∗) : U, V unitary} ≤ min{m,n}.

It remains to show that there are U, V such that UAU∗ + V BV ∗ has rank equal to min{m,n}.
Suppose m ≤ n and there is µ such that rank (A− µIn) = k and rank (B + µIn) = m− k. We

may replace (A,B) by (A − µIn, B + µIn) and assume that µ = 0. Furthermore, we may assume
that k ≤ m− k; otherwise, interchange A and B.

Let A = XDY be such that X, Y ∈ Mn are unitary, and D = D1⊕0n−k with invertible diagonal
D1. Replace A by Y AY ∗, we may assume that

A = UD =
(

U11 U12

U21 U22

)(
D1 0
0 0n−k

)
.

with U = Y X. Similarly, we may assume that

B = V E =
(

V11 V12

V21 V22

)(
0k 0
0 E2

)
,

where V is a unitary matrix and E2 is a diagonal matrix with rank m − k. Let W be unitary
matrix such that the first k columns of WU together with the last n− k columns of V are linearly
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independent. That is, if W =
(

W11 W12

W21 W22

)
, the matrix

(
W11U11 + W12U21 V21

W21U11 + W22U21 V22

)
is invertible.

If W11 is invertible, then D1W
∗
11 has rank k and so

WAW ∗ + B =
(

W11U11 + W12U21 V21

W21U11 + W22U21 V22

)(
D1W

∗
11 D1W

∗
21

0 E2

)
has rank m. If W11 is not invertible, we will replace W by W̃ obtained as follows. By the CS
decomposition, there are unitary matrices P1, Q1 ∈ Mk and P2, Q2 ∈ Mn−k such that

(P1 ⊕ P2)W (Q1 ⊕Q2) =
(

C S
−S C

)
⊕ In−2k,

where C = diag (c1, . . . , ck) with c1 ≥ · · · ≥ ck ≥ 0 and S = diag
(√

1− c2
1, . . . ,

√
1− c2

k

)
. Then

perturb the zero diagonal entries of C slightly to C̃ = diag (c̃1, . . . , c̃k) so that C̃ is invertible, and

set S̃ = diag
(√

1− c̃2
1, . . . ,

√
1− c̃2

k

)
. Then

W̃ = (P1 ⊕ P2)∗
[(

C̃ S̃
−S̃ C̃

)
⊕ In−2k

]
(Q1 ⊕Q2)∗

will be a slight perturbation of W with invertible W̃11 = P ∗
1 C̃Q∗

1, which can be chosen such that

the matrix
(

W̃11U11 + W̃12U21 V21

W21U11 + W22U21 V22

)
is still invertible. Then W̃AW̃ ∗ + B has rank m.

Now, assume that rank (A − µIn) + rank (B + µIn) ≥ n + 1 for every µ ∈ C. Let a1, . . . , an

and b1, . . . , bn be the eigenvalues of A and B. We consider two cases. First, suppose ai + bj 6= 0
for some i, j. We may assume that i = j = 1. Applying suitable unitary similarity transforms, we
may assume that A and B are unitarily similar to matrices in upper triangular form(

a1 ∗
0 A1

)
and

(
b1 ∗
0 B1

)
.

Since rank (A−µIn)+ rank (B +µIn) ≥ n+1 for every µ ∈ C, it follows that rank (A1−µIn−1)+
rank (B1+µIn−1) ≥ n−1 for every µ ∈ C. By induction assumption, there is a unitary V1 such that
det(A1 +V1B1V

∗
1 ) 6= 0. Let V = [1]⊕V1. Then det(A+V BV ∗) = (a1 + b1) det(A1 +V1B1V

∗
1 ) 6= 0.

Suppose ai + bj = 0 for all i, j ∈ {1, . . . , n}. Replacing (A,B) by (A− a1In, B − b1In), we may
assume that A and B are nilpotents. If A or B is normal, then it will be the zero matrix. Then
rank (A) + rank (B) < n, which contradicts our assumption. Suppose neither A nor B is normal
and rank A ≤ rank B.

If n = 3, then rank A = rank B = 2. We may assume that

A =

 0 α1 α2

0 0 α3

0 0 0

 and B =

 0 0 0
β1 0 0
β2 β3 0


such that α1, α3, β1, β3 are nonzero. Interchange the last two rows and the last two columns of A

to obtain Â. For Uξ = diag (1, 1, eiξ), we have

UξÂU∗
ξ =

 0 α2 α1e
−iξ

0 0 0
0 α3e

iξ 0

 .
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Evidently, there is ξ ∈ [0, 2π) such that det(UξÂU∗
ξ + B) 6= 0.

Suppose n ≥ 4. Applying suitable unitary similarity transforms, we may assume that both A
and B are in upper triangular form with nonzero (1, 2) entries; see [27, Lemma 1]. Modify B by

interchanging its first two rows and columns. Then, A and B have the form
(

A11 A12

0 A22

)
and(

B11 B12

0 B22

)
so that A11 =

(
0 α
0 0

)
and B11 =

(
0 0
β 0

)
with αβ 6= 0, and A22, B22 are upper

triangular nilpotent matrices. If rank A + rankB ≥ n + 2, then

rank (A22 − µIn−2) + rank (B22 + µIn−2) ≥ rank A22 + rankB22 ≥ rank A + rankB − 4 ≥ n− 2.

If rank A + rank B = n + 1, we claim that by choosing a unitary similarity transform, we can
further assume that rankA22 = rank A− 1. Then

rank (A22 − µIn−2) + rank (B22 + µIn−2) ≥ rank A22 + rankB22 ≥ rank A + rankB − 3 = n− 2.

In both cases, by induction assumption, there is V2 such that det(A22 + V2B22V
∗
2 ) 6= 0. Let

V = I2 ⊕ V2. Then
det(A + V BV ∗) = −αβ det(A22 + V2B22V

∗
2 ) 6= 0.

Now it remains to verify our claim. Suppose A has rank k and rank A + rank B = n + 1.
Then k ≤ (n + 1)/2. Let S be an invertible matrix such that S−1AS = J is the Jordan form of

A. If J has a 2 × 2 Jordan block, then we can always permute J so that J =
(

J11 0
0 J22

)
with

J11 =
(

0 1
0 0

)
and rank (J22) = p − 1. By QR factorization, write S = U∗T for some unitary U

and invertible upper triangular matrix T =
(

T11 T12

0 T22

)
. Then A is unitary similar to

TJT−1 =
(

T11J11T
−1
11 ∗

0 T22J22T
−1
22

)
,

which has the described property.
Suppose J does not contains any 2 × 2 block, then J must have has a 1 × 1 Jordan block.

Otherwise, k = rank A ≥ 2n/3 and hence

rank A + rankB ≥ 2k ≥ 4n/3 = n + n/3 > n + 1.

Now we may assume that J =
(

02 J12

0 J22

)
is strictly upper triangular matrix such that J12 has

only nonzero entry in the (1, 1)-th position and rankJ22 = k − 1. Let Ŝ be obtained from In by
replacing the (3, 2)-th entries with one, then

Ŝ−1JŜ = Ĵ =
(

Ĵ11 J12

0 J22

)

with Ĵ11 =
(

0 1
0 0

)
. Applying QR factorization on SŜ = U∗T with unitary U and invertible upper

triangular T , then A is unitary similar to T ĴT−1, which has the described form. �
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The value m in Theorem 2.1 is easy to determine as we need only to focus on rank (A−µIn) +
rank (B + µIn) for the eigenvalues µ of A ⊕ −B. In particular, if µ is an eigenvalue of A, then
rank (A− µIn) = n− k, where k is the geometric multiplicity of µ; otherwise, rank (A− µIn) = n.
Similarly, one can determine rank (B + µIn). The situation for normal matrices is even better as
shown in the following.

Corollary 2.2 Suppose A and B are normal matrices such that ` is the maximum multiplicity of
an eigenvalue of A ⊕ −B. Then min{ rank (A − µIn) + rank (B + µIn) : µ ∈ C} equals 2n − `.
Consequently,

max{ rank (UAU∗ + V BV ∗) : U, V unitary} = min{2n− `, n}.

Here are other some consequences of Theorem 2.1.

Corollary 2.3 Let A,B ∈ Mn. Then UAU∗ + V BV ∗ is singular for all unitary U, V if and only
if there is µ ∈ C such that rank (A− µIn) + rank (B + µIn) < n.

Corollary 2.4 Let A ∈ Mn, and

k = min{ rank (A− µIn) : µ is an eigenvalue of A}.

Then
max{ rank (UAU∗ − V AV ∗) : U, V are unitary } = min{n, 2k}.

If k < n/2, then UAU∗ − V AV ∗ is singular for any unitary U, V ∈ Mn. In case A is normal, then
n− k is the maximum multiplicity of the eigenvalues of A.

Partition Mn as the disjoint union of unitary orbits. We can define a metric on the set of unitary
orbits by

d(U(A),U(B)) = min{ rank (X − Y ) : X ∈ U(A), Y ∈ U(B)}.
For example, if A and B are two orthogonal projections of rank p and q, respectively, then
d(U(A),U(B)) = |p − q|; see Proposition 2.8. So, the minimum rank of the sum or difference
of matrices from two different unitary orbits has a geometrical meaning. However, it is not so easy
to determine the minimum rank for matrices in U(A) + U(B) in general. We have the following
observation.

Proposition 2.5 Let A,B ∈ Mn and µ ∈ C be such that rank (A−µIn) = p and rank (B+µIn) =
q. Then

min{ rank (UAU∗ + V BV ∗) : U, V unitary} ≤ max{p, q}.
The inequality becomes equality if A− µIn and B + µIn are positive semi-definite.

Proof. There exist unitary U, V such that the last n−p columns of U(A−µIn)U∗ are zero, and
the last n− q columns of V (B + µIn)V ∗ are zero. Then rank (UAU∗ + V BV ∗) ≤ max{p, q}. �

The upper bound in the above proposition is rather weak. For example, we may have A and B
such that

max{ rank (A− µIn), rank (B + µIn) : µ ∈ C} = n− 1 (2.1)

and rank (UAU∗ + V BV ∗) = 1.

Example 2.6 Let A = diag (1, 2, . . . , n) and B = −J − A, where J ∈ Mn is the matrix having
all entries equal to 1/n. Then −B has distinct eigenvalues b1 > · · · > bn such that b1 > n >
b2 > n − 1 > b3 > · · · > b1 > 1. Then (2.1) clearly holds and rank (A + B) = 1. In fact, by
Theorem 2.7 below, we know that for any m ∈ {1, . . . , n}, there are unitary U, V ∈ Mn such that
rank (UAU∗ + V BV ∗) = m.
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2.2 Additional results

Here we study other possible rank values of matrices in U(A) + U(B). The following result shows
that if A and −B have disjoint spectra, then one can get every possible rank values from the
minimum to the maximum value, which is n.

Theorem 2.7 Suppose A,B ∈ Mn such that A and −B have disjoint spectra, and A + B has rank
k < n. Then for any m ∈ {k + 1, . . . , n}, there is a unitary U such that UAU∗ + B has rank m.

Proof. Let A,B ∈ Mn satisfy the hypotheses of the theorem. We need only to show that there
is a unitary U such that UAU∗ + B has rank k + 1. Then we can apply the argument again to get
a unitary Û such that ÛUAU∗Û∗ + B has rank k + 2. Repeating this procedure, we will get the
desired conclusion.

If k = n − 1. Then assume V AV ∗ and WBW ∗ are in upper triangular form. For U = W ∗V ,
we have UAU∗ + B = W ∗(V AV ∗ + WBW ∗)W is invertible.

For 1 ≤ k < n− 1. We may assume that

A + B = C =
(

C11 0
C21 0n−k

)
.

Let

A =
(

A11 A12

A21 A22

)
and −B =

(
B11 B12

B21 B22

)
with A11, B11 ∈ Mk. Note that A12 6= 0. Otherwise, A and −B have common eigenvalues since
A22 = B22.

Assume C21 6= 0. We may replace A+B by V (A+B)V ∗ for some permutation matrix V ∈ Mk

of the form V1 ⊕ In−k so that the matrix obtained by removing the first row of V (A + B)V ∗ still
has rank k. For notational simplicity, we may assume that V = In. Since A12 6= 0, we may assume
that the first row of A12 6= 0. Otherwise, replace (A,B) by (V AV ∗, V BV ∗) for some unitary
V = V1 ⊕ In−2. Here we still assume that removing the first row of A + B results in a rank k

matrix. Then there exists a small ξ > 0 such that for U = diag (eiξ, 1, . . . , 1) the matrix UAU∗ +B
has rank k+1 because removing its first row has rank k, and adding the first row back will increase
the rank by 1.

Now, suppose C21 = 0. Then A21 6= 0. Otherwise, A and B have common eigenvalues since
A22 = B22. Now, C11 is invertible. Assume that the matrix obtained by removing the first row
and first column of C11 has rank k − 1. Otherwise, replace (A,B) by (V AV ∗, V BV ∗) by some
unitary matrix V of the form V1 ⊕ In−k. Since A12 and A21 are nonzero, we may further assume
that vt = [a1,k+1, . . . , a1n] 6= 0 and u = [ak+1,1, . . . , an1]t 6= 0. Then there exists a small ξ > 0 such
that for U = diag (eiξ, 1, . . . , 1) the matrix UAU∗ + B has the form(

Ĉ11 Ĉ12

Ĉ21 0n−2

)
,

where Ĉ11 is invertible such that removing its first row and first column results in a rank k − 1
matrix, only the first row of Ĉ12 is nonzero and equal to (eiξ − 1)vt, only the first column of Ĉ21 is
nonzero and equal to (e−iξ − 1)u. Now, removing the first row and first column of UAU∗ + B has
rank k− 1; adding the column (e−iξ − 1)u (to the left) will increase the rank by 1, and then adding
the first row back will increase the rank by 1 more. So, UAU∗ + B has rank k + 1. �
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Note that the assumption that A and −B have disjoint spectra is essential. For example, if
A,B ∈ M4 such that A and −B are rank 2 orthogonal projections, then UAU∗ + V BV ∗ can only
have ranks 0, 2, 4. More generally, we have the following.

Proposition 2.8 Suppose A,B ∈ Mn are such that A and −B are orthogonal projection of rank
p and q. Then k = rank (UAU∗ + B) for a unitary matrix U ∈ Mn if and only if k = |p− q|+ 2j
with j ≥ 0 and k ≤ min{p + q, 2n− p− q}.

Proof. Suppose UAU∗ = Ip ⊕ 0n−p and V BV ∗ = 0j ⊕−Iq ⊕ 0n−j−q. Then UAU∗ + V BV ∗ has
rank k = |p− q|+ 2j ≤ min{p + q, 2n− p− q}. Thus, V ∗UAU∗V + B has rank k as well.

Conversely, consider UAU∗ + B for a given unitary U . There is a unitary V such that

V UAU∗V ∗ = Ip ⊕ 0n−p and V BV ∗ = −
{

Ir ⊕ 0s ⊕
(

C2 CS
CS S2

)
⊕ Iu ⊕ 0v

}
,

where C and S are invertible diagonal matrices with positive diagonal entries such that C2+S2 = It

such that r +s+ t = p and r + t+u = q. (Evidently, the first r columns of V ∗ span the intersection
of the range spaces of UAU∗ and B, the next s columns of V ∗ span the intersection of the range
space of UAU∗ and the null space of B, the last v columns of V ∗ span the intersections of the null
space of UAU∗ and B, the u columns preceding those will span the intersection of the range space
of B and the null space of UAU∗.) So, UAU∗ + B has the asserted rank value. �

The following result was proved in [24].

Theorem 2.9 Let A,B ∈ Mn Then UAU∗ + V BV ∗ is invertible for all unitary U, V ∈ Mn if and
only if there is ξ ∈ C such that the singular values of A− ξIn and B + ξIn lie in two disjoint closed
intervals in [0,∞).

Using this result, we can deduce the following.

Theorem 2.10 Let A,B ∈ Mn and k ∈ {0, . . . , n}. Then rank (UAU∗ + V BV ∗) = k for all
unitary U, V ∈ Mn if and only if one of the following holds.

(a) One of the matrices A or B is scalar, and rank (A + B) = k.
(b) k = n and there is ξ ∈ C such that the singular values of A − ξIn and B + ξIn lie in two

disjoint closed intervals in [0,∞).

Proof. If (a) holds, say, B = ξIn, then rank (UAU∗ + V BV ∗) = rank (A − ξIn) = k for all
unitary U, V ∈ Mn.

If (b) holds, then ‖(A− ξIn)x‖ > ‖(B + ξIn)y‖ for all unit vectors x, y ∈ Cn, or ‖(A− ξIn)x‖ <
‖(B +ξIn)y‖ for all unit vectors x, y ∈ Cn. Thus, (UAU∗+V BV ∗)x 6= 0 for all unit vector x ∈ Cn.
So, rank (UAU∗ + V BV ∗) = n for all unitary U, V ∈ Mn.

Conversely, suppose rank (UAU∗+V BV ∗) = k for all unitary U, V ∈ Mn. Assume that neither
A nor B is scalar. If k < n then by Theorem 2.1, there is µ such that rank (A− µIn) + rank (B +
µIn) = k. Since neither A nor B is a scalar, rank (A − µIn) < k and rank (B + µIn) < k. By
Proposition 2.5, there are unitary matrices U, V ∈ Mn such that rank (UAU∗ +V BV ∗) < k, which
is a contradiction. Thus, n = k. By Theorem 2.9, condition (b) holds. �
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3 Determinants

Let A,B ∈ Mn with eigenvalues a1, . . . , an, and b1, . . . , bn, respectively. In this section we study
the properties of ∆(A,B) and P (A,B). For notational convenience and easy description of the
results and proofs, we consider the sets

D(A,B) = ∆(A,−B) = {det(X − Y ) : X ∈ U(A), Y ∈ U(B)}

and

Q(A,B) = P (A,−B) =


n∏

j=1

(aj − bσ(j)) : σ is a permutation of {1, . . . , n}

 .

It is easy to translate the results on D(A,B) and Q(A,B) to those on ∆(A,B) and P (A,B), and
vice versa.

For any permutation (σ(1), . . . , σ(n)) of (1, . . . , n), there are unitary matrices U and V such that
UAU∗ and V BV ∗ are upper triangular matrices with diagonal entries a1, . . . , an and bσ(1), . . . , bσ(n),
respectively. It follows that

Q(A,B) ⊆ D(A,B).

The elements in Q(A,B) are called σ-points.

Note also that if we replace (A,B) by (UAU∗ − µIn, V BV ∗ − µIn) for any µ ∈ C and unitary
U, V ∈ Mn, the sets Q(A,B) and D(A,B) will be the same. Moreover, D(B,A) = (−1)nD(A,B)
and Q(B,A) = (−1)nQ(A,B).

The following result can be found in [9].

Theorem 3.1 Suppose A,B ∈ M2 have eigenvalues α1, α2 and β1, β2, respectively, and suppose
A − (trA/2)I2 and B − (trB/2)I2 have singular values a ≥ b ≥ 0 and c ≥ d ≥ 0. Then D(A,B)
is an elliptical disk with foci (α1 − β1)(α2 − β2) and (α1 − β2)(α2 − β1) with length of minor axis
equal to 2(ac− bd). Consequently, D(A,B) is a singleton if and only if A or B is a scalar matrix;
D(A,B) is a nondegenerate line segment if and only if A and B are non-scalar normal matrices.

In the subsequent discussion, let

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}

be the numerical range of A ∈ Mn.

3.1 Matrices whose determinantal ranges have empty interior

Theorem 3.2 Let A,B ∈ Mn with n ≥ 3. Then D(A,B) = {δ} if and only if one of the following
holds.

(a) δ = 0, and A⊕B has an eigenvalue with multiplicity at least n + 1.
(b) δ 6= 0, one of the matrices A or B is a scalar matrix, and det(A−B) = δ.

Proof. If (a) or (b) holds, then clearly D(A,B) is a singleton. If D(A,B) = {0}, then condition
(a) holds by Corollary 2.3.

Suppose D(A,B) = {δ} with δ 6= 0. We claim that A or B is a scalar matrix. Suppose A
and B have eigenvalues a1, . . . , an and b1, . . . , bn, respectively. Assume that A has at least two
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distinct eigenvalues a1, a2 and B also has two distinct eigenvalues b1, b2. Then
∏n

j=1(aj − bj) and

(a1 − b2)(a2 − b1)
∏n

j=3(aj − bj) will be two distinct σ-points, which is a contradiction because
Q(A,B) ⊆ D(A,B) is also a singleton.

So, we have a1 = · · · = an or b1 = · · · = bn. We may assume that the latter case holds;
otherwise, interchange the roles of A and B. Suppose neither A nor B is a scalar matrix. Applying
a suitable unitary similarity transform to B, we may assume that B is in upper triangular form
with nonzero (1, 2) entries. Also, we may assume that A is in upper triangular form so that the

leading two-by-two matrix is not a scalar matrix. If A =
(

A11 A12

0 A22

)
and B =

(
B11 B12

0 B22

)
with A11, B11 ∈ M2, then D(A11, B11) is a non-degenerate circular disk by Theorem 3.1. Since

{det(A22 −B22)δ : δ ∈ D(A11, B11)} ⊆ D(A,B),

we see that D(A,B) cannot be a non-zero singleton. �

Theorem 3.3 Suppose A,B ∈ Mn are such that D(A,B) is not a singleton. The following condi-
tions are equivalent.

(a) D(A,B) has empty interior.

(b) D(A,B) is a non-degenerate line segment.

(c) Q(A,B) is not a singleton, i.e., there are at least two distinct σ-points, and one of the
following conditions holds.

(c.1) A and B are normal matrices with eigenvalues lying on the same straight line or the
same circle.

(c.2) There is µ ∈ C such that one of the matrices A−µIn or B−µIn is rank one normal, and
the other one is invertible normal so that the inverse matrix has collinear eigenvalues.

(c.3) There is µ ∈ C such that A−µIn is unitarily similar to Ã⊕0n−k and B−µIn is unitarily
similar to 0k ⊕ B̃ so that Ã ∈ Mk and B̃ ∈ Mn−k are invertible.

In [3], the authors conjectured that for normal matrices A,B ∈ Mn, if D(A,B) is contained in
a line L, then L must pass through the origin. Using the above result, we see that the conjecture
is not true. For example, if A = diag (1, 1 + i, 1 − i)−1 and B = diag (−1, 0, 0), then D(A,B) is a
straight line segment joining the points 1 − i/2 and 1 + i/2; see Corollary 3.11. This shows that
D(A,B) can be a subset of a straight line not passing through the origin. Of course, Theorem
3.3 covers more general situations. In (c.1), the line segment D(A,B) and the origin are collinear;
in (c.3) the line segment D(A,B) has endpoints 0 and (−1)n−k det(Ã) det(B̃); in (c.2) the line
segment and the origin may or may not be collinear.

Since, D(A,B) = (−1)nD(B,A), D(A,B) has empty interior (is a line segment) if and only
if D(B,A) has empty interior (is a line segment). This symmetry will be used in the following
discussion. We establish several lemmas to prove the theorem.

Given a, b, c, d ∈ C, with ad − bc 6= 0, let f(z) = (az + b)/(cz + d) be the fractional linear
transform on C \ {−d/c} (C, if c = 0). If A ∈ Mn is such that cA+ dIn is invertible, one can define
f(A) = (aA + bIn)(cA + dIn)−1. The following is easy to verify.
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Lemma 3.4 Suppose A,B ∈ Mn, and f(z) = (az + b)/(cz + d) is a fractional linear transform
such that f(A) and f(B) are well defined. Then

D(f(A), f(B)) = det((cA + dIn)(cB + dIn))−1(ad− bc)nD(A,B).

Lemma 3.5 Let A,B ∈ Mn with eigenvalues a1, . . . , an and b1, . . . , bn, respectively. If D(A,B)
has empty interior, then

D(A,B) = D(A,diag (b1, . . . , bn)) = D(diag (a1, . . . , an), B)

= D(diag (a1, . . . , an),diag (b1, . . . , bn)).

Proof. Assume that D(A,B) has empty interior. Applying a unitary similarity transform we
assume that A = (ars) and B = (brs) are an upper triangular matrices. For any unitary matrix
V ∈ Mn, let D = (drs) = V BV ∗. For any ξ ∈ [0, 2π), let Uξ = [eiξ] ⊕ In−1. Denote by Xrs the
(n − 1) × (n − 1) matrices obtained from X ∈ Mn by deleting its rth row and the sth column.
Expanding the determinant det(UξAU∗

ξ −D) along the first row yields

det(UξAU∗
ξ −D)

= (a11 − d11) det(A11 −D11) +
n∑

j=2

(−1)j+1(eiξa1j − d1j) det(A1j −D1j)

=

(a11 − d11) det(A11 −D11)−
n∑

j=2

(−1)j+1d1j det(A1j −D1j)

+ eiξγ,

where γ =
∑n

j=2(−1)j+1a1j det(A1j −D1j). Thus

C(A, V BV ∗) = {det(UξAU∗
ξ − V BV ∗) : ξ ∈ [0, 2π)}

is a circle with radius |γ|. If |γ| 6= 0, i.e., C(A, V BV ∗) is a non-degenerate circle, repeating the
construction in the previous paragraph on V = In, we get a degenerate circle

C(A,B) = {det(A−B)}.

Since the unitary group is path connected, there is a continuous function t 7→ Vt for t ∈ [0, 1] so
that V0 = V and V1 = In. Thus, we have a family of circles C(A, VtBV ∗

t ) in D(A,B) transforming
C(A, V BV ∗) to C(A,B). Hence, all the points inside C(A, V BV ∗) belong to D(A,B). Thus,
D(A,B) has non-empty interior. As a result,

γ =
n∑

j=2

(−1)j+1a1j det(A1j −D1j) = 0,

and

det(A− V BV ∗)

= det(A−D) = (a11 − d11) det(A11 −D11)−
n∑

j=2

(−1)j+1d1j det(A1j −D1j)

= det(A1 −D) = det(A1 − V BV ∗),
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where A1 is the matrix obtained from A by changing all the non-diagonal entries in the first
row to zero. It follows that D(A,B) = D(A1, B). Inductively, by expanding the determinant
det(VjAjV

∗
j −D) along the (j+1)th row with Vj = Ij⊕ [eiξ]⊕In−j−1, we conclude that D(Aj , B) =

D(Aj+1, B) where Aj+1 is the matrix obtained from Aj by changing all the non-diagonal entries in
the (j + 1)-th row to zero. Therefore,

D(A,B) = D(A1, B) = D(A2, B) = · · · = D(An−1, B) = D(diag (a11, . . . , ann), B).

Note that a11, . . . , ann are the eigenvalues of A as A is in the upper triangular form. Similarly, we can
argue that D(A,B) = D(A,diag (b1, . . . , bn)). Now, apply the argument to D(diag (a1, . . . , an), B)
to get the last set equality. �

Lemma 3.6 Let A = Â ⊕ 0n−k, where Â ∈ Mk with k ∈ {1, . . . , n − 1} is upper triangular
invertible. If B ∈ Mn has rank n− k, then

D(A,B) = {(−1)n−k det(Â) det(X∗BX) : X is n× (n− k), X∗X = In−k}.

If B = 0k ⊕ B̂ so that B̂ ∈ Mn−k is invertible, then D(A,B) is the line segment joining 0 and

(−1)n−k det(Â) det(B̂).

Proof. Suppose A = (ars) has columns A1, . . . , An, and U∗BU has columns B1, . . . , Bn. Let
C be obtained from A− U∗BU by removing the first column, and let B22 be obtained from C by
removing the first row. By linearity of the determinant function on the first column,

det(A− U∗BU) = det([A1|C])− det([B1|C]) = −a11 det(B22) + 0,

because [B1|C] has rank at most n− 1. Inductively, we see that

det(A− U∗BU) = (−1)n−k det(Â) det(Y )

where Y is obtained from U∗BU by removing its first k rows and first k columns.
Now if B = 0k ⊕ B̂ so that B̂ ∈ Mn−k is invertible, then the set {det (X∗BX) : X∗X = In−k}

is a line segment joining 0 and det(B̂); e.g., see [6]. Thus, the last assertion follows. �

Lemma 3.7 Suppose A and B are not both normal such that A⊕B has exactly n nonzero eigen-
values. If D(A,B) has no interior point, then there exist µ ∈ C and 0 ≤ k ≤ n such that A− µIn

and B − µIn are unitarily similar to matrices of the form Ã⊕ 0n−k and 0k ⊕ B̃ for some invertible
matrices Ã ∈ Mk and B̃ ∈ Mn−k.

Proof. Suppose A or B is a scalar matrix, say B = µIn. Under the given hypothesis, A − µIn

is invertible and B − µIn = 0. Thus, the result holds for k = n. In the rest of the proof, assume
that neither A nor B is a scalar matrix.

We may assume that

A = (ars) =
(

A11 A12

0 A22

)
and B = (brs) =

(
B11 B12

0 B22

)
(3.1)
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such that A11, B11 ∈ Mm and A22, B22 ∈ Mn−m are upper triangular matrices so that A11, B22 are
invertible, and A22, B11 are nilpotent.

If m = 0, then A = A11 is nilpotent and B = B22 is invertible. We are going to show that
A = 0. Hence, the lemma is satisfied with k = 0.

Suppose A 6= 0. We may assume that a12 6= 0. Let X =
(

0 a12

0 0

)
and Y =

(
b11 b12

0 b22

)
.

Since B is not a scalar matrix, we may assume that Y is not a scalar matrix either. Then D(X, Y )
is a non-degenerate elliptical disk and{

(−1)nµdet(B)
b11b22

: µ ∈ D(X, Y )
}
⊆ D(A,B) .

Therefore, D(A,B) has non-empty interior, a contradiction. Similarly, if m = n, then B = 0.
Hence, we may assume that 1 ≤ m < n in the following.

We are going to show that A12 = 0 = B12 in (3.1). To this end, let X, Y ∈ M2 be the principal
submatrices of A and B lying in rows and columns m and m + 1. If am,m+1 6= 0 or bm,m+1 6= 0,
then

−(am,m bm+1,m+1)−1 det(A−B)D(X, Y )

is an elliptical disk in D(A,B), which is impossible. Next, we show that am−1,m+1 = 0 = bm−1,m+1.
If it is not true, let X, Y ∈ M2 be the principal submatrices of A and B lying in rows and columns
m − 1 and m + 1. For any unitary U, V ∈ M2, let γ = det (UXU∗ − V Y V ∗). Construct Û

(respectively, V̂ ) from In by changing the principal submatrix at rows and columns m − 1 and

m+1 by U (respectively, V ). Then ÛAÛ∗ is still in upper triangular block form so that its leading
(m−2)× (m−2) principal submatrix and its trailing (n−m−1)× (n−m−1) principal submatrix
are the same as A. Moreover, since we have shown that am,m+1 = 0 = bm,m+1, the principal

submatrix of ÛAÛ∗ lying in rows m− 1,m, m + 1 has the form ∗ ∗ ∗
0 amm 0
∗ ∗ ∗

 .

A similar result is true for V̂ BV̂ ∗. Hence,

det(ÛAÛ∗ − V̂ BV̂ ∗) = −det(A−B)γ/(am−1,m−1 bm+1,m+1).

As a result, D(A,B) contains the set

−(am−1,m−1 bm+1,m+1)−1 det(A−B)D(X, Y ),

which is an elliptical disk. This is a contradiction.
Next, we can show that am−2,m+1 = 0 = bm−2,m+1 and so forth, until we show that a1,m+1 =

0 = b1,m+1. Note that it is important to show that aj,m+1 = 0 = bj,m+1 in the order of j =

m,m − 1, . . . , 1. Remove the (m + 1)th row and column from B and A to get B̂ and Â. Then

am+1,m+1D(Â, B̂) is a subset of D(A,B) and has no interior point. An inductive argument shows
that the (1, 2) blocks of A and B are zero. Thus, A12 = 0 = B12.

If B11 and A22 are both equal to zero, then the desired conclusion holds. Suppose B11 or A22

is non-zero. By symmetry, we may assume that B11 6= 0.
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Claim (1) A11 = µIm and (2) B22 = µIn−m for some µ 6= 0.

If this claim is proved, then A − µIn = 0k ⊕ (A22 − µIn−m) and B − µIn = (B11 − µI) ⊕ 0n−k.
Thus, the result holds with k = n−m.

To prove our claim, suppose B11 6= 0. Then m ≥ 2 and we may assume that its leading 2 × 2
submatrix B0 is a nonzero strictly upper triangular matrix. If A11 is non-scalar, then we may
assume that its leading 2 × 2 submatrix A0 is non-scalar. But then D(A0, B0) will generate an
elliptical disk in D(A,B), which is impossible. So, A11 = µIm for some µ 6= 0. This proves (1).

Now we prove (2). Suppose B22 6= µIm−n Thus, n − m ≥ 2 and we may assume that 4 × 4
submatrices of A and B lying at rows and columns labeled by m−1,m, m+1,m+2 have the forms

A′ = µI2 ⊕
(

0 α
0 0

)
and B′ = B′

1 ⊕B′
2

with α ∈ C, a nonzero 2 × 2 nilpotent matrix B′
1 and a 2 × 2 matrix B′

2 such that B′
2 6= µI2. Let

P = [1]⊕
(

0 1
1 0

)
⊕[1], V = V1⊕V2 with V1, V2 ∈ M2 be unitary. Then det(PA′P t−V B′V ∗) = δ1δ2

with
δ1 = det(diag (µ, 0)− V1B

′
1V

∗
1 ) and δ2 = det(diag (µ, 0)− V2B

′
2V

∗
2 ).

Since B′
2 6= µI2, by Theorem 3.1, we can choose some unitary V2 such that δ2 6= 0. Also as B′

1 is
nonzero nilpotent, by Theorem 3.1, one can vary the unitary matrices V1 to get all values δ1 in the
non-degenerate circular disks D(diag (µ, 0), B′

1). Hence,

(µ2bm+1,m+1 bm+2,m+2)−1δ2 det(A−B) D(diag (µ, 0), B′
1) ⊆ D(A,B)

so that D(A,B) also has non-empty interior, which is the desired contradiction. �

Lemma 3.8 Suppose A,B ∈ Mn are normal matrices such that A has at least three distinct eigen-
values, each eigenvalue of B has multiplicity at most n − 2, and each eigenvalue of A ⊕ B has
multiplicity at most n − 1. Then there are three distinct eigenvalues a1, a2, a3 of A satisfying the
following condition.

For any eigenvalue b of B with b /∈ {a1, a2, a3}, there exist eigenvalues b1, b2, b3 of B with
b1 /∈ {b2, b3}, b3 = b, and the remaining eigenvalues can be labeled so that

∏n
j=4(aj − bj) 6= 0.

Moreover, if A has more than three distinct eigenvalues, and B has exactly two distinct eigenvalues,
then we can replace a3 by any eigenvalue of A different from a1, a2, a3, and get the same conclusion.

Proof. Let A and B have k distinct common eigenvalues γ1, γ2, . . . , γk so that γj has multiplicity
mj in the matrix A⊕B for j = 1, . . . , k, with m1 ≥ · · · ≥ mk. By our assumption, n− 1 ≥ m1.

The choices for ai and bi depend on k. We illustrate the different cases in the following table.

k = 0 k = 1 k = 2 k ≥ 3
a1 ∗ γ1 γ1 γ1

a2 ∗ ∗ γ2 γ2

a3 ∗ ∗ ∗ γ3

b1 6= b γ1 γ1 γ1

b2 6= b1 6= b1 γ2 γ2

b3 b b b b
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where ∗ denotes any choice subject to the condition that a1, a2, a3 are distinct eigenvalues of A.
For any eigenvalue b of B with b /∈ {a1, a2, a3}, set b3 = b and choose b1 = γ1 if k ≥ 1 and b1 to be
any eigenvalue of B not equal to b. Since the multiplicity of b1 is ≤ n− 2, there is always a third
eigenvalue b2 of B, with b2 6= b1. Furthermore, we can choose b3 = γ2 if k ≥ 2.

Use the remaining eigenvalue of A and B to construct the matrices Â = diag (a4, . . . , an) and

B̂ = diag (b4, . . . , bn). By Corollary 2.2, the proof will be completed if we can prove the following:

Claim If µ is a common eignevalue of Â and B̂ then the multiplicity of µ in the matrix Â⊕ B̂ is
at most n− 3.

To verify our claim, let µ be a common eigenvalue of Â and B̂. Then µ = γr with r ∈ {1, . . . , k}.
If r ∈ {1, 2}, then two of the entries (a1, a2, a3, b1, b2, b3) equals γr by our construction. Since

n− 1 ≥ mr, the multiplicity of γr in Â⊕ B̂ equals mr − 2 ≤ n− 3.

If r = 3, then b3 6= γi for i = 1, 2, 3. Thus, m3 ≤
m1 + m2 + m3

3
≤
[
2n− 1

3

]
≤ n− 2, where [t]

is the integral part of the real number t. Since one of the entries in (a1, a2, a3, b1, b2, b3) equals γ3,

we see that the multiplicity of γ3 in Â⊕ B̂ equals m3 − 1 ≤ n− 3.
Suppose r = 4. If n = 4 then (a1, a2) = (b1, b2) = (γ1, γ2), a3 = γ3 and b3 = γ4 by our

construction. Thus, a4− b4 = γ4− γ3 6= 0. If n ≥ 5, then the multiplicity of γr in Â⊕ B̂ is at most

m4 ≤
[
2n

4

]
≤ n− 3.

If r ≥ 5, then n ≥ r ≥ 5 and the multiplicity of γr in Â⊕ B̂ is at most mr ≤
2n

5
≤ n− 3.

By the above arguments, the claim holds.
Note that if B has two distinct eigenvalues, then k ≤ 2 and a3 can be chosen to be any eigenvalue

different from a1, a2 in our construction. Thus, the last assertion of the lemma follows. �

Lemma 3.9 Let A = diag (a1, a2, a3) and B = diag (b1, b2, b3) with aj 6= ak for 1 ≤ j < k ≤ 3 and
b1 6= b2. Suppose D(A,B) has empty interior. Then a1, a2, a3, b3 are either concyclic or collinear.

Proof. By Lemma 3.4, we may apply a suitable fractional linear transform and assume that
(a1, a2, a3) = (a, 1, 0) with a ∈ R \ {0, 1}. By the result in [7], if U = (urs) ∈ M3 is unitary and
SU = (|urs|2), then

det(UAU∗ −B) = det(A) + (−1)3 det(B)− (b1, b2, b3)SU (0, 0, a)t + (b2b3, b1b3, b1b2)SU (a, 1, 0)t.

Let
C = (a, 1, 0)t(b2b3, b1b3, b1b2)− (0, 0, a)t(b1, b2, b3).

Then
det(UAU∗ −B) = det(A) + (−1)3 det(B) + tr (CSU ).

It follows that the set
R = {tr (C(|urs|2)) : (urs) is unitary}

has empty interior. Let S0 be the 3× 3 matrix with all entries equal to 1/3. For α, β ∈ [0, 1/5], let

S = S(α, β) =

 1
3 − α 1

3 + β 1
3 + (α− β)

1
3 + α 1

3 − β 1
3 − (α− β)

1
3

1
3

1
3

 = S0 +

 1
−1
0

 (−α β α− β)
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Since
4
15

≤
√

1
9
− α2,

√
1
9
− β2,

√
1
9
− (α− β)2 ≤ 1

3
,

by the result in [1], there is a unitary (urs) such that (|urs|2) = S. Direct calculation shows that

tr (CS) = tr (CS0) + (b1 − b2)[α(ab3 + a)− β(b3 + a)].

The set R having empty interior implies that (ab3 + a) and (b3 + a) are linearly independent over
reals, which is possible only when b3 is real. Thus, {a1, a2, a3, b3} ⊆ R and the result follows. �

Proof of Theorem 3.3. The implication (b) ⇒ (a) is clear.
Suppose (c) holds. If (c.1) holds, then D(A,B) is a line segment on a line passing through

origin as shown in [3].
If (c.2) holds, then we can assume that A− µIn = diag (a, 0, . . . , 0), and B − µIn has full rank

and the eigenvalues of (B−µIn)−1 are collinear. We may replace (A,B) by (A−µIn, B−µIn) and
assume that µ = 0. Since B−1 is normal with collinear eigenvalues, the numerical range W (B−1)
of B−1 is a line segment.

Let U ∈ Mn be unitary, and U∗BU =
(

b11 ∗
∗ B22

)
with B22 ∈ Mn−1. Then det(B22) is the

(1, 1) entry of det(B)U∗B−1U . Hence, det(B22)/ det(B) ∈ W (B−1). Thus,

det(UAU∗ −B) = det(A− U∗BU) = a(−1)n−1 det(B22) + (−1)n det(U∗BU)

∈ a(−1)n−1 det(B)W (B−1) + (−1)n det(B).

If (c.3) holds, then D(A,B) is the line segment joining 0 and (−1)n−k det(Ã) det(B̃) by Lemma
3.6. Thus, we have (c) ⇒ (b).

Finally, suppose (a) holds, i.e., D(A,B) has empty interior. Since D(A,B) is not a singleton,
neither A nor B is a scalar matrix. Suppose A and B have eigenvalues a1, . . . , an and b1, . . . , bn.
Let A′ = diag (a1, . . . , an) and B′ = diag (b1, . . . , bn). By Lemma 3.5, D(A,B) = D(A′, B′). We
show that one of (c.1) – (c.3) holds.

Suppose A and B have k distinct common eigenvalues γ1, γ2, . . . , γk such that γj has multiplicity
mj in the matrix A ⊕ B for j = 1, . . . , k, with m1 ≥ · · · ≥ mk. Since D(A,B) 6= {0}, we have
m1 ≤ n.

If m1 = n, then (c.3) follows from Lemma 3.7.
Suppose k = 0 or mj ≤ n − 1 for all 1 ≤ j ≤ k. We claim that both A and B are normal. If

it is not true, we may assume that A is not normal. Otherwise, interchange the roles of A and B.
Then we may assume that A is in upper triangular form with nonzero (1, 2) entry by the result in
[27]. Suppose A has diagonal entries a1, . . . , an. Let A1 be the leading 2× 2 principal submatrix of
A. We can also assume that B is upper triangular with diagonal b1, . . . , bn, where b1 6= b2 satisfies
the following additional assumptions:

(1) If {a1, a2} ∩ {γ1, . . . , γk} = ∅, then b1 and b2 are chosen so that γj ∈ {b1, b2} for 1 ≤ j ≤
min{k, 2}.

(2) If {a1, a2} ∩ {γ1, . . . , γk} 6= ∅, then b1 and b2 are chosen so that γj ∈ {a1, a2, b1, b2} for
1 ≤ j ≤ min{k, 3}.
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Then b3, . . . , bn can be arranged so that p =
∏n

j=3 (aj − bj) 6= 0. It follows from Theorem 3.1 that
{pδ : δ ∈ D(A1,diag (b1, b2))} is a nondegenerate elliptical disk in D(A,B), which is a contradiction.

Now, suppose both A and B are normal, and assume that k = 0 or mj ≤ n−1 for all 1 ≤ j ≤ k.

Case 1 Suppose A or B has an eigenvalue with multiplicity n− 1.
Interchanging the role of A and B, if necessary, we may assume that A = diag (a, 0, . . . , 0)+a2In.

We can further set a2 = 0; otherwise, replace (A,B) by (A− a2In, B− a2In). Since mj ≤ n− 1, we
see that B is invertible. Moreover, for any unitary matrix U , let u be the first column of U , and
let Ũ be obtained from U by removing u. Then

det(A− U∗BU) = (−1)n
(
det(B)− adet(Ũ∗BŨ)

)
.

Note that det(Ũ∗BŨ)/ det(B) is the (1, 1) entry of (U∗BU)−1, and equals u∗B−1u. So,

D(A,B) = {(−1)n
(
det(B)− adet(B)u∗B−1u

)
: u ∈ Cn, u∗u = 1}.

Since D(A,B) is a set with empty interior and so is the numerical range W (B−1) of B−1. Thus,
B−1 has collinear eigenvalues; see [21]. Hence condition (c.2) holds.

Case 2 Suppose both A and B have two distinct eigenvalues and each eigenvalue of A and B has
multiplicity at most n− 2.

Let A and B have two distinct eigenvalues, say, a1, a2 and b1, b2, respectively. We claim that
a1, a2, b1, b2 are on the same straight line or circle, i.e., condition (c.1) holds. Suppose it is not true.
Assume that a1, a2 and b1 are not collinear and b2 is not on the circle passing through a1, a2 and
b1. Then there is a factional linear transform f(z) such that f(A) and f(B) has eigenvalues 1, 0
and a, b, respectively, where a ∈ R\{1, 0} and b /∈ R. By Lemma 3.4, D(A,B) has empty interior if
and only if D(f(A), f(B)) has empty interior. We may replace (A,B) by (f(A), f(B)) and assume
that A = diag (1, 0, 1, 0)⊕A2, B = diag (a, b, a, b)⊕B2 with det(A2 −B2) 6= 0. By Theorem 3.1,

D(diag (1, 0),diag (a, b)) = {(1−s)a(b−1)+sb(a−1) : s ∈ [0, 1]} = {a(b−1)+s(a− b) : s ∈ [0, 1]}.

Hence, D(A,B) contains the set

R = {det(A2 −B2)(a(b− 1) + s(a− b))(a(b− 1) + t(a− b)) : s, t ∈ [0, 1]}

=

{
det(A2 + B2)(a(b− 1))2

(
1 + (s + t)

a− b

a(b− 1)
+ st

(
a− b

a(b− 1)

)2
)

: s, t ∈ [0, 1]

}
.

Note that {(st, s + t) : s, t ∈ [0, 1]} has non-empty interior. Let r =
a− b

a(b− 1)
. Then (ar + 1)b =

a(1 + r) and so r cannot be real. Therefore, the complex numbers r and r2 are linear independent
over reals. Hence the mapping (u, v) 7→ 1 + ur + vr2 is an invertible map from R2 to C. Thus, the
set R ⊆ D(A,B) has non-empty interior, which is a contradiction.

Case 3 Suppose each eigenvalue of A and B has multiplicity at most n−2 and one of the matrices
has at least three distinct eigenvalues.

Assume that A has at least three distinct eigenvalues. Otherwise, interchange the roles of A
and B. By Lemma 3.8, there are three distinct eigenvalues of A, say, a1, a2, a3, such that the
conclusion of the lemma holds. Applying a fractional linear transformation, if necessary, we may
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assume that a1, a2, a3 are collinear. For any eigenvalue b of B with b /∈ {a1, a2, a3} we can get
b1, b2 and b3 = b satisfying the conclusion of Lemma 3.8. Therefore, D(A,B) contains the set
{δ
∏n

j=4(aj − bj) : δ ∈ D(diag (a1, a2, a3),diag (b1, b2, b3))}. Since D(A,B) has empty interior,
Lemma 3.9 ensures that a1, a2, a3 and b are collinear. Therefore, all eigenvalues of B lie on the line
L passing through a1, a2, a3.

Suppose B has three distinct eigenvalues. We can interchange the roles of A and B and conclude
that the eigenvalues of A lie on the same straight line L. Suppose B has exactly two eigenvalues,
and a is an eigenvalue of A with a /∈ {a1, a2, a3} such that a is not an eigenvalue of B. By Lemma
3.8, we may replace a3 by a and show that a1, a2, a and the two eigenvalues of B belong to the
same straight line. Hence, all eigenvalue of A and B are collinear and (c.3) holds in this case. �

3.2 Sharp points

A boundary point µ of a compact set S in C is a sharp point if there exists d > 0 and 0 ≤ t1 <
t2 < t1 + π such that

S ∩ {z ∈ C : |z − µ| ≤ d} ⊆ {µ + ρeiξ : ρ ∈ [0, d], ξ ∈ [t1, t2]}.

It was shown [3, Theorem 2] that for two normal matrices A,B ∈ Mn such that the union of the
spectra of A and B has 2n distinct elements, a nonzero sharp point of D(A,B) is a σ-point, that
is, an element in Q(A,B). More generally, we have the following.

Theorem 3.10 Let A,B ∈ Mn. Every sharp point of D(A,B) is a σ-point.

Proof. Using the idea in [2], we can show that a nonzero sharp point det(UAU∗−B) is a σ-point
as follows. For simplicity, assume U = In so that det(A−B) is a sharp point of D(A,B). For each
Hermitian H ∈ Mn, consider the following one parameter curve in D(A,B):

ξ 7→ det
(
A− e−iξHBeiξH

)
= det(A−B)

{
1 + iξtr ((A−B)−1[H,B]) + O(ξ2)

}
,

where [X, Y ] = XY − Y X. Since det(A−B) is a sharp point,

0 = tr (A−B)−1[H,B] = trH[B, (A−B)−1] for all Hermitian H,

and hence
0 = [B, (A−B)−1] = B(A−B)−1 − (A−B)−1B.

Consequently, 0 = (A−B)B −B(A−B), equivalently, AB = BA. Thus, there exists a unitary V
such that both V AV ∗ and V BV ∗ are in triangular form. As a result, det(A−B) = det(V (A−B)V ∗)
is a σ-point.

Next, we refine the previous argument to treat the case when det(A−B) = 0 is a sharp point.
If the spectra of A and B overlap, then 0 is a σ-point. So, we assume that A and B has disjoint
spectra. By Theorem 2.7, there is unitary U such that UAU∗ −B has rank n− 1. Assume U = In

so that A−B has rank n− 1 and det(A−B) = 0 is a sharp point. Then for any Hermitian H and
1 ≤ k ≤ n,

det(A− e−iξHBeiξH) = det(A−B + iξ(HB −BH) + ξ2M)

= det(A−B) + iξ

 n∑
j=1

rkjsjk

+ O(ξ2),
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where adj(A − B) = R = (rpq) and HB − BH = S = (spq). Thus, for k = 1, . . . , n we have∑n
j=1 rkjsjk = 0, and hence

0 = tr RS = tr (adj(A−B)(HB −BH)) = trH[Badj(A−B)− adj(A−B)B]

for every Hermitian H. So, B and adj(A− B) commute. Since A− B has rank n− 1, the matrix
adj(A − B) has rank 1, and equals uvt for some nonzero vectors u, v. Comparing the columns of
the matrices on left and right sides of the equality Buvt = uvtB, we see that Bu = bu for some
b ∈ C. Similarly, we have Auvt = uvtA and hence Au = au for some a ∈ C. Consequently,
0 = (A− B)adj(A− B) = (A− B)uvt = (a− b)uvt. Thus, a− b = 0, i.e., the spectra of A and B
overlap, which is a contradiction. �

Clearly, if D(A,B) is a line segment, then the end points are sharp points. By Theorem 3.3
and the above theorem, we have the following corollary showing that Marcus-Oliveira conjecture
holds if D(A,B) has empty interior.

Corollary 3.11 Let A,B ∈ Mn. If D(A,B) has empty interior, then D(A,B) equals the convex
hull of Q(A,B).

By Theorem 2.9, 0 ∈ D(A,B) if for every ξ ∈ C, the singular values of A− ξIn and B − ξIn do
not lie in two disjoint closed intervals in [0,∞). Following is a sufficient condition for A,B ∈ Mn

to have 0 as a sharp point of D(A,B) in terms of W (A) and W (B).

Proposition 3.12 Let A,B ∈ Mn be such that 0 ∈ D(A,B) and

W (A) ∪W (−B) ⊆ {reiξ : r ≥ 0, ξ ∈ (−π/(2n), π/(2n))}.

Then
D(A,B) ⊆ {reiξ : r ≥ 0, ξ ∈ (−π/2, π/2)}.

Proof. Note that for any unitary U and V , there is a unitary matrix R such that

R(UAU∗ − V BV ∗)R∗ = (apq)− (bpq)

is in upper triangular form. Hence, app − bqq = rpe
iξp with rp ≥ 0 and ξp ∈ (−π/(2n), π/(2n)) for

p = 1, . . . , n. So,

det(UAU∗ − V BV ∗) =
∏n

p=1(app − bpp) = reiξ with r ≥ 0 and ξ ∈ (−π/2, π/2). �

4 Further extensions

There are many related topics and problems which deserve further investigation.

One may ask whether the results can be extended to the sum of k matrices from k different
unitary similarity orbits for k > 2.

For the norm problem, in an unpublished manuscript Li and Choi have extended the norm
bound result to k matrices A1, . . . , Ak ∈ Mn for k ≥ 2 to

max{‖X1 + · · ·+ Xk‖ : Xj ∈ U(Aj), j = 1, . . . , k}
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= min


k∑

j=1

‖Aj − µjIn‖ : µj ∈ C, j = 1, . . . , k,

k∑
j=1

µj = 0

 .

However, we are not able to extend the maximum rank result in Section 2 to k matrices with k > 2
at this point. In any event, it is easy to show that for any µ1, . . . , µk ∈ C satisfying

∑k
j=1 µj = 0,

min{ rank (X1 + · · ·+ Xk) : Xj ∈ U(Aj), j = 1, . . . , k} ≤ max{ rank (Aj − µjIn) : j = 1, . . . , k}.

It is challenging to determine all the possible rank values of matrices in U(A1) + · · ·+ U(Ak).
For Hermitian matrices A1, . . . , Ak, there is a complete description of the eigenvalues of the

matrices in U(A1) + · · ·+ U(Ak); see [16]. Evidently, the set

∆(A1, . . . , Ak) =

det

 k∑
j=1

Xj

 : Xj ∈ U(Aj), j = 1, . . . , k


is a real line segment. When k = 2, the end points of the line segment has the form det(X1 + X2)
for some diagonal matrices X1 ∈ U(A1) and X2 ∈ U(A2); see [15]. However, this is not true if k > 2
as shown in the following example.

Example 4.1 Let

A =
[

3 0
0 1

]
, B =

[
3 1
1 1

]
, C =

[
1 −1
−1 5

]
.

Then for any unitary U, V,W ∈ M2, the matrix UAU∗ + V BV ∗ + WCW ∗ is positive definite with
eigenvalues 7 + d and 7− d with d ∈ [0, 7). Hence

det(UAU∗ + V BV ∗ + WCW ∗) ≤ 72 = det(A + B + C).

Thus, the right end point of the set ∆(A,B, C) is not of the form (a1+bσ(1)+cτ(1))(a2+bσ(2)+cτ(2))
for permutations σ and τ of (1, 2).

It is interesting to determine the set ∆(A1, . . . , Ak) for Hermitian, normal, or general matrices
A1, . . . , Ak ∈ Mn. Inspired by the Example 4.1, we have the following observations.

1. Suppose A1, . . . , Ak are positive semi-definite matrices. If there are unitary U1, . . . , Uk such
that

k∑
j=1

UjAU∗
j = αIn (4.2)

for some scalar α, then max ∆(A1, . . . , Ak) = αn. The necessary and sufficient conditions for
(4.2) to hold can be found in [15].

2. Let A1, A2, A3 be Hermitian matrices such that det(A1 + A2 + A3) = max ∆(A1, A2, A3).
Then there exist unitary U and V such that UA1U

∗ and V (A2 + A3)V ∗ are diagonal and

det(UA1U
∗ + V (A2 + A3)V ∗) = det(A1 + A2 + A3).
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Proof. Let U be unitary matrix such that UA1U
∗ = D1 is diagonal. Suppose A2 + A3 has

eigenvalues λ1, . . . , λn. By the result of [15], there exists a permutation matrix P such that

det(D1 + Pdiag (λ1, . . . , λn)P ∗) ≥ det(A1 + (A2 + A3)).

So if V is unitary such that V (A2 + A3)V ∗ = Pdiag (λ1, . . . , λn)P ∗, then

det(A1 + A2 + A3) = max∆(A1, A2, A3) ≥ det(UA1U
∗ + V (A2 + A3)V ∗) ≥ det(A1 + A2 + A3)

and hence the above inequalities become equalities. �

Besides the unitary similarity orbits, one may consider orbits of matrices under other group
actions. For example, we can consider the usual similarity orbit of A ∈ Mn

S(A) = {SAS−1 : S ∈ Mn is invertible};

the unitary equivalence orbit of A ∈ Mn

V(A) = {UAV : U, V ∈ Mn are unitary};

the unitary congruence orbit of A ∈ Mn

U t(A) = {UAU t : U ∈ Mn is unitary}.

It is interesting to note that for any A,B ∈ Mn,

max{ rank (UAU∗ + V BV ∗) : U, V ∈ Mn are unitary}
≤ max{ rank (SAS−1 + TBT−1) : S, T ∈ Mn are invertible}
≤ min{ rank (A + µIn) + rank (B − µIn) : µ ∈ C}.

By our result in Section 2, the inequalities are equalities.
One may consider the ranks, determinants, eigenvalues, and norms of the sum, the product,

the Lie product, the Jordan product of matrices from different orbits; [17, 22, 29]. One may also
consider similar problems for matrices over arbitrary fields or rings. Some problems are relatively
easy. For example, the set {det(SAS−1 + TBT−1 : S, T are invertible} is either a singleton or C.
But some of them seem very hard. For example, it is difficult to determine when

0 ∈ {det(S1A1S
−1
1 + S2A2S

−1
2 + S3A3S

−1
3 ) : S1, S2, S3 are invertible}.
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