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Abstract

Denote by W (A) the numerical range of a bounded linear operator A. For two oper-

ators A and B (which may act on different Hilbert spaces), we study the relation between

the inclusion relation W (A) ⊆ W (B) and the condition that A can be dilated to an oper-

ator of the form B ⊗ I. We also investigate the possibilities of dilating an operator A to

operators with simple structure under the assumption that W (A) is included in a special

region.
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1. Introduction

Given a Hilbert space H, let B(H) the algebra of all bounded linear operators on H.
If H has dimension n < ∞, B(H) will be identified with the algebra of n × n complex
matrices, denoted by Mn. The numerical range of an operator A ∈ B(H) is defined by

W (A) = {(Ax, x) : x ∈ H, (x, x) = 1}.

A result of Ando [An], which also follows from a more general theorem of Arveson [Ar,
Theorem 3.1.1], asserts the following.

Theorem 1.1 Let A ∈ B(H). The following conditions are equivalent.

(a) W (A) is included in the closed unit disk D = {z ∈ C : |z| ≤ 1}.

(b) A = V ∗
(

0 2IH
0 0

)
V for some V satisfying V ∗V = IH.
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Notice that
(

0 2I
0 0

)
= B ⊗ I with B =

(
0 2
0 0

)
, and W (B) = D. Thus condition

Theorem 1.1 (a) is equivalent to:

(c) W (A) ⊆ W (B) with B =
(

0 2
0 0

)
.

Given two operators X and Y acting on H1 and H2 respectively, we say that Y is a
dilation of X if there exists an operator V : H1 → H2 satisfying V ∗V = I and X = V ∗Y V .
It is easy to see that W (X) ⊆ W (Y ) if Y is a dilation of X, and W (Y ⊗I) = W (Y ). Hence,
if A can be dilated to an operator of the form B⊗I, it follows readily that W (A) ⊆ W (B).

It is remarkable that the converse also holds if B =
(

0 2
0 0

)
.

Another interesting result along the same line is the following theorem due to Mirman
[M] (also see [Na]).

Theorem 1.2 Let A ∈ B(H) and let γ1, γ2, γ3 ∈ C. The following conditions are equiva-

lent.

(a) W (A) is included in the triangle with vertices γ1, γ2, γ3.

(b) A = V ∗(B ⊗ I)V , where B = diag(γ1, γ2, γ3), I is the identity operator on a certain

Hilbert space K, and V : H → C3 ⊗K satisfies V ∗V = IH.

(c) W (A) is included in W (B) with B = diag(γ1, γ2, γ3).

The results of Ando and Mirman show that there are interesting relations between
the conditions that W (A) ⊆ K for some special region K ⊆ C, or simply W (A) ⊆ W (B)
for some operator B, and the dilation property that

A = V ∗(B ⊗ I)V for some V satisfying V ∗V = IH. (1)

If (1) holds, we say that A can be dilated to an operator of the form B ⊗ I. The purpose
of this paper is to further study the numerical range inclusion relation W (A) ⊆ K or
W (A) ⊆ W (B) and the dilation property (1).

Our paper is organized as follows. We first obtain extensions of the results of Ando
and Mirman in section 2, and consider the set Γ of operators B such that condition (1)
holds whenever A ∈ B(H) satisfies W (A) ⊆ W (B). In section 3, we shift our focus to the
set Λ of operators A such that if B is an operator satisfying W (A) ⊆ W (B) then condition
(1) holds. In section 4, we prove that if A ∈ Mn has numerical range lying in a trapezoidal
region K, then A can be dilated to an operator B, which is a direct sum of no more than
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n matrices in M2 such that W (B) ⊆ K. We conclude the paper with some remarks in
section 5. Open questions are mentioned throughout the paper.

Suppose f(x + iy) = (ax + by + r) + i(cx + dy + s) with a, b, c, d, r, s ∈ R is an affine
transform on C. If A = A1 + iA2 ∈ B(H) such that A1 and A2 are self-adjoint operators,
define

f(A) = (aA1 + bA2 + rI) + i(cA1 + dA2 + sI).

It is easy to check that f is invertible if and only if ad− bc 6= 0. We shall use the following
fact in our discussion.

Proposition 1.3 Let A and B be bounded operators that may act on different Hilbert

spaces, and let f be an invertible affine transform on C. Then A can be dilated to an

operator of the form B ⊗ I if and only if f(A) can be dilated to an operator of the form

f(B)⊗ I.

2. Extensions of the results of Ando and Mirman

We begin with an extension of the result of Ando.

Theorem 2.1 Let E be the closed elliptical disk in C with foci µ1 and µ2, and let d be the

length of the minor axis. Then E = W (B) with B =
(

µ1 d
0 µ2

)
. Moreover, let A ∈ B(H).

Then A satisfies W (A) ⊆ W (B) = E if and only if A can be dilated to an operator of the

form B ⊗ I.

Proof. The fact that E = W (B) is the well known elliptical range theorem for the
numerical range of a 2× 2 matrix (see e.g., [HoJ, 1.3.3]).

If A ∈ B(H) can be dilated to an operator of the form B⊗I, then W (A) ⊆ W (B⊗I) =
W (B). Conversely, suppose A ∈ B(H) satisfies W (A) ⊆ W (B). We prove that A can be
dilated to an operator of the form B ⊗ I by considering three cases.

If W (B) is a singleton {µ}, then so is W (A). It follows that B = µI2 and A = µIH,
and hence the conclusion holds.

If W (B) is a non-degenerate line segment, then d = 0 and µ1 6= µ2. Replace A and
B by Ã = (A − µ2IH)/(µ1 − µ2) and B̃ = (B − µ2I2)/(µ1 − µ2) = diag(1, 0). Then
W (A) ⊆ W (B) if and only if W (Ã) ⊆ W (B̃); and condition (1) is equivalent to the fact
that Ã can be dilated to an operator of the form B̃ ⊗ I. It is clear that B̃ ⊗ I = I ⊕ 0 and
Ã = V ∗(I⊕0)V , where V =

( √
Ã

√
I − Ã

)∗
satisfying V ∗V = IH. Thus the conclusion

holds.
If W (B) is neither a point nor a line segment, then the boundary of W (B) is a

non-degenerate ellipse. Since W (aX + bI) = aW (X) + b for any a, b ∈ C, there exist

3



α, β ∈ C such that the boundary of the numerical range of the matrix B̃ = α(B − βI2)
is an ellipse centered at the origin with −1 and 1 as the endpoints of its major axis. Let
Ã = α(A− βIH) = A1 + iA2 and B̃ = B1 + iB2, where A1, A2, B1 and B2 are self-adjoint.
Suppose B2 has eigenvalues ±γ. Then 2γ is the length of the minor axis of W (B̃). Consider
Â = A1 + iA2/γ and B̂ = B1 + iB2/γ. One easily checks that W (B̂) is the closed unit disk,
and W (Â) ⊆ W (B̂). Since B̂ is a 2 × 2 matrix with W (B̂) = D, by the elliptical range

theorem there is a unitary matrix U such that U∗B̂U =
(

0 2
0 0

)
. Now since W (Â) ⊂ D,

by Ando’s theorem [An] we have

Â = V ∗
(

0 2IH
0 0

)
V

for some V satisfying V ∗V = IH. Let Ṽ = (U ⊗ IH)V . Then Ṽ ∗Ṽ = IH and Â =

Ṽ ∗(B̂ ⊗ IH)Ṽ . By Proposition 1.3, A has a dilation of the form B ⊗ I.

We remark that our proof of Theorem 2.1 depends on the result of Ando. Moreover,
Theorem 2.1 does not hold if E = W (B) for a general 3× 3 matrix B even when W (B) is
a circular disk as shown in the following example.

Example 2.2 Let B =

 0 1 0
0 0 1
0 0 0

 and A =
(

0
√

2
0 0

)
. Then W (A) ⊆ W (B), but A

cannot be dilated to an operator of the form B ⊗ I as ‖A‖ > ‖B‖.

Next, we turn to a generalization of the result of Mirman. Our proof covers the
theorem of Mirman and is different from those in [M] and [Na].

Proposition 2.3 Let B be an operator such that W (B) is the convex hull of k complex

numbers with k ≤ 3. Suppose A ∈ B(H). Then A satisfies W (A) ⊆ W (B) if and only if A

has a dilation of the form B ⊗ I.

Proof. The (⇐) part is clear. To prove the converse, we consider three cases, namely,
W (B) is a singleton, a line segment, and a triangular region.

The proof of the first case is similar to that in Theorem 2.1. For the second case, we use
Proposition 1.3 and apply a suitable affine transform on C so that W (A) ⊆ W (B) = [0, 1].
By the proof of Theorem 2.1, A has a dilation of the form B1 = diag (0, 1) ⊗ I. Since
W (B) = [0, 1], it follows (see e.g., [Do]) that 0 and 1 are eigenvalues of B. Hence B1 has
a dilation of the form B ⊗ I, and so does A.

For the third case, we again use Proposition 1.3 and apply a suitable affine transform
on C so that W (B) is the convex hull of {0, 1, i}. Thus W (B) = W (B1) with B1 =
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diag (0, 1, i) and 0, 1, i are eigenvalues of B (see [Do]). The result will follow if we can show
that A has a dilation of the form B1 ⊗ I. To this end, let A = H + iG ∈ B(H), where H

and G are self-adjoint. Then W (A) ⊆ W (B1) if and only if H ≥ 0, G ≥ 0 and H + G ≤ I.

Set V = (
√

I −H −G
√

H
√

G )∗. Then V ∗V = I and A = V ∗(B1 ⊗ I)V .

The next example shows that the conclusion of Proposition 2.3 may not hold if W (B)
is a convex polygonal region with more than 3 vertices.

Example 2.4 Let A =
(

0
√

2
0 0

)
, and let B = diag(1,−1, i,−i). Then W (A) ⊆ W (B)

and W (B) is the convex hull of the numbers 1,−1, i,−i. However, A cannot be dilated to
an operator of the form B ⊗ I as ‖A‖ > ‖B‖.

In section 4, we shall obtain more dilation results concerning those A ∈ B(H) with
W (A) lying in a square. In connection to the above example, we have the next theorem
characterizing those A ∈ B(H) which has a dilation of the form diag(1,−1, i,−i) ⊗ I. It
is interesting to note that the condition also involves the numerical range of a certain
operator generated by A.

Theorem 2.5 Let A ∈ B(H). The following conditions are equivalent.

(a) A has a dilation of the form B = diag(1,−1, i,−i)⊗ I.

(b) There exist positive semi-definite operators A1, A2, A3, A4 such that A1 + A2 + A3 +
A4 = I and A = (A1 −A2) + i(A3 −A4).

(c) The numerical range of the operator Ã =
(

0 A + A∗

i(A∗ −A) 0

)
is a subset of the

closed unit disk D.

Proof. The equivalence of (a) and (b) are clear. We prove the equivalence of (b) and
(c) in the following.

Suppose (b) holds. Let

V =
(√

A1

√
A2 0 0 0 0

√
A3 −

√
A4

0 0
√

A3

√
A4

√
A1 −

√
A2 0 0

)∗
.

Then V ∗V = I and V ∗
(

0 2I
0 0

)
V = Ã. By the result of Ando [An], W (Ã) ⊆ D.

Conversely, suppose (c) holds. By the result of Ando [An], there exists

V =
(

X1 X2

Y1 Y2

)
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such that V ∗V = I and

V ∗
(

0 2I
0 0

)
V = Ã.

Hence,
X∗

1X1 + Y ∗
1 Y1 + X∗

2X2 + Y ∗
2 Y2 = 2I,

2X∗
1Y2 = A + A∗ = 2Y ∗

2 X1, and 2X∗
2Y1 = i(A∗ −A) = 2Y ∗

1 X2.

Set
A1 = (X1 + Y2)∗(X1 + Y2)/4, A2 = (X1 − Y2)∗(X1 − Y2)/4,

A3 = (X2 + Y1)∗(X2 + Y1)/4 and A4 = (X2 − Y1)∗(X2 − Y1)/4.

One easily checks that condition (b) holds.

Let Γ be the set of operators B such that: if A ∈ B(H) satisfies W (A) ⊆ W (B) then
A admits a dilation of the form B ⊗ I. We have shown that all 2 × 2 matrices and all
matrices B such that W (B) is a polygonal disk with no more than 3 vertices belong to Γ.
It would be nice to solve

Problem 2.6 Characterize those operators lying in Γ.

Notice that in both Example 2.2 and Example 2.4, B is unitarily similar to its trans-
pose Bt. Thus the examples actually show that W (A) ⊆ W (B) does not even imply that
A can be dilated to an operator of the form (B ⊕Bt)⊗ I, i.e.,

A = V ∗((B ⊕Bt)⊗ I)V for some V satisfying V ∗V = IH. (2)

One may also ask the following problem.

Problem 2.7 Characterize those operators B such that condition (2) holds whenever

A ∈ B(H) satisfies W (A) ⊆ W (B).

3. Other dilation results

In this section, we shift our focus to the set Λ of linear operators A such that A admits
a dilation of the form B ⊗ I whenever B is an operator satisfying W (A) ⊆ W (B).

Recall that an operator A is a convexoid (see e.g., [HoJ] and [H2]) if the closure of
W (A) equals the convex hull of the spectrum of A. We shall show if A ∈ Λ, then A must
be a convexoid.

Given an operator X, let σ(X) denote its spectrum, r(X) denote its spectral radius,
and w(X) = sup{|z| : z ∈ W (X)} denote its numerical radius. We have the following
result.
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Proposition 3.1 Suppose A ∈ Λ. Then the following two equivalent conditions hold.

(a) ‖A− µI‖ = w(A− µI) for all µ ∈ C.

(b) ‖A− µI‖ = r(A− µI) for all µ ∈ C.

Furthermore, these conditions imply the following equivalent conditions.

(c) w(A− µI) = r(A− µI) for all µ ∈ C.

(d) A is a convexoid.

Proof. The equivalence of (a) and (b) is due to Wintner [W]. We establish (a) under the
hypothesis that A ∈ Λ in the following. Suppose there exists µ ∈ C such that ‖A− µI‖ >

w(A − µI). Let Ã = (A − µI)/w(A − µI). Then ‖Ã‖ > w(Ã) = 1. Let m be a positive
integer such that ‖Ã‖ > γ with γ = 1/ cos(π/(m + 1)), and let B̃ = (bij) be an m × m

matrix such that
bij =

{
γ if j = i + 1,
0 otherwise.

Then W (B̃) is the closed unit disk D so that W (Ã) ⊆ W (B̃). Since ‖Ã‖ > γ = ‖B̃‖, it is
impossible for Ã to have a dilation of the form B̃ ⊗ I. Now, let B = w(A − µI)B̃ + µI.
Then W (A) ⊆ W (B), but A does not have a dilation of the form B ⊗ I.

It is known (see e.g., [FN]) that an operator A is a convexoid if and only if condition
(c) holds. Since r(X) ≤ w(X) ≤ ‖X‖ for any operator X, condition (c) follows from

condition (b).

The following theorem gives a different description for those A ∈ Λ. Together with
Proposition 3.1, it helps to identify some more operators in Λ.

Proposition 3.2 Let A ∈ B(H). The following conditions are equivalent.

(a) A ∈ Λ.

(b) There is a family of positive semi-definite operators Aµ, µ ∈ W (A), such that∑
µ∈W (A) Aµ = I and A =

∑
µ∈W (A) µAµ.

(c) A has a dilation of the form D⊗I, where D is a diagonal operator with W (A) = σ(D).

In case W (A) is closed, then conditions (a) – (c) are equivalent to:

(d) A has a dilation of the form D̃ ⊗ I, where D̃ is a diagonal operator with σ(D̃) equal

to the set of extreme points of W (A).

Proof. The equivalence of (b) and (c) is clear. Suppose (a) holds. If D is a diagonal
operator with W (A) = σ(D), then W (A) ⊆ W (D). Hence A admits a dilation of the form
D ⊗ I, i.e., condition (c) holds.

Conversely, if (c) holds, and if W (D) = W (A) ⊆ W (B), then D admits a dilation of
the form B ⊗ I and so does A. Hence condition (a) holds.
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If W (A) is closed, then it is a compact convex set, and is equal to the convex hull of
its extreme points. Consequently, if D and D̃ are the diagonal operators defined in (c) and
(d), then D has a dilation of the form D̃ ⊗ I. Hence, condition (c) implies condition (d).

The reverse implication is clear. Thus the last assertion of the theorem follows.

Let A ∈ B(H). Then W (A) is a convex polygon with interior having vertices µ1, . . . , µk

if and only if A is unitarily similar to D ⊕ A1 with D = diag (µ1, . . . , µk) (see [Do] and
[HoJ]). If this condition holds, then clearly A is a convexoid. The converse is valid in
the finite dimensional case. By Proposition 3.2, we have the following corollary, which, in
particular, characterizes those A ∈ Mn lying in Λ.

Corollary 3.3 Let A ∈ B(H) be such that W (A) is a convex polygon with interior having

vertices µ1, . . . , µk. Then A ∈ Λ if and only if A can be dilated to an operator of the form

D ⊗ I with D = diag (µ1, . . . , µk).

The situation in the infinite dimensional case is more complicated if A is a convexoid
such that W (A) is not closed as shown in the following example.

Example 3.4 Let A be the bilateral shift operator such that Aej = ej+1 for all integers j.
Suppose B is the diagonal operator (acting on an inseparable Hilbert space) with diagonal
elements eit with t ∈ [0, 2π). Then A is unitary and W (A) ⊆ W (B). However, A cannot be
dilated to a unitary operator of the form B⊗I because of the following reason. Since both

A and B are unitary, if there exists unitary operator U such that U∗(B⊗I)U =
(

A R
S T

)
then R and S must be zeros. But then A is a direct summand of an operator with
eigenvalues, which is a contradiction.

In general, it would be interesting to solve the following problem.

Problem 3.5 Characterize those infinite dimensional A that lie in Λ.

Note that the question is open even if we assume that A is normal. In view of
Proposition 3.2 and Example 3.4, the solution of Problem 3.5 should involve conditions on
the boundary of W (A).

Also, in view of Proposition 3.1, one may consider imposing norm inequalities on the
operators A and B in addition to inclusion relation that W (A) ⊆ W (B) to ensure that A

has a dilation of the form B ⊗ I. For instance, if A has a dilation of the form B ⊗ I, then
W (A) ⊆ W (B), and ‖A − µI‖ ≤ ‖B − µI‖ for all µ ∈ C. One may wonder whether the
converse holds. Unfortunately, the answer is negative as shown by the following example.
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Example 3.6 Let A =

 0 1 0
0 0 2
0 0 0

 and B = At. Then W (A) = W (B) and ‖αA+βA∗+

γI‖ = ‖αB + βB∗ + γI‖ for all α, β, γ ∈ C. However,

‖2AA∗ + A∗A‖ = 9 > 8 = ‖2BB∗ + B∗B‖,

showing that A cannot be dilated to an operator of the form B ⊗ I.

4. Trapezoidal region

In this section, we consider an extension of Proposition 2.3 in a different direction,
namely, we show that A ∈ Mn can be dilated to operators with simple structure if W (A)
is included in a trapezoidal region.

Theorem 4.1 Let K be a trapezoidal region in C. Then for any A ∈ Mn satisfying

W (A) ⊆ K, there exist k ≤ n and B1, . . . , Bk ∈ M2 with W (Bj) ⊆ K such that B1⊕· · ·⊕
Bk is a dilation of A. Furthermore, if K is a square with vertices 0, 1, i and 1 + i, then

Re Bj and Im Bj can be chosen as rank one projections for all j.

Proof. We start with the special case that K is the square with vertices 0, 1, i and
1 + i. Suppose A = A1 + iA2, where A1 and A2 are self-adjoint. Then W (A) ⊆ K if
and only if A1 and A2 are positive semi-definite contractions. Thus Cj = X∗

j Xj with

Xj =
(
Aj

1/2 (I −Aj)1/2
)

is a rank n projection for j = 1, 2. It is well known (see e.g.,
[D], [H1]) that C1 + iC2 is unitarily similar to a direct sum of B1, . . . , Bn ∈ M2 such that
Re Bs and Im Bs are rank one projections for all s = 1, . . . , n.

If K is a parallelogram, then there exist real numbers a1, a2, b1, b2, c1, c2 so that the
affine transformation f(x+ iy) = (a1x+ b1y + c1)+ i(a2x+ b2y + c2) on C is invertible and
f transforms K to the square with vertices 0, 1, i and 1 + i. Suppose W (A) ⊆ K. Then
f(A), defined as in Proposition 1.3, satisfies W (f(A)) = f(W (A)) ⊆ f(K). By the result
in the preceding paragraph, f(A) can be dilated to a matrix of the form B1⊕· · ·⊕Bn with
Bj ∈ M2 for all j. One easily checks that A can be dilated to f−1(B1)⊕ · · · ⊕ f−1(Bn).

Now, if K is a trapezoidal region, then there exist real constants a1, a2, b1, b2, c1, c2

so that the affine transformation f(x + iy) = (a1x + b1y + c1) + i(a2x + b2y + c2) on C is
invertible and f transforms K to the trapezoidal region with 0, 1, i, and 1 + (1 − a)i for
some a < 1. Suppose A ∈ Mn satisfies W (A) ⊆ K. Then W (f(A)) = f(W (A)) ⊆ f(K).
Similar to the previous case, we need only to prove that f(A) can be dilated to a direct
sum of no more than n matrices in M2. The result will then follow. To this end, write
f(A) = A1 + iA2. Then f(A) lies in the trapezoidal region implies that

0 ≤ A1 ≤ I and 0 ≤ A2 ≤ I − aA1.
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We first dilated A1 to a projection

Ã1 =
(

A1 (A1 −A2
1)

1/2

(A1 −A2
1)

1/2 I −A1

)
.

As T = I − aA1 ≥ A2, there is a positive semi-definite contraction J such that A2 =
T 1/2JT 1/2. Since T = I − aA1 is the left top corner of the matrix T̃ = I2n − aÃ1 ≥ 0,
if we let G = −aT−1/2(A1 − A2

1)
1/2 and H = (1 − a)1/2T−1/2, then T̃ can be written as

X∗X, where

X =
(

T 1/2 G
0n H

)
Consequently, Ã2 = X∗PX is a dilation of A2 = T 1/2JT 1/2 satisfying 0 ≤ Ã2 ≤ I2n −
aÃ1, where P = ( J1/2 (In − J)1/2 )∗ ( J1/2 (In − J)1/2 ) is a projection. By the polar
decomposition, X = UT̃ 1/2 where U is unitary matrix. Thus

Ã2 = X∗PX = T̃ 1/2U∗PUT̃ 1/2 = (I2n − aÃ1)1/2Q(I2n − aÃ1)1/2

with Q = U∗PU . Since Ã1 and Q are projections, they are simultaneously unitarily similar
to direct sums of 2 × 2 projections (see e.g. [D] and [H1]). It follows that Ã1 + iÃ2 is

unitarily similar to a direct sum of 2× 2 matrices.

It is not difficult to see from the proof that the choice of matrices B1, . . . , Bk ∈ M2 in
the statement of Theorem 4.1 depends heavily on the given operator A and is not unique.

In view of the above remark, one may ask whether there is a finite collection of
B1, . . . , Bm ∈ M2 with W (Bj) ∈ K for all j so that every A ∈ B(H) satisfying W (A) ⊆ K

can be dilated to a matrix of the form (B1⊕· · ·⊕Bm)⊗I. Evidently, B = B1⊕· · ·⊕Bm is
a finite matrix. Thus, more generally, one may ask whether there is a finite matrix B with
W (B) = K so that every operator A with W (A) ⊆ K has a dilation of the form B ⊗ I.
The following result shows that the answer of this question is negative.

Proposition 4.2 Suppose K is the square region with vertices 0, 1, i and 1 + i. Let C be

the collection of matrices

Ct =
(

1 0
0 0

)
+ i

(
cos2 t sin t cos t

sin t cos t sin2 t

)
, t ∈ [0, π).

If A ∈ Mn satisfies W (A) ⊆ K, then A has a dilation of the form B, where B is a direct

sum of no more than n matrices in C. Moreover, if Ct has a dilation C with W (C) ⊆ K,
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then C is unitarily similar to Ct ⊕ C̃ for some C̃. Consequently, there is no finite matrix

B with W (B) = K so that every operator A with W (A) ⊆ K has a dilation of the form

B ⊗ I.

Proof. If B ∈ M2 is such that both Re B and Im B are rank one projections, then B

is unitarily similar to a matrix of the form

Ct =
(

1 0
0 0

)
+ i

(
cos2 t sin t cos t

sin t cos t sin2 t

)

for some t ∈ [0, π). By Theorem 4.1, we get the first assertion of the theorem.
Now suppose C is a dilation of Ct, and W (C) ⊆ K. Then 0 ≤ Re C, Im C ≤ I.

Moreover, Re C contains the rank one projection Re Ct, and Im C contains the rank one
projection Im Ct. The second assertion of the theorem follows.

To prove the last assertion, assume there exists B ∈ Mn W (B) = K so that every
operator A with W (A) ⊆ K has a dilation of the form B ⊗ I. Then for each t ∈ [0, π), B

is unitarily similar to Ct ⊕ B̃t for some B̃t, which is impossible.

Note that every parallelogram can be converted to a square with prescribed vertices
by an affine transform on C. By Proposition 1.3, one can extend Proposition 4.2 to the
case when K is a parallelogram. With some more effort, one may further extend the results
to trapezoidal regions. In general, it would be interesting to study

Problem 4.3 Is it possible to extend the results of Theorem 4.1 to arbitrary quadrangles

or convex polygons?

5. Remarks

Our study can be viewed as the starting point of using the numerical range to study
the theory of dilation. As shown in the previous sections, there are many interesting
questions that deserve further research. Moreover, one may consider our problem in some
more general contexts involving other concepts. In a forthcoming project, we will study
relations among numerical ranges, dilations, C∗-convex sets and positive linear maps.
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