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Abstract
Let 1 ≤ m ≤ n, and let χ : H → C be a degree 1 character on a subgroup H of the

symmetric group of degree m. The generalized matrix function on an m ×m matrix B =
(bij) associated with χ is defined by dχ(B) =

∑
σ∈H χ(σ)

∏m
j=1 bj,σ(j), and the decomposable

numerical range of an n × n matrix A on orthonormal tensors associated with χ is defined
by

W⊥
χ (A) = {dχ(X∗AX) : X is an n×m matrix such that X∗X = Im}.

We study relations between the geometrical properties of W⊥
χ (A) and the algebraic properties

of A, and determine the structure of those linear operators L on n×n complex matrices that

satisfy W⊥
χ (L(A)) = W⊥

χ (A) for all n × n matrices A. These results extend those of other

researchers who treat the special cases of χ such as the principal or alternate character.
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AMS Classification: 15A04, 15A60, 47B49.

1 Introduction

Let Mn be the algebra of n× n complex matrices. Suppose 1 ≤ m ≤ n and χ : H → C is a
degree 1 character on a subgroup H of the symmetric group Sm of degree m. The generalized
matrix function associated with χ is defined, for B = (bij) ∈ Mm, by

dχ(B) =
∑
σ∈H

χ(σ)
m∏

j=1

bj,σ(j).

For instance, if χ is the alternate character on H = Sm then dχ(B) = det(B); if χ is the

principal character on H = Sm then dχ(B) = per(B), the permanent of B.

Define the decomposable numerical range of A ∈ Mn on orthonormal tensors associated
with χ by

W⊥
χ (A) = {dχ(X∗AX) : X is an n×m matrix such that X∗X = Im}.
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When m = 1, it reduces to the classical numerical range of A, denoted by W (A). The
decomposable numerical range can be viewed as the image of the quadratic form x∗ 7→
(K(A)x∗, x∗), defined by the induced matrix K(A) associated with χ, on the decomposable

unit tensors x∗ = x1 ∗ · · · ∗ xm such that {x1, . . . , xm} is an orthonormal set in Cn. We refer

the readers to [8, 11] for general background.

The classical numerical range W (A) is a useful tool for studying matrices and operators

(see e.g. [5]). Likewise, the decomposable numerical range is a useful tool for studying
induced matrices acting on symmetry classes of tensors. There has been considerable interest

in studying the geometric properties of W⊥
χ (A) and their relations to the algebraic properties

of A, see [1, 6, 7] and their references. Another problem of interest is to determine the

structure of the linear preservers of W⊥
χ , i.e., those linear operators L on Mn satisfying

W⊥
χ (L(A)) = W⊥

χ (A) for all A ∈ Mn, see for instance [13]. The purpose of this paper is to

further the research in these directions.
In Section 2, we give a brief survey of some existing results related to our study. In

Section 3, we investigate the interplay between the geometrical properties of W⊥
χ (A) and the

algebraic properties of the matrix A. In Section 4, we determine the structure of the linear

preservers of W⊥
χ for the unsolved cases.

We reserve the symbol ε to denote the alternate character on H = Sm. In such case, we

write W⊥
ε (A) instead of W⊥

χ (A).

Since W⊥
χ (A) can be viewed as the image of the compact connected set

{X : X is n×m with X∗X = Im}

under the continuous map X 7→ dχ(X∗AX), the set W⊥
χ (A) is compact and connected as

well. Furthermore, we shall use the following well-known facts about W⊥
χ (A) and the induced

matrix K(A) in our discussion.

Proposition 1.1 [8, Chapter 2] If A ∈ Mn is Hermitian, positive (semi-)definite, unitary,

or normal, then K(A) has the corresponding property.

Proposition 1.2 Suppose H < Sn and χ are given. Let τ ∈ Sn, H̃ = {τ−1στ : σ ∈ H},
and χ̃(τ−1στ) = χ(σ) for all σ ∈ H. Then W⊥

χ (A) = W⊥
χ̃ (A) for any A ∈ Mn.

Proposition 1.3 Suppose 1 ≤ m ≤ n and χ is a character on H < Sm. Let A ∈ Mn.

(a) W⊥
χ (µA) = µmW⊥

χ (A) for any µ ∈ C.

(b) W⊥
χ (U∗AU) = W⊥

χ (A) = W⊥
χ (At) for any unitary U ∈ Mn.

(c) For any character χ we have W⊥
ε (A) ⊆ W⊥

χ (A) ⊆ W (K(A)).

Proof. (a) and (b) can be easily verified. For (c), note that if z = det(X∗AX) ∈ W⊥
ε (A),

there exists a unitary V ∈ Mm so that V ∗X∗AXV is in upper triangular form. Then

z = det(V ∗X∗AXV ) = dχ(V ∗X∗AXV ) ∈ W⊥
χ (A). 2
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Since the study for the classical numerical range is quite complete, we always assume
that m ≥ 2 in Sections 3 and 4, unless otherwise stated.

2 Existing Results

We first mention some existing results relating the geometrical properties of W⊥
χ (A) and the

algebraic properties of A. When m = 1, the following is well known (see e.g. [5]).

Proposition 2.1 Let A ∈ Mn.

(a) W (A) = {λ} if and only if A = λI.

(b) W (A) ⊆ IR if and only if A is Hermitian.

(c) W (A) ⊆ (0,∞) if and only if A is positive definite.

(d) W (A) has no interior point if and only if A is a normal matrix with eigenvalues lying
on a straight line.

For the principal character χ, we have the following results [2, 5, 6, 7].

Proposition 2.2 Suppose 1 ≤ m ≤ n = 2 and χ is the principal character on H < Sm. Let

A be unitarily similar to
(

λ1 c
0 λ2

)
.

(a) If m = 1, then W⊥
χ (A) = W (A) is an elliptical disk with foci λ1 and λ2, and major axis

{|c|2 + |λ1 − λ2|2}1/2.

(b) If H = S2, then W⊥
χ (A) is an elliptical disk with foci λ1λ2 and (λ2

1 + λ2
2)/2, and major

axis |c|2 + |λ1 − λ2|2/2.
(c) If H = {e} < S2, then W⊥

χ (A) is an elliptical disk with foci λ1λ2 and (λ1 + λ2)
2/4, and

major axis |c|2/2 + |λ1 − λ2|2/4.

Consequently, W⊥
χ (A) = {λ} if and only if A = ξI with ξm = λ; W⊥

χ (A) is a nondegenerate

line segment if and only if A is a non-scalar normal matrix.

Proposition 2.3 Suppose 1 < m ≤ n and χ is the principal character on H < Sm. Let A ∈
Mn. Then W⊥

χ (A) = {λ} if and only if A = ξI with ξm = λ. Moreover, if (m, n) 6= (2, 2),

the following conditions are equivalent.

(a) W⊥
χ (A) is a subset of a straight line.

(b) W⊥
χ (A) is a subset of a straight line passing through the origin.

(c) ξA is Hermitian for some nonzero ξ ∈ C.

Next, we turn to the alternate character ε on H = Sm. To avoid trivial consideration, we

assume that m < n; otherwise, we have W⊥
ε (A) = {det(A)}. We have the following results,

see [16] and [1, §4].
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Proposition 2.4 Suppose 1 < m < n and ε is the alternate character on H = Sm. Let

A ∈ Mn. Then W⊥
ε (A) = {ξ} if and only if one of the following conditions holds.

(a) ξ = 0 and A has rank less than m.

(b) A = λI so that λm = ξ.

Proposition 2.5 Suppose 1 < m < n and ε is the alternate character on H = Sm. Let

A ∈ Mn. Then W⊥
ε (A) is a non-degenerate line segment if and only if rank (A) ≥ m and

one of the following conditions holds.
(a) A is unitarily similar to A1 ⊕ 0n−m such that det(A1) 6= 0.

(b) ξA is Hermitian for some ξ ∈ C with |ξ| = 1.

(c) 1 < m < n−1 and there exists ξ ∈ C with |ξ| = 1 such that ξA has eigenvalues λ1, . . . , λn,
with λ1 = · · · = λn−1.

(d) m = n− 1 and A is invertible so that ξA−1 is hermitian for some ξ ∈ C with |ξ| = 1.

In Section 3, we shall obtain analogous results for W⊥
χ (A), for other χ, and give examples

to show that generalizations are impossible in some cases.

Next, we turn to the existing results on linear preservers of W⊥
χ (A). When m = 1, we

have the following result of Pellegrini [12].

Proposition 2.6 A linear preserver of the classical numerical range on Mn must be of the

form A 7→ U∗AU or A 7→ U∗AtU for some unitary U .

If m = n, then W⊥
ε (A) = {det(A)}, and we have the following result of Frobenius [3].

Proposition 2.7 If m = n, a linear preserver of the determinant on Mn must be of the

form A 7→ MAN or A 7→ MAtN for some M, N ∈ Mn with det(MN) = 1.

For m < n and χ = ε on Sm, we have the following result of Marcus and Filippenko [9].

Proposition 2.8 Let χ = ε be the alternate character on H = Sm with m < n. A linear

preserver of W⊥
ε on Mn must be of the form A 7→ ξU∗AU or A 7→ ξU∗AtU for some unitary

U ∈ Mn and ξ ∈ C with ξm = 1.

When χ is the principal character on H = Sm with m ≤ n, we have the following result
of Hu and Tam [6, 7]. (Note that there is a misprint in [6, Theorem 6]; one may see [4,

Theorem 5.3] for the accurate statement.)

Proposition 2.9 Let χ be the principal character on H = Sm, m ≤ n. A linear preserver

of W⊥
χ on Mn must be of the form described in Proposition 2.8, or, when m = n = 2 and

H = S2, of the form

A 7→ ±[V ∗AV + (±i− 1)(tr A)I/2] or A 7→ ±[V ∗AtV + (±i− 1)(tr A)I/2]

for some unitary matrix V ∈ M2.

In Section 4, we shall determine the structure of those linear preservers of W⊥
χ for the

remaining cases.
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3 Geometric Properties

In this Section, we study some geometric properties of W⊥
χ (A). First of all, by Propositions

2.4 and 2.5, we see that it is impossible to extend the result in Proposition 2.3 to other
character in general. In fact, if χ is not the principal character on H < Sm with m > 1, then

W⊥
χ (A) = {0} for any rank one matrix A (see [2]). Thus, one sees that low rank matrices are

obstacles for extending the result in Proposition 2.3. We shall overcome this by imposing
suitable restriction on the ranks of the matrices. We first establish the following lemma.

Lemma 3.1 Suppose 1 < m ≤ n and χ is a character on H < Sm. Let A = (apq) ∈ Mn be

an upper triangular matrix, B =
(

a11 a12

0 a22

)
and H̃ = {σ ∈ H : σ(j) = j for all j ≥ 3}.

Denote by χ̃ be the restriction of χ to H̃. Identify, in the natural way, H̃ with a subgroup of

S2 and χ̃ with a character on it. Then (
∏m

j=3 ajj)W
⊥
χ̃ (B) ⊆ W⊥

χ (A).

Proof. If V ∈ M2 is unitary and V ∗BV =
(

b11 b12

b21 b22

)
, then the n × m matrix Ṽ ,

obtained from V ⊕ In−2 by deleting the last n−m columns, satisfies Ṽ ∗Ṽ = Im and we have

dχ(Ṽ ∗AṼ ) = γ
∏m

j=3 ajj, where γ = dχ̃(V ∗BV ) ∈ W⊥
χ̃ (B). 2

Theorem 3.2 Suppose 1 < m ≤ n and χ is a character on H < Sm such that dχ(·) 6= det(·)
when m = n. Let A ∈ Mn be such that rank (A) ≥ min{m+1, n}. If W⊥

χ (A) has no interior

point, then A is normal.

Proof. Suppose m < n. If W⊥
χ (A) has no interior point, then W⊥

ε (A) has no interior

point, by Proposition 1.3 (c). By [1, Theorem 3.1], A is normal.

Suppose m = n. Then det(A) 6= 0 and χ 6= ε. Thus, there is a transposition (p, q) in Sn

such that

(i) (p, q) /∈ H, or (ii) (p, q) ∈ H and χ(p, q) = 1.

Furthermore, replacing H by σHσ−1 for a suitable σ ∈ Sn, we may assume that (p, q) = (1, 2).

Suppose A is not normal. By Lemma 1 in [10], A is unitarily similar to an upper triangular

matrix (apq) with a12 6= 0. By Proposition 1.3 (b), we may assume that A = (apq). If B =(
a11 a12

0 a22

)
, then, using the notations and result in Lemma 3.1, we have γ

∏m
j=3 ajj ∈ W⊥

χ (A)

for any γ ∈ W⊥
χ̃ (B). Since a12 6= 0, it follows from Proposition 2.2 (c) or (b), depending

on whether (i) or (ii) holds, that γ can be any point in a circular disk centered at a11a22

with radius r, for a sufficiently small r > 0. Thus, W⊥
χ (A) contains a circular disk centered

at
∏n

j=1 ajj with radius |r ∏n
j=3 ajj| > 0, contradicting the assumption that W⊥

χ (A) has no

interior point. 2

We are now ready to characterize those A such that W⊥
χ (A) is a singleton.
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Theorem 3.3 Suppose 1 < m ≤ n and χ is a character on H < Sm such that dχ(·) 6= det(·)
when m = n. Let A ∈ Mn be such that rank (A) ≥ min{m + 1, n}. Then W⊥

χ (A) = {µ} if

and only if A = λI with λm = µ.

Proof. The (⇐) part is clear. To prove the converse, we can apply Theorem 3.2 to

conclude that A is unitarily similar to diag (λ1, . . . , λn). We have to show that all eigenvalues
of A are equal.

It is well known (see [1] or the proof of Proposition 1.3) that if z is a product of m

eigenvalues of A, then z ∈ W⊥
ε (A) ⊆ W⊥

χ (A). Thus, if m < n and not all eigenvalues of A

are equal, then W⊥
χ (A) is not a singleton, which is a contradiction.

Suppose now m = n. Then det(A) 6= 0 and χ 6= ε. Using the argument in the proof of
Theorem 3.2, we may assume that

(i) (1, 2) /∈ H, or (ii) (1, 2) ∈ H and χ(1, 2) = 1.

If not all eigenvalues of A are equal, then we may assume that λ1 6= λ2. Then W⊥
χ (A)

contains all the elements of the form

dχ(B ⊕ diag (λ3, . . . , λn)) = z
n∏

j=3

λj,

where B is unitarily similar to diag (λ1, λ2) and z is lying in a non-degenerate line segment

with λ1λ2 as one of the endpoints by Proposition 2.3 (c) or (b), depending on whether (i) or

(ii) holds. This again contradicts the fact that W⊥
χ (A) is a singleton. 2

A consequence of Theorem 3.3 is the following corollary.

Corollary 3.4 Suppose 1 < m ≤ n and χ is a character on H < Sm such that dχ(·) 6= det(·)
when m = n. Let A ∈ Mn. The following conditions are equivalent.
(a) A is a scalar.

(b) There is µ ∈ C, which is not an eigenvalue of A, such that W⊥
χ (A− µI) is a singleton.

(c) There is µ ∈ C such that W⊥
χ (A− µI) = {ν} with ν 6= 0.

(d) There exist distinct µ1, . . . , µk ∈ C with

k >
{

n/(n−m) if m < n,
n if m = n,

such that W⊥
χ (A− µjI) is a singleton.

Proof. The implications (b) ⇒ (c) ⇒ (a) ⇒ (d) follows easily from Theorem 3.3 and

Proposition 1.3. Now, assume that (d) holds. When m = n, one of µ1, . . . , µk ∈ C is not

an eigenvalue of A, hence (b) holds. Suppose that m < n. If rank (A − µjI) ≤ m for all

1 ≤ j ≤ k, then µj is an eigenvalue of A, with algebraic multiplicity at least equal to n−m.

It follows that the characteristic polynomial of A has degree ≥ k(n−m) > n, a contradiction.
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Thus, rank (A− µjI) ≥ m + 1 for some 1 ≤ j ≤ k. Now, we can apply Theorem 3.3 to the

matrix A− µjI to get condition (b). 2

Note that conditions (c) and (d) are useful when we do not know the rank or the spectrum
of A.

Next, we consider the situation when W⊥
χ (A) is a line segment.

Theorem 3.5 Suppose (I) 1 < m < n and χ is a character on H < Sm such that χ 6= ε

when H = Sm, or (II) m = n and there exist 1 ≤ i < j < k ≤ n such that the restriction of

χ on H̃ = {σ ∈ H : σ(r) = r whenever r 6= i, j, k} is the principal character. Let A ∈ Mn be

such that rank (A) ≥ min{m + 1, n}. The following conditions are equivalent.

(a) W⊥
χ (A) is a subset of a straight line.

(b) W⊥
χ (A) is a subset of a straight line that passes through the origin.

(c) µA is a nonzero Hermitian matrix for some µ ∈ C.

Proof. The implications (c) ⇒ (b) ⇒ (a) are clear.

Suppose (a) holds. By Theorem 3.2, we may assume that A = diag (λ1, . . . , λn). We
consider two cases.

First, suppose m < n. Since rank (A) > m, we may suppose that λ1, . . . , λm+1 are
nonzero. As in the proof of Theorem 3.2, we may assume that

(i) (1, 2) /∈ H, or (ii) (1, 2) ∈ H and χ(1, 2) = 1.

Assume that there are three eigenvalues of A, say λ1, λ2, λ3, not lying on a line passing

through the origin. Then W⊥
χ (A) contains all the points of the form

dχ(B ⊕ diag (λ4, . . . , λm+1)) = z
m+1∏
j=4

λj,

where B = X∗(diag (λ1, λ2, λ3))X for some 3 × 2 matrix X satisfying X∗X = I2. Let

B = (bpq). If (i) holds, then z = b11b22 lies in W⊥
χ̂ (diag (λ1, λ2, λ3)), where χ̂ is the principal

character on Ĥ = {e} < S2. If (ii) holds, then z = b11b22+b12b21 lies in W⊥
χ̂ (diag (λ1, λ2, λ3)),

where χ̂ is the principal character on Ĥ = S2. By Proposition 2.3, such a collection of z
cannot be a subset of a straight line, which is a contradiction. As a result, any three (and

hence all) eigenvalues of A will lie on a straight line passing through the origin.
Next, suppose m = n and there exist 1 ≤ i < j < k ≤ n satisfying the hypothesis. By

Proposition 1.2, we may assume that (i, j, k) = (1, 2, 3). Denote by χ̃ the restriction of χ on

H̃. Then W⊥
χ (A) contains all the points of the form

dχ(B ⊕ diag (λ4, . . . , λn)) = z
m+1∏
j=4

λj,
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where B = X∗(diag (λ1, λ2, λ3))X for some unitary X ∈ M3 and z = dχ̃(B). By Proposition

2.3, we see that the three eigenvalues λ1, λ2, λ3 lie on a straight line passing through the
origin. We can permute the diagonal entries and apply the same arguments to the resulting
matrix. As a result, we see that any three (and hence all) eigenvalues of A lie on a straight
line passing through the origin, i.e., ξA is hermitian for some nonzero ξ ∈ C. 2

A consequence of Theorem 3.5 is the following corollary.

Corollary 3.6 Suppose m, n, and χ satisfy the hypotheses of Theorem 3.5. Then A ∈ Mn

is Hermitian if and only if W⊥
χ (A + µI) ⊆ IR for all (sufficiently large) µ ∈ IR.

Proof. If A is Hermitian and µ ∈ IR, then A +µI and the induced matrix K(A +µI) are

also Hermitian by Proposition 1.1. Proposition 1.3 (c) implies that

W⊥
χ (A + µI) ⊆ W (K(A + µI)) ⊆ IR.

Conversely, suppose W⊥
χ (A + µI) ⊆ IR. We can choose µ ∈ IR sufficiently large so that

A + µI is invertible, and apply Theorem 3.5 to conclude that ξ(A + µI) is Hermitian, i.e.,
the eigenvalues of A + µI lie on a line passing through the origin. Since this is true for all
sufficiently large µ ∈ IR, we see that the eigenvalues of A must be real numbers, hence A is
hermitian. 2

In [14], it was shown that if A ∈ Mn satisfies dχ(X∗AX) > 0 for all n ×m matrices X

with dχ(X∗X) = 1, then there exists ξ ∈ C with ξm = 1 such that ξA is positive definite.

By Theorem 3.5, we have the following.

Corollary 3.7 Suppose m, n, and χ satisfy the hypotheses of Theorem 3.5. Let A ∈ Mn.

(a) There exists ξ ∈ C with ξm = 1 such that ξA is positive definite if and only if W⊥
χ (A) ⊆

(0,∞).

(b) A is positive definite if and only if W⊥
χ (A + µI) ⊆ (0,∞) for all µ ∈ [0,∞).

(c) A is positive semi-definite if and only if W⊥
χ (A + µI) ⊆ (0,∞) for all µ ∈ (0,∞).

Proof. (a) If there exists ξ ∈ C with ξm = 1 such that ξA is positive definite, then

K(A) = K(ξA) is positive definite by Proposition 1.1. Proposition 1.3 (c) implies that

W⊥
χ (A) ⊆ W (K(A)) ⊆ (0,∞). Conversely, suppose W⊥

χ (A) ⊆ (0,∞). Then 0 /∈ W⊥
ε (A) ⊆

W⊥
χ (A). It follows that (see e.g. [1]) A is invertible. By Theorem 3.5, ξA is Hermitian for

some ξ ∈ C with |ξ| = 1. We may assume that ξA has a positive eigenvalue λ1; otherwise,
replace ξ by −ξ. We claim that:

(1) all other eigenvalues of ξA are positive, and (2) ξm = 1.

Suppose (1) does not hold, i.e., ξA has a negative eigenvalue λ2. Assume that rest of the

eigenvalues are λ3, . . . , λn. If m < n, then λ1
∏m+1

j=3 λj and λ2
∏m+1

j=3 λj are elements in W⊥
χ (ξA)

with different signs. By the connectedness of W⊥
χ (ξA), we see that 0 ∈ W⊥

χ (ξA) = ξmW⊥
χ (A).
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Hence 0 ∈ W⊥
χ (A), which is a contradiction. Next, suppose m = n. By the assumption on

χ, we may assume that the restriction of χ on H̃ = {σ ∈ H : σ(r) = r whenever r 6= 1, 2, 3}
is the principal character. As a result, either

(i) (1, 2) /∈ H or (ii) (1, 2) ∈ H with χ(1, 2) = 1.

If (i) holds, then λ1λ2
∏n

j=3 λj and 4−1(λ1+λ2)
2 ∏n

j=3 λj are elements in W⊥
χ (ξA) with different

signs, by Lemma 3.1 and Proposition 2.2 (c). If (ii) holds, then λ1λ2
∏n

j=3 λj and 2−1(λ2
1 +

λ2
2)

∏n
j=3 λj are elements in W⊥

χ (ξA) with different signs, by Lemma 3.1 and Proposition 2.2

(b). In both cases, we have 0 ∈ W⊥
χ (ξA) = ξmW⊥

χ (A), which is the desired contradiction.

As a result, we see that condition (1) holds.

Now, all the eigenvalues of ξA are positive, and thus W⊥
χ (ξA) = ξmW⊥

χ (A) contains a

positive real number. Since W⊥
χ (A) ⊆ (0,∞), we see that ξm = 1, i.e., condition (2) holds.

(b) If A is positive definite and µ ≥ 0, then A + µI and the induced matrix K(A + µI)

are also positive definite by Proposition 1.1. Proposition 1.3 (c) implies that W⊥
χ (A+µI) ⊆

W (K(A + µI)) ⊆ (0,∞). Conversely, suppose W⊥
χ (A + µI) ⊆ (0,∞) for all µ ∈ [0,∞). By

(a), we see that A is Hermitian. If A has an eigenvalue λ ≤ 0, then 0 is an eigenvalue of

A + µI with µ = −λ ≥ 0. Thus, 0 ∈ W⊥
ε (A + µI) ⊆ W⊥

χ (A + µI) 6⊆ (0,∞). Hence, all

eigenvalues of A are positive, and the result follows.
(c) The proof can be done by a similar argument as in (b), or by applying a continuity

argument to (b). 2

The following example shows that condition (II) in Theorem 3.5 and Corollary 3.7 is
necessary when m = n.

Example 3.8 Suppose that m = n = 3 and let H < S3 be the group generated by the
transposition (2, 3). Let χ be such that χ(2, 3) = −1 and suppose that D = diag (1, w, w̄) ∈
M3, where w = eiπ/3. Let U ∈ M3 be unitary such that the first column of U is (u1, u2, u3)

t.

If U∗DU = (apq), then dχ(U∗DU) = a11(a22a33 − a23a32). Note that

a11 = |u1|2 + |u2|2w + |u3|2w̄

and
a22a33 − a23a32 = |u1|2 + |u2|2w̄ + |u3|2w

as (a22a33 − a23a32)/ det(D) is just the (1, 1) entry of

(U∗DU)−1 = U∗D−1U = U∗diag (1, w̄, w)U.

Hence

W⊥
χ (D) = {(t1 + t2w + t3w̄)(t1 + t2w̄ + t3w) : t1, t2, t3 ≥ 0, t1 + t2 + t3 = 1}

= {|t1 + t2w + t3w̄|2 : t1, t2, t3 ≥ 0, t1 + t2 + t3 = 1} = [1/4, 1].
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Inspired by the above example, we have the following result.

Theorem 3.9 Suppose m = n ≥ 3 and χ is a character on H < Sm such that χ 6= ε
when H = Sm. Furthermore, assume that condition (II) in Theorem 3.5 does not hold. If

A ∈ Mn is invertible and if W⊥
χ (A) is a subset of a line passing through the origin, then A

is a multiple of a Hermitian matrix or a multiple of a unitary matrix.

Proof. Suppose m,n and χ satisfy the hypotheses of the theorem. As in the proof of
Theorem 3.2, we may assume that

(i) (1, 2) /∈ H, or (ii) (1, 2) ∈ H and χ(1, 2) = 1.

However, if (ii) holds, then the subgroup H̃ = {σ : σ(r) = r whenever r 6= 1, 2, 3} of

H can only be of order 2 or order 6. In either case, the restriction of χ on H̃ must be the
principal character as χ(1, 2) = 1. Since we assume that condition (II) of Theorem 3.5 does

not hold, condition (ii) is ruled out.

Suppose W⊥
χ (A) is a subset of a line passing through the origin. If W⊥

χ (A) is a sin-

gleton, then A is a scalar matrix by Theorem 3.3, and the result follows. Thus, we as-

sume that W⊥
χ (A) is a nonzero line segment. By Theorem 3.2, A is unitarily similar to

B = diag (λ1, . . . , λn). Since W⊥
χ (A) is not a singleton, not all eigenvalues of A are equal.

Replacing B by µB for a suitable µ ∈ C with |µ| = 1, we may assume that W⊥
χ (B) ⊆ IR.

Now, for any λj 6= λ1, we may permute the diagonal entries of B so that λ1, λj are moved

to the first two positions. Applying Lemma 3.1 to the resulting matrix, we see that W⊥
χ (B)

contains the line segment with endpoints det(B) and det(B)(λ2
1 +λ2

j)/(2λ1λj), which is part

of the line
{ det(B) (1 + t (λj/λ1 − 2 + λ1/λj)) : t ∈ IR } .

Since W⊥
χ (B) ⊆ IR, we see that det(B) ∈ IR and thus λj/λ1 +λ1/λj ∈ IR. As a result, either

λj/λ1 ∈ IR or λj/λ1 /∈ IR with |λj/λ1| = 1. Now, this is true for all λj with λj 6= λ1. We see

that B is permutationally similar to λ1(B1 ⊕ B2) so that all the diagonal entries of B1 are
real and all the diagonal entries of B2 are not real with moduli one. If B2 does not exist then
B is a multiple of a Hermitian, matrix, and so is A. If B2 is non-trivial then all diagonal
entries of B1 must have moduli one. If it is not true, then B has an eigenvalue of the form
λk = rλ1 with r ∈ IR \ {±1}. Repeating the previous argument with λk replacing λ1, we

see that B has some nonreal eigenvalue λj such that |λk/λj| 6= 1, which is a contradiction.

Hence, if B2 is non-trivial, then B1 is unitary as well. Thus, B is a multiple of a unitary
matrix, and so is A. 2

By Theorem 3.9, we have the following corollary.

Corollary 3.10 Suppose m,n and χ satisfy the hypotheses of Theorem 3.9. Let A ∈ Mn be

such that W⊥
χ (A + µI) ⊆ IR for all µ ∈ IR. Then either A is Hermitian or A = λIk ⊕ λ̄In−k

for some non-real complex number λ, where 1 ≤ k < n.
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Proof. Suppose m, n, χ and A satisfy the hypotheses. Then for each µ not equal to an
eigenvalue of A, either A + µI is a multiple of a Hermitian matrix or A + µI is a multiple
of a unitary matrix, by Theorem 3.9. Since this is true for infinitely many µ, we see that
either all the eigenvalues of A are real, i.e., A is Hermitian, or A has two non-real distinct

eigenvalues λ and λ̄. 2

4 Linear Preservers

In this Section, we prove the following result on linear preservers of W⊥
χ ; it covers all the

cases previously not treated.

Theorem 4.1 Suppose n ≥ 3 and dχ(·) 6= det(·) when m = n. A linear operator L on Mn

satisfies W⊥
χ (L(A)) = W⊥

χ (A) for all A ∈ Mn if and only if it is of the form

A 7→ ξU∗AU or A 7→ ξU∗AtU

for some unitary U and ξ ∈ C with ξm = 1.

Proof. The (⇐) part is clear. For (⇒), we start by showing that linear preservers of W⊥
χ

on Mn are invertible.

Suppose L is a linear preserver of W⊥
χ on Mn. Let A ∈ Mn be nonzero such that

L(A) = 0. Suppose A has singular value decomposition Udiag (a1, . . . , an)V , where U and V

are unitary, and a1 ≥ · · · ≥ an. Set B = UV . Then B and K(B) are unitary by Proposition

1.1. By Proposition 1.3 (c) and the fact that the numerical range of a normal matrix is just
the convex hull of its spectrum, we have

W⊥
χ (B) ⊆ W (K(B)) ⊆ D1 = { z ∈ C : |z| ≤ 1 }

On the other hand, we have

| det(A + B)| =
n∏

j=1

(1 + aj) > 1.

Thus, there exist m eigenvalues of A + B with product equal to µ such that |µ| > 1. It

follows that µ ∈ W⊥
ε (A + B) \D1, in contradiction to

W⊥
ε (A + B) ⊆ W⊥

χ (A + B) = W⊥
χ (L(A + B)) = W⊥

χ (L(B)) = W⊥
χ (B) ⊆ D1

Let L be a linear preserver of W⊥
χ . Since W⊥

χ (L(I)) = W⊥
χ (I) = {1}, by Theorem 3.3 we

see that L(I) = ξI for some ξ ∈ C with ξm = 1. Replacing L by L/ξ, we may assume that

L(I) = I.
Next, we show that L maps the set of positive semi-definite matrices into itself. Since

every positive semi-definite matrix is a nonnegative combination of rank one orthogonal
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projections, it suffices to consider the images of rank one orthogonal projections under L.
To this end, let A be a rank one orthogonal projection. By Propositions 1.1, 1.3 and 2.1, we
have

W⊥
χ (A + tI) ⊆ W (K(A + tI)) ⊆ IR for all t ∈ IR,

and
W⊥

χ (A + tI) ⊆ W (K(A + tI)) ⊆ (0,∞) for all t > 0.

Suppose m, n and χ satisfy the hypotheses of Theorem 3.5. Since W⊥
χ (L(A) + tI) =

W⊥
χ (L(A+ tI)) = W⊥

χ (A+ tI) ⊆ [0,∞) for all t ≥ 0, it follows from Corollary 3.7 that L(A)

is positive definite.

Suppose m, n and χ satisfy the hypotheses of Theorem 3.9. Since W⊥
χ (L(A) + tI) =

W⊥
χ (L(A + tI)) = W⊥

χ (A + tI) ⊆ IR for all t ∈ IR, it follows from Corollary 3.10 that either

L(A) is a Hermitian matrix, or L(A) is unitarily similar to µIk ⊕ µ̄In−k for some non-real
µ ∈ C, where 1 ≤ k < n. Since χ is not the principal character, we see that the latter

case cannot happen; indeed, we have (see e.g. [2]) 0 6= det(L(A)) ∈ W⊥
χ (L(A)) and since

rank (A) = 1, we have {0} = W⊥
χ (A). So, L(A) is Hermitian. If L(A) has an eigenvalue

λ < 0, then 0 = det(L(A − λI)) ∈ W⊥
χ (L(A − λI)) = W⊥

χ (A − λI) ⊆ (0,∞), which is

impossible. Thus L(A) is positive semi-definite.

Since L is invertible, one can apply the previous arguments to L−1 to conclude that L−1

maps the set of positive semi-definite matrices into itself. Thus, L maps the set of positive
semi-definite matrices onto itself. By a result of Schneider [15], we see that L is of the form

A 7→ U∗AU or A 7→ U∗AtU

for some invertible U ∈ Mn. Using Theorem 3.3 for {1} = W⊥
χ (I) = W⊥

χ (L(I)) = W⊥
χ (U∗U),

we conclude that U is unitary. The result follows. 2

One can get an analogous result for real linear preservers of W⊥
χ on Hermitian matrices

by a similar (and simpler) argument.
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