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Abstract. For a finite-dimensional operator A with spectrum σ(A),

the following conditions on the Davis–Wielandt shell DW (A) of A are

equivalent:

(a) A is normal.

(b) DW (A) is the convex hull of the set {(λ, |λ|2) : λ ∈ σ(A)}.
(c) DW (A) is a polyhedron.

These conditions are no longer equivalent for an infinite-dimensional

operator A. In this note, a thorough analysis is given for the implication

relations among these conditions. From the main result, one can deduce

the equivalent conditions (a) — (c) for an finite-dimensional operator

A, and show that the Davis–Wielandt shell cannot be used to detect

normality for infinite-dimensional operators.
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1. Introduction

Let B(H) be the algebra of bounded linear operators acting on the Hilbert
space H. We identify B(H) with the algebra Mn of n× n complex matrices
if H has dimension n. The numerical range of A ∈ B(H) is defined by

W (A) = {〈Ax, x〉 : x ∈ H, 〈x, x〉 = 1};

see [7, 9, 10]. The numerical range is useful in studying matrices and op-
erators. In particular, the geometrical properties of W (A) often provide
useful information on the algebraic and analytic properties of A. For in-
stance, W (A) = {µ} if and only if A = µI; W (A) ⊆ R if and only if
A = A∗; W (A) has no interior point if and only if there are a, b ∈ C with
a 6= 0 such that aA+ bI is self-adjoint. Moreover, there are nice connections
between W (A) and the spectrum σ(A) of A. For example, the closure of
W (A), denoted by cl (W (A)), always contains σ(A). If A is normal, then
cl (W (A)) = convσ(A), where convσ(A) denotes the convex hull of σ(A).
However, the converse is not true; for example, see Problem 10 in [10, p.14].
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Motivated by theoretical study and applications, researchers have con-
sidered many generalizations of the numerical range; see for example [10,
Chapter 1]. One of these generalizations is the Davis–Wielandt shell of
A ∈ B(H) defined by

DW (A) = {(〈Ax, x〉, 〈Ax,Ax〉) : x ∈ H, 〈x, x〉 = 1};

see [5, 6, 11]. Evidently, the projection of the set DW (A) on the first co-
ordinate is the classical numerical range. So, DW (A) captures more infor-
mation about the operator A. For example, in the finite-dimensional case,
normality of operators can be completely determined by the geometrical
shape of their Davis–Wielandt shells. In particular, the following conditions
are equivalent for A ∈ Mn; see [10, Section 1.8] and the references therein.
(See also Corollary 2.4.)

(a) A is normal.
(b) DW (A) is the convex hull of the set {(λ, |λ|2) : λ ∈ σ(A)}.
(c) DW (A) is a polyhedron.

These conditions are no longer equivalent for an infinite-dimensional op-
erator A. We will give a thorough analysis of the implications among these
conditions. In particular, it is shown that DW (A) cannot be used to detect
normality for infinite-dimensional operators.

2. Results and proofs

Denote by cl (S) and ∂S the closure and the boundary of a set S. Let
A ∈ B(H). The point spectrum of A is the set σp(A) of eigenvalues of A.
The approximate point spectrum of A is the set σa(A) of complex number
λ ∈ C such that the exists a sequence of unit vectors {xn}∞1 in H such that
lim

n→∞
‖(λI −A)xn‖ = 0.

Theorem 2.1. Suppose A ∈ B(H) is an infinite-dimensional normal oper-
ator. Then

(2.1) DW (A) ⊆ conv{(λ, |λ|2) : λ ∈ σ(A)} = cl (DW (A)) .

Proof. Note that σ(A) is compact, and hence conv{(λ, |λ|2) : λ ∈ σ(A)}
is a compact convex set.

Since A is normal, we have σ(A) = σa(A); see [8, Theorem 31.2]. By the
Spectral Theorem [4], A =

∫
zdE(z) for some spectral measure E on the

Borel subsets of σ(A). Given a unit vector x ∈ H, we have

〈Ax, x〉 =
∫

zdEx,x(z) and 〈A∗Ax, x〉 =
∫
|z|2dEx,x(z).
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Since Ex,x is a probability measure on σ(A), the first inclusion in (2.1)
follows.

Now, suppose λ ∈ σ(A) = σa(A). Then there is a sequence of unit
vectors {xn}∞1 such that lim

n→∞
‖(A−λI)xn‖ = 0. Since A is normal, we have

lim
n→∞

‖(A∗ − λI)xn‖ = lim
n→∞

‖(A− λI)xn‖ = 0. From

(A∗A− |λ|2I)xn = A∗(A− λI)xn + λ(A∗ − λI)xn,

we have
lim

n→∞
‖(A∗A− |λ|2I)xn‖ = 0.

Hence, lim
n→∞

〈Axn, xn〉 = λ and lim
n→∞

〈A∗Axn, xn〉 = |λ|2. Consequently,

{(λ, |λ|2) : λ ∈ σ(A)} ⊆ cl (DW (A))

and the equality in (2.1) follows. �

The following examples shows that DW (A) may not be close for an
infinite-dimensional operator A.

Example 2.2. Let A = diag (1, 1/2, 1/3, . . . ). Then σ(A) = {0} ∪ {1/n :
n ≥ 1}, DW (A) is not closed and (0, 0) ∈ cl (DW (A)) \DW (A).

As mentioned before, if A ∈ Mn satisfies conv{(λ, |λ|2) : λ ∈ σ(A)} =
DW (A), then A is normal. It is easy to show that if A ∈ B(H) is normal
with finite spectrum then DW (A) = convDW (A) is the convex polyhedron

conv{(λ, |λ|2) : λ ∈ σ(A)}

in C × R, identified with R3. We show that the converse is also true in
Theorem 2.3. To prove the result, we need the following construction of
Berberian [3]. Denote by Lim a fixed Banach generalized limit, defined for
bounded sequences of complex numbers; thus for two bounded sequences of
complex numbers {an} and {bn}:

(1) Lim (an + bn) = Lim an + Lim bn.
(2) Lim (γan) = γLim an.
(3) Lim an = lim an whenever lim an exists.
(4) Lim an ≥ 0 whenever an ≥ 0 for all n.

We note that the translation invariant property of Lim is not assumed here.
Denote by V the set of all bounded sequences {xn} with xn ∈ H. Then
V is a vector space relative to the definitions {xn} + {yn} = {xn + yn}
and γ{xn} = {γxn}. Let N be the set of all sequences {xn} such that
Lim 〈xn, yn〉 = 0 for all {yn} ∈ V. Then N is a linear subspace of V. Denote
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by x the coset {xn}+N . The quotient vector space V/N becomes an inner
product space with the inner product 〈x,y〉 = Lim 〈xn, yn〉. Let H0 be
the completion of V/N . If x ∈ H, then {x} denotes the constant sequence
defined by x. Since 〈x,y〉 = 〈x, y〉 for x = {x} +N and y = {y} +N , the
mapping x 7→ x is an isometric linear map of H onto a closed subspace of
H0 and H0 is an extension of H. For an operator A ∈ B(H), define

A0({xn}+N ) = {Axn}+N .

We can extend A0 on H0, which will be denoted by A0 also. The mapping
Φ : B(H) → B(H0) given by Φ(A) = A0 is ∗-isomorphic and isometric such
that σa(A) = σa(A0) = σp(A0); see [3]. Using this construction, we can
prove the following.

Theorem 2.3. Let A ∈ B(H). Then the following conditions are equivalent
if we identify C× R with R3 :

(1) DW (A) is a (closed) polyhedron in C× R.
(2) cl (DW (A)) is a polyhedron in C× R.
(3) A is normal with finite spectrum, i.e., there are complex numbers

a1, . . . , am ∈ C and an orthogonal decomposition of H = H1 ⊕ · · · ⊕
Hm such that

A = a1IH1 ⊕ · · · ⊕ amIHm .

Proof. The implications (3) ⇒ (1) and (1) ⇒ (2) are clear.
We consider the implication (2) ⇒ (3). Suppose (2) holds.
If dim H = 2, then W (A) is a polygon in C. Hence, A is normal.
Suppose dim H > 2. Let A = H + iG, where H and G are self-adjoint,

and let K = A∗A. Then DW (A) can be identified with the joint numerical
range

W (H,G,K) = {(〈Hx, x〉, 〈Gx, x〉, 〈Kx, x〉) : x ∈ H, 〈x, x〉 = 1}.

Note that cl (W (H,G,K)) is a compact convex set in R3 [1], which can
be obtained as the intersection of the half spaces of the form

{(h, g, k) : (h, g, k)(a, b, c)t ≤ supσ(aH + bG + cK)}

for all unit vectors (a, b, c)t ∈ R3. We can use the above construction of
Berberian [3] to embed H into H0 and extend (H,G,K) to (H0, G0,K0).
Since Φ is ∗-isomorphic, K0 = (A∗A)0 = A∗0A0. Furthermore, we have

supσ(aH + bG + cK) = sup σ(aH0 + bG0 + cK0)

for all unit vectors (a, b, c)t ∈ R3. So, cl (W (H0, G0,K0)) = cl (W (H,G,K))
is a convex polyhedron in R3. Now, suppose v = (h, g, k) is a vertex of
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the polyhedron cl (W (H,G,K)). Then there is a sequence of unit vectors
{xn} ∈ H such that

(〈Hxn, xn〉, 〈Gxn, xn〉, 〈Kxn, xn〉) → v.

Regarding x = {xn}+N as an element in H0, we see that

v = (h, g, k) = (〈H0x, x〉, 〈G0x, x〉, 〈K0x, x〉) ∈ W (H0, G0,K0).

This shows that W (H0, G0,K0) is closed. Since v is a vertex of the poly-
hedron W (H0, G0,K0), there are three support planes of the polyhedron
with linearly independent normal vectors passing through v. Thus, there
are three linearly independent unit vectors (aj , bj , cj)t ∈ R3 with 1 ≤ j ≤ 3
such that

aj(H0 − hI) + bj(G0 − gI) + cj(K0 − kI)

is positive semidefinite with x as a null vector. In other words, we have

[aj(H0 − hI) + bj(G0 − gI) + cj(K0 − kI)]x = 0, j = 1, 2, 3.

Since

 a1 b1 c1

a2 b2 c2

a3 b3 c3

 is nonsingular, we see that

(2.2) (H0 − hI)x = 0, (G0 − gI)x = 0, and (K0 − kI)x = 0.

Therefore, A0x = (h + ig)x and A∗0x = (h − ig)x. Hence, x is a reducing
eigenvector for A0. Also, we have k = 〈K0x, x〉 = 〈A0x,A0x〉 = h2 + g2.
Therefore, v = (h, g, h2 + g2) and

DW (A0) ⊆ conv{(λ, |λ|2) : λ ∈ σp(A0)}.

Hence, DW (A0) = conv{(λ, |λ|2) : λ ∈ σp(A0)}. Let vj = (hj , gj , h
2
j + g2

j ),

j = 1, . . . ,m, be the vertices of the polyhedron DW (A0). Then the above
argument shows that for each j, aj = hj + igj is a reducing eigenvalue of
A0. Let Sj be the eigenspace of A0 associated with aj . Then

A0 = a1IS1 ⊕ · · · ⊕ amISm ⊕B0

such that {a1, . . . , am} ∩ σp(B0) = ∅ and

DW (B0) ⊆ DW (A0) = conv{(aj , |aj |2) : 1 ≤ j ≤ m}.

If B0 is present, then σa(B0) is nonempty as it contains the boundary of
the nonempty compact set σ(B0); see for example [9, Chapter 9]. But then
we can find b ∈ σp(B0) = σa(B0) and b /∈ {a1, . . . , am}. Note that the set
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{(λ, |λ|2) : λ ∈ C} is the graph of the strictly convex function f : C → R
defined by f(λ) = |λ|2. Hence, (b, |b|2) ∈ DW (B0) and

(b, |b|2) /∈ conv{(aj , |aj |2) : 1 ≤ j ≤ m} = DW (A0),

which contradicts the fact that DW (B0) ⊆ DW (A0). Thus, B0 is absent,
and A0 = a1IS1 ⊕ · · · ⊕ amISm is normal with finite spectrum. Following
the construction of A0 from A, we see that A is normal with finite spectrum
{a1, . . . , am}. Thus, A has the form a1IH1 ⊕ · · · ⊕ amIHm as asserted. �

If A is a finite-dimensional operator, then σ(A) is finite and DW (A) is
always closed. Thus, we have the following corollary.

Corollary 2.4. For a finite-dimensional operator A with spectrum σ(A),
the following conditions are equivalent.

(a) A is normal.
(b) DW (A) is the convex hull of the set {(λ, |λ|2) : λ ∈ σ(A)}.
(c) DW (A) is a polyhedron.

Next, we show that the Davis–Wielandt shell cannot be used to detect
the normality of (infinite-dimensional) operators. In particular, there are
normal and nonnormal operators having the same Davis–Wielandt shell.
Constructing an example for H with an uncountable dimension is relatively
easy. Here we present an example for an operator acting on a separable
Hilbert space.

Example 2.5. Let H be a Hilbert space with an orthonormal basis {en :
n ≥ 1}, and let A ∈ B(H) be such that Aej = djej for j = 1, 2, . . . , where
{dn : n ≥ 1} is a (countable) dense subset of {λ ∈ C : |λ| ≤ 1} containing

0, 1,−1. Suppose B = A ⊕ C with C =
(

0 1
0 0

)
. Then A is normal and

B is not normal such that

σ(A) = σ(B) = {λ ∈ C : |λ| ≤ 1}, DW (A) = DW (B),

and
cl (DW (A)) = cl (DW (B)) = conv{(λ, |λ|2) : λ ∈ σ(B)}.

We verify the assertions in the above example in the following.
Evidently, A is normal and B is not normal. It is easy to see that σ(A) =

σ(B) = {λ ∈ C : |λ| ≤ 1} and

cl (DW (A)) = conv{(λ, |λ|2) : |λ| ≤ 1}.

DW (A) = {(z, r) : 0 ≥ r < |z|2 < 1} ∪ conv{(dn, |dn|2) : n ≥ 1} .
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By definition, DW (C) consists of all (z, r) ∈ C × R of the form (z, r) =
(x1x2, |x2|2) for some x1, x2 ∈ C such that |x1|2 + |x2|2 = 1. Thus, if
(z, r) ∈ DW (C), we have

(2.3) |z|2 = r(1− r) ⇔ |z|2 +
(

r − 1
2

)2

=
1
4

Conversely, Suppose z ∈ C and r ∈ R satisfy (2.3), then 0 ≤ r ≤ 1 and

z =
√

r(1− r)eit for some t ∈ R. Let x1 =
√

1− r and x2 =
√

reit. Then

(x1x2, |x2|2) = (eit
√

r(1− r), r) = (z, r). Hence,

DW (C) =

{
(z, r) : |z|2 +

(
r − 1

2

)2

=
1
4

}
⊆ cl (DW (A))

and DW (B) = conv{DW (A) ∪DW (C)}. So, cl (DW (A)) = cl (DW (B)).
Furthermore, note that DW (A) contains the interior of cl (DW (A)) and
conv{(0, 0), (1, 1), (−1, 1)} as subsets because 0, 1,−1 ∈ σp(A), and that
the union of these two subsets of DW (A) contains DW (C). It follows that

DW (A) = conv{DW (A) ∪DW (C)} = DW (B).

In fact, one easily verifies that DW (A) = conv{(dn, |dn|2) : n ≥ 1}.

Remarks For an infinite-dimensional operator A, consider the following
conditions:

(a) A is normal.
(b) cl (DW (A)) = conv{(λ, |λ|2) : λ ∈ σ(A)}.
(c) cl (DW (A)) is a polyhedron.

From our results, we see that for an infinite-dimensional operator A, we
have (c) ⇒ (a) ⇒ (b). By Example 2.5, (b) does not imply (a), and (a)
clearly does not imply (c).

Let D = diag (1, 1/2, 1/3, 1/4, . . . ) and A = D ⊕ iD. Then

cl (W (A)) = conv{0, 1, i} = conv(σ(A))

is a triangle, and W (A) = cl (W (A)) \ {0} is not closed. Hence, cl (W (A))
being a closed convex polygon does not imply that W (A) is a closed convex
polygon even for a normal operator A. In other words, the numerical range
analog of (1) and (2) of Theorem 2.3 are not equivalent. Note that our
example is also a counter-example of [7, Corollary 1.5-7].
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