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Abstract. Denote by W (T ) the numerical range of the normal oper-

ator T . A characterization is given to the points in W (T ) that lie on

the boundary. The collection of such boundary points together with

the interior of the the convex hull of the spectrum of T will then be

the set W (T ). Moreover, it is shown that such boundary points reveal

a lot of information about the normal operator. For instance, such a

boundary point always associates with an invariant (reducing) subspace

of the normal operator. It follows that a normal operator acting on a

separable Hilbert space cannot have a closed strictly convex set as its

numerical range. Similar results are obtained for the Davis-Wielandt

shell of a normal operator. One can deduce additional information of

the normal operator by studying the boundary of its Davis-Wielandt

shell. Further extension of the result to the joint numerical range of

commuting operators is discussed.
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1. Introduction

Let B(H) be the algebra of bounded linear operators acting on the Hilbert
space H. We identify B(H) with the algebra Mn of n× n complex matrices
if H has dimension n. The numerical range of T ∈ B(H) is defined by

W (T ) = {〈Tx, x〉 : x ∈ H, 〈x, x〉 = 1},

which is useful in studying operators; see [5, 6, 7]. In particular, the geo-
metrical properties of W (T ) often provide useful information about the al-
gebraic and analytic properties of T . For instance, W (T ) = {µ} if and only
if T = µI; W (T ) ⊆ R if and only if T = T ∗; W (T ) has no interior point if
and only if there are a, b ∈ C with a 6= 0 such that aT + bI is self-adjoint.
Moreover, there are nice connections between W (T ) and the spectrum σ(T )
of T . For example, the closure of W (T ), denoted by cl (W (T )), always con-
tains σ(T ). If T is normal, then cl (W (T )) = conv σ(T ), where conv S

denotes the convex hull of the set S. Hence, cl (W (T )) is completely de-
termined by σ(T ) for a normal operator T . However, one can easily find
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examples of normal operators A and B with the same spectrum such that
W (A) 6= W (B).

Example 1.1. Let A = diag (1, 1/2, 1/3, . . . ), B = diag (0, 1, 1/2, 1/3, . . . )
be two diagonal operators acting on `2. Then W (A) = (0, 1] 6= [0, 1] = W (B)
and σ(A) = σ(B) = {1/n : n ≥ 1} ∪ {0}.

For two normal operators A and B with the same spectrum, we have
cl (W (A)) = conv σ(A) = conv σ(B) = cl (W (B)). Thus, W (A) and W (B)
can only differ by their boundaries ∂W (A) and ∂W (B). Hence, to describe
the numerical range of a normal operator T , it suffices to determine which
boundary points of W (T ) actually belong to W (T ). In this paper, a charac-
terization is given to such boundary points. Moreover, we show that a point
in W (T )∩∂W (T ) always lead to a decomposition of T into an orthogonal de-
composition of the Hilbert space, and a corresponding decomposition of the
operator T . It follows that a normal operator acting on a separable Hilbert
space cannot have a closed strictly convex set as its numerical range. On
the contrary, the numerical range of a non-normal matrix in M2 is always a
non-degenerate elliptical disk; see [7, Theorem 1.3.6].

Motivated by theoretical study and applications, researchers considered
different generalizations of the numerical range; see for example [5, 6] and
[7, Chapter 1]. One of these generalizations is the Davis-Wielandt shell of
T ∈ B(H) defined by

DW (T ) = {(〈Tx, x〉, 〈Tx, Tx〉) : x ∈ H, 〈x, x〉 = 1};

see [3, 4, 10]. Evidently, the projection of the set DW (T ) on the first
co-ordinate is the classical numerical range. So, DW (T ) captures more
information about the operator T . For a normal operator T ∈ B(H), it is
known that the closure of DW (T ) is the set

conv {(λ, |λ|2) : λ ∈ σ(T )};

see for example [9, Theorem 2.1]. Thus, the interior of DW (T ) can be easily
determined. However, the points in DW (T ) which lie on its boundary are
not so well understood. We will characterize such points and show that they
will lead to direct sum decomposition of T which cannot be detected by the
geometrical features of W (T ). Inspired by some comments of the referee on
an early version of this paper, we include a discussion of the extension of
our results to the joint numerical range of commuting operators.
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In the following discussion, denote by cl (S) and ∂S the closure and the
boundary of a set S, respectively. Moreover, we use int (S) to denote the
relative interior of S. For instance, if cl (S) is a line segment in C, then
int (S) will be the line segment obtained from cl (S) by removing its end-
points although S has no interior points in C. For T ∈ B(H), the point
spectrum of T ∈ B(H) is denoted by σp(T ).

2. Numerical Ranges

Theorem 2.1. Let T ∈ B(H) be a normal operator. Then µ ∈ W (T ) is a
boundary point if and only if H admits an orthogonal decomposition H1⊕H2

such that T = T1⊕T2 ∈ B(H1⊕H2) with µ ∈ W (T1) ⊆ L for a straight line
L and W (T2) ∩ L = ∅.

Proof. Let µ ∈ W (T ) be a boundary point of W (T ). We may replace T by
aT +bI so that µ = 0 and Re ν ≤ 0 for all ν ∈ W (T ). Let T = H+iG, where
H and G are self-adjoint. Since W (H) = {Re ν : ν ∈ W (T )}, we see that
〈Hx, x〉 ≤ 0 for any unit vector x ∈ H. Thus, H is negative semidefinite. Let
H1 be the kernel of H and H2 = H⊥

1 . Then H = 0H1 ⊕H2 ∈ B(H1 ⊕H2).
Since HG = GH, we see that G = G1 ⊕ G2 ∈ B(H1 ⊕ H2). Thus, T =
T1 ⊕ T2 ∈ B(H1 ⊕H2). Since T1 = iG1, W (T1) ⊆ iR; since T2 = H2 + iG2

such that W (H2) ⊆ (−∞, 0), W (T2) ∩ iR = ∅.
Using the fact that W (T1⊕T2) = conv {W (T1)∪W (T2)} (see for example

[7, 1.2.10]), one can verify the converse. �

In Theorem 2.1, W (T1) may be a point or a line segment containing
none, one or all of its end points; W (T2) may be an open set, a closed set,
or neither.

Example 2.2. We have 0 ∈ W (T ) ∩ ∂W (T ) if T = T1 ⊕ T2 ∈ B(`2 ⊕ `2)
for any choices of the following T1 and T2.

T1 = 0 so that W (T1) = {0},
T1 = i(−I ⊕ I) so that W (T1) = {iµ : µ ∈ [−1, 1]}, or
T1 = i[diag (1/2, 2/3, 3/4, . . . )⊕ diag (−1/2,−2/3,−3/4, . . . )] so that

W (T1) = {iµ : µ ∈ (−1, 1)};
T2 = diag (ei2π/3, ei4π/3,−1/2) so that W (T2) = conv σ(T2),
T2 = ei2π/3D ⊕ ei4π/3D ⊕ (D − I) with D = diag (2/3, 3/4, 4/5, . . . ) so

that W (T2) = int (conv σ(T2)) = int (conv {ei2π/3, ei4π/3, 0}), or
T2 = diag (ei2π/3, ei4π/3) ⊕ −diag (1/3, 1/4, 1/5, . . . ) so that W (T2) =

int ({ei2π/3, ei4π/3, 0}) ∪ conv {ei2π/3, ei4π/3}.



4 CHI-KWONG LI AND YIU-TUNG POON

In connection to Theorem 2.1 and the above example, we give a detailed
analysis of an operator A such that W (A) is a subset of a straight line in
C in the following. In particular, we give a description of W (A) in terms of
σ(A) and σp(A), and determine the algebraic structure of A. Note that the
following proposition is valid for a general operator A.

Proposition 2.3. Let A ∈ B(H) be such that W (A) ⊆ L, where L is a
straight line in C. Then

W (A) = int (conv σ(A)) ∪ σp(A)

and one of the following holds.

(a) A = µI and W (A) = {µ} ⊆ L.
(b) There are a, b ∈ C with a 6= 0 such that cl (W (A)) = a[−1, 1] + b ⊆

aR + b. In such case, an end point µ of the line segment a[−1, 1]+ b belongs
to W (A) if and only if µ ∈ σp(A).

Proof. Suppose W (A) is a subset of a line L in C. Note that W (A) = {µ}
if and only if A = µI. Assume that it is not the case. Then there exist
a, b ∈ C with a 6= 0 such that cl (W (A)) = a[−1, 1] + b ⊆ aR + b. Thus,
A = aS + bI such that S = S∗ with cl (W (S)) ⊆ [−1, 1]. In particular,
‖S‖ = 1.

If the end point a+ b of cl (W (A)) belongs to W (A), then 1 ∈ W (S). So,
there is a unit vector x ∈ H such that

1 = 〈Sx, x〉 ≤ ‖Sx‖‖x‖ ≤ ‖S‖ ≤ 1.

By the equality case of the Cauchy-Schwartz inequality, Sx = x, and thus
Ax = (a + b)x. Thus, a + b ∈ σp(A). Conversely, if a + b ∈ σp(A), then
a + b ∈ W (A). Similarly, −a + b ∈ W (A) if and only if −a + b ∈ σp(A). �

The following corollary is immediate.

Corollary 2.4. Suppose A ∈ B(H) is normal and µ ∈ W (A) is a boundary
point. Then there is a straight line L in C such that W (A)∩L = {µ} if and
only if H admits an orthogonal decomposition H1⊕H2 and A = µIH1⊕A2 ∈
B(H1 ⊕H2) with µ /∈ W (A2).

We will present another example to illustrate our results, and show that
the set W (T ) ∩ ∂W (T ) cannot be determined by (and does not determine)
σ(T ) and σp(T ) in general. The following corollary is useful for presenting
the example.
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Corollary 2.5. Suppose A = d1IH1 ⊕d2IH2 ⊕· · · ∈ B(H) such that H is an
orthogonal sum of the closed subspaces H1,H2, . . . . Then

W (A) = conv {dn : n ≥ 1}.

Proof. The result follows from the inclusions

int (W (A)) ⊆ conv {dn : n ≥ 1}

⊆ W (A) ⊆ cl (W (A)) = cl (conv {dn : n ≥ 1})
and the description of ∂(W (A)) ∩W (A) in Theorem 2.1. �

We are now ready to present the promised example. In particular, we con-
struct normal operators A,B, C ∈ B(H) so that cl (W (A)) = cl (W (B)) =
cl (W (C)); A and C have different spectra and point spectra but ∂W (A) ∩
W (A) = ∂W (C) ∩ W (C); B and C have the same spectrum and point
spectrum but ∂W (B) ∩W (B) 6= ∂W (C) ∩W (C).

Example 2.6. Let {rn : n ≥ 1} be a countable dense subset of the open
interval (0, 1) and {dn : n ≥ 1} a countable dense subset of the interior of
conv {0, 1, i}. Let A = [i]⊕diag (r1, r2, . . . ), B = [i]⊕diag (d1, d2, . . . ), and
C = B ⊕M where M is the multiplication operator on L2([0, 1]) defined by
M(f)(t) = t(f(t)) for t ∈ [0, 1]. Then

cl (W (A)) = cl (W (B)) = cl (W (C)) = conv {0, 1, i}.

Using Theorem 2.1, we have ∂W (B) ∩W (B) = {i} and

∂W (A) ∩W (A) = {i} ∪ (0, 1) = ∂W (C) ∩W (C)

so that

∂W (A) ∩W (A) = ∂W (C) ∩W (C) 6= ∂W (B) ∩W (B).

It is easy to check that

σp(A) = {i} ∪ {rn : n ≥ 1}, σp(B) = σp(C) = {i} ∪ {dn : n ≥ 1},

σ(A) = {i} ∪ [0, 1] and σ(B) = σ(C) = conv {0, 1, i}.

Corollary 2.7. Suppose dimH is infinite and A ∈ B(H) is normal. If A is
not unitarily reducible, then W (A) = int (W (A)). In other words, W (A) is
a non-empty open set in C or W (A) is a nondegenerate line segment without
end points.

Suppose S is a closed, bounded and convex subset of C, with non-empty
interior. We say that S is strictly convex if ∂S equals the set Ext (S) of
extreme points of S.
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Corollary 2.8. Let A ∈ B(H) be normal and E = W (A)∩Ext (cl (W (A)))
be uncountable. Then H is non-separable and every point in E is an eigen-
value of A. In particular, if W (A) = cl (W (A)) is strictly convex with
non-empty interior, then H is non-separable and every boundary point of
W (A) is an eigenvalue.

Corollary 2.9. Let S be a bounded and convex subset of C. Then there
exist a separable Hilbert space H and A ∈ B(H) such that S = W (A) if and
only if S ∩Ext (cl (S)) is countable.

Proof. Suppose S is a bounded convex set such that S ∩ Ext (cl (S)) is
countable. Let A = diag (d1, d2, . . . ) such that {dn : n ≥ 1} is the union
of S ∩ Ext (cl (S)) and a countable dense set of the interior of S, then
W (A) = S. The converse follows from Corollary 2.8. �

3. Davis-Wielandt Shells

In this section, we characterize DW (T )∩∂DW (T ) for normal T ∈ B(H).
In our discussion, we always identify C× R with R3.

Theorem 3.1. Suppose T ∈ B(H) is a normal operator. Then DW (T ) and
conv {(ξ, |ξ|2) : ξ ∈ σ(A)} have the same interior. A point (µ, r) ∈ DW (T )
is a boundary point if and only if H admits an orthogonal decomposition
H1 ⊕ H2 with T = T1 ⊕ T2 ∈ B(H1 ⊕ H2) such that (µ, r) ∈ DW (T1) ⊆ P
for a plane P in C× R and DW (T2) ∩P = ∅.

Proof. Let T = H + iG be such that H = H∗ and G = G∗. Then DW (T )
can be identified with the joint numerical range

W (H,G, T ∗T ) = {(〈Hx, x〉, 〈Gx, x〉, 〈T ∗Tx, x〉) : x ∈ H, 〈x, x〉 = 1} ⊆ R3.

Let x ∈ B(H) be a unit vector such that

(µ1, µ2, r) = (〈Hx, x〉, 〈Gx, x〉, 〈T ∗Tx, x〉)

is a boundary point of W (H,G, T ∗T ). Let P be a support plane of DW (T )
passing through (µ1, µ2, r). Then there are real numbers a, b, c, d such that

aν1 + bν2 + cr̃ − d ≤ aµ1 + bµ2 + cr − d = 0

for all (ν1, ν2, r̃) ∈ W (H,G, T ∗T ). As a result, the operator T̃ = aH +
bG + cT ∗T − dI is negative semidefinite with a nonzero kernel. Let H1 be
the kernel of T̃ . Then T̃ = T̃1 ⊕ T̃2 ∈ B(H1 ⊕ H⊥

1 ) such that 〈T̃2y, y〉 < 0
for any unit vector y. Note that T̃ commutes with H,G. It follows that
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H = H1⊕H2 and G = G1⊕G2 acting onH1⊕H⊥
1 so that T ∗T = T ∗

1 T1⊕T ∗
2 T2

for T1 = H1 + iG1 and T2 = H2 + iG2. Clearly, W (H1, G1, T
∗
1 T1) ⊆ P and

W (H2, G2, T
∗
2 T2) is contained in one of the half space determined by P.

Identifying DW (Tj) = W (Hj , Gj , T
∗
j Tj) for j = 1, 2, we get the desired

conclusion on DW (T ).
It is easy to verify the sufficiency of the theorem. �

By Theorem 3.1, the study of points in DW (T ) ∩ ∂DW (T ) for a normal
operator T reduces to the study of points in DW (T1) such that DW (T1) is a
subset of a plane in C×R. In the following, we give a detailed analysis of an
operator A for which DW (A) is a subset of a plane in C×R. In particular,
we give a description of DW (A) in terms of σ(A) and σp(A).

Note that DW (A) ⊆ convP for any A ∈ B(H), where

(1) P = {(ξ, |ξ|2) : ξ ∈ C}

is the paraboloid of revolution. Also, observe that if A,A′ ∈ B(H) with
A′ = αA + βI, where α, β ∈ C with α 6= 0, then

(2) DW (A′) = {(αµ + β, |α|2r + 2Re (αβ̄µ) + |β|2) : (µ, r) ∈ DW (A)}.

So, DW (A′) is the image of DW (A) under a real bijective affine transform.
Clearly, there is also a one-one correspondence between σp(A′) and σp(A).
Moreover, the affine transform will establish a one-one correspondence be-
tween the boundary points of DW (A′) and those of DW (A). Hence, replac-
ing A by A′ will not affect the hypothesis and conclusion of the results in
the following discussion.

Theorem 3.2. Let A ∈ B(H) be normal. Then DW (A) is a subset of a
plane in C× R if and only if one of the following holds.

(a) A = µI so that DW (A) = {(µ, |µ|2)} is a singleton.
(b) H has a closed subspace H1 such that A = µ1IH1⊕µ2HH⊥1

∈ B(H1⊕

H⊥
1 ) and DW (A) = conv {(µ1, |µ1|2), (µ2, |µ2|2)}.

(c) σ(A) has more than two elements, and there are α, β ∈ C with α 6= 0
such that αA+βI is a self-adjoint operator and DW (A) is contained
in a plane parallel to the line {(0, s) : s ∈ R} in C× R.

(d) σ(A) has more than two elements and there are α, β ∈ C with α 6= 0
such that αA+βI is a unitary operator and DW (A) is contained in
a plane not parallel to the line {(0, s) : s ∈ R} in C× R.

In all the cases (a) – (d) we have

DW (A) = int (conv {(µ, |µ|2) : µ ∈ σ(A)}) ∪ conv {(ξ, |ξ|2) : ξ ∈ σp(A)}.
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Proof. Suppose (a) – (c) hold. Then

DW (A) ⊆ cl (DW (A)) = conv {(µ, µ2) : µ ∈ σ(A)}

is a subset of a plane in C×R parallel to the line {(0, s) : s ∈ R} in C×R.
Suppose (d) holds. Then the operator A′ = αA + βI satisfies ‖A′x‖ = 1
for all unit vectors x ∈ B(H). Thus, DW (A′) is a subset of a plane parallel
to the complex plane in C × R. Since α 6= 0 and σ(A′) = σ(αA + βI) has
at least three elements not in a line, it follows from (2) that DW (A) is a
subset of a plane not parallel to the line {(0, s) : s ∈ R} in C× R.

Suppose DW (A) is a subset of a line or DW (A) is a subset of a plane
parallel to the line {(0, s) : s ∈ R} in C×R. Then the projection of DW (A)
to the first co-ordinate will be W (A) and is a subset of a straight line in C.
Then there exist α, β ∈ C with α 6= 0 such that αA + βI is self-adjoint. It
follows that (a), (b) or (c) holds depending on σ(A) has one, two or more
elements.

Now, suppose DW (A) is not a subset of a line, and DW (A) ⊆ P, where
P is not parallel to the line {(0, s) : s ∈ R} in C× R. Then there exist b, c

and d ∈ R such that for all (µ1 + iµ2, r) ∈ DW (A) we have

r + 2(bµ1 + cµ2) = d .

Since r ≥ µ2
1 + µ2

2, we have,

d + (b2 + c2) =
(
r −

(
µ2

1 + µ2
2

))
+ (b + µ1)2 + (c + µ2)2 ≥ 0.

If d+(b2+c2) = 0, then DW (A′) consists of one point (−b−ic, b2+c2) so that
A′ is a scalar operator, which is a contradiction. Hence, d+(b2+c2) > 0. Let

α =
1√

d + (b2 + c2)
and β =

b + ic√
d + (b2 + c2)

. Then for every (µ1 + iµ2, r) ∈

DW (A), we have

|α|2r + 2Re (αβ̄µ) + |β|2) =
1

d + (b2 + c2)
(
r + 2(bµ1 + cµ2) + b2 + c2

)
= 1.

Therefore, for A′ = αA + βI we have

(3) DW (A′) ⊆ {(ξ, 1) : ξ ∈ C} = P′,

i.e., ‖A′x‖2 = 1 for all unit vector x ∈ H1. Since A is normal and so is A′,
it follows that A′ is unitary.

Finally, we consider the equality

DW (A) = int (conv {(µ, |µ|2) : µ ∈ σ(A)}) ∪ conv {(ξ, |ξ|2) : ξ ∈ σp(A)}.
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Clearly, the equality is valid if (a) or (b) holds. The “⊇” inclusion is clear.
To prove the reverse inclusion, we establish the following.

Claim. If

(µ, r) ∈ DW (A) \ int (cl (DW (A))),

then

(µ, r) ∈ conv {(ξ, |ξ|2) : ξ ∈ σp(A)}.

The claim is clear if (a) or (b) holds.
Suppose (c) holds. We may replace A by αA + βI and assume that A is

self-adjoint. Then

DW (A) ⊆ conv {(µ, |µ|2) : µ ∈ σ(A)}

is a convex lamina in R× [0,∞). If c and d are the maximum and minimum
of σ(A), then the upper edge of the lamina equals conv {(c, |c|2), (d, |d|2)}.
The points on this set may or may not lie in DW (A) depending on whether
c, d ∈ σp(A). Similarly, we have to examine the lower edges or boundary
curve of the lamina.

To establish the claim in this case, let x ∈ H be a unit vector such
that (〈Ax, x〉, ‖Ax‖2) = (µ, r) /∈ int (cl (DW (A))). If r = µ2 then by the
Cauchy-Schwartz inequality, we see that Ax = µx and hence µ ∈ σp(A).
Suppose r 6= µ2. Let L be a support line of DW (A) passing through (µ, r)
and suppose L intersects the parabola P = {(s, s2) : s ∈ R} at (µ1, |µ1|2)
and (µ2, |µ2|2). Clearly, µ1, µ2, µ are all distinct. We may replace A by
A − (µ1 + µ2)I/2 and assume that µ1 + µ2 = 0. We may further assume
that |µ1| = 1. Otherwise, replace A by A/|µ1|. Thus, we may assume that
L = {(ξ, 1) : ξ ∈ R} is an upper edge or a lower edge of the convex lamina
DW (A) with (µ, r) = (µ, 1) ∈ L. Consequently, 1 is either the maximum or
the minimum of σ(A∗A).

Let H0 be the kernel of A∗A − I. Since (〈Ax, x〉, ‖Ax‖2) = (µ, 1), we
see that x ∈ H0. Since A is self-adjoint, we can further decompose H0 into
the direct sum of H1 and H2, which are the kernel of A − I and A + I

respectively. Note that neither H1 nor H2 can be a zero space, otherwise,
we cannot have x ∈ H0 = H1 ⊕H2 such that 〈Ax, x〉 = µ. Thus A can be
written as IH1 ⊕−IH2 ⊕A0 ∈ B(H1 ⊕H2 ⊕H⊥

0 ). Then

(µ, r) ∈ DW (IH1 ⊕−IH2)

= conv {(1, 1), (−1, 1)}

⊆ conv {(ξ, |ξ|2) : ξ ∈ σp(A)}.



10 CHI-KWONG LI AND YIU-TUNG POON

Finally, suppose (d) holds. We may replace A by αA + βI and assume
that A is unitary. Hence, DW (A) ⊆ {(µ, 1) : µ ∈ W (A)}, W (A) is a subset
of the closed unit disk, and σ(A) is a subset of the unit circle in C. Suppose
(µ, r) /∈ int (cl (DW (A))). Then there is a supporting line L on W (A)
passing through µ. By Theorem 2.1, A = A1 ⊕ A2, with µ ∈ W (A1). Note
that DW (A1) ⊆ DW (A) ⊆ {(ν, 1) : ν ∈ W (A)}. Thus, DW (A1) is a subset
of a line segment passing through (µ, 1). By the result in (b), we see that
(µ, 1) ∈ conv {(ν, 1) : ν ∈ σp(A1)} ⊆ conv {(ξ, |ξ|2) : ξ ∈ σp(A)}. �

Similar to Corollary 2.5, we have the following corollary for the Davis-
Wielandt shell.

Corollary 3.3. Suppose A = d1IH1 ⊕d2IH2 ⊕· · · ∈ B(H) such that H is an
orthogonal sum of the closed subspaces H1,H2, . . . . Then

DW (A) = conv {(dn, |dn|2) : n ≥ 1}.

We can use the operators in Example 2.6 to illustrate our results on
Davis-Wielandt shells.

Example 3.4. Let A,B, C be defined as in Example 2.6. Then

∂DW (A)∩DW (A) =
(
∪n≥1conv {(i, 1), (rn, r2

n)}
)
∪conv {(rn, r2

n) : n ≥ 1},

∂DW (B) ∩DW (B) = {(i, 1)} ∪ {(dn, d2
n) : n ≥ 1},

and
∂DW (C) ∩DW (C)

= {(i, 1)} ∪ {(dn, d2
n) : n ≥ 1} ∪ {(µ, r) : µ ∈ (0, 1), µ2 < r < µ}.

By Corollary 3.3, we have

DW (X) = conv {(µ, |µ|2) : µ ∈ σp(X)} for X = A,B, C,

and

DW (C)

= conv {DW (B) ∪DW (M)}

= conv {(µ, |µ|2) : µ ∈ σp(C)} ∪ {(µ, r) : µ ∈ (0, 1), µ2 < r < µ}.

Recall that ∂W (A) ∩W (A) = ∂W (C) ∩W (C) = {i} ∪ (0, 1). It is clear
that the boundary structure of DW (A) can provide more information of A

than W (A). In particular, we have

σ(A) = {µ ∈ C : (µ, |µ|)2) ∈ ∂DW (A)}
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and
σp(A) = {µ ∈ C : (µ, |µ|2) ∈ DW (A)}.

Note that the analog of Corollary 2.9 does not hold for the Davis-Wielandt
shell. In particular, the multiplication operator C in the above example acts
on a separable Hilbert space and DW (C) has infinitely many extreme point
lying in DW (C).

4. Joint numerical ranges

Inspired by the comments of the referee on an early version of the paper,
we see that our results on the numerical range and the Davis-Wielandt
shell can be further extended to the joint numerical range W (A1, . . . , Am)
of mutually commuting operators A1, . . . , Am ∈ B(H) defined as the set of
(a1, . . . , am) ∈ Cm with

aj = 〈Ajx, x〉 for j = 1, . . . ,m,

for some unit vector x ∈ H; see [2, 8, 11] and their references. While
W (A) and DW (A) are useful for studying an operator A, the joint nu-
merical range W (A1, . . . , Am) is useful in studying the joint behavior of
the operators A1, . . . , Am. Suppose Aj = Hj + iGj for Hj = H∗

j and
Gj = G∗

j for j = 1, . . . ,m. Then W (A1, . . . , Am) ⊆ Cm can be identi-

fied with W (H1, G1, . . . ,Hm, Gm) ⊆ R2m. So, we can focus on the joint
numerical ranges of self-adjoint operators A1, . . . , Am ∈ B(H). Define the
joint approximate point spectrum σπ(A1, . . . , Am) to be the set of points
(a1, . . . , am) such that

∑m
j=1 ‖(Aj−ajI)xn‖ → 0 for a sequence {xn} of unit

vector in H. It is known that

cl (W (A1, . . . , Am)) = conv σπ(A1, . . . , Am)

if A1, . . . , Am ∈ B(H) are mutually commuting self-adjoint operators; see [1,
Cor. 36.11] and [11].

Suppose B1, . . . , Bm ∈ B(H) are mutually commuting self-adjoint opera-
tors. If the real linear span of IH, B1, . . . , Bm has dimension k ≤ m, then
W (B1, . . . , Bm) is a subset of a (k − 1)-dimensional hyperplane in Rm, i.e.,

W (B1, . . . , Bm) ⊆ (b1, . . . , bm) + V

for a (k − 1)-dimensional subspace V of Rm. We can extend Theorem 2.1
and Theorem 3.1 (and their proofs) to the following.

Theorem 4.1. Suppose A1, . . . , Am ∈ B(H) are mutually commuting self-
adjoint operators. Then (a1, . . . , am) ∈ W (A1, . . . , Am) ∩ ∂W (A1, . . . , Am)
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if and only if H admits an orthogonal decomposition H1 ⊕ H2 and Aj =
Bj ⊕ Cj for j = 1, . . . ,m, such that (a1, . . . , am) ∈ W (B1, . . . , Bm) ⊆ P for
a hyperplane in Rm and W (C1, . . . , Cm) ∩P = ∅.

Similar to the study in Sections 2 and 3, one may analyze the geo-
metric structure of W (B1, . . . , Bm) in connection to the algebraic struc-
ture of B1, . . . , Bm in Theorem 4.1. If the boundary point (a1, . . . , am)
of W (A1, . . . , Am) lies in the relative interior of W (B1, . . . , Bm), then not
much can be said. Otherwise, we can apply the theorem again to further
decompose Bj into the direct sum of two operators for j = 1, . . . ,m. If

this procedure can be repeated until we have (a1, . . . , am) ∈ W (B̃1, . . . , B̃m)
so that W (B̃1, . . . , B̃m) lies on a hyperplane of dimension 0 or 1, then we
can apply Theorem 3.2 to conclude that each B̃j is a scalar operator, or

B̃j = µjI ⊕ νjI with aj ∈ (µj , νj) for all j = 1, . . . ,m. Of course, in the

latter case, (a1, . . . , am) is again in the relative interior of W (B̃1, . . . , B̃m).
Summarizing the above discussion, we have the following.

Proposition 4.2. Under the hypotheses of Theorem 4.1. If (a1, . . . , am) ∈
W (A1, . . . , Am) is a boundary point, then B1, . . . , Bm can be chosen so that
one of the following holds:

(a) (a1, . . . , am) is in the relative interior of W (B1, . . . , Bm).
(b) Bj = ajI for j = 1, . . . ,m. This case holds if and only if (a1, . . . , am)

is an extreme point in W (A1, . . . , Am).

Statement (b) of the above theorem is the main theorem in [8]. Similar
to Corollary 2.9, we have the following.

Corollary 4.3. Let S be a bounded and convex subset of Rm. Then there
exist a separable Hilbert space H and mutually commuting self-adjoint op-
erators A1, . . . , Am ∈ B(H) such that S = W (A1, . . . , Am) if and only if
S ∩Ext (cl (S)) is countable.

Note that one may sometimes use the joint numerical range to study
DW (A) as in our proof of Theorem 3.1. But one cannot just treat DW (A)
as a special case of the joint numerical range. For instance, one can extend
Corollary 2.9 to the joint numerical range (Corollary 4.3) but not to the
Davis-Wielandt shell (as noted at the end of Section 3). In this connection,
it would be interesting to characterize those bounded convex sets in R3 that
can be realized as DW (A) for a normal operator A acting on a separable
Hilbert space.
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