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Abstract
A real or complex n × n matrix is generalized doubly stochastic if all of its row sums

and column sums equal one. Denote by V the linear space spanned by such matrices. We
study the reducibility of V under the group Γ of linear operators of the form A 7→ PAQ,
where P and Q are n×n permutation matrices. Using this result, we show that every linear
operator φ : V → V mapping the set of generalized doubly stochastic matrices into itself is
a linear combination of the operators in Γ followed by a translation of a fixed matrix in V .
We compare our results with those from related studies by Sinkhorn and Benson. We also
consider similar problems for the generalized symmetric doubly stochastic matrices.

AMS Subject Classifications: 15A04, 15A51.
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1 Introduction

There has been considerable interest in studying linear transformations on matrix spaces
leaving a certain subset invariant, i.e., mapping the subset onto itself; see [4]. For example,

if S is the set of n×n doubly (sub-)stochastic matrices or the set of n×n (sub-)permutation
matrices, and V = spanS is the linear span of S, then a linear transformation φ : V → V
satisfying φ(S) = S must be of the form

X 7→ PXQ or X 7→ PX tQ (1)

for some n × n permutation matrices P and Q. In [2], the authors of this paper solved the

open problem in [4] concerning linear transformations on spanS satisfying φ(S) = S, where
S is the set of n×n even permutation matrices, i.e., permutation matrices with determinant
one. It was shown that for n ≥ 5, the transformation has the form (1) for some permutation

matrices P,Q such that det(PQ) = 1. When n ≤ 4, the transformation can have other
forms, which were also characterized.

In [3] (see also [5]), the authors studied linear transformations φ satisfying φ(S) = S,
where S is the set of symmetric doubly stochastic matrices. It was shown that such trans-
formations have the expected form

X 7→ P tXP (2)

for some permutation matrix P .

1Current address: GSAS Mail Center, Child Hall 311, 26 Everett Street, Cambridge, MA 02138.
2Research supported by an NSF grant.
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In some earlier studies (see [6] and [1]), researchers considered n×n complex generalized
doubly stochastic matrices, i.e., n×n complex matrices with all row sums and column sums
equal to one, and characterized linear transformations mapping the set of such matrices into
itself. In particular, they showed that such a transformation can be written as the sum
of simple transformations of the form X 7→ MXN for some generalized doubly stochastic
matrices M and N , together with a few other simple transformations. In this paper, we show
that one can actually write such a transformation as a linear combination of transformations
of the form X 7→ PXQ for some permutation matrices P and Q, together with a few other
simple transformations. Our proofs work for both real and complex matrices (and matrices

over many other fields). Moreover, similar problems for the generalized symmetric doubly
stochastic matrices are also considered.

The following notations will be used in our discussion.
Mn: the set of n× n real or complex matrices.
GDSn: the set of n× n generalized doubly stochastic matrices in Mn.
GSDSn: the set of n× n generalized symmetric doubly stochastic matrices in Mn.
Pn: the set of n× n permutation matrices.
Vn: the set of matrices in Mn with equal row sums and column sums.
SVn: the set of symmetric matrices in Mn with equal row sums and column sums.
In: the identity matrix in Mn.
Jn: the matrix in Mn with all entries equal to one.

J̃n = Jn − In.
{e1, . . . , en}: the standard basis for IFn.
e = e1 + · · ·+ en.
Eij = eiej

t.

2 Generalized Doubly Stochastic Matrices

It is easy to verify that the linear span of GDSn is the space Vn of n × n matrices with
equal row sums and column sums. Suppose Γ is the group of operators acting on Vn of the
form X 7→ PXQ for some permutation matrices P and Q. Recall that a nonzero subspace
W of Vn is invariant under Γ if φ(W) ⊆ W for all operators φ in Γ, and W is irreducible
under Γ if W does not contain a proper invariant subspace under Γ. We have the following
result.

Theorem 2.1 Let S1 = 〈Jn〉 and S2 = {X ∈ Vn : XJn = JnX = 0}. Then S1 and S2 are
irreducible invariant subspaces of Vn under the group Γ, and Vn = S1 ⊕ S2.

Proof. Evidently, S1 ∩ S2 = {0}. For any X = (xij) ∈ Vn, let λ = (etXe)/n2 and let

X̃ = X − λJn ∈ S2. Then X = λJn + X̃. Thus, Vn = S1 ⊕ S2.
It is clear that S1 and S2 are invariant subspaces under Γ and S1 is irreducible under

Γ. To show that S2 is irreducible, suppose W is an invariant subspace of S2 under Γ
containing a nonzero matrix A = (aij). We show that S2 = span {PAQ : P,Q ∈ Pn} ⊆ W.

We may assume that a11 6= 0; otherwise, we may replace A by PAQ for some suitable
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P,Q ∈ Pn and assume that A has a nonzero entry in the (1, 1) position. Let P̃ ∈ Pn be

the permutation matrix with 1 at the (1, 1), (2, n), and (k, k − 1) positions for 3 ≤ k ≤ n.

Suppose B1 = (P̃A + P̃ 2A + · · ·+ P̃ n−1A)/((n− 1)a11) ∈ W. By our construction and the
fact that B1 has column sums equal to zero, we see that each of the second through the
nth rows of B1 is equal to −b/(n − 1), where b = (1, b2, . . . , bn) is the first row of B1. Let

B2 = B1P̃ +B1P̃
2 + · · ·+B1P̃

n−1 ∈ W. Then

B2 =


n− 1 −1 · · · − 1
−1
...
−1

(n− 1)−1Jn−1

 .

Next, let Q̃ ∈ Pn correspond to the permutation that interchanges 1 and 2. We construct

B3, B4 ∈ W such that B3 = B2 − Q̃B2 and B4 = B3 −B3Q̃. Then

B4 = [n+ 1 + 1/(n− 1)]
(

1 −1
−1 1

)
⊕ 0n−2 ∈ W,

and hence

B5 = (n+ 1 + 1/(n− 1))−1B4 =
(

1 −1
−1 1

)
⊕ 0n−2 ∈ W.

Finally, we show that span {PB5Q : P,Q ∈ Pn} = S2. To this end, let X = (xij) ∈ S2.

Then X is uniquely determined by xij with 1 ≤ i, j ≤ n − 1. For 1 ≤ i, j ≤ n − 1, let

Cij ∈ S2 be the matrix with 1 at the (i, j) and (n, n) positions, with −1 at the (i, n) and

(n, j) positions, and with zero elsewhere. Evidently, for each Cij, we may find P,Q ∈ Pn

such that PB5Q = Cij. Now, X =
∑

1≤i,j≤n−1 xijCij. It follows that

span {PAQ : P,Q ∈ Pn} = span {PB5Q : P,Q ∈ Pn} = S2,

and hence S2 is irreducible under Γ.

Theorem 2.2 Define S1 and S2 as in Theorem 2.1. There exist P1, . . . , Pm, Q1, . . . , Qm ∈
Pn with m = (n− 1)4 such that every linear map ψ : S2 → S2 has the form

X 7→
m∑

j=1

αjPjXQj

for some α1, . . . , αm ∈ IF. Consequently, if φ : Vn → Vn is linear and satisfies φ(GDSn) ⊆
GDSn, then φ has the form

X 7→
m∑

j=1

γjPjXQj +
etXe

n
Z0

where γ1, . . . , γm ∈ IF, and Z0 ∈ Vn has row sums and column sums equal to (1−∑m
j=1 γj).
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Proof. Since S2 is an irreducible invariant subspace of Vn under Γ, by Wedderburn’s
theorem (see [7, Section 13.11]), span Γ equals End(S2) – the algebra of linear transformations

on S2 in the complex case. It follows that Γ contains a basis for the vector space End(S2) over

C, which will also be a basis for End(S2) over IR; thus, the span of Γ equals End(S2) over IR as
well. As a result, in both the real and complex cases, there exist P1, . . . , Pm, Q1, . . . , Qm ∈ Pn

withm = (n−1)4, which is the dimension of End(S2), such that every linear map ψ : S2 → S2

has the form

X 7→
m∑

j=1

αjPjXQj

for some α1, . . . , αm ∈ IF.
Now, suppose φ : Vn → Vn is linear and satisfies φ(GDSn) ⊆ GDSn. Let φ(Jn/n) =

Y0 ∈ GDSn. For any X ∈ Vn, we have

φ

(
X −

(
etXe

n
− 1

)
Jn

n

)
= φ(X)−

(
etXe

n
− 1

)
Y0 ∈ GDSn,

implying that φ(X) has row sums and column sums equal to (etXe)/n. Thus, φ preserves

row sums and column sums, and, in particular, φ(S2) ⊆ S2. For any X ∈ S2, let ψ : S2 → S2

be defined by ψ(X) = φ(X). Then

ψ(X) =
m∑

j=1

γjPjXQj

for some γ1, . . . , γm ∈ IF and P1, . . . , Pm, Q1, . . . , Qm ∈ Pn. Thus, for any X ∈ Vn, we have

φ(X) = ψ

(
X −

(
etXe

n

)
Jn

n

)
+ φ

((
etXe

n

)
Jn

n

)

=
m∑

j=1

γjPj

[
X −

(
etXe

n

)
Jn

n

]
Qj +

etXe

n
Y0

=
m∑

j=1

γjPjXQj +
etXe

n
Y0 −

 m∑
j=1

γj

(etXe

n

)
Jn

n
.

Let Z0 = Y0 − (
∑m

j=1 γj)Jn/n. Then φ has the asserted form.

In the above theorem, we use the mappings in Γ as the basic building blocks of linear
transformations from Vn to Vn that preserve GDSn. One may also consider using operators
of the form X 7→ RXS with R,S ∈ GDSn as the basic building blocks. In such case, we
can assume that the linear coefficients γ1 = · · · = γm = 1.
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Corollary 2.3 Suppose φ : Vn → Vn is linear and satisfies φ(GDSn) ⊆ GDSn. Then φ
has the form

X 7→
k∑

j=1

RjXSj +
etXe

n
Z0 (3)

where k ≤ 2(n − 1)4, Z0 ∈ Vn has row sums and column sums equal to (1 − k), and
R1, . . . , Rk, S1, . . . , Sk ∈ GDSn.

Proof. By Theorem 2.2, φ has the form

X 7→
m∑

j=1

γjPjXQj +
etXe

n

Y0 −

 m∑
j=1

γj

 Jn

n

 (4)

where m = (n − 1)4, Y0 ∈ GDSn, P1, . . . , Pm, Q1, . . . , Qm ∈ Pn, and γ1, . . . , γm ∈ IF. Let

Rj = γjPj + (1− γj)Jn/n and Sj = Qj for j = 1, . . . ,m. Furthermore, let Rm+j = Jn/n and

Sm+j = (γj − 1)Qj +(2−γj)Jn/n for j = 1, . . . ,m. Then R1, . . . , R2m, S1, . . . , S2m ∈ GDSn,

and

m∑
j=1

γjPjXQj =
m∑

j=1

RjXSj +
m∑

j=1

(γj − 1)(Jn/n)XQj

=
2m∑
j=1

RjXSj +
m∑

j=1

(γj − 2)JnXJn/n
2

=
2m∑
j=1

RjXSj +

 m∑
j=1

γj − 2m

 etXe

n

Jn

n
.

Thus, φ has the form

X 7→
2m∑
j=1

RjXSj +
etXe

n

{
Y0 − 2m

Jn

n

}
.

Let Z0 = Y0 − 2m(Jn/n). Then φ has the form (3) with k = 2m. Note that if some γj in

(4) equals 1, then Rm+jXSm+j = JnXJn/n
2 and can be absorbed in the matrix Z0. Thus,

φ has the form (3) with k ≤ 2m in general.

One can further extend the results of Theorem 2.2 and Corollary 2.3 to linear operators
φ : Mn → Mn satisfying φ(GDSn) ⊆ GDSn. In such case, for every A ∈ Mn we have

φ(A) = φ1(A) + φ2(A), where

φ1(A) = φ(A− JnA/n− AJn/n) and φ2(A) = φ(JnA/n+ AJn/n).

One can check that φ1(Vn) ⊆ Vn and φ1(GDSn) ⊆ GDSn. Thus, one can apply Theorem

2.2 or Corollary 2.3 to φ1 and then deal with φ2 separately. In [6], the author assumed

5



that φ(GDSn) ⊆ φ(GDSn) and the adjoint transformation φ∗ : Mn → Mn also satisfies

φ∗(GDSn) ⊆ φ∗(GDSn); it follows that φ2(V
⊥
n ) ⊆ V⊥

n and φ(Jn) = Jn, and φ has simple

structures. In [1], the author used mappings of the form X 7→ RXS with R and S from a
wider class of matrices to be the basic building blocks of φ and obtained other results.

3 Generalized Symmetric Doubly Stochastic Matrices

Recall that SVn is the set of symmetric matrices in Mn with equal row sums and column
sums, and GSDSn is the set of generalized symmetric doubly stochastic matrices in Mn.

From Corollary 2.2 of [3], it can be deduced that spanGSDSn = SVn. Let Γ̃ denote the

group of operators acting on SVn of the formX 7→ PXP t with P ∈ Pn. We study irreducible

invariant subspaces of SVn under Γ̃. It turns out that there are four such subspaces if n ≥ 4,

and the mappings in Γ̃ are the basic building blocks of linear operators on these subspaces.

Theorem 3.1 Suppose n ≥ 4, and T1 = 〈In〉, T2 = 〈J̃n〉, T3 = span {PR1P
t : P ∈ Pn},

and T4 = span {PR2P
t : P ∈ Pn}, where

R1 =


n− 1 −1 · · · − 1
−1
...
−1

2
n−2

J̃n−1 − In−1

 and R2 =


0 0 1 −1
0 0 −1 1
1 −1 0 0
−1 1 0 0

⊕On−4.

Then T1,T2,T3, and T4 are irreducible invariant subspaces of SVn under the group Γ̃, and
SVn = T1 ⊕T2 ⊕T3 ⊕T4.

Proof. It is clear that each of T1,T2,T3, and T4 is invariant under Γ̃, and T1 and T2

are irreducible subspaces under Γ̃.

We next show that T3 has dimension n − 1 and is irreducible under Γ̃. Let S ∈ Pn be
the permutation matrix with 1 at the (n, 1) and (k, k + 1) positions for 1 ≤ k ≤ n− 1, and

let Dj = (St)j−1R1S
j−1 for j = 1, . . . , n. Then the jth row of Dj equals

(−1, . . . ,−1, n− 1︸ ︷︷ ︸
jth position

,−1, . . . ,−1)

and deleting the jth row and column of Dj results in the matrix 2J̃n−1/(n − 2) − In−1.

Evidently, {PR1P
t : P ∈ Pn} = {D1, . . . , Dn}, and D1 + · · · + Dn = 0. Furthermore,

suppose
∑n−1

i=1 diDi = 0n. Equating the diagonal entries of both sides of the preceding
equation, we have

(d1, . . . , dn−1)((n− 1)In−1 − J̃n−1) = 01,n−1.

Since (n− 1)In−1 − J̃n−1 is invertible, d1 = · · · = dn−1 = 0. Thus, {D1, . . . , Dn−1} is linearly

independent, and T3 = span {D1, . . . , Dn} has dimension n− 1.
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Suppose W is an invariant subspace of T3 under Γ̃ containing a nonzero matrix A = (aij).

We show that T3 = span {PAP t : P ∈ Pn} ⊆ W. Clearly AJn = JnA = 0 and trA = 0.
By the arguments in the preceding paragraph, we see that A = b1D1 + · · · + bn−1Dn−1.
Furthermore, A has at least one nonzero diagonal entry; otherwise, all of the diagonal entries
of A = b1D1 + · · · + bn−1Dn−1 are equal to zero, and thus b1 = · · · = bn−1 = 0, which is

a contradiction. We may assume that a11 6= 0; otherwise, we replace A by PAP t for some
suitable P ∈ Pn. Now, define

B̃A =
∑

P∈Pn−1

(
1 01,n−1

0n−1,1 P

)
A
(

1 01,n−1

0n−1,1 P t

)
∈ W.

Let B̃A =
(
γ xt

x BA

)
where x ∈ IFn−1 and BA ∈ Mn−1. Then γ = (n− 1)!a11. Also, for any

Q ∈ Pn−1, let

Q̃ =
(

1 01,n−1

0n−1,1 Q

)
.

Then we have(
γ xtQt

Qx QBAQ
t

)
= Q̃

(
γ xt

x BA

)
Q̃t

= Q̃
[ ∑
P∈Pn−1

(
1 01,n−1

0n−1,1 P

)
A
(

1 01,n−1

0n−1,1 P t

)]
Q̃t

=
∑

P∈Pn−1

(
1 01,n−1

0n−1,1 P

)
A
(

1 01,n−1

0n−1,1 P t

)

=
(
γ xt

x BA

)
.

Thus, QBAQ
t = BA for all Q ∈ Pn−1, implying that BA = αIn−1 +βJ̃n−1 for some α, β ∈ IF.

Moreover, Qx = x for all Q ∈ Pn−1, implying that x = δe where δ ∈ IF and e ∈ IFn−1 is a
vector of ones. By the above construction, and by the fact that the row sums, column sums,

and trace of B̃A ∈ T3 are all zero, we have

1

a11(n− 2)!
B̃A =


n− 1 −1 · · · − 1
−1
...
−1

2
n−2

J̃n−1 − In−1

 = R1.

That is, R1 ∈ span {PAP t : P ∈ Pn}. It follows that span {PAP t : P ∈ Pn} = T3, and

hence T3 is irreducible under Γ̃.

Denote by T̃4 the set of matrices in SVn with row sums, column sums, and diagonal

entries equal to zero. We show that T4 = T̃4 has dimension n(n− 3)/2 as follows.
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For 1 ≤ i ≤ n − 3 and i + 1 ≤ j ≤ n − 2, define Gij to be the matrix with 1 at the

(i, j), (j, i), (n − 1, n), and (n, n − 1) positions, with −1 at the (i, n), (n, i), (j, n − 1), and

(n − 1, j) positions, and with zero elsewhere. Moreover, for 1 ≤ i ≤ n − 3, define Gi,n−1 to

be the matrix with 1 at the (i, n− 1), (n− 1, i), (n− 2, n), and (n, n− 2) positions, with −1

at the (i, n), (n, i), (n− 2, n− 1), and (n− 1, n− 2) positions, and with zero elsewhere. For
example, for n = 4, we have

G12 =


0 1 0 −1
1 0 −1 0
0 −1 0 1
−1 0 1 0

 , G13 =


0 0 1 −1
0 0 −1 1
1 −1 0 0
−1 1 0 0

 ;

for n = 5, the three matrices in the first part of the construction are

G12 =


0 1 0 0 −1
1 0 0 −1 0
0 0 0 0 0
0 −1 0 0 1
−1 0 0 1 0

 , G13 =


0 0 1 0 −1
0 0 0 0 0
1 0 0 −1 0
0 0 −1 0 1
−1 0 0 1 0

 ,

G23 =


0 0 0 0 0
0 0 1 0 −1
0 1 0 −1 0
0 0 −1 0 1
0 −1 0 1 0

 ,

and the two matrices in the second part of the construction are

G14 =


0 0 0 1 −1
0 0 0 0 0
0 0 0 −1 1
1 0 −1 0 0
−1 0 1 0 0

 , G24 =


0 0 0 0 0
0 0 0 1 −1
0 0 0 −1 1
0 1 −1 0 0
0 −1 1 0 0

 .

Then each Gij is permutationally similar to R2. Let Gn be the collection of such Gij. We

have
Gn ⊆ T4 ⊆ T̃4.

Evidently, Gn is linearly independent. Furthermore, if X = (xij) ∈ T̃4, then X is fully

determined by the entries xij with 1 ≤ i ≤ n− 3 and i+ 1 ≤ j ≤ n− 1, and we have

X =

n−3∑
i=1

n−2∑
j=i+1

xijGij

+ x1,n−1G1,n−1 +
n−3∑
i=2

(
xi,n−1 +

i−1∑
k=1

xki

)
Gi,n−1.

Hence, Gn with n(n− 3)/2 elements is a basis for T̃4 = T4.
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Next, we show that T4 is irreducible under Γ̃. Suppose W is an invariant subspace of

T4 under Γ̃ containing a nonzero matrix A = (aij). We show that T4 = span {PAP t :

P ∈ Pn} ⊆ W. Denote by Pij the permutation matrix corresponding to the transposition

permutation interchanging i and j. Since A is a nonzero matrix, it must have at least one
positive and one negative off-diagonal entry. We may assume that a12 > 0; otherwise, we

may replace A by PAP t for a suitable P ∈ Pn and assume that A has a positive entry in
the (1, 2) position. Since a12 > 0, there must exist a negative entry in the second column of
A below the diagonal. We may assume that a32 < 0; otherwise, we have ak2 < 0 for some

k > 3, so we may replace A by P3kAP
t
3k and assume that A has a negative entry in the (3, 2)

position.

Let A−P13AP
t
13 = B = (bij). Then B ∈ W, b12 = a12−a32 > 0, and b13 = a13−a31 = 0.

Since there must exist a negative entry in the first row of B, we may assume that b14 < 0;

otherwise, we have b1k < 0 for some k > 4, so we may replace B by P4kBP
t
4k and assume that

B has a negative entry in the (1, 4) position. Define C = (b12 − b14)
−1(B − P24BP

t
24) ∈ W.

Then

C =


0 1 0 −1
1 0 −1 0
0 −1 0 1
−1 0 1 0

⊕ 0n−4.

Since R2 = P23CP
t
23 ∈ span {PAP t : P ∈ Pn}, it follows that span {PAP t : P ∈ Pn} = T4,

and hence T4 is irreducible under Γ̃.
It remains to show that SVn = T1 ⊕ T2 ⊕ T3 ⊕ T4. For any A ∈ SVn, let λ =

(
∑n

i=1 aii)/n = (trA)/n, δ = (
∑

i6=j aij)/(n(n − 1)) = (tr J̃nX)/(n(n − 1)), and B = A −
λIn−δJ̃n. Then the row sums, column sums, and trace of B = (bij) are equal to zero. Recall

that {PR1P
t : P ∈ Pn} = {D1, . . . , Dn} is a spanning set for T3, where Di has n − 1 in

the (i, i) position. Let B̃ =
∑n

i=1 n
−1biiDi ∈ T3. Then C = B − B̃ = A − λIn − δJ̃n − B̃

has row sums, column sums, and diagonal entries all equal to zero, so C ∈ T4. Thus,

A = λIn + δJ̃n + B̃ + C, showing that SVn = T1 + T2 + T3 + T4.
Now, T1,T2,T3 and T4 have dimensions 1, 1, n−1, and n(n−3)/2 respectively, summing

up to 1 + n(n− 1)/2, which is the dimension of SVn. Thus SVn = T1 ⊕T2 ⊕T3 ⊕T4.

By Theorem 3.1, we can use arguments similar to those in the proof of Theorem 2.2 to

show that any linear map on T4 has a simple structure, namely, X 7→ ∑
i γiPiXP

t
i . One

may want to prove results similar to Theorem 2.2 for linear maps φ : SVn → SVn satisfying
φ(GSDSn) ⊆ GSDSn. Such a mapping will have a simple structure if φ(T4) ⊆ T4; however,
this condition is not always satisfied, as shown in the following example.

Example 3.2 For any X ∈ SV4, write X = X1 + X2 with X1 ∈ (T1 + T2 + T3) and

X2 = (xij) ∈ T4, and define φ : SV4 → SV4 by

φ(X) = X1 + x12(E11 + E22 − E12 − E21).

Then φ is linear and satisfies φ(GSDS4) ⊆ GSDS4, but φ(T4) 6⊆ T4.
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So, we need an extra assumption on φ to obtain a simple structure for the transformation.

Theorem 3.3 Define T1, . . . ,T4 as in Theorem 3.1. There exist P1, . . . , Pm ∈ Pn with

m = [n(n− 3)/2]2 such that every linear map ψ : T4 → T4 has the form

X 7→
m∑

j=1

αjPjXP
t
j

for some α1, . . . , αm ∈ IF. Suppose φ : SVn → SVn is linear and satisfies φ(GSDSn) ⊆
GSDSn and φ(Hn) ⊆ Hn, where Hn is the set of matrices in SVn with all diagonal entries
equal to zero. Then φ has the form

X 7→
m∑

j=1

γjPjXP
t
j + f0(X)Y0 + f1(X)Y1 +

n∑
r=1

gr(X)Zr,

where γ1, . . . , γm ∈ IF, f0(X) = trX/n, f1(X) = tr (J̃nX)/n, gr(X) = tr (ErrX), Y0, Y1 ∈
SVn have row sums and column sums equal to (1 −∑m

j=1 γj), and Z1, . . . , Zn ∈ SVn have

row sums and column sums equal to zero with Z1 + · · ·+ Zn = 0.

Proof. The first assertion follows from the facts that T4 is an irrecucible invariant sub-

space of SVn under Γ̃ and End(T4) has dimension [n(n− 3)/2]2.

Now, suppose φ : SVn → SVn is linear such that φ(GSDSn) ⊆ GSDSn and φ(Hn) ⊆
Hn. By arguments analogous to those used in the proof of Theorem 2.2, φ preserves row
sums and column sums. Since φ(Hn) ⊆ Hn, it follows that φ(T4) ⊆ T4.

Now, define D1, . . . , Dn as in the proof of Theorem 3.1. For each X ∈ SVn, write

ψ(X) = X − f0(X)I − f1(X)J̃/(n− 1)−
n∑

r=1

g̃r(X)Dr ∈ T4

with g̃r(X) = tr (ErrX)/n− trX/n2 for r = 1, . . . , n. Then

φ(X) = φ(ψ(X)) + f0(X)φ(I) + f1(X)φ(J̃/(n− 1)) +
n∑

r=1

g̃r(X)φ(Dr).

Since ψ(SVn) ⊆ T4 and φ(T4) ⊆ T4, there are γ1, . . . , γm ∈ IF such that

φ(ψ(X)) =
m∑

j=1

γjPjψ(X)P t
j .

Let

Y0 = φ(I)−
m∑

j=1

γjI, Y1 =
1

n− 1

φ(J̃)−
m∑

j=1

γjJ̃

 ,
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and

Zr =
1

n

φ(Dr)−
m∑

j=1

γjPjDrP
t
j


for r = 1, . . . , n. Then φ has the asserted form.

One may deduce a result similar to that of Corollary 2.3. We omit the discussion. We
conclude the paper with the results on the low dimension cases.

For n = 2, SV2 = T1 ⊕T2, and linear preservers of GSDS2 have the form

(xij) 7→ x11Y1 + x12Y2

for some Y1, Y2 ∈ GSDS2. For n = 3, SV3 = T1⊕T2⊕T3, and linear preservers of GSDS3

have the form

X 7→ (trX)Y0/3 + (trXJ̃3)Y1/3 +
3∑

j=1

tr (EjjX)Zj,

where Y0, Y1 ∈ GSDS3, and Z1, Z2, Z3 ∈ SV3 have row sums and column sums equal to zero
with Z1 + Z2 + Z3 = 0.
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