# Eigenvalues of the sum of matrices FROM UNITARY SIMILARITY ORBITS 

Chi-Kwong Li, ${ }^{*}$ Yiu-Tung Poon ${ }^{\dagger}$ and Nung-Sing Sze ${ }^{\ddagger}$


#### Abstract

Let $A$ and $B$ be $n \times n$ complex matrices. Characterization is given for the set $\mathcal{E}(A, B)$ of eigenvalues of matrices of the form $U^{*} A U+V^{*} B V$ for some unitary matrices $U$ and $V$. Consequences of the results are discussed and computer algorithms and programs are designed to generate the set $\mathcal{E}(A, B)$. The results refine those of Wielandt on normal matrices. Extensions of the results to the sum of matrices from three or more unitary similarity orbits are also considered.


2000 Mathematics Subject Classification. 15A18.
Keywords. Eigenvalues, sum of matrices, unitary similarity orbits, Davis-Wielandt shell.

## 1 Introduction

Denote by $M_{n}$ the set of $n \times n$ complex matrices. Let $A, B \in M_{n}$. There has been a great deal of interest in studying the eigenvalues of matrices of the form $U^{*} A U+V^{*} B V$ for some unitary matrices $U, V \in M_{n}$ because of motivations from theory as well as applications; see $[2,4,7,11,17,18]$. The study has been very successful for Hermitian matrices. Klyachko [12] (see also [9, 11, 13] etc.) gave a necessary and sufficient conditions for the real numbers $c_{1}, \ldots, c_{n}$ to be the eigenvalues of the sum of two Hermitian matrices in $M_{n}$ with eigenvalues $a_{1}, \ldots, a_{n}$ and $b_{1}, \ldots, b_{n}$.

The problem for non-Hermitian matrices is more challenging. For two given matrices $A, B \in M_{n}$, let $\mathcal{E}(A, B)$ be the set of eigenvalues of matrices of the form $U^{*} A U+V^{*} B V$ for some unitary matrices $U$ and $V$. Wielandt [19] (see also, [3] and [15]) determined the set $\mathcal{E}(A, B)$ for two normal matrices $A, B \in M_{n}$. There is not much information about the set $\mathcal{E}(A, B)$ for general matrices $A, B \in M_{n}$. The purpose of this paper is to address this problem.

In Section 2, we characterize $\mathcal{E}(A, B)$ for two given matrices $A, B \in M_{n}$. Additional results concerning normal matrices and essentially Hermitian matrices (normal matrices with collinear eigenvalues) are presented in Sections 3 and 4. In Section 5, we consider extension of our results to the sum of three of more matrices, and mention some related problems. In Section 6, we describe how to use our results to design computer algorithms and programs to generate the set $\mathcal{E}(A, B)$.

## 2 Main results

First, we characterize the matrix pair $(A, B) \in M_{n} \times M_{n}$ such that $0 \notin \mathcal{E}(A, B)$. We need the concept of Davis-Wielandt shell $[5,6]$ of $A \in M_{n}$ defined by

$$
D W(A)=\left\{\left(x^{*} A x, x^{*} A^{*} A x\right): x \in \mathbb{C}^{n}, x^{*} x=1\right\} \subseteq \mathbb{C} \times \mathbb{R} \sim \mathbb{R}^{3}
$$

[^0]Theorem 2.1 Let $A, B \in M_{n}$. The following are equivalent.
(a) $\operatorname{det}\left(U^{*} A U+V^{*} B V\right) \neq 0$ for any unitary matrices $U, V \in M_{n}$.
(b) $D W(A) \cap D W(-B)=\emptyset$.
(c) There is $\xi \in \mathbb{C}$ such that the singular values of $A+\xi I_{n}$ and $B-\xi I_{n}$ lie in two disjoint closed intervals in $[0, \infty)$.

Proof. If (c) holds, then $\left\|\left(A+\xi I_{n}\right) u\right\|>\left\|\left(B-\xi I_{n}\right) v\right\|$ for all unit vectors $u, v \in \mathbb{C}^{n}$, or $\left\|\left(A+\xi I_{n}\right) u\right\|<\left\|\left(B-\xi I_{n}\right) v\right\|$ for all unit vectors $u, v \in \mathbb{C}^{n}$. Thus, $\left(U^{*} A U+V^{*} B V\right) x \neq 0$ for all unitary matrices $U, V$ and unit vector $x \in \mathbb{C}^{n}$. Thus, condition (a) holds.

Suppose (a) holds. Assume that $D W(A) \cap D W(-B)$ is non-empty. Then there are orthonormal pairs $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ such that

$$
A u_{1}=\mu u_{1}+\nu u_{2} \quad \text { and } \quad-B v_{1}=\mu v_{1}+\nu v_{2}
$$

with $\left(\mu, \mu^{2}+\nu^{2}\right) \in D W(A) \cap D W(-B)$. Suppose $U$ is unitary with $u_{1}, u_{2}$ as its first two columns, and $V$ is unitary with $v_{1}, v_{2}$ as its first two columns. Then $U^{*} A U+V^{*} B V$ has zero first column, and hence has zero determinant, which is a contradiction. So, (b) holds.

Suppose (b) holds. Since $D W(A)$ and $D W(-B)$ are compact convex sets, by the separation theorem, there is a linear functional $f$ such that $f(\alpha)>f(\beta)$ for all $(\alpha, \beta) \in D W(A) \times D W(-B)$. So, there is $\nu \in \mathbb{R}$ and $\mu \in \mathbb{C}$ such that

$$
x^{*}\left(\nu A^{*} A+\mu A+\bar{\mu} A^{*}\right) x>y^{*}\left(\nu B^{*} B-\mu B-\bar{\mu} B^{*}\right) y
$$

for any unit vectors $x, y \in \mathbb{C}^{n}$. We may perturb $\nu$ and assume that $\nu \neq 0$. Furthermore, we assume that $\nu>0$; otherwise multiply -1 to the inequality. Then for $\xi=\bar{\mu} / \sqrt{\nu}$, we see that

$$
x^{*}\left(A+\xi I_{n}\right)^{*}\left(A+\xi I_{n}\right) x>y^{*}\left(B-\xi I_{n}\right)^{*}\left(B-\xi I_{n}\right) y
$$

for all unit vectors $x, y \in \mathbb{C}^{n}$. So, condition (c) holds.
Note that $\mu \in \mathcal{E}(A, B)$ if and only if there exist unitary matrices $U, V \in M_{n}$ such that $\operatorname{det}\left(U A U^{*}+V B V^{*}-\mu I_{n}\right)=0$. Using Theorem 2.1, we have the following.

Theorem 2.2 Let $A, B \in M_{n}$ and $\mu \in \mathbb{C}$. The following are equivalent.
(a) $\mu \notin \mathcal{E}(A, B)$.
(b) $D W(A) \cap D W\left(\mu I_{n}-B\right)=\emptyset$.
(c) There is $\xi \in \mathbb{C}$ such that the singular values of $A+\xi I_{n}$ and $B-\mu I_{n}-\xi I_{n}$ lie in two disjoint closed intervals in $[0, \infty)$.

## 3 Normal matrices

If $A, B \in M_{n}$ are normal, then $D W(A)$ and $D W\left(\mu I_{n}-B\right)$ are polytopes with at most $n$ vertices in $\mathbb{C} \times \mathbb{R} \sim \mathbb{R}^{3}$. We have the following.

Theorem 3.1 Suppose $A, B \in M_{n}$ are normal. Then the conditions (a) - (c) in Theorem 2.2 are equivalent to
(d) There is a circular disk containing all eigenvalues of one of the matrices $A$ or $\mu I_{n}-B$, and excluding all the eigenvalues of the other matrix.

Proof. Suppose $A$ and $B$ are normal. Then the singular values of $A$ and $\mu I_{n}-B$ are the absolute values of the eigenvalues of the two matrices. One readily sees that Theorem 2.2 (c) is equivalent to condition (d).

Theorem 3.1 has been proven by Wielandt [19, Theorem 1], where both lines and circles are used for the separation. As pointed out in [19], $\mathcal{E}(A, B)$ depends only on the spectra $\sigma(A), \sigma(B)$ of $A$ and $B$. Hence, for any nonempty finite subsets $S, T$ of $\mathbb{C}$, we can define $\mathcal{E}(S, T)=\mathcal{E}(A, B)$, where $A, B$ are any normal matrices of the same size such that $\sigma(A)=S$ and $\sigma(B)=T$.

If each of $A$ and $B$ has at most two distinct eigenvalues, then $\mathcal{E}(A, B)$ can be easily determined by Theorem 4.6 in Section 4. For other cases, we have the following theorem which is useful in constructing the set $\mathcal{E}(A, B)$ analytically or using computer programs; see Section 6 .

Theorem 3.2 Let $A, B \in M_{n}$ be normal matrices one of which has at least 3 distinct eigenvalues and the other has at least 2 distinct eigenvalues. Then conditions (a)-(c) in Theorem 2.2 are equivalent to
(e) For $(p, q) \in\{(2,3),(3,2)\}$, and any subset of $p$ distinct distinct eigenvalues of $A$ and $q$ distinct eigenvalues of $B$, there is a circle containing all elements of one of the sets, and excluding all the elements of the other sets.
Consequently, we have

$$
\mathcal{E}(A, B)=\bigcup\{\mathcal{E}(S, T): S \subseteq \sigma(A), T \subseteq \sigma(B) \quad \text { with }(|S|,|T|) \in\{(2,3),(3,2)\}\}
$$

where $|S|$ and $|T|$ are the cardinalities of $S$ and $T$, respectively.
Proof. Suppose $A$ or $B$ has at least 3 distinct eigenvalues and the other has at least 2 distinct eigenvalues. Then condition (d) fails to hold if and only if there are $p$ distinct eigenvalues of $A$ and $q$ distinct eigenvalues of $B$ with $(p, q) \in\{(3,2),(2,3)\}$ constituting an obstacle for the existence of the circle [14, Theorem 8.2]. Thus, Theorem 3.1 (d) is equivalent to (e).

To construct $\mathcal{E}(A, B)$, one can further reduce the collection of subsets in the above theorem. To this end, we need the following the lemma showing that there is a one-one correspondence between the triangles on the boundary faces of the convex set $D W(B)$ and those on the boundary faces of $D W(\mu I-B)$ with $\mu=s+i t$.

Lemma 3.3 Suppose $s, t, a_{j}, b_{j} \in \mathbb{R}, 1 \leq j \leq 5$. Let

$$
P_{j}=\left(a_{j}, b_{j}, a_{j}^{2}+b_{j}^{2}\right) \text { and } Q_{j}=\left(s-a_{j}, t-b_{j},\left(s-a_{j}\right)^{2}+\left(t-b_{j}\right)^{2}\right) .
$$

Suppose $P_{1}, P_{2}, P_{3}$ are not collinear. If $P_{4}$ and $P_{5}$ lie in the same open (or close) half space determined by $P_{1}, P_{2}, P_{3}$, then $Q_{4}$ and $Q_{5}$ lie in the same open (or close) half space determined by $Q_{1}, Q_{2}, Q_{3}$.

Proof. Suppose $P_{1}, P_{2}, P_{3}$ are not collinear. Then $Q_{1}, Q_{2}, Q_{3}$ are not collinear. Let $\Pi_{1}$ and $\Pi_{2}$ be the planes determined by $P_{1}, P_{2}, P_{3}$ and $Q_{1}, Q_{2}, Q_{3}$ respectively.

For $\left(a_{p q}\right) \in M_{3}$, denote by $\operatorname{det}\left(\left(a_{p q}\right)\right)=\left|a_{p q}\right|$. For $j=4,5$, we have

$$
\left(\left(P_{2}-P_{1}\right) \times\left(P_{3}-P_{1}\right)\right) \cdot\left(P_{j}-P_{1}\right)=\left|\begin{array}{ccc}
a_{2}-a_{1} & b_{2}-b_{1} & a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2} \\
a_{3}-a_{1} & b_{3}-b_{1} & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2} \\
a_{j}-a_{1} & b_{j}-b_{1} & a_{j}^{2}+b_{j}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right|
$$

and

$$
\begin{aligned}
& \left(\left(Q_{2}-Q_{1}\right) \times\left(Q_{3}-Q_{1}\right)\right) \cdot\left(Q_{j}-Q_{1}\right) \\
= & \left|\begin{array}{lll}
a_{1}-a_{2} & b_{1}-b_{2} & a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}+2 s\left(a_{1}-a_{2}\right)+2 t\left(b_{1}-b_{2}\right) \\
a_{1}-a_{3} & b_{1}-b_{3} & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}+2 s\left(a_{1}-a_{3}\right)+2 t\left(b_{1}-b_{3}\right) \\
a_{1}-a_{j} & b_{1}-b_{j} & a_{j}^{2}+b_{j}^{2}-a_{1}^{2}-b_{1}^{2}+2 s\left(a_{1}-a_{j}\right)+2 t\left(b_{1}-b_{j}\right)
\end{array}\right| \\
= & \left|\begin{array}{lll}
a_{1}-a_{2} & b_{1}-b_{2} & a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2} \\
a_{1}-a_{3} & b_{1}-b_{3} & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2} \\
a_{1}-a_{j} & b_{1}-b_{j} & a_{j}^{2}+b_{j}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right| \\
= & \left(\left(P_{2}-P_{1}\right) \times\left(P_{3}-P_{1}\right)\right) \cdot\left(P_{j}-P_{1}\right) .
\end{aligned}
$$

The result follows from the fact that $P_{4}$ and $P_{5}$ lie in the same open half space determined by $\Pi_{1}$ if and only if the triple products

$$
\left(\left(P_{2}-P_{1}\right) \times\left(P_{3}-P_{1}\right)\right) \cdot\left(P_{4}-P_{1}\right) \quad \text { and } \quad\left(\left(P_{2}-P_{1}\right) \times\left(P_{3}-P_{1}\right)\right) \cdot\left(P_{5}-P_{1}\right)
$$

have the same sign and similar assertion for $Q_{j}$ and $\Pi_{2}$.

Theorem 3.4 Let $A, B \in M_{n}$ be normal matrices with eigenvalues $a_{1}, \ldots, a_{n}$, and $b_{1}, \ldots, b_{n}$. Then $\mu \in \mathcal{E}(A, B)$ if and only if there is $X=\operatorname{diag}\left(w_{1}, w_{2}, w_{3}\right)$ and $Y=\operatorname{diag}\left(z_{1}, z_{2}\right)$ such that $D W(X) \cap D W\left(\mu I_{2}-Y\right) \neq \emptyset$, where either
(a) $w_{1}, w_{2}, w_{3} \in \sigma(A)$ and $z_{1}, z_{2} \in \sigma(B)$ so that $D W\left(\operatorname{diag}\left(w_{1}, w_{2}, w_{3}\right)\right)$ lies on the boundary of $D W(A)$ and $D W\left(\operatorname{diag}\left(z_{1}, z_{2}\right)\right)$ lies on the boundary of $D W(B)$, or
(b) $w_{1}, w_{2}, w_{3} \in \sigma(B)$ and $z_{1}, z_{2} \in \sigma(A)$ so that $D W\left(\operatorname{diag}\left(w_{1}, w_{2}, w_{3}\right)\right)$ lies on the boundary of $D W(B)$ and $D W\left(\operatorname{diag}\left(z_{1}, z_{2}\right)\right)$ lies on the boundary of $D W(A)$.

Proof. Note that for any $z_{1}, z_{2}, z_{3} \in \sigma(B), D W\left(\operatorname{diag}\left(\mu-z_{1}, \mu-z_{2}, \mu-z_{3}\right)\right)$ lies on the boundary of $D W\left(\mu I_{n}-B\right)$ if and only if $D W\left(\operatorname{diag}\left(z_{1}, z_{2}, z_{3}\right)\right)$ lies on the boundary of $D W(B)$. Now, $D W(A)$ and $D W\left(\mu I_{n}-B\right)$ are two convex polytopes in $\mathbb{C} \times \mathbb{R}$ with vertices in $\mathbf{P}=\left\{\left(z,|z|^{2}\right): z \in \mathbb{C}\right\}$. So, $D W(A) \cap D W\left(\mu I_{n}-B\right) \neq \emptyset$ if and only if one of the polytopes intersects a boundary face of the other polytopes. Suppose $D W\left(\mu I_{n}-B\right)$ intersects a boundary face of $D W(A)$. Then there are three vertices, say, $\left(w_{j},\left|w_{j}\right|^{2}\right)$ with $w_{j} \in \sigma(A)$ for $j=1,2,3$, of the boundary face of $D W(A)$ intersecting $D W\left(\mu I_{n}-B\right)$. Note that the vertices of $D W\left(\mu I_{n}-B\right)$ belongs to $\mathbf{P}$. So, $D W\left(\operatorname{diag}\left(w_{1}, w_{2}, w_{2}\right)\right)$ must intersect with some boundary face of $D W\left(\mu I_{n}-B\right)$. Consequently, there are three vertices on the boundary face of $D W\left(\mu I_{n}-B\right)$ whose convex hull intersect with $D W\left(\operatorname{diag}\left(w_{1}, w_{2}, w_{3}\right)\right)$. Now, for two triangular laminas each having vertices in $\mathbf{P}$ to have nonempty intersection, there must be non-empty intersection of a triangular lamina with an edge of another triangular lamina. By Lemma 3.3, there is a one-one correspondence between the triangles on the boundary faces of $D W\left(\mu I_{n}-B\right)$ and those on the boundary faces of $D W(B)$. Thus, condition (a) or (b) holds.

One can also consider the boundary $\partial \mathcal{E}(A, B)$ of $\mathcal{E}(A, B)$. By Theorem 4.6 in Section 4, if $A, B \in M_{n}$ are normal and each of them has at most two distinct eigenvalues, then $\mathcal{E}(A, B)$ has empty interior, i.e., $\partial \mathcal{E}(A, B)=\mathcal{E}(A, B)$. We will exclude these special cases. The following lemma is needed for further discussion.

Lemma 3.5 Let $S=\left\{w_{1}, w_{2}, w_{3}\right\}$ and $T=\left\{z_{1}, z_{2}\right\}$ be subsets of $\mathbb{C}$. Then

$$
\partial \mathcal{E}(S, T)=\mathcal{E}\left(\left\{w_{1}, w_{2}\right\}, T\right) \cup \mathcal{E}\left(\left\{w_{1}, w_{3}\right\}, T\right) \cup \mathcal{E}\left(\left\{w_{2}, w_{3}\right\}, T\right) .
$$

Proof. Clearly, the result holds if $S$ or $T$ is a singleton. In the following, we may assume that $z_{1} \neq z_{2}$. If $w_{j}=w_{k}$ for some $1 \leq j<k \leq 3$, then $\mathcal{E}(S, T)=\mathcal{E}\left(\left\{w_{i}, w_{l}\right\}, T\right)$, where $l \notin\{j, k\}$, which has no interior point.

Suppose $w_{1}, w_{2}, w_{3} \in \mathbb{C}$ are distinct. Let $X=\operatorname{diag}\left(w_{1}, w_{2}, w_{3}\right), Y=\operatorname{diag}\left(z_{1}, z_{2}\right), X_{j k}=$ $\operatorname{diag}\left(w_{j}, w_{k}\right)$ for $1 \leq j<k \leq 3$. By Theorem $2.2, \mu \in \mathcal{E}(S, T)$ if and only if $D W(X) \cap D W\left(\mu I_{2}-\right.$ $Y) \neq \emptyset$. Note that $D W\left(\mu I_{2}-Y\right)$ is a line segment with vertices in $\mathbf{P}$ while $D W(X)$ is a triangular lamina with three edges $D W\left(X_{12}\right), D W\left(X_{23}\right)$ and $D W\left(X_{13}\right)$. Thus, $\mu$ is a boundary point of $\mathcal{E}(S, T)$ if and only if the line segment $D W\left(\mu I_{2}-Y\right)$ intersects the triangular lamina $D W(X)$ at its boundary, which is the union of line segments $D W\left(X_{12}\right), D W\left(X_{23}\right)$ and $D W\left(X_{13}\right)$. The result follows.

By the above lemma and Theorem 3.2, we have
Theorem 3.6 Suppose $A, B \in M_{n}$ are normal matrices, each having at least 2 distinct eigenvalues. Then

$$
\partial \mathcal{E}(A, B) \subseteq \bigcup\{\mathcal{E}(S, T): S \subseteq \sigma(A), T \subseteq \sigma(B) \text { with }|S|=|T|=2\}
$$

## 4 Essentially Hermitian matrices

Recall that a normal matrix is essentially Hermitian if all of its eigenvalues lie on a straight line. Let us warm up our discussion with the following results and examples on Hermitian matrices.

Theorem 4.1 Suppose $A, B \in M_{n}$ are Hermitian matrices with eigenvalues $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$. Then

$$
\mathcal{E}(A, B)=\left[a_{n}+b_{n}, a_{1}+b_{1}\right] \backslash \bigcup_{j=1}^{n-1}\left(a_{j+1}+b_{1}, a_{j}+b_{n}\right) \cup\left(b_{j+1}+a_{1}, b_{j}+a_{n}\right),
$$

where $(c, d)=\emptyset$ if $c \geq d$.
Proof. By Theorem $3.1(\mathrm{~d}), \mu \notin \mathcal{E}(A, B)$ if and only if $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ can be separated from $\left\{\mu-b_{1}, \mu-b_{2}, \cdots, \mu-b_{n}\right\}$ by a circle. For $\mu \in \mathbb{R}$, this happens if and only if one of the following conditions is satisfied:

1. $\mu-b_{1}>a_{1} \Leftrightarrow \mu>a_{1}+b_{1}$.
2. $\mu-b_{n}<a_{n} \Leftrightarrow \mu<a_{n}+b_{n}$.
3. For some $1 \leq j \leq n-1, a_{j+1}<\mu-b_{1} \leq \mu-b_{n}<a_{j} \Leftrightarrow a_{j+1}+b_{1}<\mu<a_{j}+b_{n}$.
4. For some $1 \leq j \leq n-1, \mu-b_{j}<a_{n} \leq a_{1}<\mu-b_{j+1} \Leftrightarrow b_{j+1}+a_{1}<\mu<b_{j}+a_{n}$.

Hence, the result follows.
We have the following corollary.
Corollary 4.2 Suppose $A, B \in M_{n}$ satisfy the hypotheses of Theorem 4.1. If

$$
b_{1}-b_{n} \geq \max _{1 \leq j \leq n-1}\left(a_{j}-a_{j+1}\right) \quad \text { and } \quad a_{1}-a_{n} \geq \max _{1 \leq j \leq n-1}\left(b_{j}-b_{j+1}\right)
$$

then $\mathcal{E}(A, B)=\left[a_{n}+b_{n}, a_{1}+b_{1}\right]$.
Example 4.3 Suppose $n \geq 2, A, B \in M_{n}$ are Hermitian with eigenvalues $a_{1}=5, a_{n}=2, b_{1}=4$, and $b_{n}=1$. Then $\mathcal{E}(A, B)=[3,9]$ is independent of the choices of $a_{i}$ and $b_{j}$ for $2 \leq i, j \leq n-1$.

Example 4.4 Suppose $A, B \in M_{3}$ are Hermitian with eigenvalues $a_{1}=5, a_{3}=1, b_{1}=4$, and $b_{3}=2$. If $a_{2}=3$, then $\mathcal{E}(A, B)=[3,9]$; if $a_{2} \neq 3$, then $\mathcal{E}(A, B) \nsubseteq[3,9]$.

It is interesting to note that sometimes the set $\mathcal{E}(A, B)$ depends only on the extreme eigenvalues of $A$ and $B$ as shown in Example 4.3, but it is not always the case as shown in Example 4.4.

In perturbation theory, if $A, B \in M_{n}$ are Hermitian such that $\|B\|$ is larger than the smallest singular value of $A$, then it may happen that $A+B$ is singular. However, if we know more about the eigenvalues of $A$ and $B$, one can get a better perturbation bound.

Example 4.5 Suppose $A, B \in M_{n}$ are Hermitian such that $\sigma(A) \subseteq \mathbb{R} \backslash(-r, s)$ for some $r, s \in(0, \infty)$ and $\sigma(B) \subseteq[-u, v]$ for some $u, v \in[0, \infty)$ such that $-r+v<0$ and $-u+s>0$. Then $A+B$ is invertible.

In [19, Theorem 2], Wielandt described a procedure to construct $\mathcal{E}(A, B)$ for a Hermitian matrix $A$ and a skew-Hermitian matrix $B$ with eigenvalues $a_{1}, \ldots, a_{n}$ and $b_{1}, \ldots, b_{n}$. In particular, it was shown that the set $\mathcal{E}(A, B)$ is the intersection of all hyperbolic regions containing the set $\left\{a_{j}+b_{k}: 1 \leq j, k \leq n\right\}$. However, details of the proof were not given. In the following, we extend the result of Wielandt to any pair of essentially Hermitian matrices $A$ and $B$. A detailed proof is given for the result.

To present the result and proof, we need some basic facts in the co-ordinate geometry of $\mathbb{R}^{2}$ (identified with $\mathbb{C}$ ). Suppose $w_{1}, w_{2}, z_{1}, z_{2} \in \mathbb{C}$ such that $P=\operatorname{conv}\left\{w_{r}+z_{s}: r, s \in\{1,2\}\right\}$ is a nondegenerate parallelogram. Then there is a unique rectangular hyperbola passing through the vertices of $P$. The hyperbola degenerate to a pair of perpendicular line if and only if the four sides of $P$ have equal length. Otherwise, each branch of the hyperbola will pass through a pair of vertices of $P$ corresponding to a side of $P$ with shorter length, i.e., the two sides of $P$ of longer lengths lie in the closed region lying between the two branches of the hyperbola. For a nondegenerate rectangular hyperbola, the connected closed region with the hyperbola as boundary is the inner hyperbolic region, the two disconnected closed regions with the hyperbola as boundary is the outer hyperbolic region. Of course, the complement of a closed hyperbolic region is an open hyperbolic region, and vice versa. In case the hyperbola degenerated to a pair of perpendicular lines, the inner (and outer) hyperbolic region becomes the union of two unbounded triangular regions connected at their vertices.

Suppose $A$ and $B$ are two essentially Hermitian matrices. If the line through $\sigma(A)$ and the line through $\sigma(B)$ are parallel, then there are $\alpha, \beta \in \mathbb{C}$ and $\phi \in \mathbb{R}$ such that $H=e^{-i \phi}(A-\alpha I)$ and $K=e^{-i \phi}(B-\beta I)$ are Hermitian. Then

$$
\mathcal{E}(A, B)=e^{i \phi} \mathcal{E}(H, K)+(\alpha+\beta)
$$

and the result follows from Theorem 4.1. For the other cases, we have the following result.
Theorem 4.6 Suppose $A, B \in M_{n}$ are non-scalar essentially Hermitian matrices. Then there exist $\alpha, \beta \in \mathbb{C}, r_{1} \geq r_{2} \geq \cdots \geq r_{n}$ and $s_{1} \geq s_{2} \geq \cdots \geq s_{n}, \phi, \theta \in \mathbb{R}$ such that the eigenvalues of $A$ and $B$ are $a_{j}=\alpha+r_{j} e^{i \phi}, 1 \leq j \leq n$ and $b_{j}=\beta+s_{j} e^{i \theta}, 1 \leq j \leq n$ respectively. Let $\Gamma=\left[r_{n}, r_{1}\right] \times\left[s_{n}, s_{1}\right]$. Assume that $e^{i(\phi-\theta)} \notin\{1,-1\}$, i.e., the two sets of eigenvalues do not lie on two parallel lines.
(i) Let $S(a, b)=\left\{a_{u}+b_{v}: 1 \leq u, v \leq n\right\}$, and $1 \leq j<n$. If $a_{j} \neq a_{j+1}$, then $S(a, b)$ is a subset of the closed hyperbolic region

$$
H(a, j)=\left\{e^{i \phi} x+e^{i \theta} y+\alpha+\beta:(x, y) \in \mathbb{R}^{2} \text { with }\left(y-s_{1}\right)\left(y-s_{n}\right) \leq\left(x-r_{j}\right)\left(x-r_{j+1}\right)\right\} ;
$$

if $b_{j} \neq b_{j+1}$, then $S(a, b)$ is a subset of the closed hyperbolic region

$$
H(b, j)=\left\{e^{i \phi} x+e^{i \theta} y+\alpha+\beta:(x, y) \in \mathbb{R}^{2} \text { with }\left(y-s_{j}\right)\left(y-s_{j+1}\right) \geq\left(x-r_{1}\right)\left(x-r_{n}\right)\right\} .
$$

(ii) The set $\mathcal{E}(A, B)$ is the intersection of $P=\operatorname{conv}\left\{a_{r}+b_{s}: r, s \in\{1, n\}\right\}$ and all closed hyperbolic regions in (i).
(iii) Each connected component of $\mathcal{E}(A, B)$ is simply connected with boundary consists of segments of hyperbolas given in (i).

In particular, if each $A$ and $B$ has exactly two distinct eigenvalues, say $a_{1}=\cdots=a_{k} \neq a_{k+1}=$ $\cdots=a_{n}$ and $b_{1}=\cdots=b_{\ell} \neq b_{\ell+1}=\cdots=b_{n}$, then $\mathcal{E}(A, B)$ are two segments of a hyperbola equal to

$$
\begin{aligned}
\mathcal{E}(A, B) & =P \cap H(a, k) \cap H(b, \ell) \\
& =\left\{e^{i \phi} x+e^{i \theta} y+\alpha+\beta:(x, y) \in \Gamma \text { with }\left(y-s_{1}\right)\left(y-s_{n}\right)=\left(x-r_{1}\right)\left(x-r_{n}\right)\right\}
\end{aligned}
$$

Our proof depends on the following lemma.
Lemma 4.7 Suppose $A, B \in M_{n}$ satisfy the assumption in Theorem 4.6. Then $\mu \notin \mathcal{E}(A, B)$ if and only if one of the following holds.
(a) The line segment joining $a_{1}, a_{n}$ and the line segment joining $\mu-b_{1}, \mu-b_{n}$ do not intersect.
(b) There exist $t_{1}, t_{2} \in[0,1]$ and $j \in\{1, \ldots, n-1\}$ such that

$$
\begin{aligned}
\mu-\left(t_{1} b_{1}+\left(1-t_{1}\right) b_{n}\right) & =t_{2} a_{j}+\left(1-t_{2}\right) a_{j+1} \quad \text { and } \\
t_{1}\left|\mu-b_{1}\right|^{2}+\left(1-t_{1}\right)\left|\mu-b_{n}\right|^{2} & <t_{2}\left|a_{j}\right|^{2}+\left(1-t_{2}\right)\left|a_{j+1}\right|^{2}
\end{aligned}
$$

(c) There exist $t_{1}, t_{2} \in[0,1]$ and $j \in\{1, \ldots, n-1\}$ such that

$$
\begin{array}{r}
\mu-\left(t_{1} b_{j}+\left(1-t_{1}\right) b_{j+1}\right)=t_{2} a_{1}+\left(1-t_{2}\right) a_{n} \quad \text { and } \\
t_{1}\left|\mu-b_{j}\right|^{2}+\left(1-t_{1}\right)\left|\mu-b_{j+1}\right|^{2}>t_{2}\left|a_{1}\right|^{2}+\left(1-t_{2}\right)\left|a_{n}\right|^{2}
\end{array}
$$

Proof. Under the given assumption, $D W(A)$ and $D W\left(\mu I_{n}-B\right)$ will be a vertical polygonal disks in $\mathbb{C} \times \mathbb{R}$ with vertices in $\left\{\left(z,|z|^{2}\right): z \in \mathbb{C}\right\}$. The two disks have no intersection if and only if
(1) the projections of the two disks on $\mathbb{C}$ do not intersect, or
(2) the projections on $\mathbb{C}$ intersect but one disk is above the other disk.

Case (1) is equivalent to (a), and (2) is equivalent to (b) or (c).
Proof of Theorem 4.6. Suppose $\mu \notin \mathcal{E}(A, B)$. Consider the three cases in Lemma 4.7:
(a) The line segment joining $a_{1}, a_{n}$ and the line segment joining $\mu-b_{1}, \mu-b_{n}$ have no intersection if and only if for all $0 \leq t_{1}, t_{2} \leq 1$,

$$
\begin{aligned}
t_{2} a_{1}+\left(1-t_{2}\right) a_{n} & \neq t_{1}\left(\mu-b_{1}\right)+\left(1-t_{1}\right)\left(\mu-b_{n}\right) \\
\mu & \neq t_{1} b_{1}+\left(1-t_{1}\right) b_{n}+t_{2} a_{1}+\left(1-t_{2}\right) a_{n} \\
\mu & \notin P=\operatorname{conv}\left\{a_{r}+b_{s}: r, s \in\{1, n\}\right\} \\
\mu & \notin\left\{e^{i \phi} x+e^{i \theta} y+\alpha+\beta:(x, y) \in \Gamma\right\}
\end{aligned}
$$

(b) Suppose for some $t_{1}, t_{2} \in[0,1]$ and $j \in\{1, \ldots, n-1\}$ such that

$$
\begin{equation*}
\mu-\left(t_{1} b_{1}+\left(1-t_{1}\right) b_{n}\right)=t_{2} a_{j}+\left(1-t_{2}\right) a_{j+1} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{1}\left|\mu-b_{1}\right|^{2}+\left(1-t_{1}\right)\left|\mu-b_{n}\right|^{2}<t_{2}\left|a_{j}\right|^{2}+\left(1-t_{2}\right)\left|a_{j+1}\right|^{2} \tag{4.2}
\end{equation*}
$$

Let $\mu-\alpha-\beta=e^{i \phi} u+e^{i \theta} v$ with $u, v \in \mathbb{R}$. From (4.1) and $a_{j}=\alpha+e^{i \phi} r_{j}$ and $b_{j}=\beta+e^{i \theta} s_{j}$ for $1 \leq j \leq n$ with $e^{i(\phi-\theta)} \notin\{1,-1\}$, we have

$$
u=t_{2} r_{j}+\left(1-t_{2}\right) r_{j+1} \quad \text { and } \quad v=\left(t_{1} s_{1}+\left(1-t_{1}\right) s_{n}\right)
$$

or equivalently,

$$
t_{1}=\frac{s_{n}-v}{s_{n}-s_{1}} \quad \text { and } \quad t_{2}=\frac{r_{j+1}-u}{r_{j+1}-r_{j}} .
$$

We have

$$
\begin{aligned}
& t_{2}\left|a_{j}\right|^{2}+\left(1-t_{2}\right)\left|a_{j+1}\right|^{2} \\
= & t_{2}\left|\alpha+e^{i \phi} r_{j}\right|^{2}+\left(1-t_{2}\right)\left|\alpha+e^{i \phi} r_{j+1}\right|^{2} \\
= & t_{2}\left(|\alpha|^{2}+\left(\bar{\alpha} e^{i \phi}+\alpha e^{-i \phi}\right) r_{j}+r_{j}^{2}\right)+\left(1-t_{2}\right)\left(|\alpha|^{2}+\left(\bar{\alpha} e^{i \phi}+\alpha e^{-i \phi}\right) r_{j+1}+r_{j+1}^{2}\right) \\
= & |\alpha|^{2}+\left(\bar{\alpha} e^{i \phi}+\alpha e^{-i \phi}\right) u+\left(r_{j}+r_{j+1}\right) u-r_{j} r_{j+1}
\end{aligned}
$$

as $t_{2} r_{j}+\left(1-t_{2}\right) r_{j+1}=u$ and $t_{2} r_{j}^{2}+\left(1-t_{2}\right) r_{j+1}^{2}=\left(r_{j}+r_{j+1}\right) u-r_{j} r_{j+1}$.

$$
\begin{aligned}
& t_{1}\left|\mu-b_{1}\right|^{2}+\left(1-t_{1}\right)\left|\mu-b_{n}\right|^{2} \\
= & t_{1}\left|\alpha+e^{i \phi} u+e^{i \theta}\left(v-s_{1}\right)\right|^{2}+\left(1-t_{1}\right)\left|\alpha+e^{i \phi} u+e^{i \theta}\left(v-s_{n}\right)\right|^{2} \\
= & t_{1}\left[|\alpha|^{2}+\left(\bar{\alpha} e^{i \phi}+\alpha e^{-i \phi}\right) u+\left(\bar{\alpha} e^{i \theta}+\alpha e^{-i \theta}\right)\left(v-s_{1}\right)\right. \\
& \left.+\left(e^{i(\theta-\phi)}+e^{-i(\theta-\phi)}\right) u\left(v-s_{1}\right)+u^{2}+\left(v-s_{1}\right)^{2}\right] \\
& +\left(1-t_{1}\right)\left[|\alpha|^{2}+\left(\bar{\alpha} e^{i \phi}+\alpha e^{-i \phi}\right) u+\left(\bar{\alpha} e^{i \theta}+\alpha e^{-i \theta}\right)\left(v-s_{n}\right)\right. \\
& \left.+\left(e^{i(\theta-\phi)}+e^{-i(\theta-\phi)}\right) u\left(v-s_{n}\right)+u^{2}+\left(v-s_{n}\right)^{2}\right] \\
= & |\alpha|^{2}+\left(\bar{\alpha} e^{i \phi}+\alpha e^{-i \phi}\right) u+u^{2}-\left(v-s_{1}\right)\left(v-s_{n}\right)
\end{aligned}
$$

as $t_{1}\left(v-s_{1}\right)+\left(1-t_{1}\right)\left(v-s_{n}\right)=0$ and $t_{1}\left(v-s_{1}\right)^{2}+\left(1-t_{1}\right)\left(v-s_{n}\right)^{2}=-\left(v-s_{1}\right)\left(v-s_{n}\right)$.
Putting these values into (4.2), we have

$$
\begin{aligned}
0 & <t_{2}\left|a_{j}\right|^{2}+\left(1-t_{2}\right)\left|a_{j+1}\right|^{2}-t_{1}\left|\mu-b_{1}\right|^{2}-\left(1-t_{1}\right)\left|\mu-b_{n}\right|^{2} \\
& =\left(v-s_{1}\right)\left(v-s_{n}\right)-\left(u-r_{j}\right)\left(u-r_{j+1}\right)
\end{aligned}
$$

For any $z=e^{i \phi} x+e^{i \theta} y+\alpha+\beta$ with $x, y \in \mathbb{R}$, define

$$
f(z)=\left(y-s_{1}\right)\left(y-s_{n}\right)-\left(x-r_{j}\right)\left(x-r_{j+1}\right)
$$

With $a_{k}+b_{m}=e^{i \phi} r_{k}+e^{i \theta} s_{m}+\alpha+\beta$, we have

$$
f\left(a_{k}+b_{m}\right)=\left(s_{m}-s_{1}\right)\left(s_{m}-s_{n}\right)-\left(r_{k}-r_{j}\right)\left(r_{k}-r_{j+1}\right) \leq 0
$$

Thus, $H(a, j)=\{z: f(z) \leq 0\}$ is a closed hyperbolic region satisfying (i).
Similarly, if condition (c) in Lemma 4.7 is satisfied, we have a closed hyperbolic region $H(b, j)$ satisfying (i).

By Lemma 4.7 and (i), we see that $\mathcal{E}(A, B)$ is a subset of the intersection of $P$ and the hyperbolic regions described in (i), and no points in the complement of the intersection belongs to $\mathcal{E}(A, B)$. Thus, assertion (ii) of the theorem follows.

From the above discussion, we can see that the complement of $\mathcal{E}(A, B)$ is a union of open hyperbolic regions. So, if $z \in \mathbb{C} \backslash \mathcal{E}(A, B)$, then there exists a half line $L$ containing $z$ with $L \cap \mathcal{E}(A, B)=\emptyset$. Hence, every connected component of $\mathcal{E}(A, B)$ is simply connected.

Suppose the boundary of the parallelogram $P=\operatorname{conv}\left\{a_{u}+b_{v}: u, v \in\{1, n\}\right\}$ is graduated by the points $a_{r}+b_{j}$ and $a_{j}+b_{r}$ with $r \in\{1, n\}$ and $j \in\{1, \ldots, n\}$. Then the intersection of the hyperbolas $H(a, j)$ (respectively, $H(b, j))$ with $P$ will have end points $a_{r}+b_{s}$ with $r \in\{j, j+1\}$ and $s \in\{1, n\}$ (respectively, $r \in\{1, n\}$ and $s \in\{j, j+1\}$ ).

Combining the arguments in the last two paragraphs, we get condition (iii).
Remark 4.8 The above result gives a simple procedure to determine the region $\mathcal{E}(A, B)$ for $A$ and $B$ satisfying the conditions in Theorem 4.6:

Sketch the hyperbolas corresponding to the intersection of $P$ and the closed hyperbolic regions $H(a, j)$ and $H(b, j)$ for $1 \leq j<n$ (see Section 6.2 ). Then $\mathcal{E}(A, B)$ consists of the simply connected regions in $P$ determined by these curves.

Remark 4.9 Notice that all $2 \times 2$ normal matrices are essentially Hermitian. Then for any $2 \times 2$ non-scalar normal matrices $A$ and $B, \mathcal{E}(A, B)$ is either a union of line segments or a pair of hyperbola by Theorems 4.1 and 4.6. In both cases, $\mathcal{E}(A, B)$ has empty interior.

Example 4.10 Consider $A=\operatorname{diag}(0,1,4)$ and $B=\operatorname{diag}(0,1+i)$. The following pictures depict the segments of hyperbolas corresponding to $H(a, 1), H(a, 2)$ and $H(b, 1)$ and the set $\mathcal{E}(A, B)$.



Suppose $A, B \in M_{n}$ are normal matrices. The connected components of $\mathcal{E}(A, B)$ may not be simply connected in general as shown in the following example.

Example 4.11 Let $\omega=e^{i 2 \pi / 3}$. Using the method described in Section 6, we can show that for $A=\operatorname{diag}\left(-i,-i \omega,-i \omega^{2}\right)$ and $B=\operatorname{diag}\left(-i \omega,-i \omega,-i \omega^{2}\right), \mathcal{E}(A, B)$ is not simply connected.


Although the conclusion of Theorem 4.6 does not hold for arbitrary normal matrices $A, B \in M_{n}$, one can see form Theorem 3.6 that the boundary of $\mathcal{E}(A, B)$ is a subset of the union of hyperbolas determined by eigenvalue pairs of $A$ and eigenvalue pairs of $B$. We have the following example.

Example 4.12 Let $\omega=e^{i 2 \pi / 3}, A=\operatorname{diag}\left(-i,-i \omega,-i \omega^{2}\right)$ and $B=0.95 \operatorname{diag}\left(-i \omega,-i \omega,-i \omega^{2}\right)$. Then the boundary of $\mathcal{E}(A, B)$ are subsets of the union of hyperbolas.


It is interesting to note that the matrices in Example 4.12 are obtained from those in Example 4.11 by shirking $B$ by a factor of 0.95 , and hence the two pictures of $\mathcal{E}(A, B)$ have some resemblance even though part of the boundary changes from straight line segments to curve segments. In general, it is not hard to show that $(A, B) \mapsto \mathcal{E}(A, B)$ is a continuous function, say, using the usual topology on $M_{n} \times M_{n}$ and the Hausdorff metric for compact sets in $\mathbb{C}$.

## 5 Extensions and open problems

One may ask whether the results can be extended to the sum of $k$ matrices from $k$ different unitary similarity orbits for $k>2$. For Hermitian matrices $A_{1}, \ldots, A_{k}$, there is a complete description of the eigenvalues of the matrices in $\mathcal{U}\left(A_{1}\right)+\cdots+\mathcal{U}\left(A_{k}\right)$; see [8]. For non-Hermitian matrices $A_{1}, \ldots, A_{k} \in M_{n}$, we can extend the idea in Section 2 to determine the set of complex numbers $\mu$, which is the eigenvalue of a matrix in $\mathcal{U}\left(A_{1}\right)+\cdots+\mathcal{U}\left(A_{k}\right)$. To this end, we need the concept of the modified Davis-Wielandt shell of $A \in M_{n}$ defined by

$$
M D W(A)=\left\{\left(x^{*} A x, \sqrt{\|A x\|^{2}-\left|x^{*} A x\right|^{2}} e^{i t}\right): x \in \mathbb{C}^{n}, x^{*} x=1, t \in \mathbb{R}\right\} \subseteq \mathbb{C} \times \mathbb{C} .
$$

Note that $\left(\mu_{1}, \mu_{2}\right) \in M D W(A)$ if and only if there is a unitary matrix $U$ such that the first column of $U^{*} A U$ equals $\left[\mu_{1}, \mu_{2}, 0, \ldots, 0\right]^{t}$.

Theorem 5.1 Let $A_{1}, \ldots, A_{k} \in M_{n}$ and $\mu \in \mathbb{C}$. The following are equivalent.
(a) There are unitary $U_{1}, \ldots, U_{k} \in M_{n}$ such that $\operatorname{det}\left(\sum_{j=1}^{k} U_{j} A_{j} U_{j}^{*}-\mu I_{n}\right)=0$.
(b) $(\mu, 0) \in M D W\left(A_{1}\right)+\cdots+M D W\left(A_{k}\right)$.
(c) $\left[M D W\left(A_{1}\right)+\cdots+M D W\left(A_{k-1}\right)\right] \cap M D W\left(\mu I_{n}-A_{k}\right) \neq \emptyset$.

Proof. We may assume that $k \geq 3$. The implications $(c) \Longleftrightarrow(b) \Rightarrow(a)$ are clear. Suppose (a) holds. Then there are unitary matrices $U_{1}, \ldots, U_{k}$ such that the first column of $\sum_{j=1}^{k} U_{j}^{*} A_{j} U_{j}$ equals $[\mu, 0, \ldots, 0]^{t}$. Let $v_{j}$ be obtained from the first column of $U_{j}^{*} A_{j} U_{j}$ by removing its first entry $\mu_{j}$. Then $\sum_{j=1}^{k} v_{j}=0$. Relabel $A_{j}$ so that $\left\|v_{1}\right\| \geq \cdots \geq\left\|v_{k}\right\|$. Then $\left\|v_{1}\right\| \leq\left\|v_{2}\right\|+\cdots+\left\|v_{k}\right\|$. Thus, there exist $t_{1}, \ldots, t_{k} \in \mathbb{R}$ such that $\sum_{j=1}^{k}\left\|v_{j}\right\| e^{i t_{j}}=0$. It follows that $\left(\mu_{j},\left\|v_{j}\right\| e^{i t_{j}}\right) \in \operatorname{MDW}\left(A_{j}\right)$ for $j=1, \ldots, k$ such that $(\mu, 0)=\sum_{j=1}^{k}\left(\mu_{j},\left\|v_{j}\right\| e^{i t_{j}}\right)$. Thus, condition (b) holds.

Besides the unitary similarity orbits, one may consider orbits of matrices under other group actions and consider the eigenvalues of the sum of matrices from different orbits.

For example, we can consider the usual similarity orbit of $A \in M_{n}$

$$
\mathcal{S}(A)=\left\{S A S^{-1}: S \in M_{n} \text { is invertible }\right\}
$$

the unitary equivalence orbit of $A \in M_{n}$

$$
\mathcal{V}(A)=\left\{U A V: U, V \in M_{n} \text { are unitary }\right\}
$$

the unitary congruence orbit of $A \in M_{n}$

$$
\mathcal{U}^{t}(A)=\left\{U A U^{t}: U \in M_{n} \text { is unitary }\right\} .
$$

For example, if $A, B \in M_{n}$ are not scalar, then any $\mu \in \mathbb{C}$ can be an eigenvalues of $S A S^{-1}+B$. Can we prove this for complex orthogonal similarity?

One may also consider the eigenvalues of usual product, Lie product, and Jordan product of matrices from different orbits; e.g., see [10, 16]. Of course, one may ask similar problems for matrices over reals or arbitrary fields or rings.

For example, our results in Section 2.1 hold for real eigenvalues for real matrices $U A U^{t}+V B V^{t}$, where $U, V$ are real orthogonal matrices.

## 6 Computer algorithms and programs

Using the result in Section 2, we can use positive semi-definite programming package to test whether $\mu \in \mathcal{E}(A, B)$ as follows. For every $\left(\xi,|\xi|^{2}\right) \in D W(\mu I-B)$, we check whether $\left(\xi,|\xi|^{2}\right) \in D W(A)$, equivalently, we check whether there is a real linear combination of of the three Hermitian matrices:

$$
\operatorname{Re}(A-\xi I), \operatorname{Im}(A-\xi I), A^{*} A-|\xi|^{2} I
$$

is positive definite. (This can be done by positive semi-definite programming package.) If there is no such combination, then $\left(\xi,|\xi|^{2}\right) \in D W(A)$.

Of course, the above test is inefficient and hard to implement. The situation will improve significantly for normal matrices. One can use standard linear programming package to check whether the two convex polytopes $D W(A)$ and $D W(\mu I-B)$ have nonempty intersection.

The situation further improves if we use Theorem 3.4 and focus on $D W(X) \cap D W\left(\mu I_{2}-Y\right)$ for normal matrices $X \in M_{3}$ and $Y \in M_{2}$. For convenience, we use $\mathcal{E}(X, Y)$ to denote the set of $\mu \in \mathbb{C}$ such that $D W(X) \cap D W\left(\mu I_{2}-Y\right) \neq \emptyset$, even $X$ and $Y$ may not have the same size. Then the set $\mathcal{E}(A, B)$ is the union of $\mathcal{E}(X, Y)$, where $X=\operatorname{diag}\left(w_{1}, w_{2}, w_{3}\right) \in M_{3}$ and $Y=\operatorname{diag}\left(z_{1}, z_{2}\right) \in M_{2}$ described in Theorem 3.4. Furthermore, if both $A$ and $B$ have only two distinct eigenvalues, respectively, say $w_{1}, w_{2}$ and $z_{1}, z_{2}$, then $\mathcal{E}(A, B)=\mathcal{E}(X, Y)$ with $X=\operatorname{diag}\left(w_{1}, w_{2}\right)$ and $Y=$ $\operatorname{diag}\left(z_{1}, z_{2}\right)$.

In the following, we will focus on $\mathcal{E}(X, Y)$ so that either $(X, Y) \in M_{2} \times M_{2}$ or $(X, Y) \in M_{3} \times M_{2}$ with distinct eigenvalues. Also as $\mathcal{E}(X, Y)$ depends only on the eigenvalues of $X$ and $Y$, we may assume that $X$ and $Y$ are diagonal in our discussion.

We describe an easy point-wise test for $x+i y \in \mathcal{E}(X, Y)$ in the following.

### 6.1 A point-wise test

## The two-two case

We begin with the simple case when $X=\operatorname{diag}\left(w_{1}, w_{2}\right), Y=\operatorname{diag}\left(z_{1}, z_{2}\right) \in M_{2}$, and determine whether a given point $x+i y \in \mathcal{E}(X, Y)$, for four given complex numbers $w_{1}=a_{1}+i b_{1}, w_{2}=a_{2}+i b_{2}$, $z_{1}=c_{1}+i d_{1} z_{2}=c_{2}+i d_{2}$ so that $w_{1}, w_{2}$ are distinct, and $z_{1}, z_{2}$ are distinct.

Let $P_{j}=\left(a_{j}, b_{j}, a_{j}^{2}+b_{j}^{2}\right)$ and $Q_{j}=\left(x-c_{j}, y-d_{j},\left(x-c_{j}\right)^{2}+\left(y-d_{j}\right)^{2}\right)$ for $j=1,2$. Then $x+i y \in \mathcal{E}$ if and only if

$$
\begin{equation*}
\overline{P_{1} P_{2}} \cap \overline{Q_{1} Q_{2}} \neq \emptyset \tag{6.1}
\end{equation*}
$$

Since all the 4 points $P_{1}, P_{2}, Q_{1}, Q_{2}$ lie on the boundary of the convex set $\left\{(x, y, z): x^{2}+y^{2} \leq\right.$ $z\} \subseteq \mathbb{R}^{3}$, (6.1) holds if and only if the 4 points lie on the same plane and $P_{1}$ and $P_{2}$ lie on opposite closed half plane determined by the line through $Q_{1}$ and $Q_{2}$.

Let $\mathbf{u}=\overrightarrow{Q_{1} Q_{2}}, \mathbf{v}=\overrightarrow{Q_{1} P_{2}}$ and $\mathbf{r}=\mathbf{u} \times \mathbf{v}=\left(r_{1}, r_{2}, r_{3}\right)$. Define

$$
\begin{aligned}
& \Delta_{0}=\left|\begin{array}{ccc}
c_{1}-c_{2} & a_{1}+c_{1}-x & a_{2}-a_{1} \\
d_{1}-d_{2} & b_{1}+d_{1}-y & b_{2}-b_{1} \\
\left(x-c_{2}\right)^{2}+\left(y-d_{2}\right)^{2} & a_{1}^{2}+b_{1}^{2}-\left(x-c_{1}\right)^{2}-\left(y-d_{1}\right)^{2} & a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right|, \\
& -\left(x-c_{1}\right)^{2}-\left(y-d_{1}\right)^{2}
\end{aligned}\left|\begin{array}{ccc}
c_{1}-c_{2} & a_{1}+c_{1}-x & r_{1} \\
\Delta_{1}-d_{2} & b_{1}+d_{1}-y & r_{2} \\
\left(x-c_{2}\right)^{2}+\left(y-d_{2}\right)^{2} & a_{1}^{2}+b_{1}^{2}-\left(x-c_{1}\right)^{2}-\left(y-d_{1}\right)^{2} & r_{3}
\end{array}\right| l
$$

Then $P_{1}, P_{2}, Q_{1}, Q_{2}$ all lie on the same plane if and only if $\Delta_{0}=0$. Suppose $\Delta_{0}=0$. Then $P_{1}$ and $P_{2}$ lie on opposite closed half plane determined by the line through $Q_{1}$ and $Q_{2}$ if and only if $\Delta_{1} \leq 0$.

Assertion 6.1 For normal matrices $X, Y \in M_{2}$ with eigenvalues described above, $x+i y \in \mathcal{E}(X, Y)$ if and only if $\Delta_{0}=0$ and $\Delta_{1} \leq 0$.

## The three-two case

Next, we describe the test to determine whether a given point

$$
x+i y \in \mathcal{E}\left(\operatorname{diag}\left(w_{1}, w_{2}, w_{3}\right), \operatorname{diag}\left(z_{1}, z_{2}\right)\right)
$$

for any given complex numbers $w_{1}, w_{2}, w_{3}, z_{1}, z_{2}$ so that $w_{1}, w_{2}, w_{3}$ are distinct and $z_{1}, z_{2}$ are distinct. Let $w_{j}=a_{j}+i b_{j}$ for $j=1,2,3$, and $z_{k}=c_{k}+i d_{k}$ for $k=1,2$. Then $x+i y \in \mathcal{E}(X, Y)$ if and only if there exist $0 \leq t_{1} \leq 1,0 \leq t_{1}, t_{2}$, and $t_{1}+t_{2} \leq 1$ such that

$$
\begin{aligned}
& \left(1-t_{1}\right)\left(\begin{array}{c}
x-c_{1} \\
y-d_{1} \\
\left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2}
\end{array}\right)+t_{1}\left(\begin{array}{c}
x-c_{2} \\
y-d_{2} \\
\left(x-c_{2}\right)^{2}+\left(y-d_{2}\right)^{2}
\end{array}\right) \\
= & \left(1-t_{2}-t_{3}\right)\left(\begin{array}{c}
a_{1} \\
b_{1} \\
a_{1}^{2}+b_{1}^{2}
\end{array}\right)+t_{2}\left(\begin{array}{c}
a_{2} \\
b_{2} \\
a_{2}^{2}+b_{2}^{2}
\end{array}\right)+t_{3}\left(\begin{array}{c}
a_{3} \\
b_{3} \\
a_{3}^{2}+b_{3}^{2}
\end{array}\right),
\end{aligned}
$$

or equivalently,

$$
\left(\begin{array}{ccc}
c_{2}-c_{1} & a_{2}-a_{1} & a_{3}-a_{1} \\
d_{2}-d_{1} & b_{2}-b_{1} & b_{3}-b_{1} \\
\left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2} & a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2} & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2} \\
-\left(x-c_{2}\right)^{2}-\left(y-d_{2}\right)^{2}
\end{array}\right)\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right)
$$

$$
=\left(\begin{array}{c}
x-c_{1}-a_{1} \\
y-d_{1}-b_{1} \\
\left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2} \\
-\left(a_{1}^{2}+b_{1}^{2}\right)
\end{array}\right)
$$

Let

$$
\begin{aligned}
& \Delta_{0}=\left|\begin{array}{ccc}
c_{2}-c_{1} & a_{2}-a_{1} & a_{3}-a_{1} \\
d_{2}-d_{1} & b_{2}-b_{1} & b_{3}-b_{1} \\
\left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2} & a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2} & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right|, \\
& -\left(x-c_{2}\right)^{2}-\left(y-d_{2}\right)^{2} \\
& \Delta_{1}=\left|\begin{array}{ccc}
x-c_{1}-a_{1} & a_{2}-a_{1} & a_{3}-a_{1} \\
y-d_{1}-b_{1} & b_{2}-b_{1} & b_{3}-b_{1} \\
\left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2} & a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2} & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right|, \\
& -\left(a_{1}^{2}+b_{1}^{2}\right) \\
& c_{2}-c_{1} \\
& d_{2}-d_{1} \\
& \Delta_{2}=\left|\begin{array}{ccc} 
& x-c_{1}-a_{1} & a_{3}-a_{1} \\
\left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2} & \left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2} & b_{3}-b_{1} \\
-\left(x-c_{2}\right)^{2}-\left(y-d_{2}\right)^{2} & -\left(a_{1}^{2}+b_{1}^{2}\right) & a_{3}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right|, \\
& \Delta_{3}=\left|\begin{array}{ccc}
c_{2}-c_{1} & a_{2}-a_{1} & x-c_{1}-a_{1} \\
d_{2}-d_{1} & b_{2}-b_{1} & y-d_{1}-b_{1} \\
\left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2} & a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2} & \left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2} \\
\left.-\left(x-c_{2}\right)^{2}-\left(y-d_{2}\right)^{2}+b_{1}^{2}\right)
\end{array}\right| .
\end{aligned}
$$

By the above discussion, we have the following.
Assertion 6.2 Suppose $X \in M_{3}$ and $Y \in M_{2}$ are normal with eigenvalues described as above. Assume that $\Delta_{0} \neq 0$. Then $x+i y \in \mathcal{E}(A, B)$ if and only if

$$
\left(\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{0}-\Delta_{1}, \Delta_{0}-\Delta_{2}-\Delta_{3}\right) / \Delta_{0}
$$

has nonnegative entries.
Suppose $\Delta_{0}=0$. Let

$$
\begin{gathered}
P_{j}=\left(a_{j}, b_{j}, a_{j}^{2}+b_{j}^{2}\right) \text { for } j=1,2,3, \quad \text { and } \\
Q_{k}=\left(x-c_{k}, y-d_{k},\left(x-c_{k}\right)^{2}+\left(y-d_{k}\right)^{2}\right) \text { for } k=1,2
\end{gathered}
$$

Then the line $L$ through $Q_{1}$ and $Q_{2}$ is parallel to the plane $\Pi$ determine by $P_{1}, P_{2}$, and $P_{3}$. Since all the 5 points $P_{1}, P_{2}, P_{3}, Q_{1}, Q_{2}$ lie on the boundary of the convex set $\left\{(x, y, z): x^{2}+y^{2} \leq z\right\} \in \mathbb{R}^{3}$, $x+i y \in \mathcal{E}(X, Y)$ if and only if $L$ lies on $\Pi$ and each of the closed half space determined by $L$ contains some $P_{i}$. Hence, $L$ lies on $\Pi$ if and only if $\Delta_{0}=\Delta_{1}=0$. In such a case, let

$$
\mathbf{u}=\overrightarrow{Q_{1} Q_{2}}=\left(c_{1}-c_{2}, d_{1}-d_{2},\left(x-c_{2}\right)^{2}-\left(x-c_{1}\right)^{2}+\left(y-d_{2}\right)^{2}-\left(y-d_{1}\right)^{2}\right) .
$$

For $1 \leq j \leq 3$, let

$$
\mathbf{v}_{\mathbf{j}}=\overrightarrow{Q_{1} P_{j}}=\left(a_{j}-x+c_{1}, b_{j}-y+d_{1}, a_{j}^{2}+b_{j}^{2}-\left(x-c_{1}\right)^{2}-\left(y-d_{1}\right)^{2}\right) .
$$

If $P_{j}$ and $P_{k}$ lie on different half planes determined by $L$, then the cross products $\mathbf{u} \times \mathbf{v}_{\mathbf{j}}$ and $\mathbf{u} \times \mathbf{v}_{\mathbf{k}}$ are normals to $\Pi$, pointing in opposite directions. For $1 \leq j \leq 3$, let $\mathbf{r}_{\mathbf{j}}=\mathbf{u} \times \mathbf{v}_{\mathbf{j}}=\left(r_{1 j}, r_{2 j}, r_{3 j}\right)$ and

$$
\Delta_{j}^{\prime}=\left|\begin{array}{ccc}
a_{2}-a_{1} & a_{3}-a_{1} & r_{1 j} \\
b_{2}-b_{1} & b_{3}-b_{1} & r_{2 j} \\
a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2} & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2} & r_{3 j}
\end{array}\right|
$$

We can now describe the remaining case in the following.
Assertion 6.3 Suppose $X \in M_{3}$ and $Y \in M_{2}$ are normal with eigenvalues described as above. Assume that $\Delta_{0}=0$. Then $x+i y \in \mathcal{E}(X, Y)$ if and only if $\Delta_{1}=0$ and $\Delta_{j}^{\prime} \leq 0 \leq \Delta_{k}^{\prime}$ for some $1 \leq j, k \leq 3$.

Based on Assertions 6.1-6.3 with Theorem 3.4, we have written the Matlab program PT.m (see http://www.math.wm.edu/~ckli/program/PT.m) to test whether a point $x+i y$ lies in $\mathcal{E}(A, B)$.

Also, if $A, B \in M_{n}$ are normal matrices, then $\mathcal{E}(A, B)$ is a subset of the set

$$
\operatorname{conv}(\sigma(A)+\sigma(B))=\operatorname{conv}\{a+b: a \in \sigma(A), b \in \sigma(B)\}
$$

One can then consider a grid in conv $(\sigma(A)+\sigma(B))$ and apply the pointwise test to the grid points to plot $\mathcal{E}(A, B)$. The Matlab program PPT.m (see http://www.math.wm.edu/~ckli/program/PPT.m) is written based on this idea. An example of $\mathcal{E}(A, B)$ generated by the program will be given in Section 6.4.

### 6.2 Parametrization of $\mathcal{E}(A, B)$ for normal matrices

In this subsection, we give a parametrization of $\mathcal{E}(A, B)$. We start with the three-two case.

## The three-two case

Consider the case when $X=\operatorname{diag}\left(w_{1}, w_{2}, w_{3}\right) \in M_{3}$ and $Y=\operatorname{diag}\left(z_{1}, z_{2}\right) \in M_{2}$. Write $w_{j}=a_{j}+i b_{j}$ for $j=1,2,3$ and $z_{k}=c_{k}+i d_{k}$ for $k=1,2$. Let $P_{j}=\left(a_{j}, b_{j}, a_{j}^{2}+b_{j}^{2}\right)$ for $j=1,2,3$ and $Q_{k}=\left(x-c_{k}, y-d_{k},\left(x-c_{k}\right)^{2}+\left(y-d_{k}\right)^{2}\right)$ for $k=1,2$. As $\mu \in \mathcal{E}(X, Y)$ if and only if $\mu+w_{1}+z_{1} \in \mathcal{E}\left(X-w_{1} I_{3}, Y-z_{1} I_{2}\right)$. We may assume that $w_{1}=z_{1}=0$, i.e., $a_{1}=b_{1}=c_{1}=d_{1}=0$. Notice that $\mathcal{E}(X, Y)$ is the set of $x+i y \in \mathbb{C}$ such that $\Delta\left(P_{1} P_{2} P_{3}\right) \cap \overline{Q_{1} Q_{2}} \neq \emptyset$ and this holds if and only if there exist $0 \leq t \leq 1$ such that $\overline{P_{1} P_{4}} \cap \overline{Q_{1} Q_{2}} \neq \emptyset$, where

$$
\begin{equation*}
P_{4}=\left(a_{4}, b_{4}, r_{4}\right)=\left(t a_{2}+(1-t) a_{3}, t b_{2}+(1-t) b_{3}, t\left(a_{2}^{2}+b_{2}^{2}\right)+(1-t)\left(a_{3}^{2}+b_{3}^{2}\right)\right) . \tag{6.2}
\end{equation*}
$$

By the convexity of the function $(x, y) \mapsto x^{2}+y^{2}$, we have $r_{4} \geq a_{4}^{2}+b_{4}^{2}$. Thus, there is $0 \leq t_{1}, t_{2} \leq 1$ such that

$$
\left(1-t_{1}\right)\left(\begin{array}{c}
x \\
y \\
x^{2}+y^{2}
\end{array}\right)+t_{1}\left(\begin{array}{c}
x-c_{2} \\
y-d_{2} \\
\left(x-c_{2}\right)^{2}+\left(y-d_{2}\right)^{2}
\end{array}\right)=\left(1-t_{2}\right)\left(\begin{array}{c}
0 \\
0 \\
0
\end{array}\right)+t_{2}\left(\begin{array}{c}
a_{4} \\
b_{4} \\
r_{4}
\end{array}\right)
$$

or equivalently,

$$
\begin{equation*}
x=c_{2} t_{1}+a_{4} t_{2}, \quad y=d_{2} t_{1}+b_{4} t_{2} \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{1}\left(x^{2}+y^{2}-\left(x-c_{2}\right)^{2}-\left(y-d_{2}\right)^{2}\right)+r_{4} t_{2}=x^{2}+y^{2} \tag{6.4}
\end{equation*}
$$

Substituting (6.3) into (6.4) we get

$$
\left(c_{2}^{2}+d_{2}^{2}\right) t_{1}\left(t_{1}-1\right)-\left(a_{4}^{2}+b_{4}^{2}\right) t_{2}^{2}+r_{4} t_{2}=0
$$

which is a hyperbolic equation of $t_{1}$ and $t_{2}$ on $[0,1]$.
Suppose $\left(c_{2}^{2}+d_{2}^{2}\right) \geq r_{4} /\left(a_{4}^{2}+b_{4}^{2}\right)$. Then

$$
\begin{equation*}
t_{1}=\frac{1}{2} \pm \sqrt{\frac{1}{4}+\left(\frac{a_{4}^{2}+b_{4}^{2}}{c_{2}^{2}+d_{2}^{2}}\right) t_{2}^{2}-\left(\frac{r_{4}}{c_{2}^{2}+d_{2}^{2}}\right) t_{2}} \tag{6.5}
\end{equation*}
$$

and it is easy to check that $0 \leq t_{1} \leq 1$ whenever $t_{2} \in[0,1]$.
Suppose $\left(c_{2}^{2}+d_{2}^{2}\right)<r_{4} /\left(a_{4}^{2}+b_{4}^{2}\right)$. Then

$$
\begin{equation*}
t_{2}=\frac{r_{4}}{2\left(a_{4}^{2}+b_{4}^{2}\right)}+\sqrt{\frac{r_{4}^{2}}{4\left(a_{4}^{2}+b_{4}^{2}\right)^{2}}+\left(\frac{c_{2}^{2}+d_{2}^{2}}{a_{4}^{2}+b_{4}^{2}}\right) t_{1}\left(t_{1}-1\right)} \tag{6.6}
\end{equation*}
$$

or

$$
\begin{equation*}
t_{2}=\frac{r_{4}}{2\left(a_{4}^{2}+b_{4}^{2}\right)}-\sqrt{\frac{r_{4}^{2}}{4\left(a_{4}^{2}+b_{4}^{2}\right)^{2}}+\left(\frac{c_{2}^{2}+d_{2}^{2}}{a_{4}^{2}+b_{4}^{2}}\right) t_{1}\left(t_{1}-1\right)} . \tag{6.7}
\end{equation*}
$$

Note that for $t_{2}$ defined in (6.6), $0 \leq t_{2} \leq 1$ whenever $t_{1} \in[0,1]$ and for $t_{2}$ defined in (6.7), $0 \leq t_{2} \leq 1$ whenever $t_{1} \in\left[\frac{1}{2}-\sqrt{\frac{1}{4}+\frac{a_{4}^{2}+b_{4}^{2}-r_{4}}{c_{2}^{2}+d_{2}^{2}}}, \frac{1}{2}+\sqrt{\frac{1}{4}+\frac{a_{4}^{2}+b_{4}^{2}-r_{4}}{c_{2}^{2}+d_{2}^{2}}}\right]$, provided that the expression in the square roots is nonnegative.

Assertion 6.4 Suppose $X \in M_{3}$ and $Y \in M_{2}$ are normal with eigenvalues described as above. For each $t \in[0,1]$, determine $t_{1}$ and $t_{2}$ using the equations (6.2), (6.5) - (6.7). Then $x+i y \in \mathcal{E}(X, Y)$ if and only if it is given by the parametric equation (6.3) in terms of $t_{1}$ and $t_{2}$.

## The two-two case

Next, we consider the two by two case. By a similar argument of the three by two case with $\left(a_{4}, b_{4}, r_{4}\right)=\left(a_{2}, b_{2}, a_{2}^{2}+b_{2}^{2}\right)$, we have

$$
\begin{equation*}
x=c_{2} t_{1}+a_{2} t_{2}, \quad y=d_{2} t_{1}+b_{2} t_{2}, \tag{6.8}
\end{equation*}
$$

and

$$
\left(c_{2}^{2}+d_{2}^{2}\right) t_{1}\left(t_{1}-1\right)-\left(a_{2}^{2}+b_{2}^{2}\right) t_{2}\left(t_{2}-1\right)=0
$$

which is a hyperbolic equation of $t_{1}$ and $t_{2}$ on $[0,1]$. Then

$$
\begin{equation*}
t_{1}=\frac{1}{2} \pm \sqrt{\frac{1}{4}+\left(\frac{a_{2}^{2}+b_{2}^{2}}{c_{2}^{2}+d_{2}^{2}}\right) t_{2}\left(t_{2}-1\right)}, \tag{6.9}
\end{equation*}
$$

lies in $[0,1]$ whenever $t_{2} \in[0,1]$ if $c_{2}^{2}+d_{2}^{2} \geq a_{2}^{2}+b_{2}^{2}$, or

$$
\begin{equation*}
t_{2}=\frac{1}{2} \pm \sqrt{\frac{1}{4}+\left(\frac{c_{2}^{2}+d_{2}^{2}}{a_{2}^{2}+b_{2}^{2}}\right) t_{1}\left(t_{1}-1\right)} \tag{6.10}
\end{equation*}
$$

lies in $[0,1]$ whenever $t_{1} \in[0,1]$ if $c_{2}^{2}+d_{2}^{2}<a_{2}^{2}+b_{2}^{2}$.

Assertion 6.5 Suppose $X=\operatorname{diag}\left(0, w_{2}\right) \in M_{2}$ and $Y=\operatorname{diag}\left(0, z_{2}\right) \in M_{2}$. Then $x+i y \in \mathcal{E}(X, Y)$ if and only if it is given by the parametric equation (6.8) in terms of $t_{1}$ and $t_{2}$ determined by equations (6.9) and (6.10).

Based on Assertions 6.4 and 6.5 and Theorem 3.4, we have written the matlab program HPT.m (see http://www.math.wm.edu/ ckli/program/HPT.m) to generate $\mathcal{E}(X, Y)$. An example of $\mathcal{E}(A, B)$ generated by the program will be given in Section 6.4.

Using Theorem 3.6 and Assertion 6.5, we have written the matlab program BD32.m (see http://www.math.wm.edu/ $\mathrm{ckli} / \mathrm{program} / \mathrm{BD} 32 . \mathrm{m})$ to generate $\partial \mathcal{E}(X, Y)$, the boundary of $\mathcal{E}(X, Y)$ for normal $X \in M_{3}$ and $Y \in M_{2}$.

### 6.3 A different algorithm

To use the parametric approach in the previous subsection, one has to consider grid points for $t_{2} \in[0,1]$. For each choice of $t_{2}$ one has to determine intervals for $t_{3}$, then determine the value $t_{1}$, and draw two curves for $t_{3}$ in the two intervals. Here, we introduce a different algorithms to generate $\mathcal{E}=\mathcal{E}(X, Y)$ with $X=\operatorname{diag}\left(w_{1}, w_{2}, w_{3}\right)$ and $Y=\operatorname{diag}\left(z_{1}, z_{2}\right)$. To generate the points $x+i y \in \mathcal{E}(X, Y)$, we first determine the range for $x$. Then for each $x$ in the range, we determine the range of $y$. Here we consider the three by two case only.

Let $w_{j}=a_{j}+i b_{j}$ and $z_{k}=c_{k}+i d_{k}$ for $j=1,2,3$ and $k=1,2$. Since $\mathcal{E}(\mu X, \mu Y)=\mu \mathcal{E}(X, Y)$, we may assume that $d_{1}=d_{2}$. Also by a suitable relabeling, we can always assume $c_{1}>c_{2}$ and $b_{1} \geq b_{2} \geq b_{3}$. Evidently, if $x+i y \in \mathcal{E}(X, Y)$, then

$$
\min \left\{a_{1}, a_{2}, a_{3}\right\}+c_{2} \leq x \leq \max \left\{a_{1}, a_{2}, a_{3}\right\}+c_{1} .
$$

Now we choose an $x$ satisfying the above inequalities and determine $y$ so that $x+i y$ lies in $\mathcal{E}(X, Y)$.
In fact, except for the case when $b_{1}=b_{2}=b_{3}$, we may further assume that $b_{1}<b_{2} \leq b_{3}$. In the exceptional case, $X-b_{1} I_{3}$ and $Y-d_{1} I_{2}$ are Hermitian matrices. Then the result follows from Theorem 4.1 In detail, we have

Assertion 6.6 Suppose $a_{1}<a_{2}<a_{3}, b_{1}=b_{2}=b_{3}, c_{1}<c_{2}$ and $d_{1}=d_{2}$. Then $x+i y \in \mathcal{E}(X, Y)$ if and only if $y=b_{1}+d_{1}$ and

$$
x \in\left[a_{1}+c_{1}, a_{3}+c_{2}\right] \backslash\left(a_{1}+c_{2}, a_{2}+c_{1}\right) \cup\left(a_{2}+c_{2}, a_{3}+c_{1}\right) \cup\left(a_{3}+c_{1}, a_{1}+c_{2}\right) .
$$

From now, we suppose that $b_{1}<b_{2} \leq b_{3}$. As $\mathcal{E}\left(X-\mu I_{3}, Y+\mu I_{2}\right)=\mathcal{E}(X, Y)$, we can also assume $\left|w_{1}\right|=\left|w_{2}\right| \neq\left|w_{3}\right|$ if $w_{1}, w_{2}, w_{3}$ are collinear and $\left|w_{1}\right|=\left|w_{2}\right|=\left|w_{3}\right|$ otherwise.

Note that as $d_{1}=d_{2}$ and $\left|w_{1}\right|=\left|w_{2}\right|$, the determinants $\Delta_{i}$ defined in Section 6.1 become

$$
\begin{aligned}
& \Delta_{0}=\left|\begin{array}{ccc}
c_{2}-c_{1} & a_{2}-a_{1} & a_{3}-a_{1} \\
0 & b_{2}-b_{1} & b_{3}-b_{1} \\
\left(x-c_{1}\right)^{2}-\left(x-c_{2}\right)^{2} & 0 & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right|, \\
& \Delta_{1}=\left|\begin{array}{ccc}
x-c_{1}-a_{1} & a_{2}-a_{1} & a_{3}-a_{1} \\
y-d_{1}-b_{1} & b_{2}-b_{1} & b_{3}-b_{1} \\
\left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2}-\left(a_{1}^{2}+b_{1}^{2}\right) & 0 & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right|, \\
& \Delta_{2}=\left|\begin{array}{ccc}
c_{2}-c_{1} & x-c_{1}-a_{1} & a_{3}-a_{1} \\
0 & y-d_{1}-b_{1} & b_{3}-b_{1} \\
\left(x-c_{1}\right)^{2}-\left(x-c_{2}\right)^{2} & \left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2}-\left(a_{1}^{2}+b_{1}^{2}\right) & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right|, \\
& \Delta_{3}=\left|\begin{array}{ccc}
c_{2}-c_{1} & a_{2}-a_{1} & x-c_{1}-a_{1} \\
0 & b_{2}-b_{1} & y-d_{1}-b_{1} \\
\left(x-c_{1}\right)^{2}-\left(x-c_{2}\right)^{2} & 0 & \left(x-c_{1}\right)^{2}+\left(y-d_{1}\right)^{2}-\left(a_{1}^{2}+b_{1}^{2}\right)
\end{array}\right|,
\end{aligned}
$$

where the last three determinants can been expressed in the form

$$
\Delta_{i}=\Delta_{i 2}\left(y-d_{1}\right)^{2}+\Delta_{i 1}\left(y-d_{1}\right)+\Delta_{i 0} \quad i=1,2,3,
$$

with

$$
\begin{aligned}
& \Delta_{12}=\left|\begin{array}{ll}
a_{2}-a_{1} & a_{3}-a_{1} \\
b_{2}-b_{1} & b_{3}-b_{1}
\end{array}\right|, \\
& \Delta_{11}=-\left|\begin{array}{cc}
a_{2}-a_{1} & a_{3}-a_{1} \\
0 & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right|, \\
& \Delta_{10}=\left|\begin{array}{ccc}
x-c_{1}-a_{1} & a_{2}-a_{1} & a_{3}-a_{1} \\
-b_{1} & b_{2}-b_{1} & b_{3}-b_{1} \\
\left(x-c_{1}\right)^{2}-\left(a_{1}^{2}+b_{1}^{2}\right) & 0 & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right|, \\
& \Delta_{22}=-\left|\begin{array}{cc}
c_{2}-c_{1} & a_{3}-a_{1} \\
0 & b_{3}-b_{1}
\end{array}\right|, \\
& \Delta_{21}=\left|\begin{array}{cc}
c_{2}-c_{1} & a_{3}-a_{1} \\
\left(x-c_{1}\right)^{2}-\left(x-c_{2}\right)^{2} & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right|, \\
& \Delta_{20}=\left|\begin{array}{ccc}
c_{2}-c_{1} & x-c_{1}-a_{1} & a_{3}-a_{1} \\
0 & -b_{1} & b_{3}-b_{1} \\
\left(x-c_{1}\right)^{2}-\left(x-c_{2}\right)^{2} & \left(x-c_{1}\right)^{2}-\left(a_{1}^{2}+b_{1}^{2}\right) & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right| \text {, } \\
& \Delta_{32}=\left|\begin{array}{cc}
c_{2}-c_{1} & a_{2}-a_{1} \\
0 & b_{2}-b_{1}
\end{array}\right| \text {, } \\
& \Delta_{31}=-\left|\begin{array}{cc}
c_{2}-c_{1} & a_{2}-a_{1} \\
\left(x-c_{1}\right)^{2}-\left(x-c_{2}\right)^{2} & 0
\end{array}\right|, \\
& \Delta_{30}=\left|\begin{array}{ccc}
c_{2}-c_{1} & a_{2}-a_{1} & x-c_{1}-a_{1} \\
0 & b_{2}-b_{1} & -b_{1} \\
\left(x-c_{1}\right)^{2}-\left(x-c_{2}\right)^{2} & 0 & \left(x-c_{1}\right)^{2}-\left(a_{1}^{2}+b_{1}^{2}\right)
\end{array}\right| .
\end{aligned}
$$

Note that

$$
\Delta_{0}=\left(c_{2}-c_{1}\right)\left|\begin{array}{cc}
b_{2}-b_{1} & b_{3}-b_{1} \\
0 & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right|+\left(\left(x-c_{1}\right)^{2}-\left(x-c_{2}\right)^{2}\right)\left|\begin{array}{ll}
a_{2}-a_{1} & a_{3}-a_{1} \\
b_{2}-b_{1} & b_{3}-b_{1}
\end{array}\right| .
$$

Therefore, $\Delta_{0}=0$ if and only if

$$
\begin{equation*}
w_{1}, w_{2}, w_{3} \text { are not collinear and } x=\left(c_{1}+c_{2}\right) / 2 . \tag{6.11}
\end{equation*}
$$

Suppose (6.11) holds. Then $\Delta_{0}=0$ and by Assertion 6.3, $x+i y \in \mathcal{E}(X, Y)$ only if $\Delta_{1}=0$, in which the equality holds when

$$
y=d_{1} \pm \sqrt{\left(x-c_{1}\right)^{2}-\left(a_{1}^{2}+b_{1}^{2}\right)} .
$$

Now we can check whether the point $x+i y$ in $\mathcal{E}(X, Y)$ by considering the values of $\Delta_{i}^{\prime}$ defined in Assertion 6.3.

Exclude the above case. Then $\Delta_{0} \neq 0$. By Assertion $6.2, x+i y \in \mathcal{E}(X, Y)$ if and only if

$$
\Delta_{1} / \Delta_{0} \geq 0, \quad \Delta_{2} / \Delta_{0} \geq 0, \quad \Delta_{3} / \Delta_{0} \geq 0, \quad\left(\Delta_{0}-\Delta_{1}\right) / \Delta_{0} \geq 0 \quad \text { and } \quad\left(\Delta_{0}-\Delta_{2}-\Delta_{3}\right) / \Delta_{0} \geq 0 .
$$

In the following, we determine the possible range of $y$ that satisfies the above inequalities.
Suppose $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{5} \leq \beta_{5}$ are the real solutions, if exist, of the following quadratic equations

$$
\begin{equation*}
\Delta_{1}=\Delta_{12}\left(y-d_{1}\right)^{2}+\Delta_{11}\left(y-d_{1}\right)+\Delta_{10}=0, \tag{6.12}
\end{equation*}
$$

$$
\begin{gather*}
\Delta_{2}=\Delta_{22}\left(y-d_{1}\right)^{2}+\Delta_{21}\left(y-d_{1}\right)+\Delta_{20}=0,  \tag{6.13}\\
\Delta_{3}=\Delta_{32}\left(y-d_{1}\right)^{2}+\Delta_{31}\left(y-d_{1}\right)+\Delta_{30}=0,  \tag{6.14}\\
\Delta_{0}-\Delta_{1}=-\Delta_{12}\left(y-d_{1}\right)^{2}-\Delta_{11}\left(y-d_{1}\right)-\Delta_{10}+\Delta_{0}=0,  \tag{6.15}\\
\Delta_{0}-\Delta_{2}-\Delta_{3}=-\left(\Delta_{22}+\Delta_{32}\right)\left(y-d_{1}\right)^{2}-\left(\Delta_{21}+\Delta_{31}\right)\left(y-d_{1}\right)-\left(\Delta_{20}+\Delta_{30}\right)+\Delta_{0}=0 . \tag{6.16}
\end{gather*}
$$

Also we keep to use $\alpha_{i}$ to denote the corresponding real solution if the quadratic equation is linear.
As $b_{1}<b_{2} \leq b_{3}$,

$$
\Delta_{22}=-\left(c_{2}-c_{1}\right)\left(b_{3}-b_{1}\right)<0 \quad \text { and } \quad \Delta_{32}=\left(c_{2}-c_{1}\right)\left(b_{2}-b_{1}\right)>0
$$

Thus, the inequalities $\Delta_{2} / \Delta_{0} \geq 0$ and $\Delta_{3} / \Delta_{0} \geq 0$ are satisfied if and only if $y$ lies in the interval specified in the following

Table 1

| Eq. (6.13) | Eq. (6.14) | $\Delta_{0}>0$ | $\Delta_{0}<0$ |
| :---: | :---: | :---: | :---: |
| $Y$ | $Y$ | $\left[\alpha_{2}, \beta_{2}\right] \backslash\left(\alpha_{3}, \beta_{3}\right)$ | $\left[\alpha_{3}, \beta_{3}\right] \backslash\left(\alpha_{2}, \beta_{2}\right)$ |
| $Y$ | $N$ | $\left[\alpha_{2}, \beta_{2}\right]$ | No solution |
| $N$ | $Y$ | No solution | $\left[\alpha_{3}, \beta_{3}\right]$ |
| $N$ | $N$ | No solution | No solution |

where " Y " denotes the corresponding equation having real solution(s) and " N " otherwise.
Now we turn to equation (6.16). Note that

$$
\Delta_{22}+\Delta_{32}=\left|\begin{array}{cc}
c_{2}-c_{1} & a_{2}-a_{3} \\
0 & b_{2}-b_{3}
\end{array}\right| \leq 0
$$

So the equation is linear, equivalently $\Delta_{22}+\Delta_{32}=0$, if and only if $b_{2}=b_{3}$, which can hold only if $w_{1}, w_{2}, w_{3}$ is not collinear. In this case, $a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}=\left|w_{3}\right|^{2}-\left|w_{1}\right|^{2}=0$ and so

$$
\Delta_{21}+\Delta_{31}=\left|\begin{array}{cc}
c_{2}-c_{1} & a_{3}-a_{2} \\
\left(x-c_{1}\right)^{2}-\left(x-c_{2}\right)^{2} & a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}
\end{array}\right| \neq 0 .
$$

Therefore the inequality $\left(\Delta_{0}-\Delta_{2}-\Delta_{3}\right) / \Delta_{0} \geq 0$ is satisfied if and only if $y$ lies in the intervals specified in the following

Table 2

|  | $b_{2} \neq b_{3} \quad\left(\Delta_{22}+\Delta_{32} \neq 0\right)$ |  | $b_{2}=b_{3} \quad\left(\Delta_{22}+\Delta_{32}=0\right)$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Eq. (6.16) | $\Delta_{0}>0$ | $\Delta_{0}<0$ | $\left(\Delta_{21}+\Delta_{31}\right) / \Delta_{0}>0$ | $\left(\Delta_{21}+\Delta_{31}\right) / \Delta_{0}<0$ |
| $Y$ | $\left(-\infty, \alpha_{5}\right] \cup\left[\beta_{5}, \infty\right)$ | $\left[\alpha_{5}, \beta_{5}\right]$ | $\left(-\infty, \alpha_{5}\right]$ | $\left[\alpha_{5}, \infty\right)$ |
| $N$ | $(-\infty, \infty)$ | No solution | $/$ | $/$ |

Finally we consider the equations (6.12) and (6.15). Clearly, the equations are linear, i.e., $\Delta_{12}=0$, if and only if $w_{1}, w_{2}, w_{3}$ are collinear. In addition, the equations are constant functions, i.e., $\Delta_{12}=0$ and $\Delta_{11}=0$, if and only if $a_{1}=a_{2}=a_{3}$. In case of being constant function,

$$
\Delta_{0}=\left(c_{2}-c_{1}\right)\left(b_{2}-b_{1}\right)\left(a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}\right) \quad \text { and } \quad \Delta_{1}=\left(x-c_{1}-a_{1}\right)\left(b_{2}-b_{1}\right)\left(a_{3}^{2}+b_{3}^{2}-a_{1}^{2}-b_{1}^{2}\right) .
$$

Thus, the inequalities $\Delta_{1} / \Delta_{0} \geq 0$ and $\left(\Delta_{0}-\Delta_{1}\right) / \Delta_{0} \geq 0$ are satisfied if and only if $c_{1} \leq x-a_{1} \leq c_{2}$, which always hold by our assumption on $x$.

Combining with the quadratic and linear cases, the inequalities $\Delta_{1} / \Delta_{0} \geq 0$ and $\left(\Delta_{0}-\Delta_{1}\right) / \Delta_{0} \geq$ 0 are satisfied if and only if $y$ lies in the intervals specified in the following

Table 3

|  |  | Non-collinear |  | $\left(\Delta_{12} \neq 0\right)$ | Collinear $\left(\Delta_{12}=0\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Eq. (6.12) | Eq. (6.15) | $\Delta_{12} / \Delta_{0}>0$ | $\Delta_{12} / \Delta_{0}<0$ | $\Delta_{11} / \Delta_{0}>0$ | $\Delta_{11} / \Delta_{0}=0$ | $\Delta_{11} / \Delta_{0}<0$ |  |
| $Y$ | $Y$ | $\left[\alpha_{4}, \beta_{4}\right] \backslash\left(\alpha_{1}, \beta_{1}\right)$ | $\left[\alpha_{1}, \beta_{1}\right] \backslash\left(\alpha_{4}, \beta_{4}\right)$ | $\left[\alpha_{1}, \alpha_{4}\right]$ | $(-\infty, \infty)$ | $\left[\alpha_{4}, \alpha_{1}\right]$ |  |
| $Y$ | $N$ | No solution | $\left[\alpha_{1}, \beta_{1}\right]$ | $/$ | $/$ | $/$ |  |
| $N$ | $Y$ | $\left[\alpha_{4}, \beta_{4}\right]$ | No solution | $/$ | $/$ | $/$ |  |
| $N$ | $N$ | No solution | No solution | $/$ | $/$ | $/$ |  |

In summary, we have the following
Assertion 6.7 Suppose $b_{1}<b_{2} \leq b_{3}, c_{1}<c_{2}$, $d_{1}=d_{2}$. Assume (i) $\left|w_{1}\right|=\left|w_{2}\right| \neq\left|w_{3}\right|$ if $w_{1}, w_{2}, w_{3}$ are collinear, and (ii) $\left|w_{1}\right|=\left|w_{2}\right|=\left|w_{3}\right|$ otherwise. Except for the case (6.11), for any $x \in\left[a_{\min }+c_{1}, a_{\max }+c_{2}\right]$, where $a_{\min }=\min \left\{a_{1}, a_{2}, a_{3}\right\}$ and $a_{\max }=\max \left\{a_{1}, a_{2}, a_{3}\right\}, x+i y \in \mathcal{E}(X, Y)$ if and only if $y$ lies in the intersection the intervals specified in Tables 1, 2 and 3.

Based on Assertions $6.6-6.7$, we have written another Matlab program IPT.m (see http://www.math.wm.edu/~ckli/program/IPT.m) to generate $\mathcal{E}(A, B)$ for normal matrices $A$ and $B$. An example of $\mathcal{E}(A, B)$ generated by the program will be given in Section 6.4.

### 6.4 An example of $\mathcal{E}(A, B)$ generated by the three approaches

Example 6.8 Let $A=\operatorname{diag}\left(i, i \omega, i \omega^{2}\right)$ and $B=\operatorname{diag}\left(\omega, \omega^{2}\right)$ with $\omega=e^{i 2 \pi / 3}$. The region of $\mathcal{E}(A, B)$ is plotted using Matlab programs based on the three different algorithms in Sections 6.1-6.3.

$\mathcal{E}(A, B)$ plotted by PPT.m

$\mathcal{E}(A, B)$ plotted by HPT.m

$\mathcal{E}(A, B)$ plotted by IPT.m

In the above example, we see that the first program took the longest computer time and a lot of memory to determine and store $\mathcal{E}(A, B)$. The second program took less computer time and
less memory, but it is not effective in approximating the straight line boundary of $\mathcal{E}(A, B)$ (using hyperbolas). Finally, the third program used to least among of computer time and memory to produce and store $\mathcal{E}(A, B)$.

## References

[1] M. Adam and M.J Tsatsomeros, An eigenvalue inequality and spectrum localization for complex matrices, Electronic Journal of Linear Algebra, 15 (2006), 239-250.
[2] N. Ali Amir-Morez, Extreme Properties of Linear Transformations, Polygonal Publishing, New Jersey, 1990.
[3] I. Bendixson, Sur les racine d'une éqation fondamentale, Acta Math. 25 (1902), 359-365.
[4] R. Bhatia, Perturbation Bounds for Matrix Eigenvalues, Pitman Research Notes in Mathematics 162, Longman Scientific and Technical, New York, 1987.
[5] C. Davis, The shell of a Hilbert-space operator, Acta Sci. Math.(Szeged) 29 (1968), 69-86.
[6] C. Davis, The shell of a Hilbert-space operator. II, Acta Sci. Math. (Szeged) 31 (1970), 301-318.
[7] I.M. Gelfand and M. Naimark, The relations between the unitary representations of the complex unimodular group and its unitary subgroups, Izv. Akad. Nauk SSSR Ser. Mat 14 (1950), 239-260.
[8] W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. 37 (2000), 209-249.
[9] W. Fulton, Eigenvalues of sums of Hermitian matrices (after A. Klyachko), Seminaire Bourbaki. Vol. 1997/98. Asterisque No. 252 (1998), Exp. No. 845, 5, 255-269.
[10] S. Furtado, L. Iglésias and F.C. Silva, Products of matrices with prescribed spectra and rank, Linear Algebra Appl. 340 (2002), 137-147.
[11] A. Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math 12 (1962), 225-241.
[12] A.A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), 419-445.
[13] A. Knutson and T. Tao, The honeycomb model of $\mathrm{GL}_{n}(c)$ tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), no. 4, 1055-1090.
[14] S.R. Lay, Convex Sets and their Applications, Pure and Applied Mathematics, John Wiley \& Sons, Inc., New York, 1982.
[15] W.V. Parker, Characteristic roots of matrices, Amer. Math. Monthly 60 (1953), 247-250.
[16] E.A. Martins and F.C. Silva, On the eigenvalues of Jordan products, Linear Algebra Appl. 359 (2003), 249-262.
[17] G. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.
[18] R.C. Thompson and L. Freede, On the eigenvalues of sums of Hermitian matrices, Linear Algebra Appl. 4 (1971), 360-376.
[19] H. Wielandt, On eigenvalues of sums of normal matrices, Pacific J. Math. 5 (1955), 633-638.


[^0]:    *Department of Mathematics, College of William and Mary, Williamsburg, VA 23185. (ckli@math.wm.edu) Li is an honorary professor of the University of Hong Kong. His research was supported by a USA NSF grant and a HK RCG grant.
    ${ }^{\dagger}$ Department of Mathematics, Iowa State University, Ames, IA 50011 (ytpoon@iastate.edu)
    ${ }^{\ddagger}$ Department of Mathematics, University of Connecticut, Storrs, CT 06269. (sze@math.uconn.edu) Research of Sze was supported by a HK RCG grant.

