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Abstract

Let A and B be n×n complex matrices. Characterization is given for the set E(A,B) of eigen-
values of matrices of the form U∗AU + V ∗BV for some unitary matrices U and V . Consequences
of the results are discussed and computer algorithms and programs are designed to generate the
set E(A,B). The results refine those of Wielandt on normal matrices. Extensions of the results to
the sum of matrices from three or more unitary similarity orbits are also considered.
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1 Introduction

Denote by Mn the set of n × n complex matrices. Let A,B ∈ Mn. There has been a great deal of
interest in studying the eigenvalues of matrices of the form U∗AU+V ∗BV for some unitary matrices
U, V ∈ Mn because of motivations from theory as well as applications; see [2, 4, 7, 11, 17, 18]. The
study has been very successful for Hermitian matrices. Klyachko [12] (see also [9, 11, 13] etc.) gave
a necessary and sufficient conditions for the real numbers c1, . . . , cn to be the eigenvalues of the
sum of two Hermitian matrices in Mn with eigenvalues a1, . . . , an and b1, . . . , bn.

The problem for non-Hermitian matrices is more challenging. For two given matrices A,B ∈ Mn,
let E(A,B) be the set of eigenvalues of matrices of the form U∗AU+V ∗BV for some unitary matrices
U and V . Wielandt [19] (see also, [3] and [15]) determined the set E(A,B) for two normal matrices
A,B ∈ Mn. There is not much information about the set E(A,B) for general matrices A,B ∈ Mn.
The purpose of this paper is to address this problem.

In Section 2, we characterize E(A,B) for two given matrices A,B ∈ Mn. Additional results
concerning normal matrices and essentially Hermitian matrices (normal matrices with collinear
eigenvalues) are presented in Sections 3 and 4. In Section 5, we consider extension of our results to
the sum of three of more matrices, and mention some related problems. In Section 6, we describe
how to use our results to design computer algorithms and programs to generate the set E(A,B).

2 Main results

First, we characterize the matrix pair (A,B) ∈ Mn × Mn such that 0 /∈ E(A,B). We need the
concept of Davis-Wielandt shell [5, 6] of A ∈ Mn defined by

DW (A) = {(x∗Ax, x∗A∗Ax) : x ∈ Cn, x∗x = 1} ⊆ C× R ∼ R3.
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Theorem 2.1 Let A,B ∈ Mn. The following are equivalent.
(a) det(U∗AU + V ∗BV ) 6= 0 for any unitary matrices U, V ∈ Mn.
(b) DW (A) ∩ DW (−B) = ∅.
(c) There is ξ ∈ C such that the singular values of A+ ξIn and B− ξIn lie in two disjoint closed

intervals in [0,∞).

Proof. If (c) holds, then ‖(A + ξIn)u‖ > ‖(B − ξIn)v‖ for all unit vectors u, v ∈ Cn, or
‖(A + ξIn)u‖ < ‖(B − ξIn)v‖ for all unit vectors u, v ∈ Cn. Thus, (U∗AU + V ∗BV )x 6= 0 for all
unitary matrices U, V and unit vector x ∈ Cn. Thus, condition (a) holds.

Suppose (a) holds. Assume that DW (A)∩DW (−B) is non-empty. Then there are orthonormal
pairs (u1, u2) and (v1, v2) such that

Au1 = µu1 + νu2 and − Bv1 = µv1 + νv2

with (µ, µ2 + ν2) ∈ DW (A)∩DW (−B). Suppose U is unitary with u1, u2 as its first two columns,
and V is unitary with v1, v2 as its first two columns. Then U∗AU + V ∗BV has zero first column,
and hence has zero determinant, which is a contradiction. So, (b) holds.

Suppose (b) holds. Since DW (A) and DW (−B) are compact convex sets, by the separation
theorem, there is a linear functional f such that f(α) > f(β) for all (α, β) ∈ DW (A)× DW (−B).
So, there is ν ∈ R and µ ∈ C such that

x∗(νA∗A + µA + µA∗)x > y∗(νB∗B − µB − µB∗)y

for any unit vectors x, y ∈ Cn. We may perturb ν and assume that ν 6= 0. Furthermore, we assume
that ν > 0; otherwise multiply −1 to the inequality. Then for ξ = µ̄/

√
ν, we see that

x∗(A + ξIn)∗(A + ξIn)x > y∗(B − ξIn)∗(B − ξIn)y

for all unit vectors x, y ∈ Cn. So, condition (c) holds. �

Note that µ ∈ E(A,B) if and only if there exist unitary matrices U, V ∈ Mn such that
det(UAU∗ + V BV ∗ − µIn) = 0. Using Theorem 2.1, we have the following.

Theorem 2.2 Let A,B ∈ Mn and µ ∈ C. The following are equivalent.
(a) µ /∈ E(A,B).
(b) DW (A) ∩ DW (µIn − B) = ∅.
(c) There is ξ ∈ C such that the singular values of A+ ξIn and B−µIn − ξIn lie in two disjoint

closed intervals in [0,∞).

3 Normal matrices

If A,B ∈ Mn are normal, then DW (A) and DW (µIn − B) are polytopes with at most n vertices

in C× R ∼ R3. We have the following.

Theorem 3.1 Suppose A,B ∈ Mn are normal. Then the conditions (a) – (c) in Theorem 2.2 are
equivalent to

(d) There is a circular disk containing all eigenvalues of one of the matrices A or µIn −B, and
excluding all the eigenvalues of the other matrix.

Proof. Suppose A and B are normal. Then the singular values of A and µIn−B are the absolute
values of the eigenvalues of the two matrices. One readily sees that Theorem 2.2 (c) is equivalent
to condition (d). �
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Theorem 3.1 has been proven by Wielandt [19, Theorem 1], where both lines and circles are
used for the separation. As pointed out in [19], E(A,B) depends only on the spectra σ(A), σ(B)
of A and B. Hence, for any nonempty finite subsets S, T of C, we can define E(S, T ) = E(A,B),
where A, B are any normal matrices of the same size such that σ(A) = S and σ(B) = T .

If each of A and B has at most two distinct eigenvalues, then E(A,B) can be easily determined
by Theorem 4.6 in Section 4. For other cases, we have the following theorem which is useful in
constructing the set E(A,B) analytically or using computer programs; see Section 6.

Theorem 3.2 Let A,B ∈ Mn be normal matrices one of which has at least 3 distinct eigenvalues
and the other has at least 2 distinct eigenvalues. Then conditions (a)–(c) in Theorem 2.2 are
equivalent to

(e) For (p, q) ∈ {(2, 3), (3, 2)}, and any subset of p distinct distinct eigenvalues of A and q
distinct eigenvalues of B, there is a circle containing all elements of one of the sets, and excluding
all the elements of the other sets.

Consequently, we have

E(A,B) =
⋃

{E(S, T ) : S ⊆ σ(A), T ⊆ σ(B) with (|S|, |T |) ∈ {(2, 3), (3, 2)}},

where |S| and |T | are the cardinalities of S and T , respectively.

Proof. Suppose A or B has at least 3 distinct eigenvalues and the other has at least 2 distinct
eigenvalues. Then condition (d) fails to hold if and only if there are p distinct eigenvalues of A and
q distinct eigenvalues of B with (p, q) ∈ {(3, 2), (2, 3)} constituting an obstacle for the existence of
the circle [14, Theorem 8.2]. Thus, Theorem 3.1 (d) is equivalent to (e). �

To construct E(A,B), one can further reduce the collection of subsets in the above theorem. To
this end, we need the following the lemma showing that there is a one-one correspondence between
the triangles on the boundary faces of the convex set DW (B) and those on the boundary faces of
DW (µI − B) with µ = s + it.

Lemma 3.3 Suppose s, t, aj , bj ∈ R, 1 ≤ j ≤ 5. Let

Pj =
(

aj , bj , a
2
j + b2

j

)

and Qj =
(

s − aj , t − bj , (s − aj)
2 + (t − bj)

2
)

.

Suppose P1, P2, P3 are not collinear. If P4 and P5 lie in the same open (or close) half space
determined by P1, P2, P3, then Q4 and Q5 lie in the same open (or close) half space determined by
Q1, Q2, Q3.

Proof. Suppose P1, P2, P3 are not collinear. Then Q1, Q2, Q3 are not collinear. Let Π1 and Π2

be the planes determined by P1, P2, P3 and Q1, Q2, Q3 respectively.
For (apq) ∈ M3, denote by det((apq)) = |apq|. For j = 4, 5, we have

((P2 − P1) × (P3 − P1)) · (Pj − P1) =

∣

∣

∣

∣

∣

∣

a2 − a1 b2 − b1 a2
2 + b2

2 − a2
1 − b2

1

a3 − a1 b3 − b1 a2
3 + b2

3 − a2
1 − b2

1

aj − a1 bj − b1 a2
j + b2

j − a2
1 − b2

1

∣

∣

∣

∣

∣

∣
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and
((Q2 − Q1) × (Q3 − Q1)) · (Qj − Q1)

=

∣

∣

∣

∣

∣

∣

a1 − a2 b1 − b2 a2
2 + b2

2 − a2
1 − b2

1 + 2s(a1 − a2) + 2t(b1 − b2)
a1 − a3 b1 − b3 a2

3 + b2
3 − a2

1 − b2
1 + 2s(a1 − a3) + 2t(b1 − b3)

a1 − aj b1 − bj a2
j + b2

j − a2
1 − b2

1 + 2s(a1 − aj) + 2t(b1 − bj)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a1 − a2 b1 − b2 a2
2 + b2

2 − a2
1 − b2

1

a1 − a3 b1 − b3 a2
3 + b2

3 − a2
1 − b2

1

a1 − aj b1 − bj a2
j + b2

j − a2
1 − b2

1

∣

∣

∣

∣

∣

∣

= ((P2 − P1) × (P3 − P1)) · (Pj − P1).

The result follows from the fact that P4 and P5 lie in the same open half space determined by Π1

if and only if the triple products

((P2 − P1) × (P3 − P1)) · (P4 − P1) and ((P2 − P1) × (P3 − P1)) · (P5 − P1)

have the same sign and similar assertion for Qj and Π2. �

Theorem 3.4 Let A,B ∈ Mn be normal matrices with eigenvalues a1, . . . , an, and b1, . . . , bn.
Then µ ∈ E(A,B) if and only if there is X = diag (w1, w2, w3) and Y = diag (z1, z2) such that
DW (X) ∩ DW (µI2 − Y ) 6= ∅, where either

(a) w1, w2, w3 ∈ σ(A) and z1, z2 ∈ σ(B) so that DW (diag (w1, w2, w3)) lies on the boundary of
DW (A) and DW (diag (z1, z2)) lies on the boundary of DW (B), or

(b) w1, w2, w3 ∈ σ(B) and z1, z2 ∈ σ(A) so that DW (diag (w1, w2, w3)) lies on the boundary of
DW (B) and DW (diag (z1, z2)) lies on the boundary of DW (A).

Proof. Note that for any z1, z2, z3 ∈ σ(B), DW (diag (µ−z1, µ−z2, µ−z3)) lies on the boundary
of DW (µIn−B) if and only if DW (diag (z1, z2, z3)) lies on the boundary of DW (B). Now, DW (A)

and DW (µIn − B) are two convex polytopes in C× R with vertices in P = {(z, |z|2) : z ∈ C}. So,
DW (A) ∩ DW (µIn − B) 6= ∅ if and only if one of the polytopes intersects a boundary face of the
other polytopes. Suppose DW (µIn−B) intersects a boundary face of DW (A). Then there are three

vertices, say, (wj , |wj |2) with wj ∈ σ(A) for j = 1, 2, 3, of the boundary face of DW (A) intersecting
DW (µIn − B). Note that the vertices of DW (µIn − B) belongs to P. So, DW (diag (w1, w2, w2))
must intersect with some boundary face of DW (µIn − B). Consequently, there are three vertices
on the boundary face of DW (µIn − B) whose convex hull intersect with DW (diag (w1, w2, w3)).
Now, for two triangular laminas each having vertices in P to have nonempty intersection, there
must be non-empty intersection of a triangular lamina with an edge of another triangular lamina.
By Lemma 3.3, there is a one-one correspondence between the triangles on the boundary faces of
DW (µIn − B) and those on the boundary faces of DW (B). Thus, condition (a) or (b) holds. �

One can also consider the boundary ∂E(A,B) of E(A,B). By Theorem 4.6 in Section 4, if
A,B ∈ Mn are normal and each of them has at most two distinct eigenvalues, then E(A,B) has
empty interior, i.e., ∂E(A,B) = E(A,B). We will exclude these special cases. The following lemma
is needed for further discussion.

Lemma 3.5 Let S = {w1, w2, w3} and T = {z1, z2} be subsets of C. Then

∂E(S, T ) = E({w1, w2}, T ) ∪ E({w1, w3}, T ) ∪ E({w2, w3}, T ).
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Proof. Clearly, the result holds if S or T is a singleton. In the following, we may assume that
z1 6= z2. If wj = wk for some 1 ≤ j < k ≤ 3, then E(S, T ) = E({wi, wl}, T ), where l /∈ {j, k}, which
has no interior point.

Suppose w1, w2, w3 ∈ C are distinct. Let X = diag (w1, w2, w3), Y = diag (z1, z2), Xjk =

diag (wj , wk) for 1 ≤ j < k ≤ 3. By Theorem 2.2, µ ∈ E(S, T ) if and only if DW (X) ∩ DW (µI2 −
Y ) 6= ∅. Note that DW (µI2 −Y ) is a line segment with vertices in P while DW (X) is a triangular
lamina with three edges DW (X12), DW (X23) and DW (X13). Thus, µ is a boundary point of
E(S, T ) if and only if the line segment DW (µI2 − Y ) intersects the triangular lamina DW (X) at
its boundary, which is the union of line segments DW (X12), DW (X23) and DW (X13). The result
follows. �

By the above lemma and Theorem 3.2, we have

Theorem 3.6 Suppose A,B ∈ Mn are normal matrices, each having at least 2 distinct eigenvalues.
Then

∂E(A,B) ⊆
⋃

{E(S, T ) : S ⊆ σ(A), T ⊆ σ(B) with |S| = |T | = 2} .

4 Essentially Hermitian matrices

Recall that a normal matrix is essentially Hermitian if all of its eigenvalues lie on a straight line.
Let us warm up our discussion with the following results and examples on Hermitian matrices.

Theorem 4.1 Suppose A,B ∈ Mn are Hermitian matrices with eigenvalues a1 ≥ a2 ≥ · · · ≥ an

and b1 ≥ b2 ≥ · · · ≥ bn. Then

E(A,B) = [an + bn, a1 + b1] \
n−1
⋃

j=1

(aj+1 + b1, aj + bn) ∪ (bj+1 + a1, bj + an) ,

where (c, d) = ∅ if c ≥ d.

Proof. By Theorem 3.1 (d), µ 6∈ E(A,B) if and only if {a1, a2, · · · , an} can be separated from
{µ − b1, µ − b2, · · · , µ − bn} by a circle. For µ ∈ R, this happens if and only if one of the following
conditions is satisfied:

1. µ − b1 > a1 ⇔ µ > a1 + b1.

2. µ − bn < an ⇔ µ < an + bn.

3. For some 1 ≤ j ≤ n − 1, aj+1 < µ − b1 ≤ µ − bn < aj ⇔ aj+1 + b1 < µ < aj + bn.

4. For some 1 ≤ j ≤ n − 1, µ − bj < an ≤ a1 < µ − bj+1 ⇔ bj+1 + a1 < µ < bj + an.

Hence, the result follows. �

We have the following corollary.

Corollary 4.2 Suppose A,B ∈ Mn satisfy the hypotheses of Theorem 4.1. If

b1 − bn ≥ max
1≤j≤n−1

(aj − aj+1) and a1 − an ≥ max
1≤j≤n−1

(bj − bj+1),

then E(A,B) = [an + bn, a1 + b1].

Example 4.3 Suppose n ≥ 2, A,B ∈ Mn are Hermitian with eigenvalues a1 = 5, an = 2, b1 = 4,
and bn = 1. Then E(A,B) = [3, 9] is independent of the choices of ai and bj for 2 ≤ i, j ≤ n − 1.
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Example 4.4 Suppose A,B ∈ M3 are Hermitian with eigenvalues a1 = 5, a3 = 1, b1 = 4, and
b3 = 2. If a2 = 3, then E(A,B) = [3, 9]; if a2 6= 3, then E(A,B)  [3, 9].

It is interesting to note that sometimes the set E(A,B) depends only on the extreme eigenvalues
of A and B as shown in Example 4.3, but it is not always the case as shown in Example 4.4.

In perturbation theory, if A,B ∈ Mn are Hermitian such that ‖B‖ is larger than the smallest
singular value of A, then it may happen that A + B is singular. However, if we know more about
the eigenvalues of A and B, one can get a better perturbation bound.

Example 4.5 Suppose A,B ∈ Mn are Hermitian such that σ(A) ⊆ R\(−r, s) for some r, s ∈ (0,∞)
and σ(B) ⊆ [−u, v] for some u, v ∈ [0,∞) such that −r + v < 0 and −u + s > 0. Then A + B is
invertible.

In [19, Theorem 2], Wielandt described a procedure to construct E(A,B) for a Hermitian
matrix A and a skew-Hermitian matrix B with eigenvalues a1, . . . , an and b1, . . . , bn. In particular,
it was shown that the set E(A,B) is the intersection of all hyperbolic regions containing the set
{aj + bk : 1 ≤ j, k ≤ n}. However, details of the proof were not given. In the following, we extend
the result of Wielandt to any pair of essentially Hermitian matrices A and B. A detailed proof is
given for the result.

To present the result and proof, we need some basic facts in the co-ordinate geometry of R2

(identified with C). Suppose w1, w2, z1, z2 ∈ C such that P = conv {wr + zs : r, s ∈ {1, 2}} is a
nondegenerate parallelogram. Then there is a unique rectangular hyperbola passing through the
vertices of P . The hyperbola degenerate to a pair of perpendicular line if and only if the four sides
of P have equal length. Otherwise, each branch of the hyperbola will pass through a pair of vertices
of P corresponding to a side of P with shorter length, i.e., the two sides of P of longer lengths
lie in the closed region lying between the two branches of the hyperbola. For a nondegenerate
rectangular hyperbola, the connected closed region with the hyperbola as boundary is the inner
hyperbolic region, the two disconnected closed regions with the hyperbola as boundary is the outer
hyperbolic region. Of course, the complement of a closed hyperbolic region is an open hyperbolic
region, and vice versa. In case the hyperbola degenerated to a pair of perpendicular lines, the inner
(and outer) hyperbolic region becomes the union of two unbounded triangular regions connected
at their vertices.

Suppose A and B are two essentially Hermitian matrices. If the line through σ(A) and the line

through σ(B) are parallel, then there are α, β ∈ C and φ ∈ R such that H = e−iφ(A − αI) and

K = e−iφ(B − βI) are Hermitian. Then

E(A,B) = eiφE(H,K) + (α + β)

and the result follows from Theorem 4.1. For the other cases, we have the following result.

Theorem 4.6 Suppose A,B ∈ Mn are non-scalar essentially Hermitian matrices. Then there exist
α, β ∈ C, r1 ≥ r2 ≥ · · · ≥ rn and s1 ≥ s2 ≥ · · · ≥ sn, φ, θ ∈ R such that the eigenvalues of A and B

are aj = α + rje
iφ, 1 ≤ j ≤ n and bj = β + sje

iθ, 1 ≤ j ≤ n respectively. Let Γ = [rn, r1] × [sn, s1].

Assume that ei(φ−θ) /∈ {1,−1}, i.e., the two sets of eigenvalues do not lie on two parallel lines.

(i) Let S(a, b) = {au + bv : 1 ≤ u, v ≤ n}, and 1 ≤ j < n. If aj 6= aj+1, then S(a, b) is a subset
of the closed hyperbolic region

H(a, j) = {eiφx + eiθy + α + β : (x, y) ∈ R2 with (y − s1)(y − sn) ≤ (x − rj)(x − rj+1)};

if bj 6= bj+1, then S(a, b) is a subset of the closed hyperbolic region

H(b, j) = {eiφx + eiθy + α + β : (x, y) ∈ R2 with (y − sj)(y − sj+1) ≥ (x − r1)(x − rn)}.
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(ii) The set E(A,B) is the intersection of P = conv {ar + bs : r, s ∈ {1, n}} and all closed
hyperbolic regions in (i).

(iii) Each connected component of E(A,B) is simply connected with boundary consists of segments
of hyperbolas given in (i).

In particular, if each A and B has exactly two distinct eigenvalues, say a1 = · · · = ak 6= ak+1 =
· · · = an and b1 = · · · = bℓ 6= bℓ+1 = · · · = bn, then E(A,B) are two segments of a hyperbola equal
to

E(A,B) = P ∩ H(a, k) ∩ H(b, ℓ)

= {eiφx + eiθy + α + β : (x, y) ∈ Γ with (y − s1)(y − sn) = (x − r1)(x − rn)}.

Our proof depends on the following lemma.

Lemma 4.7 Suppose A,B ∈ Mn satisfy the assumption in Theorem 4.6. Then µ /∈ E(A,B) if and
only if one of the following holds.

(a) The line segment joining a1, an and the line segment joining µ− b1, µ− bn do not intersect.
(b) There exist t1, t2 ∈ [0, 1] and j ∈ {1, . . . , n − 1} such that

µ − (t1b1 + (1 − t1)bn) = t2aj + (1 − t2)aj+1 and

t1|µ − b1|2 + (1 − t1)|µ − bn|2 < t2|aj |2 + (1 − t2)|aj+1|2.
(c) There exist t1, t2 ∈ [0, 1] and j ∈ {1, . . . , n − 1} such that

µ − (t1bj + (1 − t1)bj+1) = t2a1 + (1 − t2)an and

t1|µ − bj|2 + (1 − t1)|µ − bj+1|2 > t2|a1|2 + (1 − t2)|an|2.

Proof. Under the given assumption, DW (A) and DW (µIn − B) will be a vertical polygonal

disks in C×R with vertices in {(z, |z|2) : z ∈ C}. The two disks have no intersection if and only if

(1) the projections of the two disks on C do not intersect, or
(2) the projections on C intersect but one disk is above the other disk.

Case (1) is equivalent to (a), and (2) is equivalent to (b) or (c). �

Proof of Theorem 4.6. Suppose µ 6∈ E(A,B). Consider the three cases in Lemma 4.7:
(a) The line segment joining a1, an and the line segment joining µ−b1, µ−bn have no intersection

if and only if for all 0 ≤ t1, t2 ≤ 1,

t2a1 + (1 − t2)an 6= t1(µ − b1) + (1 − t1)(µ − bn)

µ 6= t1b1 + (1 − t1)bn + t2a1 + (1 − t2)an

µ 6∈ P = conv {ar + bs : r, s ∈ {1, n}}

µ 6∈ {eiφx + eiθy + α + β : (x, y) ∈ Γ}.

(b) Suppose for some t1, t2 ∈ [0, 1] and j ∈ {1, . . . , n − 1} such that

µ − (t1b1 + (1 − t1)bn) = t2aj + (1 − t2)aj+1 (4.1)
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and
t1|µ − b1|2 + (1 − t1)|µ − bn|2 < t2|aj |2 + (1 − t2)|aj+1|2. (4.2)

Let µ−α− β = eiφu + eiθv with u, v ∈ R. From (4.1) and aj = α + eiφrj and bj = β + eiθsj for

1 ≤ j ≤ n with ei(φ−θ) /∈ {1,−1}, we have

u = t2rj + (1 − t2)rj+1 and v = (t1s1 + (1 − t1)sn)

or equivalently,

t1 =
sn − v

sn − s1
and t2 =

rj+1 − u

rj+1 − rj
.

We have

t2|aj |2 + (1 − t2)|aj+1|2

= t2|α + eiφrj|2 + (1 − t2)|α + eiφrj+1|2

= t2(|α|2 + (αeiφ + αe−iφ)rj + r2
j ) + (1 − t2)(|α|2 + (αeiφ + αe−iφ)rj+1 + r2

j+1)

= |α|2 + (αeiφ + αe−iφ)u + (rj + rj+1)u − rjrj+1

as t2rj + (1 − t2)rj+1 = u and t2r
2
j + (1 − t2)r

2
j+1 = (rj + rj+1)u − rjrj+1.

t1|µ − b1|2 + (1 − t1)|µ − bn|2

= t1|α + eiφu + eiθ(v − s1)|2 + (1 − t1)|α + eiφu + eiθ(v − sn)|2

= t1

[

|α|2 + (αeiφ + αe−iφ)u + (αeiθ + αe−iθ)(v − s1)

+(ei(θ−φ) + e−i(θ−φ))u(v − s1) + u2 + (v − s1)
2
]

+(1 − t1)
[

|α|2 + (αeiφ + αe−iφ)u + (αeiθ + αe−iθ)(v − sn)

+(ei(θ−φ) + e−i(θ−φ))u(v − sn) + u2 + (v − sn)2
]

= |α|2 + (αeiφ + αe−iφ)u + u2 − (v − s1)(v − sn)

as t1(v − s1) + (1 − t1)(v − sn) = 0 and t1(v − s1)
2 + (1 − t1)(v − sn)2 = −(v − s1)(v − sn).

Putting these values into (4.2), we have

0 < t2|aj |2 + (1 − t2)|aj+1|2 − t1|µ − b1|2 − (1 − t1)|µ − bn|2

= (v − s1)(v − sn) − (u − rj)(u − rj+1).

For any z = eiφx + eiθy + α + β with x, y ∈ R, define

f(z) = (y − s1)(y − sn) − (x − rj)(x − rj+1).

With ak + bm = eiφrk + eiθsm + α + β, we have

f(ak + bm) = (sm − s1)(sm − sn) − (rk − rj)(rk − rj+1) ≤ 0.
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Thus, H(a, j) = {z : f(z) ≤ 0} is a closed hyperbolic region satisfying (i).
Similarly, if condition (c) in Lemma 4.7 is satisfied, we have a closed hyperbolic region H(b, j)

satisfying (i).
By Lemma 4.7 and (i), we see that E(A,B) is a subset of the intersection of P and the hyperbolic

regions described in (i), and no points in the complement of the intersection belongs to E(A,B).
Thus, assertion (ii) of the theorem follows.

From the above discussion, we can see that the complement of E(A,B) is a union of open
hyperbolic regions. So, if z ∈ C \ E(A,B), then there exists a half line L containing z with
L ∩ E(A,B) = ∅. Hence, every connected component of E(A,B) is simply connected.

Suppose the boundary of the parallelogram P = conv {au + bv : u, v ∈ {1, n}} is graduated by
the points ar + bj and aj + br with r ∈ {1, n} and j ∈ {1, . . . , n}. Then the intersection of the
hyperbolas H(a, j) (respectively, H(b, j)) with P will have end points ar + bs with r ∈ {j, j + 1}
and s ∈ {1, n} (respectively, r ∈ {1, n} and s ∈ {j, j + 1}).

Combining the arguments in the last two paragraphs, we get condition (iii). �

Remark 4.8 The above result gives a simple procedure to determine the region E(A,B) for A and
B satisfying the conditions in Theorem 4.6:

Sketch the hyperbolas corresponding to the intersection of P and the closed hyperbolic regions
H(a, j) and H(b, j) for 1 ≤ j < n (see Section 6.2). Then E(A,B) consists of the simply connected
regions in P determined by these curves.

Remark 4.9 Notice that all 2 × 2 normal matrices are essentially Hermitian. Then for any 2 × 2
non-scalar normal matrices A and B, E(A,B) is either a union of line segments or a pair of hyperbola
by Theorems 4.1 and 4.6. In both cases, E(A,B) has empty interior.

Example 4.10 Consider A = diag (0, 1, 4) and B = diag (0, 1 + i). The following pictures depict
the segments of hyperbolas corresponding to H(a, 1), H(a, 2) and H(b, 1) and the set E(A,B).
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Suppose A,B ∈ Mn are normal matrices. The connected components of E(A,B) may not be
simply connected in general as shown in the following example.

Example 4.11 Let ω = ei2π/3. Using the method described in Section 6, we can show that for
A = diag (−i,−iω,−iω2) and B = diag (−iω,−iω,−iω2), E(A,B) is not simply connected.
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Although the conclusion of Theorem 4.6 does not hold for arbitrary normal matrices A,B ∈ Mn,
one can see form Theorem 3.6 that the boundary of E(A,B) is a subset of the union of hyperbolas
determined by eigenvalue pairs of A and eigenvalue pairs of B. We have the following example.

Example 4.12 Let ω = ei2π/3, A = diag (−i,−iω,−iω2) and B = 0.95 diag (−iω,−iω,−iω2).
Then the boundary of E(A,B) are subsets of the union of hyperbolas.
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It is interesting to note that the matrices in Example 4.12 are obtained from those in Example
4.11 by shirking B by a factor of 0.95, and hence the two pictures of E(A,B) have some resemblance
even though part of the boundary changes from straight line segments to curve segments. In general,
it is not hard to show that (A,B) 7→ E(A,B) is a continuous function, say, using the usual topology
on Mn × Mn and the Hausdorff metric for compact sets in C.

5 Extensions and open problems

One may ask whether the results can be extended to the sum of k matrices from k different unitary
similarity orbits for k > 2. For Hermitian matrices A1, . . . , Ak, there is a complete description
of the eigenvalues of the matrices in U(A1) + · · · + U(Ak); see [8]. For non-Hermitian matrices
A1, . . . , Ak ∈ Mn, we can extend the idea in Section 2 to determine the set of complex numbers µ,
which is the eigenvalue of a matrix in U(A1) + · · · + U(Ak). To this end, we need the concept of
the modified Davis-Wielandt shell of A ∈ Mn defined by

MDW (A) =
{(

x∗Ax,
√

‖Ax‖2 − |x∗Ax|2eit
)

: x ∈ Cn, x∗x = 1, t ∈ R
}

⊆ C× C.

Note that (µ1, µ2) ∈ MDW (A) if and only if there is a unitary matrix U such that the first column

of U∗AU equals [µ1, µ2, 0, . . . , 0]
t.

Theorem 5.1 Let A1, . . . , Ak ∈ Mn and µ ∈ C. The following are equivalent.

(a) There are unitary U1, . . . , Uk ∈ Mn such that det(
∑k

j=1 UjAjU
∗
j − µIn) = 0.

(b) (µ, 0) ∈ MDW (A1) + · · · + MDW (Ak).
(c) [MDW (A1) + · · · + MDW (Ak−1)] ∩ MDW (µIn − Ak) 6= ∅.

Proof. We may assume that k ≥ 3. The implications (c) ⇐⇒ (b) ⇒ (a) are clear. Suppose

(a) holds. Then there are unitary matrices U1, . . . , Uk such that the first column of
∑k

j=1 U∗
j AjUj

equals [µ, 0, . . . , 0]t. Let vj be obtained from the first column of U∗
j AjUj by removing its first entry

µj. Then
∑k

j=1 vj = 0. Relabel Aj so that ‖v1‖ ≥ · · · ≥ ‖vk‖. Then ‖v1‖ ≤ ‖v2‖+ · · ·+‖vk‖. Thus,

there exist t1, . . . , tk ∈ R such that
∑k

j=1 ‖vj‖eitj = 0. It follows that (µj , ‖vj‖eitj ) ∈ MDW (Aj)

for j = 1, . . . , k such that (µ, 0) =
∑k

j=1(µj , ‖vj‖eitj ). Thus, condition (b) holds. �
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Besides the unitary similarity orbits, one may consider orbits of matrices under other group
actions and consider the eigenvalues of the sum of matrices from different orbits.

For example, we can consider the usual similarity orbit of A ∈ Mn

S(A) = {SAS−1 : S ∈ Mn is invertible};

the unitary equivalence orbit of A ∈ Mn

V(A) = {UAV : U, V ∈ Mn are unitary};

the unitary congruence orbit of A ∈ Mn

U t(A) = {UAU t : U ∈ Mn is unitary}.

For example, if A,B ∈ Mn are not scalar, then any µ ∈ C can be an eigenvalues of SAS−1 + B.
Can we prove this for complex orthogonal similarity?

One may also consider the eigenvalues of usual product, Lie product, and Jordan product of
matrices from different orbits; e.g., see [10, 16]. Of course, one may ask similar problems for
matrices over reals or arbitrary fields or rings.

For example, our results in Section 2.1 hold for real eigenvalues for real matrices UAU t+V BV t,
where U, V are real orthogonal matrices.

6 Computer algorithms and programs

Using the result in Section 2, we can use positive semi-definite programming package to test whether
µ ∈ E(A,B) as follows. For every (ξ, |ξ|2) ∈ DW (µI − B), we check whether (ξ, |ξ|2) ∈ DW (A),
equivalently, we check whether there is a real linear combination of of the three Hermitian matrices:

Re(A − ξI), Im(A − ξI), A∗A − |ξ|2I

is positive definite. (This can be done by positive semi-definite programming package.) If there is

no such combination, then (ξ, |ξ|2) ∈ DW (A).
Of course, the above test is inefficient and hard to implement. The situation will improve

significantly for normal matrices. One can use standard linear programming package to check
whether the two convex polytopes DW (A) and DW (µI − B) have nonempty intersection.

The situation further improves if we use Theorem 3.4 and focus on DW (X)∩DW (µI2 −Y ) for
normal matrices X ∈ M3 and Y ∈ M2. For convenience, we use E(X,Y ) to denote the set of µ ∈ C
such that DW (X) ∩ DW (µI2 − Y ) 6= ∅, even X and Y may not have the same size. Then the set
E(A,B) is the union of E(X,Y ), where X = diag (w1, w2, w3) ∈ M3 and Y = diag (z1, z2) ∈ M2

described in Theorem 3.4. Furthermore, if both A and B have only two distinct eigenvalues,
respectively, say w1, w2 and z1, z2, then E(A,B) = E(X,Y ) with X = diag (w1, w2) and Y =
diag (z1, z2).

In the following, we will focus on E(X,Y ) so that either (X,Y ) ∈ M2×M2 or (X,Y ) ∈ M3×M2

with distinct eigenvalues. Also as E(X,Y ) depends only on the eigenvalues of X and Y , we may
assume that X and Y are diagonal in our discussion.

We describe an easy point-wise test for x + iy ∈ E(X,Y ) in the following.
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6.1 A point-wise test

The two-two case

We begin with the simple case when X = diag (w1, w2), Y = diag (z1, z2) ∈ M2, and determine
whether a given point x+iy ∈ E(X,Y ), for four given complex numbers w1 = a1+ib1, w2 = a2+ib2,
z1 = c1 + id1 z2 = c2 + id2 so that w1, w2 are distinct, and z1, z2 are distinct.

Let Pj =
(

aj , bj , a
2
j + b2

j

)

and Qj =
(

x − cj , y − dj , (x − cj)
2 + (y − dj)

2
)

for j = 1, 2. Then

x + iy ∈ E if and only if

P1P2 ∩ Q1Q2 6= ∅. (6.1)

Since all the 4 points P1, P2, Q1, Q2 lie on the boundary of the convex set {(x, y, z) : x2 + y2 ≤
z} ⊆ R3, (6.1) holds if and only if the 4 points lie on the same plane and P1 and P2 lie on opposite
closed half plane determined by the line through Q1 and Q2.

Let u =
−−−→
Q1Q2, v =

−−−→
Q1P2 and r = u× v = (r1, r2, r3). Define

∆0 =

∣

∣

∣

∣

∣

∣

∣

∣

c1 − c2 a1 + c1 − x a2 − a1

d1 − d2 b1 + d1 − y b2 − b1

(x − c2)
2 + (y − d2)

2

−(x − c1)
2 − (y − d1)

2 a2
1 + b2

1 − (x − c1)
2 − (y − d1)

2 a2
2 + b2

2 − a2
1 − b2

1

∣

∣

∣

∣

∣

∣

∣

∣

,

∆1 =

∣

∣

∣

∣

∣

∣

∣

∣

c1 − c2 a1 + c1 − x r1

d1 − d2 b1 + d1 − y r2

(x − c2)
2 + (y − d2)

2

−(x − c1)
2 − (y − d1)

2 a2
1 + b2

1 − (x − c1)
2 − (y − d1)

2 r3

∣

∣

∣

∣

∣

∣

∣

∣

.

Then P1, P2, Q1, Q2 all lie on the same plane if and only if ∆0 = 0. Suppose ∆0 = 0. Then P1

and P2 lie on opposite closed half plane determined by the line through Q1 and Q2 if and only if
∆1 ≤ 0.

Assertion 6.1 For normal matrices X,Y ∈ M2 with eigenvalues described above, x+iy ∈ E(X,Y )
if and only if ∆0 = 0 and ∆1 ≤ 0.

The three-two case

Next, we describe the test to determine whether a given point

x + iy ∈ E (diag (w1, w2, w3),diag (z1, z2))

for any given complex numbers w1, w2, w3, z1, z2 so that w1, w2, w3 are distinct and z1, z2 are distinct.
Let wj = aj + ibj for j = 1, 2, 3, and zk = ck + idk for k = 1, 2. Then x + iy ∈ E(X,Y ) if and only
if there exist 0 ≤ t1 ≤ 1, 0 ≤ t1, t2, and t1 + t2 ≤ 1 such that

(1 − t1)





x − c1

y − d1

(x − c1)
2 + (y − d1)

2



 + t1





x − c2

y − d2

(x − c2)
2 + (y − d2)

2





= (1 − t2 − t3)





a1

b1

a2
1 + b2

1



 + t2





a2

b2

a2
2 + b2

2



 + t3





a3

b3

a2
3 + b2

3



 ,

or equivalently,








c2 − c1 a2 − a1 a3 − a1

d2 − d1 b2 − b1 b3 − b1

(x − c1)
2 + (y − d1)

2

−(x − c2)
2 − (y − d2)

2 a2
2 + b2

2 − a2
1 − b2

1 a2
3 + b2

3 − a2
1 − b2

1













t1
t2
t3
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=









x − c1 − a1

y − d1 − b1

(x − c1)
2 + (y − d1)

2

−
(

a2
1 + b2

1

)









.

Let

∆0 =

∣

∣

∣

∣

∣

∣

∣

∣

c2 − c1 a2 − a1 a3 − a1

d2 − d1 b2 − b1 b3 − b1

(x − c1)
2 + (y − d1)

2

−(x − c2)
2 − (y − d2)

2 a2
2 + b2

2 − a2
1 − b2

1 a2
3 + b2

3 − a2
1 − b2

1

∣

∣

∣

∣

∣

∣

∣

∣

,

∆1 =

∣

∣

∣

∣

∣

∣

∣

∣

x − c1 − a1 a2 − a1 a3 − a1

y − d1 − b1 b2 − b1 b3 − b1

(x − c1)
2 + (y − d1)

2

−
(

a2
1 + b2

1

) a2
2 + b2

2 − a2
1 − b2

1 a2
3 + b2

3 − a2
1 − b2

1

∣

∣

∣

∣

∣

∣

∣

∣

,

∆2 =

∣

∣

∣

∣

∣

∣

∣

∣

c2 − c1 x − c1 − a1 a3 − a1

d2 − d1 y − d1 − b1 b3 − b1

(x − c1)
2 + (y − d1)

2

−(x − c2)
2 − (y − d2)

2
(x − c1)

2 + (y − d1)
2

−
(

a2
1 + b2

1

) a2
3 + b2

3 − a2
1 − b2

1

∣

∣

∣

∣

∣

∣

∣

∣

,

∆3 =

∣

∣

∣

∣

∣

∣

∣

∣

c2 − c1 a2 − a1 x − c1 − a1

d2 − d1 b2 − b1 y − d1 − b1

(x − c1)
2 + (y − d1)

2

−(x − c2)
2 − (y − d2)

2 a2
2 + b2

2 − a2
1 − b2

1
(x − c1)

2 + (y − d1)
2

−
(

a2
1 + b2

1

)

∣

∣

∣

∣

∣

∣

∣

∣

.

By the above discussion, we have the following.

Assertion 6.2 Suppose X ∈ M3 and Y ∈ M2 are normal with eigenvalues described as above.
Assume that ∆0 6= 0. Then x + iy ∈ E(A,B) if and only if

(∆1,∆2,∆3,∆0 − ∆1,∆0 − ∆2 − ∆3) /∆0

has nonnegative entries.

Suppose ∆0 = 0. Let

Pj =
(

aj , bj , a
2
j + b2

j

)

for j = 1, 2, 3, and

Qk =
(

x − ck, y − dk, (x − ck)
2 + (y − dk)

2
)

for k = 1, 2.

Then the line L through Q1 and Q2 is parallel to the plane Π determine by P1, P2, and P3. Since all
the 5 points P1, P2, P3, Q1, Q2 lie on the boundary of the convex set {(x, y, z) : x2 + y2 ≤ z} ∈ R3,
x + iy ∈ E(X,Y ) if and only if L lies on Π and each of the closed half space determined by L
contains some Pi. Hence, L lies on Π if and only if ∆0 = ∆1 = 0. In such a case, let

u =
−−−→
Q1Q2 =

(

c1 − c2, d1 − d2, (x − c2)
2 − (x − c1)

2 + (y − d2)
2 − (y − d1)

2
)

.

For 1 ≤ j ≤ 3, let

vj =
−−−→
Q1Pj =

(

aj − x + c1, bj − y + d1, a
2
j + b2

j − (x − c1)
2 − (y − d1)

2
)

.
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If Pj and Pk lie on different half planes determined by L, then the cross products u×vj and u×vk

are normals to Π, pointing in opposite directions. For 1 ≤ j ≤ 3, let rj = u × vj = (r1j , r2j , r3j)
and

∆′
j =

∣

∣

∣

∣

∣

∣

a2 − a1 a3 − a1 r1j

b2 − b1 b3 − b1 r2j

a2
2 + b2

2 − a2
1 − b2

1 a2
3 + b2

3 − a2
1 − b2

1 r3j

∣

∣

∣

∣

∣

∣

.

We can now describe the remaining case in the following.

Assertion 6.3 Suppose X ∈ M3 and Y ∈ M2 are normal with eigenvalues described as above.
Assume that ∆0 = 0. Then x + iy ∈ E(X,Y ) if and only if ∆1 = 0 and ∆′

j ≤ 0 ≤ ∆′
k for some

1 ≤ j, k ≤ 3.

Based on Assertions 6.1 – 6.3 with Theorem 3.4, we have written the Matlab program PT.m (see
http://www.math.wm.edu/̃ ckli/program/PT.m) to test whether a point x + iy lies in E(A,B).

Also, if A,B ∈ Mn are normal matrices, then E(A,B) is a subset of the set

conv (σ(A) + σ(B)) = conv {a + b : a ∈ σ(A), b ∈ σ(B)}.

One can then consider a grid in conv (σ(A)+σ(B)) and apply the pointwise test to the grid points to
plot E(A,B). The Matlab program PPT.m (see http://www.math.wm.edu/̃ ckli/program/PPT.m)
is written based on this idea. An example of E(A,B) generated by the program will be given in
Section 6.4.

6.2 Parametrization of E(A, B) for normal matrices

In this subsection, we give a parametrization of E(A,B). We start with the three-two case.
The three-two case

Consider the case when X = diag (w1, w2, w3) ∈ M3 and Y = diag (z1, z2) ∈ M2. Write

wj = aj + ibj for j = 1, 2, 3 and zk = ck + idk for k = 1, 2. Let Pj =
(

aj, bj , a
2
j + b2

j

)

for j = 1, 2, 3

and Qk =
(

x − ck, y − dk, (x − ck)
2 + (y − dk)

2
)

for k = 1, 2. As µ ∈ E(X,Y ) if and only if

µ+w1 + z1 ∈ E(X −w1I3, Y − z1I2). We may assume that w1 = z1 = 0, i.e., a1 = b1 = c1 = d1 = 0.

Notice that E(X,Y ) is the set of x+ iy ∈ C such that ∆(P1P2P3)∩Q1Q2 6= ∅ and this holds if and

only if there exist 0 ≤ t ≤ 1 such that P1P4 ∩ Q1Q2 6= ∅, where

P4 = (a4, b4, r4) =
(

ta2 + (1 − t)a3, tb2 + (1 − t)b3, t(a2
2 + b2

2) + (1 − t)(a2
3 + b2

3)
)

. (6.2)

By the convexity of the function (x, y) 7→ x2 +y2, we have r4 ≥ a2
4 +b2

4. Thus, there is 0 ≤ t1, t2 ≤ 1
such that

(1 − t1)





x
y

x2 + y2



 + t1





x − c2

y − d2

(x − c2)
2 + (y − d2)

2



 = (1 − t2)





0
0
0



 + t2





a4

b4

r4





or equivalently,
x = c2t1 + a4t2, y = d2t1 + b4t2, (6.3)

and

t1(x
2 + y2 − (x − c2)

2 − (y − d2)
2) + r4t2 = x2 + y2. (6.4)
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Substituting (6.3) into (6.4) we get

(c2
2 + d2

2)t1(t1 − 1) − (a2
4 + b2

4)t
2
2 + r4t2 = 0

which is a hyperbolic equation of t1 and t2 on [0, 1].

Suppose (c2
2 + d2

2) ≥ r4/(a
2
4 + b2

4). Then

t1 =
1

2
±

√

1

4
+

(

a2
4 + b2

4

c2
2 + d2

2

)

t22 −
(

r4

c2
2 + d2

2

)

t2, (6.5)

and it is easy to check that 0 ≤ t1 ≤ 1 whenever t2 ∈ [0, 1].

Suppose (c2
2 + d2

2) < r4/(a
2
4 + b2

4). Then

t2 =
r4

2(a2
4 + b2

4)
+

√

r2
4

4(a2
4 + b2

4)
2

+

(

c2
2 + d2

2

a2
4 + b2

4

)

t1(t1 − 1) (6.6)

or

t2 =
r4

2(a2
4 + b2

4)
−

√

r2
4

4(a2
4 + b2

4)
2

+

(

c2
2 + d2

2

a2
4 + b2

4

)

t1(t1 − 1). (6.7)

Note that for t2 defined in (6.6), 0 ≤ t2 ≤ 1 whenever t1 ∈ [0, 1] and for t2 defined in (6.7),

0 ≤ t2 ≤ 1 whenever t1 ∈
[

1
2 −

√

1
4 +

a2

4
+b2

4
−r4

c2
2
+d2

2

, 1
2 +

√

1
4 +

a2

4
+b2

4
−r4

c2
2
+d2

2

]

, provided that the expression

in the square roots is nonnegative.

Assertion 6.4 Suppose X ∈ M3 and Y ∈ M2 are normal with eigenvalues described as above. For
each t ∈ [0, 1], determine t1 and t2 using the equations (6.2), (6.5) - (6.7). Then x + iy ∈ E(X,Y )
if and only if it is given by the parametric equation (6.3) in terms of t1 and t2.

The two-two case

Next, we consider the two by two case. By a similar argument of the three by two case with
(a4, b4, r4) = (a2, b2, a

2
2 + b2

2), we have

x = c2t1 + a2t2, y = d2t1 + b2t2, (6.8)

and

(c2
2 + d2

2)t1(t1 − 1) − (a2
2 + b2

2)t2(t2 − 1) = 0

which is a hyperbolic equation of t1 and t2 on [0, 1]. Then

t1 =
1

2
±

√

1

4
+

(

a2
2 + b2

2

c2
2 + d2

2

)

t2(t2 − 1), (6.9)

lies in [0, 1] whenever t2 ∈ [0, 1] if c2
2 + d2

2 ≥ a2
2 + b2

2, or

t2 =
1

2
±

√

1

4
+

(

c2
2 + d2

2

a2
2 + b2

2

)

t1(t1 − 1) (6.10)

lies in [0, 1] whenever t1 ∈ [0, 1] if c2
2 + d2

2 < a2
2 + b2

2.
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Assertion 6.5 Suppose X = diag (0, w2) ∈ M2 and Y = diag (0, z2) ∈ M2. Then x+ iy ∈ E(X,Y )
if and only if it is given by the parametric equation (6.8) in terms of t1 and t2 determined by
equations (6.9) and (6.10).

Based on Assertions 6.4 and 6.5 and Theorem 3.4, we have written the matlab program
HPT.m (see http://www.math.wm.edu/̃ ckli/program/HPT.m) to generate E(X,Y ). An exam-
ple of E(A,B) generated by the program will be given in Section 6.4.

Using Theorem 3.6 and Assertion 6.5, we have written the matlab program BD32.m (see
http://www.math.wm.edu/̃ ckli/program/BD32.m) to generate ∂E(X,Y ), the boundary of E(X,Y )
for normal X ∈ M3 and Y ∈ M2.

6.3 A different algorithm

To use the parametric approach in the previous subsection, one has to consider grid points for
t2 ∈ [0, 1]. For each choice of t2 one has to determine intervals for t3, then determine the value
t1, and draw two curves for t3 in the two intervals. Here, we introduce a different algorithms to
generate E = E(X,Y ) with X = diag (w1, w2, w3) and Y = diag (z1, z2). To generate the points
x + iy ∈ E(X,Y ), we first determine the range for x. Then for each x in the range, we determine
the range of y. Here we consider the three by two case only.

Let wj = aj + ibj and zk = ck + idk for j = 1, 2, 3 and k = 1, 2. Since E(µX,µY ) = µE(X,Y ),
we may assume that d1 = d2. Also by a suitable relabeling, we can always assume c1 > c2 and
b1 ≥ b2 ≥ b3. Evidently, if x + iy ∈ E(X,Y ), then

min{a1, a2, a3} + c2 ≤ x ≤ max{a1, a2, a3} + c1.

Now we choose an x satisfying the above inequalities and determine y so that x+ iy lies in E(X,Y ).
In fact, except for the case when b1 = b2 = b3, we may further assume that b1 < b2 ≤ b3. In

the exceptional case, X − b1I3 and Y − d1I2 are Hermitian matrices. Then the result follows from
Theorem 4.1 In detail, we have

Assertion 6.6 Suppose a1 < a2 < a3, b1 = b2 = b3, c1 < c2 and d1 = d2. Then x + iy ∈ E(X,Y )
if and only if y = b1 + d1 and

x ∈ [a1 + c1, a3 + c2]\(a1 + c2, a2 + c1) ∪ (a2 + c2, a3 + c1) ∪ (a3 + c1, a1 + c2).

From now, we suppose that b1 < b2 ≤ b3. As E(X − µI3, Y + µI2) = E(X,Y ), we can also
assume |w1| = |w2| 6= |w3| if w1, w2, w3 are collinear and |w1| = |w2| = |w3| otherwise.

Note that as d1 = d2 and |w1| = |w2|, the determinants ∆i defined in Section 6.1 become

∆0 =

∣

∣

∣

∣

∣

∣

c2 − c1 a2 − a1 a3 − a1

0 b2 − b1 b3 − b1

(x − c1)
2 − (x − c2)

2 0 a2
3 + b2

3 − a2
1 − b2

1

∣

∣

∣

∣

∣

∣

,

∆1 =

∣

∣

∣

∣

∣

∣

x − c1 − a1 a2 − a1 a3 − a1

y − d1 − b1 b2 − b1 b3 − b1

(x − c1)
2 + (y − d1)

2 − (a2
1 + b2

1) 0 a2
3 + b2

3 − a2
1 − b2

1

∣

∣

∣

∣

∣

∣

,

∆2 =

∣

∣

∣

∣

∣

∣

c2 − c1 x − c1 − a1 a3 − a1

0 y − d1 − b1 b3 − b1

(x − c1)
2 − (x − c2)

2 (x − c1)
2 + (y − d1)

2 − (a2
1 + b2

1) a2
3 + b2

3 − a2
1 − b2

1

∣

∣

∣

∣

∣

∣

,

∆3 =

∣

∣

∣

∣

∣

∣

c2 − c1 a2 − a1 x − c1 − a1

0 b2 − b1 y − d1 − b1

(x − c1)
2 − (x − c2)

2 0 (x − c1)
2 + (y − d1)

2 − (a2
1 + b2

1)

∣

∣

∣

∣

∣

∣

,
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where the last three determinants can been expressed in the form

∆i = ∆i2(y − d1)
2 + ∆i1(y − d1) + ∆i0 i = 1, 2, 3,

with

∆12 =

∣

∣

∣

∣

a2 − a1 a3 − a1

b2 − b1 b3 − b1

∣

∣

∣

∣

,

∆11 = −
∣

∣

∣

∣

a2 − a1 a3 − a1

0 a2
3 + b2

3 − a2
1 − b2

1

∣

∣

∣

∣

,

∆10 =

∣

∣

∣

∣

∣

∣

x − c1 − a1 a2 − a1 a3 − a1

−b1 b2 − b1 b3 − b1

(x − c1)
2 − (a2

1 + b2
1) 0 a2

3 + b2
3 − a2

1 − b2
1

∣

∣

∣

∣

∣

∣

,

∆22 = −
∣

∣

∣

∣

c2 − c1 a3 − a1

0 b3 − b1

∣

∣

∣

∣

,

∆21 =

∣

∣

∣

∣

c2 − c1 a3 − a1

(x − c1)
2 − (x − c2)

2 a2
3 + b2

3 − a2
1 − b2

1

∣

∣

∣

∣

,

∆20 =

∣

∣

∣

∣

∣

∣

c2 − c1 x − c1 − a1 a3 − a1

0 −b1 b3 − b1

(x − c1)
2 − (x − c2)

2 (x − c1)
2 − (a2

1 + b2
1) a2

3 + b2
3 − a2

1 − b2
1

∣

∣

∣

∣

∣

∣

,

∆32 =

∣

∣

∣

∣

c2 − c1 a2 − a1

0 b2 − b1

∣

∣

∣

∣

,

∆31 = −
∣

∣

∣

∣

c2 − c1 a2 − a1

(x − c1)
2 − (x − c2)

2 0

∣

∣

∣

∣

,

∆30 =

∣

∣

∣

∣

∣

∣

c2 − c1 a2 − a1 x − c1 − a1

0 b2 − b1 −b1

(x − c1)
2 − (x − c2)

2 0 (x − c1)
2 − (a2

1 + b2
1)

∣

∣

∣

∣

∣

∣

.

Note that

∆0 = (c2 − c1)

∣

∣

∣

∣

b2 − b1 b3 − b1

0 a2
3 + b2

3 − a2
1 − b2

1

∣

∣

∣

∣

+ ((x − c1)
2 − (x − c2)

2)

∣

∣

∣

∣

a2 − a1 a3 − a1

b2 − b1 b3 − b1

∣

∣

∣

∣

.

Therefore, ∆0 = 0 if and only if

w1, w2, w3 are not collinear and x = (c1 + c2)/2. (6.11)

Suppose (6.11) holds. Then ∆0 = 0 and by Assertion 6.3, x + iy ∈ E(X,Y ) only if ∆1 = 0, in
which the equality holds when

y = d1 ±
√

(x − c1)2 − (a2
1 + b2

1).

Now we can check whether the point x + iy in E(X,Y ) by considering the values of ∆′
i defined in

Assertion 6.3.

Exclude the above case. Then ∆0 6= 0. By Assertion 6.2, x + iy ∈ E(X,Y ) if and only if

∆1/∆0 ≥ 0, ∆2/∆0 ≥ 0, ∆3/∆0 ≥ 0, (∆0 − ∆1)/∆0 ≥ 0 and (∆0 − ∆2 − ∆3)/∆0 ≥ 0.

In the following, we determine the possible range of y that satisfies the above inequalities.

Suppose α1 ≤ β1, . . . , α5 ≤ β5 are the real solutions, if exist, of the following quadratic equations

∆1 = ∆12(y − d1)
2 + ∆11(y − d1) + ∆10 = 0, (6.12)
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∆2 = ∆22(y − d1)
2 + ∆21(y − d1) + ∆20 = 0, (6.13)

∆3 = ∆32(y − d1)
2 + ∆31(y − d1) + ∆30 = 0, (6.14)

∆0 − ∆1 = −∆12(y − d1)
2 − ∆11(y − d1) − ∆10 + ∆0 = 0, (6.15)

∆0 − ∆2 − ∆3 = −(∆22 + ∆32)(y − d1)
2 − (∆21 + ∆31)(y − d1) − (∆20 + ∆30) + ∆0 = 0. (6.16)

Also we keep to use αi to denote the corresponding real solution if the quadratic equation is linear.
As b1 < b2 ≤ b3,

∆22 = −(c2 − c1)(b3 − b1) < 0 and ∆32 = (c2 − c1)(b2 − b1) > 0.

Thus, the inequalities ∆2/∆0 ≥ 0 and ∆3/∆0 ≥ 0 are satisfied if and only if y lies in the interval
specified in the following

Table 1

Eq. (6.13) Eq. (6.14) ∆0 > 0 ∆0 < 0

Y Y [α2, β2]\(α3, β3) [α3, β3]\(α2, β2)

Y N [α2, β2] No solution

N Y No solution [α3, β3]

N N No solution No solution

where “Y” denotes the corresponding equation having real solution(s) and “N” otherwise.
Now we turn to equation (6.16). Note that

∆22 + ∆32 =

∣

∣

∣

∣

c2 − c1 a2 − a3

0 b2 − b3

∣

∣

∣

∣

≤ 0

So the equation is linear, equivalently ∆22 + ∆32 = 0, if and only if b2 = b3, which can hold only if
w1, w2, w3 is not collinear. In this case, a2

3 + b2
3 − a2

1 − b2
1 = |w3|2 − |w1|2 = 0 and so

∆21 + ∆31 =

∣

∣

∣

∣

c2 − c1 a3 − a2

(x − c1)
2 − (x − c2)

2 a2
3 + b2

3 − a2
1 − b2

1

∣

∣

∣

∣

6= 0.

Therefore the inequality (∆0 −∆2 −∆3)/∆0 ≥ 0 is satisfied if and only if y lies in the intervals
specified in the following

Table 2

b2 6= b3 (∆22 + ∆32 6= 0) b2 = b3 (∆22 + ∆32 = 0)

Eq. (6.16) ∆0 > 0 ∆0 < 0 (∆21 + ∆31)/∆0 > 0 (∆21 + ∆31)/∆0 < 0

Y (−∞, α5] ∪ [β5,∞) [α5, β5] (−∞, α5] [α5,∞)

N (−∞,∞) No solution / /

Finally we consider the equations (6.12) and (6.15). Clearly, the equations are linear, i.e.,
∆12 = 0, if and only if w1, w2, w3 are collinear. In addition, the equations are constant functions,
i.e., ∆12 = 0 and ∆11 = 0, if and only if a1 = a2 = a3. In case of being constant function,

∆0 = (c2 − c1)(b2 − b1)(a
2
3 + b2

3 − a2
1 − b2

1) and ∆1 = (x − c1 − a1)(b2 − b1)(a
2
3 + b2

3 − a2
1 − b2

1).
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Thus, the inequalities ∆1/∆0 ≥ 0 and (∆0−∆1)/∆0 ≥ 0 are satisfied if and only if c1 ≤ x−a1 ≤ c2,
which always hold by our assumption on x.

Combining with the quadratic and linear cases, the inequalities ∆1/∆0 ≥ 0 and (∆0−∆1)/∆0 ≥
0 are satisfied if and only if y lies in the intervals specified in the following

Table 3

Non-collinear (∆12 6= 0) Collinear (∆12 = 0)

Eq. (6.12) Eq. (6.15) ∆12/∆0 > 0 ∆12/∆0 < 0 ∆11/∆0 > 0 ∆11/∆0 = 0 ∆11/∆0 < 0

Y Y [α4, β4]\(α1, β1) [α1, β1]\(α4, β4) [α1, α4] (−∞,∞) [α4, α1]

Y N No solution [α1, β1] / / /

N Y [α4, β4] No solution / / /

N N No solution No solution / / /

In summary, we have the following

Assertion 6.7 Suppose b1 < b2 ≤ b3, c1 < c2, d1 = d2. Assume (i) |w1| = |w2| 6= |w3| if
w1, w2, w3 are collinear, and (ii) |w1| = |w2| = |w3| otherwise. Except for the case (6.11), for any
x ∈ [amin+c1, amax+c2], where amin = min{a1, a2, a3} and amax = max{a1, a2, a3}, x+iy ∈ E(X,Y )
if and only if y lies in the intersection the intervals specified in Tables 1, 2 and 3.

Based on Assertions 6.6 – 6.7, we have written another Matlab program IPT.m (see
http://www.math.wm.edu/̃ ckli/program/IPT.m) to generate E(A,B) for normal matrices A and
B. An example of E(A,B) generated by the program will be given in Section 6.4.

6.4 An example of E(A, B) generated by the three approaches

Example 6.8 Let A = diag (i, iω, iω2) and B = diag (ω, ω2) with ω = ei2π/3. The region of E(A,B)
is plotted using Matlab programs based on the three different algorithms in Sections 6.1–6.3.
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E(A,B) plotted by PPT.m E(A,B) plotted by HPT.m E(A,B) plotted by IPT.m

In the above example, we see that the first program took the longest computer time and a
lot of memory to determine and store E(A,B). The second program took less computer time and
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less memory, but it is not effective in approximating the straight line boundary of E(A,B) (using
hyperbolas). Finally, the third program used to least among of computer time and memory to
produce and store E(A,B).
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