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Abstract. To better understand the evolution of dispersal in spatially het-
erogenous landscapes, we study difference equation models of populations that
reproduce and disperse in a landscape consisting of k patches. The connec-
tivity of the patches and costs of dispersal are determined by a k × k column
substochastic matrix S where Sij represents the fraction of dispersing individ-
uals from patch j that end up in patch i. Given S, a dispersal strategy is a
k× 1 vector whose i-th entry gives the probability pi that individuals disperse
from patch i. If all of the pi’s are the same, then the dispersal strategy is called
unconditional else it is called conditional. For two competing populations of
unconditional dispersers, we prove that the slower dispersing population (i.e.
the population with the smaller dispersal probability) displaces the faster dis-
persing population. Alternatively, for populations of conditional dispersers
without any dispersal costs (i.e. S is column stochastic and all patches can
support a population), we prove that there is a one parameter family of strate-
gies that resists invasion attempts by all other strategies.

1. Introduction

Plants and animals often live in landscapes where environmental conditions vary
from patch to patch. Within patches, these environmental conditions may include
abiotic factors such as light, space, and nutrient availability or biotic factors such
as prey, competitors, and predators. Since the fecundity and survivorship of an in-
dividual depends on these factors, an organism may decrease or increase its fitness
by dispersing across the environment. Depending on their physiology and their
ability to accumulate information about the environment, plants and animals can
exhibit two modes of dispersals and a variety of dispersal strategies. Plants and
animals can be active dispersers that move by their own energy or passive dispersers
that are moved by wind, water, or by other animals. Passive dispersers alter their
dispersal rates by varying the likelihood of dispersing and the time spent dispers-
ing [20]. Dispersal strategies can vary from unconditional strategies in which the
probability of dispersing from a patch is independent of the local environmental
conditions to conditional strategies conditions in which the likelihood of dispersing
depends on local environmental factors. Understanding how natural selection acts
on these different modes and strategies of dispersal has been the focus of much
theoretical work [2, 5, 8, 10, 12, 15, 16, 17]. For instance, using coupled ordi-
nary differential equation models for populations passively dispersing between two
patches, Holt [8] showed that slower dispersing populations could always invade
equilibria determined by faster dispersing populations. Hastings [5] and Dockery et
al. [2] considered evolution of dispersal in continuous space using reaction diffusion
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equations. Dockery et al. proved that for two competing populations only differ-
ing in their diffusion constant, the population with the larger diffusion constant is
excluded. In contrast, McPeek and Holt [17] using a two patch model consisting of
coupled difference equations found that “dispersal between patches can be favored
in spatially varying but temporally constant environment, if organisms can express
conditional dispersal strategies.”

In this article, we consider the evolution of conditional and unconditional dispersers
for a general class of multi-patch difference equations. For these difference equa-
tions, individuals in each patch disperse with some probability. When these prob-
abilities are independent of location, the population exhibits an unconditional dis-
persal strategy, otherwise it exhibits a conditional dispersal strategy. For dispersing
individuals, the nature of the landscape determines the likelihood Sji that a dis-
perser from patch i ends up in patch j. Unlike previous studies of the evolution
of unconditional and conditional dispersal [2, 5, 8, 17], we allow for an arbitrary
number of patches and place no symmetry conditions on S. For active dispersers,
asymmetries in S may correspond to geographical and ecological barriers that in-
hibit movement from one patch to another. For passive dispersers, these asymme-
tries may correspond to asymmetries in the abiotic or biotic currents in which they
drift.

Our main goal is to determine what types of theorems can be proved about the
evolution of dispersal for this general class of difference equation models. To achieve
these goals, the remainder of the article is structured as follows. In section 2, we
introduce the models. Under monotonicity assumptions about the growth rates, we
prove that either populations playing a single dispersal strategy go extinct for all
initial conditions or approach a positive fixed point for all positive initial conditions.
We also introduce models of competing populations that only differ in their dispersal
ability and prove a result about invasability. In section 3, we prove that for two
competing populations of unconditional dispersers, the slower dispersing population
displaces the faster dispersing population. The proof relies heavily on proving in
section 4 monotonicity of the principal eigenvalue for a one-parameter family of
non-negative matrices. In section 5, we prove that provided there is no cost to
dispersal and all patches can support a population, there is a one-parameter family
of conditional dispersal strategies that resists invasion from other types of dispersal
strategies. Numerical simulations suggest that these strategies can displace all other
strategies and we prove that these strategies can weakly coexist. In section 6, we
discuss our findings and suggest directions for future research.

2. The Models and Basic Results

Consider a population exhibiting discrete reproductive and dispersal events and
living in an environment consisting of k patches. The vector of population densities
is given by x = (x1, . . . , xk)T ∈ Rk

+ where Rk
+ is the non-negative cone of Rk. To

describe reproduction and survival in each patch, let λi : R+ → R+ denote the
per-capita growth rate of the population in the i-th patch as a function of the
population density in the i-th patch. For these per-capita growth rates we make
the following assumptions

A1: λi are positive continuous decreasing functions,
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A2: limxi→∞ λi(xi) < 1, and
A3: xi 7→ xiλi(xi) is increasing.

Assumption A1 corresponds to the population exhibiting increasing levels of in-
traspecific competition or interference as population densities increase. Assump-
tion A2 implies that at high densities the population tends to decrease in size.
Assumption A3 implies that the population does not exhibit overcompensating
density dependence: higher densities in the current generation yields higher den-
sities in the next generation. Many models in the population ecology literature
satisfy these three assumptions. For instance, the Beverton-Holt model [1] in which
λi(xi) = ai

1+bixi
and the Ivlev model [14] in which λi(xi) = ai(1− exp(−b xi)).

To describe dispersal between patches, we assume that each individual in patch i
disperses with a probability pi and Sji is the probability that a dispersing individ-
ual from patch i arrives in patch j. About the matrix S we make the following
assumption

A4: S is a k × k primitive column substochastic matrix

S can be column stochastic if all dispersing individuals migrate successfully or
substochastic if some dispersing individuals experience mortality. The primitive
assumption ensures that individuals (possibly after several generations) can move
from any patch to any patch. S characterizes how connected the landscape is for
dispersing individuals. For example, for a fully connected metapopulation S could
be the matrix whose entries all equal 1

k i.e. an individual is equally likely to end up
in any patch after dispersing. Alternatively, in a landscape with a one-dimensional
lattice structure with individuals only able to move to neighboring patches in one
time step S is a column substochastic tridiagonal matrix that is primitive provided
it has a positive entry on the diagonal. From these p and S, the following matrix
describes how the population redistributes itself across the environment in one time
step

Sp = I − diag (p) + S diag (p)
where diag (p) denotes a diagonal matrix with diagonal entries p1, . . . , pk.

If a census of the population is taken before reproduction and after dispersal, then
the dynamics of the population are given by

(1) x′ = SpΛ(x)x =: F (x)

where x′ denotes the population state in the next time step and Λ(x) is the k × k
diagonal matrix whose i-th diagonal entry equals λi(xi).

Our first result characterizes the global dynamics of (1). To state this result, let
Fn(x) denote F composed with itself n times. Given x, y ∈ Rk

+, we write x ≥ y if
xi ≥ yi for all 1 ≤ i ≤ k, x > y if x ≥ y and x 6= y, and x À y if xi > yi for all
1 ≤ i ≤ k. For a matrix A, let r(A) denote the spectral radius of A.

Theorem 2.1. Assume that A1–A4 hold and p ∈ (0, 1]k. If r(SpΛ(0)) ≤ 1 then

lim
n→∞

Fn(x) = 0

for all x ≥ 0. Alternatively, if r(SpΛ(0)) > 1 then there exists a fixed point x̂ À 0
for F such that

lim
n→∞

Fn(x) = x̂
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for all x > 0.

Proof. Let A(x) = SpΛ(x). Assumptions A1, A4, and p À 0 imply that A(x) is
primitive for all x ≥ 0. Assumption A3 implies that F (x) ≥ F (y) (resp. F (x) >
F (y), F (x) À F (y)) whenever x ≥ y (resp. x > y, x À y). In other words, F is a
strongly monotone map.

Suppose that r(A(0)) ≤ 1. Let wT À 0 be a left Perron vector of A(0) i.e.
r(A(0))wT = wT A(0). Define the function L : Rk

+ → R+ by L(x) = wT x. For
x > 0, A1 implies that wT A(0) À wT A(x). Hence, for any x > 0

L(F (x)) = wT A(F (x))x

= wT A(0)x + wT (A(F (x))−A(0))x

< r(A(0))wT x ≤ L(x)

Since L is strictly decreasing along non-zero orbits of F , L(0) = 0, and L(x) > 0
for x > 0, it follows that limn→∞ Fn(x) = 0 for all x ≥ 0.

Suppose r(A(0)) > 1. First, we show that there exists a positive fixed point x̂. Let
v À 0 be a right Perron eigenvector for A(0) i.e. A(0)v = r(A(0))v. Since A(0)v À
v, continuity of A(x) implies there exists ε > 0 such that A(y)y À y where y = εv.
Since F (x) À F (y) whenever x À y, induction implies y ¿ F (y) ¿ F 2(y) ¿
F 3(y) ¿ . . . . A2 implies that the increasing sequence Fn(y) is bounded. Hence,
there exists x̂ such that limn→∞ Fn(y) = x̂. Continuity of F implies F (x̂) = x̂.
Second, we show that limn→∞ Fn(x) = x̂ whenever x̂ > x > 0. In particular, x̂
is a unique positive fixed point. Let wT be the left Perron eigenvector of A(x̂)
that satisfies wT x̂ = 1. Since x̂ is a positive fixed point, r(A(x̂)) = 1. Define
L : Rk

+ → R+ by L(x) = wT x. Let x̂ > x > 0. Then, x̂ > F (x) > 0 and

L(F (x)) = wT A(F (x))x

= wT A(x̂)x + wT (A(F (x))−A(x̂))x

> r(A(x̂))wT x = L(x)

Hence, L(x), L(F (x)), L(F 2(x)), . . . is a positive increasing sequence bounded above
by L(x̂) = 1. Since L(x) < 1 for all x < x̂, it follows that limn→∞ Fn(x) = x̂ for all
0 < x < x̂. Third, it can be shown similarly that limn→∞ Fn(x) = x̂ for all x > x̂.
Fourth, consider any x À 0. Choose x > x such that x > x̂ and choose x < x such
that 0 < x < x̂. Since Fn(x) < Fn(x) < Fn(x) for all n and limn→∞ Fn(x) =
limn→∞ Fn(x) = x̂, continuity of F implies that limn→∞ Fn(x) = x̂. Finally,
consider any x > 0. Assumptions A3–A4 imply there exists n ≥ 1 such that
Fn(x) À 0. Hence, limn→∞ Fn(x) = x̂. ¤

To understand the evolution of dispersal, we shall consider two populations that
only differ in their dispersal ability. Let x, y ∈ Rk

+ denote the vector of densities of
the two populations and p, p̃ denote their dispersal strategies. Since the populations
only differ in the dispersal abilities, their dynamics are given by

x′ = SpΛ(x + y)x =: G1(x, y)(2)
y′ = SepΛ(x + y)y =: G2(x, y)

From A2 it follows that (2) is dissipative i.e. there exists a compact set K such
that for any (x, y) ≥ (0, 0), Gn(x, y) ∈ K for n sufficiently large. Regarding the
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Figure 1. A simulation of (2) with k = 50 × 50 (i.e. a two di-
mensional spatial grid), λi(xi) = ai

1+xi
with ai randomly chosen

from [1, 2], d = 0.2, d̃ = 0.3, and S given by movement with equal
likelihood to east, west, north, and south, and periodic boundary
conditions. The initial condition corresponds to a density one of
both populations in the center patch. The red and blue curves
correspond to the abundances of the slower and faster dispersing
populations, respectively.

dynamics of (2) near equilibria, we need the following result about invasiveness.
Since we have not assumed that G(x, y) is continuously differentiable, this result
does not follow immediately from the standard unstable manifold theory.

Proposition 2.2. Assume p, p̃ ∈ (0, 1]k, S and Λ satisfy A1–A4, and r(SpΛ(0)) >
1. Let x̂ À 0 be the fixed point satisfying G1(x̂, 0) = (x̂, 0). If r(SepΛ(0)) > 1, then
there exists a neighborhood U ⊂ Rk

+ × Rk
+ of (x̂, 0) such that for any (x, y) ∈ U

with y > 0, Gn(x, y) /∈ U for some n ≥ 1.

Proof. Let A(x) = SepΛ(x). Assume r(A(0)) > 1. Let wT À 0 be a left Perron
eigenvector of A(x̂). Since wT A(x̂) À wT , continuity of x 7→ A(x) implies there
exists a compact neighborhood U ⊂ Rk

+ × Rk
+ of (x̂, 0) and c > 1 such that

wT A(x+y) À cwT for all (x, y) ∈ U . Define L : Rk
+×Rk

+ → R+ by L(x, y) = wT y.
Let (x, y) be in U with y > 0. We have L(G(x, y)) = wT Aep(x + y)y > cL(x, y).
Hence, if (x, y), . . . , Gn(x, y) ∈ U , then L(Gn(x, y)) > cnwT y. Since U is compact
and y > 0, it follows that there exists n ≥ 1 such that Gn(x, y) /∈ U . ¤

3. The Slower Unconditional Disperser Wins

In this section, we only consider an unconditional dispersal strategy p: a strategy
that satisfies p1 = · · · = pk for some common value d. Equivalently, p = d1 where
1 = (1, . . . , 1). Our key result is the following theorem concerning the monotonicity
of the dominant eigenvalue with respect to the parameter d.
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(a) slower disperser at generation 100 (b) faster disperser at generation 100
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(c) slower disperser at generation 500 (d) faster disperser at generation 500

Figure 2. Spatial distributions of the slower disperser in (a) and
(c), and the faster dispersers in (b) and (d). The model and pa-
rameters are as in Figure 1. Darker (respectively lighter) shading
correspond to lower (resp. higher) densities.

Theorem 3.1. Let S be an irreducible column substochastic matrix and Λ be a
diagonal matrix. If Λ is not a scalar matrix, then d 7→ r(((1 − d)I + dS)Λ) is
decreasing on [0, 1].

The proof of Theorem 3.1 is given in section 4 where we also characterize the func-
tion d 7→ r(Sd1) when S is reducible. The following corollary follows immediately
from Theorems 2.1 and 3.1.

Corollary 3.2. Assume F , S, and Λ(x) satisfy A1–A4 and p = d1. Then there
exists d∗ ≥ 0 such that

Persistence: if d ∈ [0, d∗), then there exists x̂ À 0 satisfying limn→∞ Fn(x) =
x̂ for all x À 0, and

Extinction: if d ∈ [d∗, 1], then limn→∞ Fn(x) = 0 for all x ≥ 0.
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Moreover, d∗ = 0 if maxi λi(0) ≤ 1, d∗ ∈ (0, 1) if maxi λi(0) > 1 and r(SΛ(0)) < 1,
and d∗ ≥ 1 if r(SΛ(0)) ≥ 1.

Corollary 3.2 implies that whenever r(SΛ(0)) < 1, unconditional dispersers have
a critical dispersal rate below which the population persists and above which the
population is deterministically driven to extinction.

To characterize the dynamics of competing unconditional dispersers, we need an
additional assumption on (2) to avoid degenerate cases. Let v À 0 be a right Perron
eigenvector of S i.e. Sv = r(S)v. We assume

A5: Λ(tv) is not a scalar matrix for any t ≥ 0.

This assumption assures that model exhibits a minimal amount of spatial hetero-
geneity in the per-capita growth rates at fixed points.

Theorem 3.3. Let G = (G1, G2) satisfy A1–A5. Assume p = d1 and p̃ = d̃1
where 0 < d < d̃ ≤ 1. If r(SpΛ(0)) > 1, then for all x > 0 and y ≥ 0

lim
n→∞

Gn(x, y) = (x̂, 0)

where x̂ is the positive fixed point of x 7→ G1(x, 0).

Theorem 3.3 implies that the slower disperser always displaces the faster disperser.
This occurs despite the fact that the faster disperser is initially able to establish
itself more rapidly as illustrated in Figures 1 and 2.

Proof. The proof of this Theorem relies on a result of Hsu, Smith and Thieme [11,
Theorem A] and Theorems 2.1 and 3.1. Let Ad(x) = Sd1(x). We start the proof
with an important implication of A5. Suppose (x, y) satisfies G(x, y) = (x, y). We
claim that Λ(x + y) is not a scalar matrix. Indeed, suppose to the contrary that
Λ(x + y) = tI for some t > 0. Then

x = SpΛ(x + y)x = (1− d)tx + dtSx

y = SepΛ(x + y)y = (1− d̃)ty + d̃tSy

Consequently, x and y (and hence x + y) are scalar multiples of v. Since this
contradicts A5, Λ(x + y) is not a scalar matrix for any fixed point (x, y) of G.

Assume r(Ad(0)) > 1, Theorem 2.1 implies x 7→ G1(x, 0) has a unique positive
fixed point x̂ that is globally stable. We prove the theorem in two cases. In the
first case, assume that r(Aed(0)) > 1. Theorem 2.1 implies there is a unique ŷ À 0
such that G(0, ŷ) = (0, ŷ) and limn→∞Gn(0, y) = (0, ŷ) whenever y À 0. To
employ Theorem A in [11] we need to verify two things: G has no positive fixed
point and (0, ŷ) is unstable. First, suppose to the contrary there exists x À 0
and y À 0 such that G(x, y) = (x, y). Then x = Ad(x + y)x, y = Aed(x + y)y,
and r(Ad(x + y)) = 1. Since Λ(x + y) is not a scalar matrix, Theorem 3.1 implies
that 1 = r(Ad(x + y)) > r(Aed(x + y)) = 1. Hence, there can be no positive fixed
point. Second, to show that (0, ŷ) is unstable, we use Theorem 3.1 which implies
1 = r(Aed(ŷ)) < r(Ap(ŷ)) and apply Proposition 2.2. Applying Theorem A of [11]
implies limn→∞Gn(x, y) = (x̂, 0) whenever x À 0 and y À 0.
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Suppose that r(Aed(0)) ≤ 1. Let wT À 0 be a left Perron vector of Aed(0). Define
the function L : Rk

+ → R+ by L(y) = wT y. Let π(x, y) = y. Since L(Gn(x, y)) is
strictly decreasing whenever y > 0, L(0) = 0, and L(y) > 0 for y > 0, it follows
that limn→∞ π(Gn(x, y)) = 0 for all x ≥ 0. Hence, for any (x, y) ∈ Rk

+ ×Rk
+, the

limit points of Gn(x, y) as n → ∞ lie in Rk
+ × {0}. By Theorem 1.8 in [18], the

closure of these limit points form a connected chain recurrent set (see [18] for the
definition). Since the only connected chain recurrent sets in Rk

+×{0} are (0, 0) and
(x̂, 0), instability of (0, 0) implies that limn→∞Gn(x, y) = (x̂, 0) whenever x > 0.

¤

4. Proof of Theorem 3.1

We begin with the following preliminary result.

Lemma 4.1. Let v and wT be positive k-vectors so that wT v = 1. Let P be the
polytope of nonnegative matrices A such that wT A = wT and Av = v. For each
A ∈ P, let DA denote the diagonal matrix of column sums of A. Then

min{wT DAv|A ∈ P} = 1.

A matrix A ∈ P attains the minimum value for wT DAv if and only if DA = I.

Proof. Without loss of generality, assume that wT = (w1, . . . , wk) is such that
w1 ≤ · · · ≤ wk. Note also that if all of the entries in wT are equal, then each
matrix in P is a column stochastic matrix, and the statement of the Lemma follows
immediately. We suppose henceforth that wT has at least two distinct entries.

Suppose A ∈ P, and that there are indices i, j, p, q satisfying the following condi-
tions:

(3) wi < wj , wp < wq, and aip, ajq > 0.

We claim that in this case, the matrix A does not satisfy

(4) wT DAv ≤ wT DBv for all B ∈ P.

To see the claim, note that from (3), it follows that for sufficiently small ε > 0, the
matrix

Â = A + ε(−ei/wi + ej/wj)(ep/vp − eq/vq)T

is nonnegative, and satisfies wT Â = wT and Âv = v, so that Â ∈ P. Further,

DÂ = DA + ε
wj − wi

wiwj
diag(−ep/vp + eq/vq),

so that

wT DÂv = wT DAv − ε
(wj − wi)(wp − wq)

wiwj
< wT DAv.

Thus wT DAv does not yield the minimum, as claimed.

Suppose the minimum entry in w is repeated a times, i.e., w1 = · · · = wa < wa+1.
Partition out the first a entries of wT , to write wT as [w11T |w̃T ], and partition

v confomally as v =
[

v̂
ṽ

]
. Let A ∈ P satisfy (4). Suppose first that there are

indices i and p with 1 ≤ i ≤ a and a + 1 ≤ p, such that aip > 0. Since A is a
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minimizer, we see from the claim above that for any indices j, q with j ≥ a + 1 and
1 ≤ q ≤ a, we must have ajq = 0. But then A has the form

A =
[

A1 X
0 A2

]
,

where A1 is a × a. From the facts that wT A = wT , that the first a entries of
wT are equal, and the partitioned form for A, we find that 1T A1 = 1T . Also,
A1v̂ + Xṽ = v̂, so that 1T (A1v̂ + Xṽ) = 1T v̂. Since 1T A1 = 1T , we conclude that
X = 0, a contradiction.

Consequently, we conclude that for any indices i and p with 1 ≤ i ≤ a and a+1 ≤ p,
we must have aip = 0. Thus we see that A has the form

A =
[

A1 0
Y A2

]
,

where A1 is a× a and A1v̂ = v̂. Using the fact that wT A = wT , we thus find that
w11T A1 + w̃T Y = w11T . Hence we have w11T A1v̂ + w̃T Y v̂ = w11T v̂, from which
we deduce that Y = 0.

We conclude that if A ∈ P satisfies (4), then A can be written as
[

A1 0
0 A2

]
,

where A1 is column stochastic. The lemma is now readily established by a deflation
argument. ¤

Our next result lends some insight into the irreducible case.

Lemma 4.2. Suppose that A is an irreducible nonnegative matrix, and let DA

be the diagonal matrix of column sums of A. Let Λ be a diagonal matrix such
that Λ ≥ DA. For each d ∈ [0, 1] let h(d) = r((1 − d)Λ + dA). Then for any
d ∈ (0, 1), h′(d) ≤ 0, with equality holding if and only if Λ = DA = aI for some
a > 0. In that case, h(d) = r(A) = a for each d ∈ [0, 1].

Proof. Throughout, we suppose without loss of generality that r(A) = 1.

First, suppose that A is a primitive matrix; we claim that in this case, h′(1) ≤ 0
with equality holding if and only if Λ = DA = I. Let v be a right Perron vector
for A. Since A is primitive, its spectral radius is a simple eigenvalue that strictly
dominates the modulus of any other eigenvalue; it follows that in a sufficiently small
neighbourhood of 1, h(d) is an eigenvalue of (1 − d)Λ + dA that is differentiable
in d. For d in such a neighbourhood of 1, let w(d)T be a left h(d)-eigenvector of
(1− d)Λ + dA, normalized so that w(d)T v = 1. Since Av = v, we have

h(d) = w(d)T ((1− d)Λ + dA)v

= (d− 1)(w(d)T (A− Λ)v) + w(d)T Av

= (d− 1)(1− w(d)T Λv) + 1.

Since limd→1 w(d)T = wT , it follows that

lim
d→1

h(d)− h(1)
d− 1

= lim
d→1

(1−w(d)T Λv) = 1−wT Λv = −(wT DAv−1)−(wT (Λ−DA)v).
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Since Λ ≥ DA, we have wT (Λ−DA)v ≥ 0, and by Lemma 4.1, we have wT DAv−1 ≥
0, so certainly h′(1) ≤ 0. Further, we see that h′(1) = 0 if and only if wT DAv = 1
and wT (Λ − DA)v = 0. It now follows from Lemma 4.1 that the former holds if
and only if DA = I, and since wT and v are positive vectors, we see that the latter
holds if and only if Λ = DA. This completes the proof of the claim.

Next, suppose that A is an irreducible nonnegative matrix, and fix d ∈ (0, 1).
Observe that the matrix B = (1 − d)Λ + dA is primitive, and that Λ ≥ DB . For
each c ∈ [0, 1], let k(c) = r((1 − c)Λ + cB), and note that k(c) = h(cd). Applying
the claim above to the function k, we see that k′(1) ≤ 0, with equality holding if
and only if Λ = DB = I. But from the chain rule, we find that k′(1) = dh′(d), so
that h′(d) ≤ 0, with equality if and only if Λ = DB = I. That last condition is
readily seen to be equivalent to Λ = DA = I.

Finally, we note that if Λ = DA = I, it is straightforward to see that for each
d ∈ [0, 1], the matrix (1− d)Λ + dA is column stochastic, so that h(d) = 1 = r(A)
for all such d. ¤

The following, which evidently yields Theorem 3.1 immediately, follows from Lemma
4.2.

Corollary 4.3. Suppose that A is an irreducible nonnegative matrix, and let DA

be the diagonal matrix of column sums of A. Let Λ be a diagonal matrix such that
Λ ≥ DA. For each d ∈ [0, 1] let h(d) = r((1− d)Λ + dA). Then either
a) h(d) is a strictly decreasing function of d ∈ [0, 1], or
b) for some a > 0, Λ = DA = aI and h(d) = a for each d ∈ [0, 1].

We have the following generalization of Corollary 4.3.

Theorem 4.4. Let S be a column substochastic matrix, and Λ be a diagonal matrix
with positive diagonal entries. Define the function f(d) = r(((1− d)I + dS)Λ) for
d ∈ [0, 1]. Then there is a d̂ ∈ [0, 1] such that f is stricly decreasing on [0, d̂] and f

is constant on [d̂, 1]. Specifically, let P be a permutation matrix such that

PT SP =




S1 0 . . . 0 X1

0 S2 . . . 0 X2

...
. . .

...
...

0 . . . 0 Sk Xk

0 0 . . . 0 Sk+1




, and PT ΛP =




Λ1

Λ2

. . .
Λk+1


 ,

where i) PT SP and PT ΛP are partitioned conformally, ii) for each i = 1, . . . , k, Si

is an irreducible column stochastic matrix, and iii) Sk+1 is a column substochastic
matrix such that r(Sk+1) < 1. (Note that such a permutation matrix P exists, and
that one part of this partitioning of PT SP may be vacuous.) Let r(Λ) = ρ. Exactly
one of the following cases holds.
a) For some i = 1, . . . , k, Λi = ρI. In this case, f(d) = ρ for all d ∈ [0, 1].
b) There is an index i0 = 1, . . . , k, and an a < ρ such that Λi0 = aI and in addition,
for each j = 1, . . . , k+1, we have that either r(SjΛj) < a or r(((1−d)I+dSj)Λj) = a

for all d ∈ [0, 1]. In this case, there is a d̂ ∈ (0, 1) such that f(d) is a strictly
decreasing function of d for d ∈ [0, d̂], while for each d ∈ [d̂, 1], f(d) = a.
c) If Λi 6= ρI for i = 1, . . . , k, and there is no index i0 and value a satisfying the
hypotheses of b), then f(d) is strictly decreasing for d ∈ [0, 1].



EVOLUTION OF DISPERSAL 11

Proof. Throughout, we assume without loss of generality that ρ = 1. First, note
that f(d) = max{r(((1−d)I+dSi)Λi) : i = 1, . . . , k+1}. Further, since r(Sk+1) < 1
it follows that no principal submatrix of Sk+1 (including the entire matrix Sk+1

itself) can have all of its column sums equal to 1; we then deduce from Corollary
4.3 that r(((1 − d)I + Sk+1)Λk+1) is strictly decreasing as a function of d ∈ [0, 1].
Note further that if none of Λ1, . . . , Λk is a scalar matrix, then for each i = 1, . . . , k
the function r(((1−d)I+dSi)Λi) is strictly decreasing in d, from which we conclude
that f(d) is strictly decreasing.

Suppose next that for some i = 1, . . . , k, we have Λi = I. From Corollary 4.3 we
see that r(((1 − d)I + dSi)Λi) = 1 for all d ∈ [0, 1], and we conclude readily that
f(d) = 1 for all d ∈ [0, 1].

It remains only to consider the case that Λi 6= I for i = 1, . . . , k, but that for
one or more indices i = 1, . . . , k, Λi is a scalar matrix. For concreteness, we
suppose that Λi = aiI for i = 1, . . . , j, and that for i = j + 1, . . . , k, Λi is not a
multiple of the identity matrix. Again without loss of generality, we can assume
that 1 > a1 ≥ . . . ≥ aj . In this situation, we find that for each i = 1, . . . , j, r(((1−
d)I + dSi)Λi) = ai, while for each i = j + 1, . . . , k + 1, r(((1 − d)I + dSi)Λi) is
a strictly decreasing function of d. It follows from the above considerations that
f(d) = max{a1, r(((1− d)I + dSj+1)Λj+1), . . . , r(((1− d)I + dSk+1)Λk+1)}.
Evidently two cases arise: either max{r(Sj+1Λj+1), . . . , r(Sk+1Λk+1)} ≥ a1, or
max{r(Sj+1Λj+1), . . . , r(Sk+1Λk+1)} < a1. In the former case we see that in fact
f(d) = max{r(((1 − d)I + dSj+1)Λj+1), . . . , r(((1 − d)I + dSk+1)Λk+1)} for all
d ∈ [0, 1], from which we conclude that f is strictly decreasing in d. Now suppose
that the latter case holds. Since a1 < 1, we see that when d is near to 0, f(d) =
max{r(((1− d)I + dSj+1)Λj+1), . . . , r(((1− d)I + dSk+1)Λk+1)} > a1. Thus, from
the intermediate value theorem it follows that there is a value d̂ ∈ (0, 1) such that
max{r(((1−d)I+dSj+1)Λj+1), . . . , r(((1−d)I+dSk+1)Λk+1)} ≥ a1 for d ∈ [0, d̂] and
max{r(((1− d)I + dSj+1)Λj+1), . . . , r(((1− d)I + dSk+1)Λk+1)} < a1 for d ∈ [d̂, 1].
It now follows that f(d) is strictly decreasing for d ∈ [0, d̂] and f(d) = a1 for
d ∈ [d̂, 1]. ¤

5. Competing Conditional Dispersers

In this section, we extend our study to conditional dispersers in which p need not
be a constant vector. The following theorem coupled with Proposition 2.2 indicates
which dispersal strategies are subject to invasion by other dispersal strategies.

Theorem 5.1. Assume Λ(x) and S satisfy A1–A4, p ∈ (0, 1]k, and r(SpΛ(0)) > 1.
Let x̂ À 0 be the unique positive fixed point of F and let v À 0 be a right Perron
vector for S. Then r(SepΛ(x̂)) ≤ 1 for all p̃ ∈ (0, 1]k if and only if λi(0) > 1 for all
i, S is column stochastic, and

(5) p = t
(
Λ−1(I)

)−1
v

for some t ∈ (0, 1/ max
(
Λ−1(I)

)−1
v]. Moreover, if p is given by (5), then Λ(x̂) = I.

In our proof of Theorem 5.1, we show that if either S is strictly substochastic or p
is not given by (5), then there are strategies p̃ arbitrarily close to p that can invade
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i.e r(SepΛ(x̂)) > 1. When S is stochastic and p is given by (5), we also show that
Λ(x̂) = I and, consequently, r(SedΛ(x̂)) = 1 for all p̃ ∈ [0, 1]k. The populations
playing one of these strategies exhibit an ideal free distribution at equilibrium [3]
i.e.: the per-capita fitness in all occupied patches are equal. Theorem 5.1 suggests
the possibility that strategies of the form (5) can displace all other strategies. By
[11, Theorem A] a sufficient condition for this displacement is verifying that (5)
can invade any strategy p̃ not given by (5) and can not coexist at equilibrium with
strategy d̃. This turns out not to be true in general. For example, let λi(xi) with
i = 1, 2 be functions such that λ1(1.2) = λ2(1) = 1, λ1(1.19) = 20

9+
√

41
≈ 1.29844,

λ2(9.52/(3+
√

41)) = 10
9+
√

41
≈ 0.642919 where 9.52/(3+

√
41) ≈ 1.01234, and A1–

A3 are satisfied. Define S =
(

0.5 0.6
0.5 0.4

)
which has right Perron vector v =

(
1

5/6

)
.

Then, p = 1 is a strategy of the form (5). Define p̃ =
(

0.8
2/3

)
. The unique positive

fixed point of y 7→ SepΛ(y)y = G(0, y) is by construction given by ŷ =
(

1.19
9.52

3+
√

41

)

Since a computation reveals that

r(SΛ(ŷ)) = 0.993735 · · · < 1 = r(SedΛ(ŷ))

the strategy p = 1 can not invade and displace the strategy p̃. Hence, for a general
Λ(x), we can not expect that strategies of the form (5) to displace all other strate-
gies. However, extensive simulations with the Beverton-Holt growth functions (i.e.
λi(xi) = ai

1+bixi
) suggest that the strategies given by (5) can displace any other

strategy (Fig. 3). Thus we make the following conjecture:

Conjecture 5.1. If λi(xi) = ai

1+bixi
, S is primitive and column stochastic, p is

given by (5), p̃ is not given by (5), and r(SpΛ(0)) > 1, then

lim
n→∞

Gn(x, y) = (x̂, 0)

whenever x > 0.

Proof of Theorem 5.1. The key proposition (which gives us more than we need!) is
the following:

Proposition 5.2. Suppose A is an irreducible nonnegative matrix with column
sums ci such that c1 = mini ci < maxi ci = ck. If Ã is a nonnegative matrix
obtained from A by changing its first column from



a11

·
...

ak1


 to




a11

·
...

ak1


 + γ




−∑k
i=2 ai1

a21

. . .
ak1


 .

for some positive γ > 0, then r(A) < r(Ã). Alternatively, if Â is a nonnegative
matrix obtained from A by changing its last column from



a1k

·
...

akk


 to




a1k

·
...

akk


− γ




−∑k
i=2 aik

a2k

. . .
akk


 .



EVOLUTION OF DISPERSAL 13

for some γ ∈ (0, 1], then r(A) > r(Â).

Proof. Note that ck > r(A) > c1. Let wT be the left Perron vector for A such that
w1 = 1, and let ṽ be the right Perron vector for Ã normalized so that wT ṽ = 1.
Observe that for any γ such that Ã is nonnegative, Ã is irreducible and, conse-
quently, v is a positive vector. Set W = diag (w1, . . . , wn). Then WAW−1 has all
the column sums equal to r(A). Consider the first column of WAW−1. We see
that

a11 +
k∑

i=2

wiai1 = r(A) > c1 =
k∑

i=1

ai1.

Thus,
k∑

i=2

wiai1 >

k∑

i=2

ai1.

It follows that r(Ã) = wT Ãṽ = wT Aṽ + γṽ1(−
∑k

i=2 ai1 +
∑k

i=2 wiai1) > wT Aṽ =
r(A).

A similar argument applies to the matrix Â when γ < 1, while if γ = 1, we see that
the first column of Â is ckek and r(Â) ≥ ck > r(A). ¤

Now assume p ∈ (0, 1]k, r(SpΛ(0)) > 1, x̂ À 0 is the unique positive fixed point
of F , and v À 0 is a right Perron vector for S. Let A = SpΛ(x̂). We begin by
showing that r(SepΛ(x̂)) ≤ 1 for all p̃ ∈ [0, 1]k implies that S is stochastic and p is
given by (5). First, we show that A must have constant column sums ci. Suppose
to the contrary that there exists 1 ≤ j ≤ k such that cj = maxi ci > mini ci. Let p̃
be any strategy where p̃i = pi for i 6= j and p̃j ∈ (0, pj). Then SepΛ(x̂) is given by
replacing the j-th column of A by a column which is

≥




a1j

·
...

akj


− γ




−∑k
i=2 aij

a2j

. . .
akj




where γ = 1− epj

pj
> 0. Proposition 5.2 implies that r(SepΛ(x̂)) > r(A) = 1 contrary

to our assumption about p. Therefore A must have constant column sums c = c1 =
· · · = ck. Second, suppose to the contrary that S is substochastic. Let p̃ be any
strategy where p̃i ∈ (0, pi). Since S is substochastic, every column sum SepΛ(x̂)
is greater or equal to c and at least one column sum is strictly greater than c.
Hence, r(SepΛ(x̂)) > r(A) = 1 contrary to our assumption about p. Therefore, S is
stochastic. Finally, since S is stochastic, it follows that c = 1 and Λ(x̂) = I. Since
x̂ À 0, we have λi(0) > 1 and x̂i = λ−1

i (1) for all i. Since x̂ is a fixed point, we get
that x̂ = (I − diag (p) + S diag (p))x̂. Equivalently, Sdiag (p)x̂ = diag (p)x̂. Hence,
diag (p)x̂ À 0 is a right Perron vector for S and p is given by (5).

Now suppose that S is stochastic and p is given by (5). Then Λ(x̂) = I and
r(SepΛ(x̂)) = r(Sep) = 1 for all p̃ ∈ [0, 1]k. ¤

Conjecture 5.1 suggests that for populations with Beverton-Holt local dynamics,
the evolution of conditional dispersers will favor strategies on the ray defined by
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Figure 3. One hundred realizations of an ideal free disperser
competing against a random dispersal strategy. In the simula-
tions, k = 10 and λi(xi) = ai

1+bixi
. For each simulation, the

values of ai are randomly selected from the interval [1, 2], p is
defined by (5) where t is randomly selected from the interval
[0, max

(
Λ−1(I)

)−1
v], and p̃ is randomly selected from [0, 1]10. To

normalize the local population abundances to a value of 1, in each
simulation bi is set equal to 1

ai−1 .

(5). Hence, it is natural to ask what happens when two strategies on this ray
compete against one another.

Proposition 5.3. Assume Λ(x) and S satisfy A1–A4, λi(0) > 1 for all i, and S

is stochastic. Let p and p̃ be strategies given by (5) with t = d and t = d̃ where
0 < d < d̃ ≤ 1/ max{(Λ−1(I)

)−1
v}. Then the set of fixed points of G are (0, 0)

and
L = {(αx̂, (1− α)x̂ : α ∈ [0, 1]}

where x̂ = Λ−1(I)1. Moreover, if Λ(x) is continuously differentiable with λ′i(xi) < 0
for all i, and d

dxi
xiλi(xi) > 0 for all i, then there exists a neighborhood U ⊂ Rk

+ ×
Rk

+ of L and a homeomorphism h : [0, 1]×D → U with D = {z ∈ R2k−1 : ‖z‖ < 1}
such that h(α, 0) = αx̂ + (1− α)x̂, h(0, D) = {(0, y) ∈ U}, h(1, D) = {(x, 0) ∈ U},
and limn→∞Gn(x, y) = (αx̂, (1− α)x̂) for all (x, y) ∈ h({α} ×D).

Proof. By the change of variables x 7→ Λ−1(I)−1diag (v)x, we can assume without
any loss of generality that Λ(I) = I in which case p = d1 and p̃ = d̃1. Thus, a
point (x, y) > 0 is an fixed point of G if and only if

((1− d)I + dS)Λ(x + y)x = x

((1− d̃)I + d̃S)Λ(x + y)y = y

Since r(((1 − d)I + dS)Λ(x + y))) = r((1 − d̃)I + d̃S)Λ(x + y)) = 1 and d 6= d̃,
Theorem 3.1 implies that Λ(x + y) = I. Therefore, (x, y) needs to satisfy x + y =
Λ−1(I)1, Sdx = dx, and Sd̃y = d̃y. Since S is primitive, we get x must be a scalar
multiple of y. Hence, the fixed points of G are given by (0, 0) and L.
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Now assume that x 7→ Λ(x) is continuously differentiable, λ′i(x) < 0 for all i, and
d

dxi
xiλi(xi) > 0 for all i. We will show that L is normally hyperbolic attractor in

the sense of Hirsch, Pugh, and Shub [7]. Let (x, y) ∈ L. We have

DG(x, y) =
(

Sd(Λ′(x + y)diag (x) + Λ(x + y)) SdΛ′(x + y)diag (x)
SdΛ′(x + y)diag (y) Sd(Λ′(x + y)diag (y) + Λ(x + y))

)

Since 0 < λ′i(xi + yi)(xi + yi)+λi(xi + yi) < λ′i(xi + yi)xi +λi(xi + yi) for all i, the
diagonal blocks, Sd(Λ′(x+y)diag (x)+Λ(x+y)) and Sd(Λ′(x+y)diag (y)+Λ(x+y))
of DG(x, y), are non-negative primitive matrices. Since λ′i(xi + yi) < 0 for all i,
the off-diagonal blocks, SdΛ′(x + y)diag (x) and SdΛ′(x + y)diag (y), of DG(x, y)
are negative scalar multiples of primitive matrices. Hence, DG(x, y) is a primitive
matrix with respect to the competitive ordering on Rk

+ ×Rk
+ i.e. (x̃, ỹ) ≥K (x, y)

if x̃ ≥ x and ỹ ≤ y. Since L is a line of fixed points, DG(x, y) has an eigenvalue of
one associated with the eigenvector (Λ−1(I)1,−Λ−1(I)1). The Perron Froebenis
theorem implies that all the other eigenvalues of DG(x, y) are strictly less than one
in absolute value. Hence, L is a normally hyperbolic one dimensional attractor.
Theorem 4.1 of [7] implies that there is a neighborhood U ⊂ Rk

+ ×Rk
+ of L and

a homeomorphism h : [0, 1] ×D → U with D = {z ∈ R2k−1 : ‖z‖ < 1} such that
h(α, 0) = αx̂ + (1 − α)x̂, h(0, D) = {(0, y) ∈ U}, h(1, D) = {(x, 0) ∈ U}, and
limn→∞Gn(x, y) = (αx̂, (1− α)x̂) for all (x, y) ∈ h({α} ×D). ¤

Proposition 5.3 implies that once a “resident” population playing a strategy of the
form (5) has established itself, a “mutant” strategy of the form (5) can only invade
in a weak sense: if the mutants enter at low density, deterministically they will
converge to an equilibrium with a low mutant density. After the invasion, one
would expect that demographic or environmental stochasticity would with greater
likelihood result in the displacement of the mutants. Hence, once a strategy of the
form (5) has established itself, it is likely to resist invasion attempts from other
strategies of the form (5). Proposition 5.3 also suggests the following conjecture
which is supported by simulations using the Beverton-Holt growth function.

Conjecture 5.2. Under the conditions of Proposition 5.3, for every (x, y) > 0
there exists α ∈ [0, 1] such that

lim
n→∞

Gn(x, y) = (αΛ−1(I)1, (1− α)Λ−1(I)1)

6. Discussion

For organisms that disperse unconditionally, we proved that a slower dispersing
population competitively excludes a faster dispersing population. Similar results
have been proven for reaction diffusion equations where the dispersal kernel is self-
adjoint [2], observed in a partial analysis of two patch differential equations [8], and
illustrated with simulations of two patch difference equations [17]. Our proofs apply
to difference equations with an arbitrary number of patches and without any sym-
metry assumptions about the dispersal matrix S. Since geographical and ecological
barriers often create asymmetries in the movement patterns of active dispersers and
create asymmetries in abiotic and biotic currents that carry passive dispersers, ac-
counting for these asymmetries is crucial and results in a significantly more difficult
mathematical problem than the symmetric case. Theorem 3.1 provides the solution
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to this problem by proving for any given environmental condition (i.e. choice of
Λ and S), the principal eigenvalue for the growth dispersal matrix is a decreasing
function of the dispersal rate. Hence, under all environmental conditions, popula-
tions that disperse more slowly spectrally dominate populations that disperse more
quickly. Despite this spectral dominance, simulations (e.g., Fig. 1) illustrate that
for appropriate initial conditions, faster dispersers can be numerically dominant as
they initially spread across a landscape. This initial phase of numerical dominance
has empirical support in studies of northern range limits of butterflies: dispersal
rates increase as species move north to newly formed favorable habitat [6]. Presum-
ably in the long-term, selection will favor slower dispersal rates commensurate with
their ancestral rates of movement (R. Holt, personal communication). However,
since all initial conditions do not lead to an initial phase of numerical dominance
for the faster dispersers (e.g. if the initial condition is a Perron vector for the slower
disperser), we still require a detailed understanding of how the local intrinsic rates
of growth, the dispersal matrix, and initial conditions determine whether the faster
or slower disperser is numerical dominant in the initial phase of establishment.

For conditional dispersers experiencing no dispersal costs (i.e. S is column stochas-
tic and λi(0) > 1 for all i), we provide proofs that generalize previous findings in
a two patch models [9, 17]. We prove that all dispersal strategies outside of a one-
parameter family are not evolutionarily stable: when a population adopts one of
these strategies, there are nearby strategies that can invade. For populations play-
ing strategies in this exceptional one-parameter family, the populations exhibit an
ideal free distribution at equilibrium: the per-capita growth rate is constant across
the landscape [3]. Contrary to prior expectations [17], we show that are growth
functions for which these ideal free strategies can not displace all other strate-
gies. However, numerical simulations with the biologically plausible Beverton-Holt
growth functions suggest that populations playing these ideal-free strategies can
displace populations playing any other strategy. Moreover, when a population at
equilibrium plays an ideal-free strategy, we prove that a population playing another
ideal-free strategy can not increase from being rare and, consequently, is likely to
be driven to extinction by stochastic forces. For populations playing these ideal-
free strategies, the dispersal likelihood in a patch is inversely proportional to the
equilibrium abundance in a patch. Hence, enriching one patch may result in the
evolution of lower dispersal rates in that patch. Conversely, habitat degradation of
a patch may result in the evolution of higher dispersal rates in that patch. These
predictions about ideal-free strategies, however, have to be viewed with caution as
they are sensitive to the assumption of no dispersal costs. The inclusion of the
slightest dispersal costs destroys this one-parameter family of evolutionary stable
strategies and only leaves the non-dispersal strategy as a candidate for an evolution
stable strategy.

Our models make several simplifying assumptions and relaxing these assumptions
provides several mathematical problems of biological interest. Most importantly,
our models do not include temporal heterogeneity which is an important ingredi-
ent in the evolution of dispersal [17]. Temporal heterogeneity can be generated
exogenously or endogenously and when combined with spatial heterogeneity can
promote the evolution of faster dispersers [10, 13, 17]. For instance, Hutson et al.
in [13] proved that a faster disperser can displace or coexist with a slower disperser
for periodically forced reaction diffusion equations. Whether similar results can be
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proven for periodic or, more generally, random difference equations requires answer-
ing mathematically challenging questions about spectral properties of periodic and
random products of non-negative matrices. Similar challenges arise when replacing
increasing growth functions with unimodal growth functions [4, 10, 19] that can
generate temporal heterogeneity via periodic and chaotic population dynamics.
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