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Bijenička 30, P.O. Box 335, 10002 Zagreb, Croatia

Department of Mathematics, College of William and Mary,

Williamsburg, VA 23187-8795, USA.

maja.fosner@uni-mb.si, ilisevic@math.hr, ckli@math.wm.edu

Abstract
It is shown that for many finite dimensional normed vector spaces V over C, a linear

projection P : V → V will have nice structure if P + λ(I − P ) is an isometry for some

complex unit not equal to one. From these results, one can readily determine the structure

of bicircular projections, i.e., those linear projections P such that P + µ(I − P ) is a an

isometry for every complex unit µ. The key ingredient in the proofs is the knowledge of the

isometry group of the given norm. The proof techniques also apply to real vector spaces. In

such cases, characterizations are given to linear projections P such that P−(I−P ) = 2P−I
is an isometry.
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1 Introduction

Let (X, ‖ · ‖) be a complex Banach space and let P : X → X be a linear projection. Denote

by P = I − P its complementary projection. The projection P is called bicircular if the

mapping eiαP + eiβP is an isometry for all α, β ∈ R. Obviously, this is equivalent to the fact

that the mapping P + eiϕP is an isometry for all ϕ ∈ R.
Let B(H) be the algebra of all bounded linear operators acting on a complex Hilbert

space H. Bicircular projections on B(H) and some subspaces of B(H), with respect to the

spectral norm, have nice structures as shown in [14]:

1. Let P : B(H) → B(H) be a bicircular projection. Then there exists a selfadjoint

projection p ∈ B(H) such that either P (x) = px for all x ∈ B(H), or P (x) = xp for

all x ∈ B(H).

2. Let S(H) = {a ∈ B(H) : at = a}. Let P : S(H) → S(H) be a bicircular projection.

Then either P = 0 or P = I.
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3. Let K(H) = {a ∈ B(H) : at = −a}. Let P : K(H) → K(H) be a bicircular projection.

Then there exists a unit vector α ∈ H such that either P (x) = px + xpt for all

x ∈ K(H), or P (x) = px+ xpt for all x ∈ K(H), where p = α⊗ α. In the second case

we can also write P (x) = qxqt, where q = 1− p.

In this paper, we show that for many finite dimensional normed vector spaces V over C,

a linear projection P : V → V will have nice structure if P + λP is an isometry for some

λ ∈ {µ ∈ F : |µ| = 1, µ 6= 1}. From these results, we can readily determine the structure of

bicircular projections. As we will see, the key ingredient in our proofs is the knowledge of the

isometries of the given norm. Our proof techniques also apply to real vector spaces. In such

cases, we determine the structure of linear projections P : V → V such that P −P = 2P −I
is an isometry.

We present our results for different classes of norms in sections 2-5. Additional results

and remarks are given in section 6.

In our discussion, we always assume that V is a finite dimensional vector space over

F ∈ {C,R} equipped with a fixed inner product 〈 · , · 〉. For a pair of column vectors or a pair

of matrices x and y, we have the usual inner product 〈x, y〉 = tr (xy∗) = tr (y∗x). Denote by

U(V) the group of unitary (if F = C) or orthogonal (if F = R) operators on V. Suppose G

is a closed subgroup of U(V). A norm ‖ · ‖ on V is said to be G-invariant if

‖g(v)‖ = ‖v‖ for all g ∈ G, v ∈ V.

Denote by T = {µ ∈ F : |µ| = 1}. To avoid trivial consideration, we always consider

non-trivial linear projections, i.e., projections not equal to zero or the identity map. The

following lemma is useful in our discussion.

Lemma 1.1. Let ‖ · ‖ be a norm on V with isometry group K, and let λ ∈ T \ {1}. Suppose

P : V → V is a non-trivial projection. The following conditions are mutually equivalent:

(i) P + λP ∈ K,

(ii) P = (T − λI)/(1− λ) for some T ∈ K such that (T − I)(T − λI) = 0.

Proof. (i) ⇒ (ii) If we define T = P + λP , then T ∈ K and P = (T − λI)/(1 − λ). Since

P 2 = P, we get (T − I)(T − λI) = 0.

(ii) ⇒ (i) From P = (T −λI)/(1−λ) we get P +λP = T ∈ K. Since (T −I)(T −λI) = 0,

we have P 2 = P.

Remark 1.2. Suppose condition (ii) in Lemma 1.1 holds. If λ = −1 then T 2 = I; if λ2 6= 1

then T = (T 2 + λI)/(1 + λ), and hence P = (T − λI)/(1− λ) = (T 2 − λ2I)/(1− λ2).
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2 Inner product norms

Suppose a norm on V is a multiple of the inner product norm, i.e., the norm induced by

the inner product on V. Then the isometry group K is just U(V). Our problem has a very

simple answer.

Proposition 2.1. Let V be an n-dimensional inner product space, and let ‖ · ‖ be a multiple

of the norm induced by the inner product. Suppose P : V → V is a non-trivial linear

projection and λ ∈ T \ {1}. The following conditions are mutually equivalent.

(i) P + λP is an isometry,

(ii) P is an orthogonal projection, i.e., there exists an orthonormal basis {e1, . . . , en} for

V such that P (ej) = λjej where λj ∈ {0, 1} for all j = 1, . . . , n.

Clearly, using the complex case of the above proposition, we see that P is a bicircular

projection if and only if condition (ii) holds.

Proof. Note that the isometry group of ‖ · ‖ is U(V). Furthermore, there is an orthonormal

basis B of V such that P and P + λP have matrix representations(
Ik X

0 0n−k

)
and

(
Ik (1− λ)X

0 λIn−k

)
.

Evidently, there is λ ∈ T \ {1} such that P + λP ∈ U(V) if and only if X = 0.

3 Symmetric norms

Let V = Fn and let G be GP (n), the group of generalized permutation matrices (matrices

of the form DP, where D is a diagonal matrix in U(Fn) and P is a permutation matrix).

Then G-invariant norms are also known as symmetric norms (symmetric gauge functions).

We will study our problem for symmetric norms in the following. It is useful to have the

following information about the isometries for symmetric norms.

Since G is irreducible, the isometry group of a given symmetric norm is a subgroup of

U(V). A characterization of all the possible isometry groups of a G-invariant norm can be

found in e.g. [3, 7]. Assume that a G-invariant norm ‖ · ‖ is not a multiple of the inner

product norm on V. Let

A =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

 , B =
1√
2


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

 .
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If Fn 6= R2 and Fn 6= R4, then K = G. If Fn = R4, then one of the following holds: (1)

K = G, (2) K = 〈G,A〉, the group generated by A and the elements in G, (3) K = 〈G,B〉,
the group generated by B and the elements in G. If Fn = R2, then K = G or K is the

dihedral group with 8k elements.

Proposition 3.1. Let ‖ · ‖ be a symmetric norm on Fn not equal to a multiple of the norm

induced by the inner product norm 〈x, x〉1/2, and let K be the isometry group of ‖·‖. Suppose

P : Fn → Fn is a non-trivial linear projection and λ ∈ T \ {1}. Then P + λP is an isometry

for ‖ · ‖ if and only if one of the following holds.

(a) P = diag (λ1, . . . , λn) with λj ∈ {0, 1} for all j = 1, . . . , n.

(b) λ = −1, there is k ≥ 1 and m = n − 2k such that P is permutationally similar to

P = P1 ⊕ · · · ⊕ Pk ⊕ diag (λ1, . . . , λm), where λj ∈ {0, 1} for all j = 1, . . . ,m, and

Pi =
1

2

(
1 pi

p̄i 1

)
with |pi| = 1, i = 1, . . . , k.

(c) (Fn, λ) = (R4,−1), K ∈ {〈G,A〉, 〈G,B〉}, and there is T ∈ K with T = T t such that

P = (I + T )/2.

(d) (Fn, λ) = (R2,−1), K is a dihedral group, and there is T ∈ K with T = T t such that

P = (I + T )/2.

We remark that conditions (a) – (d) can be summarized into one single condition, namely,

there is T ∈ K with (T − λI)(T − I) = 0 such that P = (T − λI)/(1 − λ). Our conditions

give a concrete description of the structure of P . In particular, in condition (c) and (d) one

can actually enumerate all isometries T such that T = T t if so desired.

Using the complex case of the above proposition, we see that P is a bicircular projection

if and only if condition (a) holds,

Proof. (⇒) Suppose T = P + λP = λI + (1− λ)P ∈ K. We consider three cases.

Case 1. Suppose K = G. Let T = DR be such that D is a diagonal matrix and R

is a permutation matrix. Then R is permutationally similar to R1 ⊕ R2 ⊕ · · · ⊕ Rk ⊕ Im
such that each Rj is a permutation matrix with ones in the (1, 2), (2, 3), . . . , (nj−1, nj), (nj, 1)

positions, where nj > 1 is the order of the matrix Rj. Suppose D is permutationally similar

to D1 ⊕ · · · ⊕Dk ⊕D0 accordingly. Then the spectrum of P = (T − λI)/(1 − λ) is {1, 0},
which is a union of those of P1, . . . , Pk, P0, where Pi = (DiRi−λIni

)/(1−λ) for i = 1, . . . , k,

and P0 = (D0 − λIm)/(1− λ). Note that for i = 1, . . . , k, Pi has ni distinct eigenvalues.

If k = 0, then condition (a) holds. If k > 0, then n1 = · · · = nk = 2, and each Pi has

eigenvalues 1, 0. Hence, Pi has trace 1 and determinant 0. Thus, λ = −1 and Pi has the

form described in (b). Evidently, P0 = diag (λ1, . . . , λm) also has the form described in (b).

So, condition (b) follows.
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Case 2. Suppose Fn = R4, and K ∈ {〈G,A〉, 〈G,B〉}. Then λ = −1. By Remark 1.2, we

have T 2 = I4. Since T tT = I4, we have T = T−1 = T t. So, condition (c) holds.

Case 3. Suppose Fn = R2 and K is dihedral group. Using an argument similar to those

in Case 2, we get condition (d).

The converse of the result is clear.

4 Unitarily invariant norms

Let V = Mm,n(F) and let G be the group of all linear operators of the form A 7→ UAV

for some fixed unitary (orthogonal) U ∈ Mm(F) and V ∈ Mn(F). Then G-invariant norms

are called unitarily invariant norms. In the following we determine the structure of those

linear projections P : Mm,n(F) → Mm,n(F) such that P + λP is an isometry for a unitarily

invariant norm. The result is covered by Proposition 2.1 if the norm is a multiple of the

Frobenius norm. So, we exclude this case in our result. We first describe the isometries for

unitarily invariant norms.

Let K be the isometry group of a unitarily invariant norm ‖ · ‖ on V and let τ be the

transposition operator on Mn(F), i.e., τ(A) = At. Let ϕ : M4(R) → M4(R) be the linear

operator defined by

ϕ(A) = (A+B1AC1 +B2AC2 +B3AC3)/2,

where

B1 =

(
1 0

0 1

)
⊗

(
0 −1

1 0

)
, C1 =

(
1 0

0 −1

)
⊗

(
0 1

−1 0

)
,

B2 =

(
0 −1

1 0

)
⊗

(
1 0

0 −1

)
, C2 =

(
0 1

−1 0

)
⊗

(
1 0

0 1

)
,

B3 =

(
0 −1

1 0

)
⊗

(
0 1

1 0

)
, C3 =

(
0 1

1 0

)
⊗

(
0 1

−1 0

)
.

Suppose ‖·‖ is a G-invariant norm which is not a multiple of the Frobenius norm, i.e., the

norm induced by the inner product 〈X,Y 〉 = trXY ∗ on Mm,n(F). Then the following holds

(see for example [2, 7, 10]): if m 6= n, the isometry group of ‖·‖ is G; if V = Mn(F) 6= M4(R),

the isometry group of ‖ · ‖ is 〈G, τ〉; if V = M4(R), the isometry group of ‖ · ‖ is 〈G, τ〉 or

〈G, τ, ϕ〉.

Proposition 4.1. Let ‖·‖ be a unitarily invariant norm on Mm,n(F) not equal to a multiple of

the Frobenius norm, and let K be the isometry group of ‖·‖. Suppose P : Mm,n(F) →Mm,n(F)

is a non-trivial linear projection and λ ∈ T \ {1}. Then P + λP ∈ K if and only if one of

the following holds.

(a) There exist R = R∗ = R2 in Mm(F) and S = S∗ = S2 in Mn(F) such that P has the

form A 7→ RA or A 7→ AS.
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(b) λ = −1, and there exist R = R∗ = R2 in Mm(F) and S = S∗ = S2 in Mn(F) such that

P has the form A 7→ RAS + (Im −R)A(In − S).

(c) m = n, λ = −1, and there is U ∈ U(Fn) such that P or P has the form A 7→
(A+ UAtU)/2.

(d) Mm,n(F) = M4(R), and there is T ∈ K with T 2 = I such that P = (I + T )/2.

Using the complex case of the above proposition, we see that P is a bicircular projection

if and only if condition (a) holds. Also, it is possible to enumerate all T ∈ K satisfying

condition (d); in particular, since every T in K is an orthogonal operator on M4(R), we see

that T 2 = I if and only if T is self-adjoint, equivalently, (T (Epq), Ers) = (Epq, T (Ers)) for all

p, q, r, s ∈ {1, . . . , 4}.

Proof. Suppose T = P + λP = λI + (1− λ)P ∈ K. We consider three cases.

Case 1. Suppose T has the form A 7→ UAV for some U ∈ U(Fm) and V ∈ U(Fn).

By Lemma 1.1, T has spectrum {1, λ}. Assume that U has eigenvalues u1, . . . , um and V

has eigenvalues v1, . . . , vn. Then T = U ⊗ V t has eigenvalues u1v1, u1v2, . . . , umvn. We may

assume that u1v1 = 1. We may further assume that u1 = 1 = v1. Otherwise, replace (U, V )

by (U/u1, V/v1). Because u1vj ∈ {1, λ} for all j, we see that V has spectrum {1, λ}. Similarly,

we can show that U has spectrum {1, λ}. If λ 6= −1 then U = Im or V = In; otherwise,

T = U ⊗ V has spectrum {1, λ, λ2} 6= {1, λ}. Thus, condition (a) holds. If λ = −1, then

both U and V may have spectrum {1,−1}. So, U ∈ U(Fm) and V ∈ U(Fn) satisfy U = U∗

and V = V ∗. Moreover, the range space of P is spanned by {X ∈ Mm,n(F) : UXV = X}.
Thus, condition (b) holds.

Case 2. Suppose m = n and T has the form A 7→ UAtV for some U ∈ U(Fm) and V ∈
U(Fn). Since T has spectrum {1, λ}, we see that T 2 has the form A 7→ UV tAU tV and has

spectrum {1, λ2}. Let X = UV t and Y = U tV . Then X and Y have the same eigenvalues,

say, µ1, . . . , µn. Further, T 2 is diagonalizable and has eigenvalues µiµj for 1 ≤ i, j ≤ n.

If λ2 /∈ {1,−1}, then X cannot have spectrum {1, λ2}; otherwise, T 2 will have spectrum

{1, λ2, λ4} 6= {1, λ2}. So, X is a scalar matrix and so is Y . It follows that T 2 is a scalar

operator, which contradicts the fact that T 2 has spectrum {1, λ2}.
If λ2 = −1, then F = C, λ = ±i, X2 = I, and V = X tU . Suppose W1 ∈ U(Cn) is such

that X = W ∗
1DW1 with D = Ik ⊕−In−k for some k ∈ {1, . . . , n− 1}. Then T 2 has the form

A 7→ XAU tX tU = W ∗
1DW1AW

∗
2DW2

with W2 = W 1U. Thus, T 2(A) = A if and only if W1AW
∗
2 = A1 ⊕ A2 for some A1 ∈Mk(C)

and A2 ∈ Mn−k(C). Since T is a diagonalizable operator on Mn(C) with spectrum {1, λ}
where λ = ±i, we see that T (A) = A if and only if T 2(A) = A. Thus, for any A of the form

W ∗
1 (A1 ⊕ A2)W2, we have

W ∗
1 (A1 ⊕ A2)W2 = A = T (A) = UAtX tU = UW t

2(A
t
1 ⊕ At

2)W 1X
tU

= U(U∗W ∗
1 )(At

1 ⊕ At
2)W 1(W

t
1DW 1)U = W ∗

1 (At
1 ⊕ At

2)DW2,
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which is impossible.

If λ2 = 1, then T 2 = I and λ = −1. We may assume that all the eigenvalues of X equal

µ ∈ {1,−1}. Thus, UV t = I or UV t = −I. Hence, T has the form A 7→ ±UAtU . By

Lemma 1.1, P = (T + I)/2 has the form A 7→ (±UAtU + A)/2. Thus, condition (c) holds.

Case 3. Suppose Mm,n(F) = M4(R) and K = 〈G, τ, ϕ〉. Then λ = −1. By Lemma 1.1,

there is T ∈ K with T 2 = I such that P = (I + T )/2. Thus, condition (d) holds.

The converse is clear.

5 Unitary congruence invariant norms

In this section we consider V to be one of the following matrix spaces: Sn(C) is the linear

space of all n × n symmetric matrices over C, and Kn(F) is the linear space of all n × n

skew-symmetric matrices over F. Let G be the group of all linear operators of the form

A 7→ U tAU for some fixed unitary (orthogonal) U ∈ Mn(F). Then G-invariant norms are

called unitary congruence invariant norms. Of course, if U is unitary and T : V → V is

defined by T (A) = UAU t, then T is a unitary operator on V and preserves any unitary

congruence invariant norm. Moreover, suppose U ∈ U(Cn) has eigenvalues µ1, . . . , µn with

orthonormal eigenvectors u1, . . . , un. Then for V = Sn(C), T has eigenvalues µiµj with

eigenvector uiu
t
j + uju

t
i for 1 ≤ i, j ≤ n; for V = Kn(C), T has eigenvalues µiµj with

eigenvector uiu
t
j − uju

t
i for 1 ≤ i < j ≤ n. For Kn(R), we can extend T to Kn(C) and

conclude that T has eigenvalues µiµj for 1 ≤ i < j ≤ n as well. This observation will be

used in our discussion.

If K is the isometry group of a unitary congruence invariant norm on Sn(C), which is

not a multiple of the Frobenius norm, then K = G (see [5, 7]). If K is the isometry group

of a unitary congruence invariant norm on Kn(F), which is not a multiple of the Frobenius

norm, then one of the following holds (see [5, 7]):

1. K = G if F = C, or K = 〈G, τ〉 if F = R.

2. n = 4 and K = 〈G,ψ〉 if F = C, or K = 〈G, τ, ψ〉 if F = R, where ψ(A) is obtained

from A by interchanging its (1, 4) and (2, 3) entries, and interchanging its (4, 1) and

(3, 2) entries accordingly.

Note that the mapping on K4(C) defined by A 7→ ψ(UAU t) can be written as A 7→
det(U)Wψ(A)W t with W = RUR, where R = E14 − E23 + E32 − E41. (For instance,

one can verify the equality of the two mappings for A = Eij − Eji with 1 ≤ i < j ≤ 4.)

As a result, for each mapping T in 〈G,ψ〉 \ G there are X, Y ∈ U(C4) such that T (A) =

ψ(XAX t) = Y ψ(A)Y t for all A ∈ K4(C). Similarly, for each U ∈ U(R4), a mapping defined

by A 7→ ψ(UAU t) can be written as A 7→ det(U)RURψ(A)RU tR, where R is defined as

above. Consequently, for each mapping T in 〈G, τ, ψ〉 \G there are X, Y ∈ U(R4) such that

T (A) = ±ψ(XAX t) = ± det(X)Y ψ(A)Y t for all A ∈ K4(R).
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Proposition 5.1. Let ‖ · ‖ be a unitary congruence invariant norm on Sn(C), which is

not a multiple of the Frobenius norm, and let K be the isometry group of ‖ · ‖. Suppose

P : Sn(C) → Sn(C) is a non-trivial linear projection and λ ∈ T \ {1}. Then P + λP ∈ K if

and only if λ = −1 and there exists R = R∗ = R2 in Mn(C) such that P or P has the form

A 7→ RtAR + (I −Rt)A(I −R).

By the above result, one sees that there are no non-trivial bicircular projections on Sn(C).

Proof. Let T = P + λP = λI + (1 − λ)P ∈ K. Then there exists U ∈ U(Cn) such that

T (A) = U tAU for all A ∈ Sn(C). By Lemma 1.1, T has spectrum {1, λ}. Suppose U has

eigenvalues µ1, . . . , µn. Then T has eigenvalues µjµk, 1 ≤ j, k ≤ n. If U has at least 3

distinct eigenvalues, say, µ1, µ2, µ3, then µ1µ2, µ2µ3, µ1µ3 are distinct eigenvalues of T , which

is impossible. Hence U has only two distinct eigenvalues, say, µ1, µ2. Thus, {µ2
1, µ

2
2, µ1µ2} =

{1, λ}. Hence, two of the numbers µ2
1, µ

2
2, µ1µ2 are equal, and we have µ1 = −µ2. As a result,

µ2
1 = µ2

2 = −µ1µ2. Hence, λ = −1 and either

(1) µ2
1 = µ2

2 = 1 with µ1µ2 = −1 so that {µ1, µ2} = {1,−1}, or

(2) µ2
1 = µ2

2 = −1 with µ1µ2 = 1 so that {µ1, µ2} = {i,−i}.

If (1) holds, then U = U∗; if (2) holds, then U = −U∗. Since T has the form A 7→ U tAU,

Lemma 1.1 implies that P has the form A 7→ (A + U tAU)/2. If U = U∗, then P has the

form A 7→ RtAR+(I −Rt)A(I −R), with R = (I −U)/2. If U = −U∗, then P has the form

A 7→ RtAR + (I −Rt)A(I −R), with R = (I − iU)/2. In both cases R = R∗ = R2.

The converse can be easily verified.

Next, we consider Kn(F). Since K2(F) is one dimensional, we assume that n ≥ 3 to avoid

trivial consideration.

Proposition 5.2. Let n ≥ 3 and ‖ · ‖ be a unitary congruence invariant norm on Kn(F),

which is not a multiple of the Frobenius norm. Let K be the isometry group of ‖ · ‖. Suppose

P : Kn(F) → Kn(F) is a non-trivial linear projection and λ ∈ T \ {1}. Then P + λP ∈ K if

and only if one of the following holds.

(a) F = C, there exists R = vv∗ for a unit vector v ∈ Cn such that P has the form

A 7→ RtA + AR or A 7→ (I − Rt)A(I − R). (In the second case P is of the form

A 7→ RtA+ AR.)

(b) λ = −1, K = G if F = C or K = 〈G, τ〉 if F = R, and there exists R = R∗ = R2 in

Mn(F) such that P or P has the form A 7→ RtAR + (I −Rt)A(I −R).

(c) (λ, n) = (−1, 4), ψ ∈ K and there is U ∈ U(F4), satisfying ψ(U tAU) = Uψ(A)U∗ for all

A ∈ K4(F), such that P or P has the form A 7→ (A+ψ(U tAU))/2 = (A+Uψ(A)U∗)/2.
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By the above result, we see that P is a bicircular projection if and only if condition (a)

holds. Note that most of U ∈ U(F4) do not satisfy the condition required in (c). Here,

U =
1

2


1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1

 ∈ U(F4)

is an example of a matrix satisfying condition (c). One sees that condition (c) is equivalent

to the condition that (2P − I)2 = I.

Proof. (⇐) Suppose that (a) holds. For all A ∈ Kn(C) we have (vtAv)t = −vtAv. Since

vtAv ∈M1(C) we conclude vtAv = 0 and thus RtAR = 0. Furthermore, R = R∗ = R2.

If P is of the form A 7→ RtA+AR, then P+λP is of the form A 7→ λA+(1−λ)(RtA+AR).

If we define U = R/
√
λ +

√
λ(I − R), then U is unitary and U tAU = (P + λP )(A) for all

A ∈ Kn(C). Hence, P + λP ∈ G ⊆ K.
If P is of the form A 7→ (I −Rt)A(I −R), then P + λP has the form

A 7→ A+ (λ− 1)(RtA+ AR) = U tAU

for the unitary U = λR + (I −R). Thus P + λP ∈ G ⊆ K.
If (b) or (c) holds, then one can easily verify that 2P − I ∈ K.

(⇒) Let T = P + λP = λI + (1− λ)P ∈ K. We consider two cases.

Case 1. Suppose λ = −1. Then T 2 is the identity operator.

Assume that there is U ∈ U(Fn) such that T has the form A 7→ U tAU or A 7→ −U tAU.

In both cases, T 2 has the form A 7→ X tAX, where X = U2. Since A = T 2(A) = X tAX for

all A ∈ Kn(F), it follows that X = I or −I. Hence U = U∗ or U = −U∗. Note that the

second case cannot occur if F = R. If F = R, then U = U∗ and T has the form A 7→ U tAU

or A 7→ −U tAU. Lemma 1.1 implies that P has the form A 7→ (A+ U tAU)/2, or P has the

form A 7→ (A + U tAU)/2. If we define R = (I − U)/2, then R = R∗ = R2, and P or P has

the form A 7→ RtAR + (I − Rt)A(I − R). If F = C, then U = U∗ or U = −U∗, and T has

the form A 7→ U tAU. If U = U∗, then P has the form A 7→ RtAR+ (I −Rt)A(I −R), with

R = (I − U)/2. If U = −U∗, then P has the form A 7→ RtAR + (I − Rt)A(I − R), with

R = (I − iU)/2 satisfying R = R∗ = R2. Thus we get (b).

Suppose n = 4 and there is U ∈ U(F4) such that T has the form A 7→ ψ(U tAU)

or A 7→ −ψ(U tAU). By the remark before Proposition 5.1, T 2(A) = det(U)X tAX with

X = URUR, where R = E14 − E23 + E32 − E41. Since T 2 is the identity operator, there is

ξ ∈ C with ξ2 = det(U) such that I/ξ = X = URUR. If F = R, then X is a real matrix,

and thus det(U) = 1. If F = C, then we see that U∗ = ξRUR. In both cases, we have

ψ(U tAU) = Uψ(A)U∗

for all A ∈ K4(F). We get condition (c).
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Case 2. Suppose λ 6= −1. Then F = C.

Assume that there is U ∈ U(Cn) such that T has the form A 7→ U tAU . If U has

eigenvalues µ1, . . . , µn, then T has eigenvalues µiµj with 1 ≤ i < j ≤ n. If U has 3

distinct eigenvalues, say, µ1, µ2, µ3, then µ1µ2, µ1µ3, µ2µ3 are distinct eigenvalues of T , which

is impossible. So, U has two distinct eigenvalues, say, µ1 and µ2. If each of them has

multiplicities at least 2, then {µ2
1, µ

2
2, µ1µ2} = {1, λ}. Thus, two of the three numbers

µ2
1, µ

2
2, µ1µ2 are equal. It follows that µ1 = −µ2, and µ2

1 = µ2
2 = −µ1µ2. Hence, λ = −1,

which is a contradiction. As a result, the eigenvalues of U have the form µ1, · · · , µ1, µ2 such

that either

(1) µ2
1 = λ and µ1µ2 = 1, or (2) µ2

1 = 1 and µ1µ2 = λ.

Consequently, the eigenvalues of U have one of the following patterns.

(i)
√
λ, · · · ,

√
λ, 1/

√
λ, (ii) −

√
λ, · · · ,−

√
λ,−1/

√
λ, (iii) 1, · · · , 1, λ, (iv) −1, · · · ,−1,−λ.

If (i) or (ii) holds, then U = ±W ∗((1/
√
λ)E11 +

√
λ(I − E11))W. Since E11AE11 = 0 for

all A ∈ Kn(C), we have

T (W tAW ) = W t(λA+ (1− λ)(E11A+ AE11))W

for all A ∈ Kn(C). If we put R = W ∗E11W , then

T (W tAW ) = λW tAW + (1− λ)(RtW tAW +W tAWR)

for all A ∈ Kn(C). By Lemma 1.1, P has the form A 7→ RtA+ AR.

Now suppose (iii) or (iv) holds. Thus U = ±W ∗(λE11 +(I −E11))W. For all A ∈ Kn(C),

we have

T (W tAW ) = W tAW − (1− λ)(RtW tAW +W tAWR)

with R = W ∗E11W. By Lemma 1.1, P has the form A 7→ RtA+ AR.

Note that R = W ∗E11W = vv∗ for the unit vector v = W ∗e1 ∈ Cn. Furthermore,

RtAR = W tE11(WAW ∗)E11W = 0 since WAW ∗ ∈ Kn(C). Therefore, if P has the form

A 7→ RtA+ AR, we can also write P (A) = (I −Rt)A(I −R). Hence we get (a).

Next, suppose n = 4 and there is U ∈ U(C4) such that T has the form A 7→ ψ(U tAU). By

the remark before Proposition 5.1, T 2 has the form A 7→ det(U)X tAX, where X = URUR

with R = E14 − E23 + E32 − E41. If X has eigenvalues µ1, µ2, µ3, µ4, then T 2 has spectrum

{det(U)µiµj : 1 ≤ i < j ≤ 4} = {1, λ2}.
Note that X cannot have 3 distinct eigenvalues, say, µ1, µ2, µ3. Otherwise, T 2/ det(U)

will have distinct eigenvalues µ1µ2, µ1µ3, µ2µ3.

If X = ξI, then T 2 has spectrum {det(U)ξ2}. Then λ2 = 1, i.e., λ = −1, which

contradicts our assumption.

So, X has two distinct eigenvalues, say, µ1, µ2.

Let Y = UR and Z = UR. Then X = Y Z and X = ZY have the same eigenvalues.

Thus, the non-real eigenvalues of X occurs in complex conjugate pairs. Moreover, det(X) =

det(U) det(U) = 1.
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(1) If µ1, µ2 are real numbers, then X has eigenvalues 1, 1,−1,−1, and T 2/ det(U) has

spectrum {1,−1}. Hence, det(U) = ±1 and λ2 = −1.

(2) If µ1 or µ2 is non-real, then µ1 = µ2 and T 2/ det(U) has spectrum {1, µ2
1, µ

2
1}. It

follows that µ1 = ±i. Thus, T 2 has spectrum {det(U),− det(U)}. So, det(U) = ±1 and

λ2 = −1.

Let X = µW (I2 ⊕−I2)W ∗ with µ = {1, λ}. Then

T 2(A) = ξW (I2 ⊕−I2)W tAW (I2 ⊕−I2)W ∗

with ξ = ±1. Suppose ξ = 1. Since T = (T 2 + λI)/(1 + λ), for all A ∈ K4(C) of the form

W

(
A1 B

−Bt A2

)
W ∗, A1, A2 ∈ K2(C),

we have

T (A) = W

(
A1 λB

−λBt A2

)
W ∗.

Now, the mapping L defined by

L(A) = (λI2 ⊕ I2)W
tT (WAW ∗)W (λI2 ⊕ I2)

is an isometry for K4(C), and for any A ∈ K4(C) of the form(
A1 B

−Bt A2

)
, A1, A2 ∈ K2(C),

we have

L(A) =

(
−A1 −B
Bt A2

)
.

Since ‖ · ‖ is not a multiple of the inner product norm, there is X, Y with singular values

1, 1, 0, 0 and cos t, cos t, sin t, sin t for some t ∈ (0, π/4] such that ‖X‖ 6= ‖Y ‖. Let

Z =
1√
2


0 cos t sin t 0

− cos t 0 0 − cos t

− sin t 0 0 − sin t

0 cos t sin t 0

 .

Then Z has singular values 1, 1, 0, 0, and L(Z) has singular values cos t, cos t, sin t, sin t.

Hence, Z is unitarily congruent to X and L(Z) is unitarily congruent to Y . However,

‖Z‖ = ‖X‖ 6= ‖Y ‖ = ‖L(Z)‖,

which is a contradiction.

If ξ = −1, then we observe P instead of P. Applying the above arguments to P we can

derive a contradiction.

11



6 Additional results and remarks

We can use the same proof strategy to obtain results on other normed vector spaces equipped

with G-invariant norms. We mention a few more examples and some remarks in this section.

Let V = Hn(C) be the real space of all n × n complex hermitian matrices. Let G be

the group of linear operators on V of the form A 7→ U∗AU for some U ∈ U(Cn). Then G-

invariant norms are called unitary similarity invariant norms. Let K be the isometry group

of a unitary similarity invariant norm ‖ · ‖ on V. Then K must be of one of the following

forms (see [5, 7, 11, 12]):

(a) K = SU(V)S−1 for some S ∈ Γ, where Γ is the group of invertible operators of the

form A 7→ αA+ (β − α)(trA)In/n for some positive α, β ∈ R,

(b) K = U ′(V) = {U ∈ U(V) | U(In) = ±In},

(c) K = 〈G, τ, T0〉, where T0 is defined by T0(A) = A− 2(trA)In/n,

(d) K = 〈G, τ〉.

Note that if U ∈ U(Cn) has eigenvalues µ1, . . . , µn, then the operator A 7→ UAU∗ on

Hn(C) has the same eigenvalues as the operator acting on Mn(C) = Hn(C)+iHn(C), namely,

µiµj with 1 ≤ i, j ≤ n.

Proposition 6.1. Let ‖ · ‖ be a unitary similarity invariant norm on V = Hn(C), and let K
be the isometry group of ‖ · ‖. Suppose P : V → V is a non-trivial linear projection. Then

P − P ∈ K if and only if one of the following holds.

(a) K = SU(V)S−1 for some S ∈ Γ, and there exists R : V → V, satisfying R = R∗ = R2,

such that P = SRS−1.

(b) K = U ′(V), P = P ∗, and P (In) = 0 or P (In) = In.

(c) K = 〈G, τ〉 or K = 〈G, τ, T0〉,

(c.1) there exists R = R2 ∈ Hn(C) such that P or P has the form

A 7→ RAR + (I −R)A(I −R),

or

(c.2) there exists U ∈ U(Cn) with U = ±U t such that P or P has the form

A 7→ (A+ UAtU)/2.
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(d) K = 〈G, τ, T0〉,

(d.1) there exists R = R2 ∈ Hn(C) such that P or P has the form

A 7→ RAR + (I −R)A(I −R)− (trA)In/n,

or

(d.2) there exists U ∈ U(Cn) with U = ±U t such that P or P has the form

A 7→ (A+ UAtU)/2− (trA)In/n.

Observe that case (a) happens if and only if the norm is induced by the inner product

(X, Y ) = (SX, SY ). Thus, the result also follows from Proposition 2.1.

Proof. Let us define T = P − P = 2P − I ∈ K. We consider three cases.

Case 1. Let K = SU(V)S−1 for some S ∈ Γ. Then T = SUS−1 for some fixed U ∈ U(V).

If we define R = (U + I)/2, then

P = (T + I)/2 = S(U + I)S−1/2 = SRS−1.

Furthermore, R is normal and its spectrum is {0, 1}, thus R2 = R = R∗. Hence we get (a).

Case 2. Let K = U ′(V). Then T is unitary, and T (In) = In or T (In) = −In. Since

T 2 = I, we have T = T ∗. Then P = (T + I)/2 implies P ∗ = P. Since T (In) equals −In or

In, we get P (In) equals 0 or In. Thus condition (b) follows.

Case 3. Suppose T has one of the following forms:

(i) A 7→ aU∗AU + (b− a)(trA)In/n, or (ii) A 7→ aU∗AtU + (b− a)(trA)In/n,

for some U ∈ U(Cn) and a, b ∈ {−1, 1}. Then T 2 has the form A 7→ X∗AX, with X = U2

if T has the first form, and X = UU if T has the second form. Since T has spectrum

{1,−1}, T 2 is the identity operator. Since X is unitary, it has modulus one eigenvalues, say,

µ1, . . . , µn. Then T 2 has eigenvalues µiµj for 1 ≤ i, j ≤ n. Hence µiµj = 1 and thus µj = µi

for 1 ≤ i, j ≤ n. Therefore, X is a (unitary) scalar matrix.

Assume that T has the form (i) and U2 = µI for some modulus one µ ∈ C. Let R =

(I−(1/
√
µ)U)/2. Then R = R∗ = R2 and P or P has the form A 7→ RAR+(I−R)A(I−R)

or A 7→ RAR+(I−R)A(I−R)−(trA)In/n. So, we get (c.1) or (d.1). Now assume that T has

the form (ii) and UU = µI. Then U = µU t = µ(µU t)t = µ2U, so µ2 = 1. Thus U is symmetric

or skew-symmetric. In this case P or P has the form A 7→ (A+aU∗AtU+(b−a)(trA)In/n)/2.

We get (c.2) or (d.2).

The converse is easy to verify.

One may consider orthogonal similarity invariant norms on the real space Sn(R) of n×n
real symmetric matrices, i.e., those norms ‖ · ‖ on Sn(R) such that ‖UAU t‖ = ‖A‖ for all

A ∈ Sn(R) and U ∈ U(Rn). The results on isometries of such norms are very similar to
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those of unitary similarity invariant norms on Hn(C). Accordingly, one can obtain a result

similar to Proposition 6.1 for orthogonal similarity invariant norms on Sn(R). In that case

(c.2) and (d.2) reduce to (c.1) and (d.1) respectively.

One can consider unitary congruence invariant norms on Mn(F). We may focus on those

norms which are not unitarily invariant. Otherwise, we are back to section 4. In many cases,

the isometry group is reducible and act on the subspaces Sn(F) and Kn(F) independently;

see [5, 7]. One can deduce the results on Mn(F) using those on Sn(F) and Kn(F).

Similarly, one can consider unitary similarity invariant norms on Mn(C). Again, we

should assume that the norms are not unitarily invariant. In many cases (see [5]), the

isometry group would leave Hn(C) invariant (up to a unit multiple). Then, we can apply

the result on Hn(C) to obtain the result on Mn(C).

Our proof techniques can also be used to study other matrix spaces equipped with G-

invariant norms; [5, 9, 12]. It would be interesting to extend our techniques and results to

infinite dimensional normed spaces; [1, 4, 6, 8, 13].

Acknowledgment
This research began at the 2005 Linear Algebra Workshop at Bled. The authors would

like to thank the organizer for providing the excellent research environment that stimulate

this collaboration.

References

[1] J.T. Chan, C.K. Li and N.C. Tu, A class of unitarily invariant norms on B(H),

Proc. Amer. Math. Soc. 129 (2001), 1065-1076.
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