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Abstract. In this paper, we discuss some matrix techniques in game theory. In particular, we give
a short proof of the fact that equilibrium pairs of a two-person general-sum game can be found
by solving certain systems of linear inequalities, and hence some standard linear programming
packages such as LINDO or Maple can be used to do the computation. The technique is also used
to study evolutionary games and auction games. In the former case, additional techniques are used
to determine evolutionary stable strategies, and it is also shown that the computation can be done
by LINDO.
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1. Introduction Many real-life situations in economics, business, politics, and even evolutionary
biology can be modeled as games, in which players with conflicting interests interact and try to
maximize their payoffs, say, in terms of money, prestige, or satisfaction. We refer the readers to
[I], [O], [T] or [W] for the general background of game theory.

In this paper, we focus on (finite) two-player general-sum games, in which the two players’
interests need not be directly opposed; that is, the payoffs to both players do not necessarily sum
to zero. For example, in the auction game that we study in section 4, each of the two players has a
choice of finitely many pure strategies, which correspond to the different dollar amounts that they
may bid. Suppose a player can choose to bid 2 dollars or 3 dollars. He or she can also choose
the mixed strategy of bidding 2 dollars with probability p, and 3 dollars with probability (1 − p),
where 0 ≤ p ≤ 1. Both players would try to get the object with the lowest price relative to their
evaluations of it.

Mathematically, if the two players, I and II, have m and n pure strategies respectively, I’s
mixed strategies are given by a nonnegative column vector x = (x1, . . . , xm)t where xi is the
probability of playing the i-th pure strategy; II’s mixed strategies are given by a nonnegative
column vector y = (y1, . . . , yn)t where yj is the probability of playing the j-th pure strategy.
Obviously,

∑m
i=1 xi =

∑n
j=1 yj = 1. Of course, a vector x (respectively, y) with only one non-zero

entry, which equals to 1, corresponds to a pure strategy of player I (respectively, player II).
Suppose the payoffs of player I and II are given by the pair (aij , bij) when they use pure

strategies i and j, respectively, for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then the two m×n matrices A = (aij)
and B = (bij) are called the payoff matrices of the game. If x and y are the mixed strategies chosen
by I and II, then their payoffs will be computed byA(x, y) = xtAy and B(x, y) = xtBy, respectively.
Because of this representation, a two-player general-sum game is also called a bimatrix game.

† Part of this research was done during the summer of 1996 under the support of the Wilson
Cross-Disciplinary Summer scholarship.
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A pair of mixed strategies (x∗, y∗) is an equilibrium pair if

A(x, y∗) ≤ A(x∗, y∗) and B(x∗, y) ≤ B(x∗, y∗),

for any choices of mixed strategies x and y. Intuitively, an equilibrium pair is a set of strategies from
which neither player will deviate unilaterally; that is, given the strategy chosen by player I, player
II does not wish to change his strategy, and vice versa. It is one of the broadest non-cooperative
solution concepts for a bimatrix game.

Although every bimatrix game is guaranteed to have at least one equilibrium pair by a theorem
of Nash (e.g., see [T, p.57]), computing all the equilibrium pairs for a large game is rather difficult
(e.g., [Wi]), and it is usually not discussed in standard references if m,n ≥ 3 (e.g., [I], [O], [T] and
[W]). In the next section, we use elementary linear algebra technique to show that such a problem
can be reduced to solving a certain system of linear inequalities. As a result, one may use standard
linear programming packages such as LINDO or Maple to do the computation. In sections three
and four, we apply the result to analyse equilibrium strategies of evolutionary games and auction
games. In the former case, additional techniques are developed to determine evolutionary stable
strategies (see section 3 for the precise definitions). Furthermore, we analyse the problems for
implementing the computation procedures, and discuss how one can introduce the techniques in a
game theory course at the undergraduate level to enhance the understanding of the subject.

For k = m or n, we shall use Pk to denote the set of vectors in IRk corresponding to all
possible probability vectors of mixed strategies, i.e., vectors with nonnegative entries that sum to

1. For k = m or n, we let {e(k)
1 , . . . , e

(k)
k } be the standard basis of IRk, and let e(k) ∈ IRk be the

vector with all entries equal to one. We shall simply write ei instead of e
(k)
i if the size of ei is clear

from the context. Define the set of equilibrium pairs as

E(A,B) =

(x, y) ∈ Pm ×Pn :
xtAy ≥ x̃tAy for any x̃ ∈ Pm

xtBy ≥ xtBỹ for any ỹ ∈ Pn

 .

If a matrix X has k columns and 1 ≤ i1 < . . . < it ≤ k, we denote by X(i1, · · · , it) the submatrix
of X formed by its i1, . . . , it columns.

2. Computation of Equilibrium Pairs Let (A,B) be a pair of m×n payoff matrices for player
I and player II in a bimatrix game. In the following, we show that the computation of equilibrium
pairs can be reduced to a problem of solving systems of linear inequalities.

Theorem 2.1. Let x = xi1ei1 + · · ·+ xipeip ∈ Pm, with xik
> 0 for all k, and y = yj1ej1 + · · ·+

yjqejq ∈ Pn, with yjl
> 0 for all l. Then (x, y) ∈ E(A,B) if and only if

[
1
p
e(m)(ei1 + · · ·+ eip)t − Im

]
A(j1, · · · , jq)

 yj1
...

yjq

 ≥

 0
...
0

 , (1a)
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and [
1
q
e(n)(ej1 + · · ·+ ejq

)t − In

]
Bt(i1, · · · , ip)

 xi1
...

xip

 ≥

 0
...
0

 . (1b)

Proof. Let x = xi1ei1 + · · ·+xip
eip

∈ Pm, with xik
> 0 for all k, and y = yj1ej1 + · · ·+yjq

ejq
∈ Pn,

with yjl
> 0 for all l. Suppose Ay = (c1, . . . , cm)t and xtB = (d1, . . . , dn). Then (x, y) ∈ E(A,B)

if and only if
ci1 = · · · = cip

≥ ci for all i = 1, . . . ,m, (2a)

and
dj1 = · · · = djq ≥ dj for all j = 1, . . . , n. (2b)

Note that (2a) and (2b) hold if and only if

1
p
(ci1 + · · ·+ cip)e(m) −

 c1
...

cm

 ≥

 0
...
0

 , (3a)

and

1
q
(dj1 + · · ·+ djq )e

(n) −

 d1
...

dn

 ≥

 0
...
0

 . (3b)

One easily checks that the left hand side of (3a) is the same as the left hand side of (1a), and that
the left hand side of (3b) is the same as the left hand side of (1b). The result follows.

In application of Theorem 2.1, one may permute the rows and columns of A and B, i.e., replac-
ing (A,B) by (RAS, RBS) for some suitable permutation matrices R and S, so that (i1, . . . , ip) =
(1, . . . , p) and (j1, . . . , jq) = (1, . . . , q).

Theorem 2.1 can be used for any of the following:
(a) Determine whether a given (x, y) ∈ Pm×Pn is indeed an equilibrium pair by checking whether

it falls within the feasible set of the system (1).
(b) Determine whether there exists a pair (x, y) ∈ E(A,B) with prescribed supports, i.e., positions

of positive entries in the vectors x and y, respectively.
(c) In principle, one can find all (x, y) ∈ E(A,B) by the following algorithm.

For any non-empty P = {i1, . . . , ip} ⊆ {1, . . . ,m} and Q = {j1, . . . , jq} ⊆ {1, . . . , n}, deter-
mine the feasible set of the system (1a) and (1b) with the additional constraints:

xi1 , . . . , xip
> 0, xi1 + · · ·+ xip

= 1, yj1 , . . . , yiq
> 0, yj1 + · · ·+ yjq

= 1.

So, one has to solve (2m − 1)(2n − 1) so many systems. Clearly, the computation becomes
very involved when each player has a large number of pure strategies. One may improve the
efficiency of the algorithm slightly as follows.
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For each nonempty subset P = {i1, . . . , ip} ⊆ {1, . . . ,m}, determine those y ∈ Pn that
satisfy (1a) with (j1, . . . , jq) = (1, . . . , n). One can then focus on those y and the subsets
Q = {j1, . . . , jq} of {1, . . . , n} containing indices corresponding to the positive entries of y

to solve (1b). As a result, for each non-empty subset P ⊆ {1, . . . ,m}, one may not need to
consider all the subsets of {1, . . . , n} in the computation.

Even the modified algorithm mentioned above will improve the efficiency of the computational
procedures, it is still rather difficult to determine all equilibrium pairs. Linear programming
packages such as LINDO and Maple are unable to find the feasible set of the system; they can only
determine whether a given set of constraints is feasible.

On the other hand, in classroom teaching, one may use the modified algorithm to study
equilibrium pairs of bimatrix games with m,n ≥ 3 to enhance the understanding of the subject.
For example, assume (m,n) = (3, 4). One can first identify those equilibrium pairs for which P

is a singleton. For P = {1, 2, 3}, one only need to focus on those y ∈ P4 for which Ay = (c, c, c)t

for some c ∈ IR. So, one is left with the cases when P = {i1, i2} has two elements. In each of
these cases, one can solve (1a) to identify those y so that Ay = (c1, c2, c3)t so that ci1 = ci2 are
the largest entries in the vector, and then proceed to solve the system (1b).

3. Evolutionary Games An interesting application of game theory is to model animal behaviour
evolves from generation to generation (e.g., see [O] and [W]). In such a model, one may assume
that certain animal can have n types of behaviour, say, type 1 to type n. When a type i animal
encounters a type j animal, it will get a reward (payoff) of aij units (in terms of food, territory,
etc.). One would consider such a model as a bimatrix game with payoff matrices A and At, and
call it an evolutionary game. A mixed strategy x ∈ Pn can be viewed as the proportion of these
various types of animals in the population, i.e., xi ≥ 0 is the fraction of type i animals in the
system. One may also regard x ∈ Pn as a genotype of the animal, i.e., there is a probability of xi

for a newly born animal to have type i behaviour. Then the expected payoff of x ∈ Pn is computed
by xtAx. We say that x is an evolutionary stable strategy (abbreviate to ESS) if for any y ∈ Pn

there exists δ > 0 such that

xtA(ry + (1− r)x) > ytA(ry + (1− r)x)

for any 0 < r < δ. Roughly speaking, this condition ensures that if a small proportion (no more
than δ) of a different mutant genotype y ∈ Pn enters the system, the expected payoff of the
existing genotype x will be higher than that of the mutant genotype y. Thus the system will have
a tendency to return to the original sate.

It is known (e.g., see [O] and [W]) that a genotype x ∈ Pn is ESS if and only if the following
two conditions hold:

(i) xtAx ≥ ytAx for any y ∈ Pn,

(ii) if y ∈ Pn is such that y 6= x and xtAx = ytAx, then xtAy > ytAy.
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One easily sees that an x ∈ Pn satisfying condition (i) if and only if (x, x) is an equilibrium
pair of the bimatrix game (A,At). Such an x is called an equilibrium genotype of the evolutionary
game. We shall use Theorem 2.1 and some additional matrix techniques to derive some effective
schemes for checking conditions (i) and (ii).

In the following, We shall use {e1, . . . , en} to denote the standard basis of IRn, and let e ∈ IRn

be the vector with all entries equal to one. If a matrix X has k columns and 1 ≤ i1 < . . . < it ≤ k,
we shall continue to denote by X(i1, · · · , it) the submatrix of X formed by its i1, . . . , it columns.

By Theorem 2.1, we have the following result.

Theorem 3.1. A mixed strategy x = xi1ei1 + · · ·+ xipeip ∈ Pn with xik
> 0 for all 1 ≤ k ≤ p is

an equilibrium genotype of the evolutionary game (A,At) if and only if

[
1
p
e(ei1 + · · ·+ eip

)t − In

]
A(i1, · · · , ip)

 xi1
...

xip

 ≥

 0
...
0

 . (4)

Notice that it is relatively easy to determine all the equilibrium genotypes in an evolutionary
game. One only need to solve the system (4) for each non-empty subset P = {i1, . . . , ip} of
{1, . . . , n} with the additional constraints that xi1 , . . . , xip

> 0 and xi1 + · · ·+ xip
= 1. Moreover,

the study of condition (i) is useful in reducing the number of cases needed to be checked for
condition (ii) as shown in the following.

Theorem 3.2. Suppose x̃ = x̃i1ei1 + · · · + x̃ip
eip

∈ Pn with x̃ik
> 0 for all 1 ≤ k ≤ p is an

equilibrium genotype of the evolutionary game (A,At). If x ∈ Pn is such that x 6= x̃ and the

i1, . . . , ip entries of x are all positive, then x cannot satisfy condition (ii) and hence is not an ESS.

Proof. Suppose x and x̃ satisfy the hypotheses of the theorem. If Ax = (c1, . . . , cn)t is an equilib-
rium genotype, then ci1 = · · · = cip

≥ cj for any 1 ≤ j ≤ n. Thus x̃tAx = xtAx. However, since
x̃ is also an equilibrium genotype, it is impossible to have xtAx̃ > x̃tAx̃, and thus condition (ii)
does not hold.

Now, suppose x =
∑p

k=1 xik
ek is an equilibrium genotype with xik

> 0 for all k such that no
other equilibrium genotype x̃ has supports lying in {i1, . . . , ip}. For simplicity, we let (i1, . . . , ip) =
(1, . . . , p). Otherwise, we may permute the rows and the corresponding columns of A to achieve
that. [Note that for a general bimatrix game, we may replace (A,B) by (RAS, RBS) for suitable
permutation matrices R and S. For an evolutionary game (A,At) one should use (RARt, RAtRt)
for a suitable permutation matrix R to preserve the structure.] To check whether condition (ii)
holds for such an x, let Ax = (c1, . . . , cn)t. Since x is a equilibrium point, c1 = · · · = cp ≥ ci for
all i. It is possible that there are j > p such that cj = cp. Again, we may apply a permutation
to rows and the corresponding columns of A and assume that c1 = · · · = cq > cj for all j > q.
Standard method (e.g., see [T, Chapter 8]) of testing ESS requires checking (x− y)tA(x− y) > 0
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for all x = (x1, . . . , xp, 0, . . . , 0)t, y = (y1, . . . , yq, 0, . . . , 0)t ∈ Pn. If q ≤ p + 1, this can be done
effectively (e.g., see [T, Problems 8.3 - 8.4]). However, if q > p + 1, there is no easy theoretical
technique or computer package that can test this condition. To get around this problem, we have
the following result.

Theorem 3.3. Suppose x = (x1, . . . , xp, 0, . . . , 0)t is an equilibrium genotype of the evolutionary

game (A,At) such that Ax = (c1, . . . , cn)t satisfies c1 = · · · = cq > cj for j > q. Let C = B + Bt,

where B is the leading principal q × q submatrix of (ext − In)A. Then x is an ESS if and only if

ytCy > 0 for any y ∈ IRq with nonnegative entries that sum up to 1.

Proof. By the given condition, y ∈ Pn satisfies xtAx = ytAx if and only if y is of the form
(y1, . . . , yq, 0, . . . , 0)t. For such a y, we need to check whether

0 < xtAy − ytAy = ytextAy − ytAy = yt[(ext − In)A]y.

Since y only has support at the first q positions, and ztXz = zt(X + Xt)z/2 for any X ∈ IRn×n

and z ∈ IRn. We get the desired conclusion.

Our condition in Theorem 3.3 is simple to check. For example, the linear programming package
LINDO can solve the optimization problem

min ytCy subject to y ∈ Pn.

Note also that a real symmetric matrix C satisfies ytCy > 0 for all nonzero nonnegative vector y

is known as copositive matrix, and is quite well-studied in matrix theory literature (e.g., see [A]
and its references).

4. Auction Games Auction games, in which one or more objects are sold to the highest
bidder(s), present another opportunity to apply Theorem 2.1, as well as to investigate the special
structure of the auction payoff matrices. In this section, we assume that only one object is sold
under Dutch auction rules. That is, the auctioneer starts the bidding at a high price (far higher
than the expected selling price) and lowers the price until someone agrees to buy the object at the
current price. In effect, therefore, the highest bidder gets the object at a price equal to the highest
bid. In our model, there are two bidders who value the object at v1 > 0 and v2 > 0 respectively.
We further specify that v1 and v2 are integers, and that v1 ≥ v2. We assume that if both players
bid the same amount, then they each have a 1

2 chance of getting the object. Finally, we only allow
integer bids. This last restriction is reasonable because any real-world auction must set a minimum
allowable increment for bids. Even in the most extreme case, the minimum increment is one cent.

Each player has (b + 1) pure strategies, where the k-th pure strategy is to bid (k− 1) dollars.
Note that k = 1, . . . , b + 1, where b is the price at which the auctioneer starts the bidding. It has
been pointed out, however, that we only need concern ourselves with bids less than or equal to
v1, as neither player will bid more than this amount. See [T, p.102] for a proof. Thus, the payoff
matrices A and B are (v1 + 1)× (v1 + 1), where the (i, j) entry is the payoff from I bidding (i− 1)
and II bidding (j − 1).
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In the following, we shall use {e0, . . . , ev1} to denote the standard basis for IRv1+1, and always
assume x = (x0, . . . , xv1)

t, y = (y0, . . . , yv1)
t ∈ Pv1+1 to be the mixed strategies of the auctioneers.

We shall use A(x, y) and B(x, y) to denote the payoff of the auctioneers using the mixed strategies
x and y, respectively.

Theorem 4.1. If v1 ≥ v2 + 2, then equilibrium pairs (x, y) of the form x = xi1ei1 + · · ·+ xip
eip

∈
Pv1+1, with xik

> 0 for all k, and y = yj1ej1 + · · ·+ yjq
ejq

∈ Pv1+1, with yjl
> 0 for all l, satisfy

one of the following:

0 < i1 < · · · < ip ≤ jq + 1 ≤ v2 (5a)

x = xv2ev2 or xv2ev2 + xv2+1ev2+1, and jq ≤ v2 (5b)

x = xi1ei1 with i1 > v2, and jq ≤ i1 − 1. (5c)

Proof. The payoff matrices A and B are

A =


v1
2 0 · · · 0 0

(v1 − 1) (v1−1)
2 · · · 0 0

...
...

. . .
...

...
1 1 · · · 1

2 0
0 0 · · · 0 0

 , B =



v2
2 (v2 − 1) · · · (v2 − v1 + 1) (v2 − v1)
0 (v2−1)

2 · · · (v2 − v1 + 1) (v2 − v1)
...

...
. . .

...
...

0 0 · · · (v2−v1+1)
2 (v2 − v1)

0 0 · · · 0 (v2−v1)
2

 .

We can immediately eliminate from consideration the last two strategies (bid v1 and v1 − 1) for
player II, as well as the last strategy (bid v1) for player I, as they are strictly dominated. Specifically,
B(x, y0e0) > B(x, yv1ev1) for all mixed strategies x. Once y0e0 is removed, A(xv1−1ev1−1, y) >

A(xv1ev1 , y) for all y. Once xv1ev1 is also removed, B(x, y0e0) > B(x, yv1−1ev1−1) for all x, and
we can remove yv1−1ev1−1 as well. When strictly dominated strategies are thus removed, the
equilibrium pairs of the reduced game are identical to the equilibrium pairs of the original game.
See for example, [T, p.83] for a proof. In other words, ip ≤ v1 − 1 and jq ≤ v1 − 2.

Now, we observe that

Ay =



c0

c1
...

cjq

cjq+1

cjq+2

...
cv1


=



v1

v1 − 1
...

v1 − jq

v1 − jq − 1
v1 − jq − 2

...
0


◦



y0
2

y0 + y1
2

...
y0 + · · ·+ yjq

2
y0 + · · ·+ yjq

y0 + · · ·+ yjq

...
y0 + · · ·+ yjq


,

where ◦ denotes the Schur (entrywise) product. Note that c0 is never the largest entry in Ay: If
y0 = 0, then there is some other yk > 0 for 0 < k ≤ jq; in this case, ck > c0. If y0 > 0, then c1 > c0

as long as v1 > 2, which always holds if v1 ≥ v2 + 2. Note also that cjq+1 > cjq+k for all k > 1.
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Thus, equilibrium pairs of the form x = xi1ei1 + · · ·+ xipeip ∈ Pv1+1, with xik
> 0 for all k, and

y = yj1ej1 + · · ·+ yjqejq ∈ Pv1+1, with yjl
> 0 for all l, must satisfy

0 < i1 < · · · < ip ≤ jq + 1 and 0 ≤ j1 < · · · < jq ≤ v1 − 2. (6)

Player II’s situation presents the following analysis:
(a) If i1 < v2, then xtB = (d0, . . . , dv1) satisfies dv2−1 > dv2 = 0. So we have jq < v2. Substituting

into the first part of (6) yields 0 < i1 < · · · < ip ≤ jq + 1 ≤ v2. Obviously, this result
corresponds to (5a) above.

(b) If i1 = v2, then xtB = (d0, . . . , dv1) satisfies d0 = · · · = dv2 = 0 > dv2+1, which implies that
jq ≤ v2. Substituting into the first part of (6) gives v2 = i1 < ip ≤ jq + 1 ≤ v2 + 1. Hence,
equilibrium pairs satisfy x = xv2ev2 or x = xv2ev2 + xv2+1ev2+1, and jq ≤ v2. This result
corresponds to (5b) above.

(c) If i1 > v2, then xtB = (d0, . . . , dv1) satisfies d0 = · · · = di1−1 = 0 > di1 . Therefore, jq ≤ i1 − 1.
From the first part of (6), we have ip ≤ jq +1 ≤ i1, which implies p = 1 and i1 = jq +1. Thus,
equilibrium pairs satisfy x = xi1ei1 and jq ≤ i1 − 1, which corresponds to (5c) above.

Example 4.2. Let v1 = 4 and v2 = 2. Then Theorem 4.1 tells us that all equilibrium pairs of the
form x = xi1ei1 + · · ·+ xipeip ∈ P5, with xik

> 0 for all k, and y = yj1ej1 + · · ·+ yjqejq ∈ P5, with
yjl

> 0 for all l, must satisfy one of the following:
(a) x1 + x2 = 1 and y0 + y1 = 1;

(b) x = x2e2 or x = x2e2 + x3e3 and
∑2

j=0 yj = 1;

(c) x = x3e3 and
∑2

j=0 yj = 1.

We can use Theorem 2.1 on the reduced sets P and Q to find the equilibrium pairs
(a) x = x2e2 and y = yj1ej1 + · · ·+ yjqejq such that

∑2
j=0 yj = 1 and y2 + y1

2 ≥ y0;
(b) x = xi1ei1 + · · ·+ xip

eip
such that x2 + x3 = 1 and y = y2e2.

Theorem 4.1 can be extended to the case where v1 = v2 + 1; however, it is no longer very
helpful. First, (6) must be modified to include jq = v1 − 1, as this strategy is no longer strictly
dominated. Thus, (6) becomes

0 < i1 < · · · < ip ≤ jq + 1 and 0 ≤ j1 < · · · < jq ≤ v1 − 1. (6′)

Assuming that v1 > 2, we can substitute into (5a) to obtain

0 < i1 < · · · < ip ≤ jq + 1 ≤ v1 − 1

But this result is not much more helpful than the initial result in (6′). (If v1 ≤ 2, then (6′) must
be further expanded to consider i1 = 0.) For completeness, we note that if v1 = v2 + 1, case
(b) (i1 = v2) reduces to x = xv2ev2 and j ≤ v2, since x = xv2+1ev2+1 is strictly dominated.
Furthermore, case (c) (i1 > v2) never occurs for the same reason.

8



For the case where v1 = v2, Theorem 4.1 still holds. However, the theorem is not very useful,
as there are no strictly dominated strategies to remove. Thus, the results of this section are more
useful when there is a relatively large gap between v1 and v2. If the gap is relatively small, then case
(a) (i1 < v2) still contains most of the (x, y) that were under consideration before the application
of Theorem 4.1.
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