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Abstract

Let V = B(H) or S(H), where B(H) is the algebra of bounded linear operator acting

on the Hilbert space H, and S(H) is the set of self-adjoint operators in B(H). Denote the

numerical range of A ∈ B(H) by W (A) = {(Ax, x) : x ∈ H, (x, x) = 1}. It is shown that a
surjective map φ : V → V satisfies

W (AB + BA) = W (φ(A)φ(B) + φ(B)φ(A)) for all A, B ∈ V

if and only if there is a unitary operator U ∈ B(H) such that φ has the form

X 7→ ±U∗XU or X 7→ ±U∗X tU,

where X t is the transpose of X with respect to a fixed orthonormal basis. In other words, the
map φ or −φ is a C∗-isomorphism on B(H) and a Jordan isomorphism on S(H). Moreover,
if H has finite dimension, then the surjective assumption on φ can be removed.
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1 Introduction

Let B(H) be the algebra of bounded linear operator acting on the Hilbert space H, and S(H)

be the set of self-adjoint operators in B(H). If H has finite dimension, B(H) is identified

with the algebra Mn of n × n complex matrices, and S(H) is identified with Sn the set of

n× n complex Hermitian matrices. Denote the numerical range of A ∈ B(H) by

W (A) = {(Ax, x) : x ∈ H, (x, x) = 1}.

Let U ∈ B(H) be a unitary operator, and define a mapping φ on B(H) or S(H) by

A 7→ U∗AU or A 7→ U∗AtU,

where At is the transpose of A with respect to a fixed orthonormal basis. (We will always

use this interpretation of At.) Then φ is a C∗-isomorphism on the C∗-algebra B(H), and
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a Jordan isomorphism on the Jordan algebra S(H). Evidently, φ is bijective linear and

preserves the numerical range, i.e., W (φ(A)) = W (A) for all A. Pellegrini [6] obtained an
interesting result on numerical range preserving maps on general C∗-algebra, which implies
that a surjective linear map φ : B(H) → B(H) preserving the numerical range must be of

this form. Furthermore, by the result in [4], we see the conclusion is also valid for linear

maps φ defined on S(H). In [2], it was shown that a multiplicative map φ : Mn → Mn

satisfies W (φ(A)) = W (A) for all A if and only if φ has the form A 7→ U∗AU for some

U ∈ Mn. In [3], the authors replaced the condition that “φ is multiplicative and preserves the

numerical range” on the surjective map φ : B(H) → B(H) by the condition that “W (AB) =

W (φ(A)φ(B)) for all A, B”, and showed that such a map has the form A 7→ ±U∗AU for some

unitary operator U ∈ B(H). They also showed that a surjective map φ : B(H) → B(H)

satisfies W (ABA) = W (φ(A)φ(B)φ(A)) for all A, B ∈ B(H) if and only if φ has the form

A 7→ µU∗AU or A 7→ µU∗AtU for some unitary operator U ∈ B(H) and µ ∈ C with µ3 = 1.

Similar results for mappings on S(H) were also obtained. It is interesting that under the
rather mild assumptions, one can prove that a numerical range preserving map φ is a C∗-
isomorphism on B(H) or a Jordan isomorphism on S(H) up to a scalar multiple. Following

this line of study, we consider the Jordan product A ∗B = (AB + BA)/2 in this paper and
prove the following.

Theorem 1 Let V = B(H) or S(H). Then a surjective map φ : V → V satisfies

W (AB + BA) = W (φ(A)φ(B) + φ(B)φ(A)) for all A, B ∈ V (1.1)

if and only if there is a unitary operator U ∈ B(H) such that φ has the form

X 7→ ±U∗XU or X 7→ ±U∗X tU,

where X t is the transpose of X with respect to a fixed orthonormal basis. Moreover, if H has
finite dimension, then the surjective assumption on φ can be removed.

By the above theorem, we see that a mapping φ : B(H) → B(H) satisfies (1.1) if and

only if φ or −φ is a C∗-isomorphism; a mapping φ : S(H) → S(H) satisfies (1.1) if and only
if φ or −φ is a Jordan isomorphism.

The proof of the sufficiency part of the theorem is clear. We need only prove the necessity
part, which will be done in the next two sections. The following observations will be used.

Lemma 2 Suppose φ : V → V satisfies (1.1), where V = B(H) or S(H).

1. For every A ∈ V, W (A2) = W (φ(A)2).

2. For any A, B ∈ V, AB + BA = 0 if and only if φ(A)φ(B) + φ(B)φ(A) = 0.

For any nonzero vectors x, y ∈ H, xy∗ denotes the rank-one operator (xy∗)z = (z, y)x for

z in H, and tr (Axy∗) = (Ax, y) for any A ∈ B(H).
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Proposition 3 Let V = B(H) or S(H) and R = {xx∗ : x ∈ H, (x, x) = 1}. Suppose

φ : V → V satisfies φ(R) = R and tr (AB) = tr (φ(A)φ(B)) for all A ∈ V and B ∈ R.

Then φ is linear. In the finite dimensional case, one can replace the assumption φ(R) = R
by φ(R) ⊆ R, and get the stronger conclusion that φ is invertible linear.

Proof. Let A, B ∈ V. For any y ∈ H with (y, y) = 1, let x be a unit vector in H such that

φ(xx∗) = yy∗. Then

(φ(A + B)y, y) = ((A + B)x, x) = (Ax, x) + (Bx, x) = (φ(A)y, y) + (φ(B)y, y).

Thus, φ(A + B) = φ(A) + φ(B). Similarly, we can prove that φ(µA) = µφ(A) for all A ∈ V
and scalar µ.

For the finite dimensional case, one can use the argument in the proof of Proposition 1.1
in [1] to get the stronger result.

2 The finite dimensional case

Denote by {E11, E12, . . . , Enn} the standard basis for Mn, {e1, . . . , en} the standard basis for

Cn, and (x, y) = y∗x = tr (xy∗) the inner product on Cn.

2.1 Hermitian matrices

In this subsection, we present a proof of Theorem 1 when V = Sn. Suppose that φ : Sn → Sn

satisfies (1.1). Note that φ(In) is Hermitian. Since W (φ(In)2) = W (I2
n) = {1}, we see that

φ(In)2 = In. So, replacing X 7→ Uφ(X)U∗, we may assume that φ(In) = Ik ⊕ −In−k. We
may assume that k > 0. Otherwise, replace φ by −φ.

We divide the rest of the proof into three assertions.

Assertion 2.1.1 For each A = xx∗ or xx∗ − yy∗, where x, y ∈ Cn are unit vectors with
x∗y = 0, we have φ(A) has an eigenvector of 1 in span {e1, . . . , ek} or an eigenvector of −1

in span {ek+1, . . . , en}.

Proof. Note that W (φ(A)2) = W (A2) = [0, 1]. So, φ(A) is a Hermitian contraction. Let

φ(A) =
(

A1 A2

A∗
2 A3

)
on Ck ⊕ Cn−k. Suppose A = xx∗. Since φ(In) = Ik ⊕ In−k, we have

[0, 2] = W (2A) = W (φ(A)φ(In) + φ(In)φ(A)) = W
((

2A1 0
0 −2A3

))
.

This shows that A1 has 1 as an eigenvalue or A3 has −1 as an eigenvalue. Now, the assertion
follows from the fact that φ(A) is a contraction.

The proof for A = xx∗ − yy∗ is similar.

Assertion 2.1.2 φ(In) = In and φ(R) ⊆ R, where R = {xx∗ : x ∈ Cn, x∗x = 1}.
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Proof. First, we show that φ(In) = In. Recall that φ(In) = Ik ⊕−In−d. Let

φ(Eii) =
(

Ri Si

S∗
i Ti

)
, i = 1, . . . , n,

where Ri is k × k. Since W (φ(Eii)φ(In) + φ(In)φ(Eii)) = W (2Eii) = [0, 2], we see that

φ(Eii)φ(In) + φ(In)φ(Eii) = 2(Ri ⊕−Ti) is positive semi-definite.

Let J ⊆ {1, . . . , n} be such that φ(Eii) has 1 as an eigenvalue. We may assume that

J = {1, . . . , j}. Otherwise, replace φ be a mapping of the form X 7→ φ(P tXP ) for some

permutation matrix P . By Assertion 2.1.1, for each i = 1, . . . , j, the matrix φ(Eii) has a

unit eigenvector fi = f̂i ⊕ 0, corresponding to the eigenvalue 1, where f̂i ∈ Ck. We claim

that (fr, fs) = (f̂r, f̂s) = 0 whenever r 6= s. Without loss of generality, assume (r, s) = (1, 2).
Since

2f̂ ∗1 R2f̂1 = 2f1
∗φ(E22)f1 = f ∗1 φ(E11)φ(E22)f1 + f ∗1 φ(E22)φ(E11)f1

= f ∗1 (φ(E11)φ(E22) + φ(E22)φ(E11))f1 = 0,

we see that f̂1 is an eigenvector of the positive semi-definite matrix R2 corresponding to the

eigenvalue 0. Since f̂2 is an eigenvector of R2 corresponding to the eigenvalue 1, we see that

(f̂1, f̂2) = 0. Since {f1, . . . , fj} is an orthonormal set in span {e1, . . . , ek}, we see that j ≤ k.

By a similar argument, there is an orthonormal set {fj+1, . . . , fn} in span {ek+1, . . . , en}
such that fi is an eigenvector of φ(Eii) corresponding to the eigenvalue −1. So, we have
n − j ≤ n − k, i.e., j ≥ k. Combining with the conclusion in the preceding paragraph, we
have j = k.

Now, suppose k < n. Consider X = E1n +En1. By Assertion 2.1.1, φ(X) is a contraction

and has an eigenvalue 1 with an eigenvector in span {e1, . . . , ek} or an eigenvalue −1 with

an eigenvector in span {ek+1, . . . , en}. In the former case, suppose φ(X)f = f with f ∈
span {e1, . . . , ek}. Write f = f̂ ⊕ 0 with f̂ ∈ Ck. Then for i = 2, . . . , k, we have

2f̂ ∗Rif̂ = 2f ∗φ(Eii)f = f ∗φ(X)φ(Eii)f + f ∗φ(Eii)φ(X)f

= f ∗(φ(X)φ(Eii) + φ(Eii)φ(X))f = 0.

Hence, f̂ is an eigenvector of Ri corresponding to the eigenvalue 0. So 0 = (f̂ , f̂i) = (f, fi)

for i = 2, . . . , k, and f is a unit multiple of f1. But then f ∗1 (φ(X)φ(E11)+φ(E11)φ(X))f1 = 2

contradicting the fact that W (φ(X)φ(E11) + φ(E11)φ(X)) = W (XE11 + E11X) = [−1, 1]. If
the latter case holds, we can obtain a contradiction by a similar argument. Thus k = n, that
is, φ(In) = In and φ(Eii) = Ri for i = 1, . . . , n. Moreover, we have shown that Rifj = 0 for all

i 6= j. Let F = [f1 f2 . . . fn]. Then F ∗φ(Eii)F = F ∗RiF = Eii and hence φ(Eii) = FEiiF
∗

for i = 1, . . . , n.

Next, we turn to the condition that φ(R) = R. Given a unit vector x, there exists a
unitary V such that V x = e1. Then apply the conclusion of the preceding paragraph to the

mapping A 7→ φ(V AV ∗). We see that φ(V E11V
∗) = F̂E11F̂

∗ for some unitary matrix F̂ .

Thus φ(x1x
∗
1) = yy∗ where y = F̂ e1.
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Assertion 2.1.3 The mapping φ has the asserted form.

Proof. Note that for any A ∈ Sn, the mid-point of the line segment W (AE11 + E11A)
is the trace of AE11. Thus for any B = xx∗, where x is a unit vector, the mid-point of
the line segment W (AB + BA) is the trace of AB. Similarly, the mid point of the line

segment of W (φ(A)φ(B) + φ(B)φ(A)) is the trace of φ(A)φ(B). Since W (AB + BA) =

W (φ(A)φ(B)+φ(B)φ(A)), we see that tr (AB) = tr φ(A)φ(B) for all A ∈ Sn. By Proposition
3, φ is an invertible linear map. Moreover, we have

2W (φ(A)) = W (φ(In)φ(A) + φ(In)φ(A)) = W (InA + AIn) = 2W (A)

for all A ∈ Sn. So, φ is an invertible linear map preserving the numerical range. The result
follows from [4, Theorem 2].

2.2 Complex matrices

In this subsection, we present a proof of Theorem 1 when V = Mn. Suppose that φ : Mn →
Mn satisfies (1.1). Again, we divide the proof into several assertions.

Assertion 2.2.1 For any unit vector x ∈ Cn, φ(xx∗) has the form ±yy∗.

Proof. Without loss of generalization, assume that xx∗ = E11. Let B = [0] ⊕ D so that

W (B2) is a polygon with n vertices. For example, B = diag (b1, b2, . . . , bn) where bj =

(e2(j−1)π/n − 1)1/2 for j = 1, 2, . . . , n. Since W (φ(B)2) = W (B2), thus φ(B)2 has n distinct

eigenvalues. Then so is φ(B) and hence φ(B) = S−1(0 ⊕ F )S, where S is a nonsingular

matrix and F is a diagonal matrix, say, F = diag (α1, α2, . . . , αn−1). Since α2
1, α

2
2, . . . , α

2
n−1

are distinct nonzero eigenvalues of φ(B)2, we obtain that αi 6= αj and αi 6= −αj for all

1 ≤ i 6= j ≤ n− 1. Now, let A = Sφ(E11)S
−1. Since

0 = φ(E11)φ(B) + φ(B)φ(E11) = S−1(A(0⊕ F ) + (0⊕ F )A)S,

it follows that A = aE11 for some scalar a ∈ C, and then φ(E11) = aS−1E11S. Since

W (φ(E11)
2) = [0, 1], we see that φ(E11) has an eigenvalue 1 or −1. It follows that a = 1 or

a = −1. Moreover, since φ(E11)
2 = S−1E11S and W (φ(E11)

2) = [0, 1], S−1E11S is a positive

semi-definite rank-one contraction. This implies that φ(E11) = ±yy∗ for some unit vector
y ∈ Cn.

Assertion 2.2.2 Let x be a unit vector and A in Mn. Then tr (Axx∗) = tr (φ(A)φ(xx∗)).

Proof. Note that the center of the rectangular box from by the vertical and horizontal support
lines of W (xx∗A + Axx∗) is equal to tr (Axx∗) = (Ax, x). Indeed, suppose µ0 ≡ tr (Axx∗) =

(Ax, x) = (A1x, x)+ i(A2x, x), where A1 = (A+A∗)/2 and A2 = (A−A∗)/2. By the proof in

Section 2.1, we see that the mid-point of W (xx∗A1+A1xx∗) is equal to tr (A1xx∗) = (A1x, x),

and, the mid-point of W (xx∗A2 + A2xx∗) is equal to tr (A2xx∗) = (A2x, x). They give the

real and imaginary parts of µ0. Since W (xx∗A + Axx∗) = W (φ(xx∗)φ(A) + φ(A)φ(xx∗)),

thus tr (Axx∗) = tr (φ(A)φ(xx∗)) as asserted.
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Assertion 2.2.3 The mapping φ has the asserted form.

Proof. We first show that it is impossible to have φ(xx∗) = yy∗ and φ(uu∗) = −vv∗. In

fact, consider the unit vector w = (x + u)/‖x + u‖. Then φ(ww∗) = ±zz∗ for some unit

vector z. But then by Assertion 2.2.2 we cannot have 0 < tr (xx∗ww∗) = tr (yy∗φ(ww∗)) and

0 < tr (uu∗ww∗) = tr (−vv∗φ(ww∗)), which is a contradiction.

Now assume that we always have φ(xx∗) = yy∗. Otherwise, replace φ by −φ. Since

EiiEjj + EiiEjj = 0, we have φ(Eii)φ(Ejj) + φ(Ejj)φ(Eii) = 0 for all 1 ≤ i < j ≤ n. So,

there is a unitary matrix U ∈ Mn such that φ(Eii) = UEiiU
∗ for i = 1, . . . , n. In fact,

U = [y1 y2 . . . yn] where yiy
∗
i = φ(Eii) for i = 1, . . . , n. Now, replacing X 7→ Uφ(X)U∗, we

may assume that φ(Eii) = Eii for i = 1, . . . , n.

Finally, since W (Eiiφ(In)+φ(In)Eii) = W (φ(Eii)φ(In)+φ(In)φ(Eii)) = W (2Eii) = [0, 2]

for i = 1, . . . , n, by Assertion 2.2.2, we obtain that (φ(In)ei, ei) = tr (φ(In)eie
∗
i ) = 1 for i =

1, . . . , n. On the other hand, W (φ(In)2) = W (In) = {1} implies that φ(In) is a contraction.

We conclude that φ(In) = In. Consequently, W (φ(A)) = W (A) for all A ∈ Mn. By Assertion

2.2.2, tr (xx∗A) = tr (φ(xx∗)φ(A)) for every A ∈ Mn. By Proposition 3, we see that φ is

invertible and linear. By Theorem 2 in [4], the result follows.

3 The infinite dimensional case

Let x, y ∈ H. Denote by xy∗ the rank-one operator (xy∗)z = (z, y)x for z in H.

3.1 Self-adjoint operators

In this subsection, we give a proof of Theorem 1 when V = S(H). Suppose that φ : S(H) →
S(H) is surjective and satisfies (1.1).

Assertion 3.1.1 φ(I) = ±I.

Proof. Since W (φ(I)2) = W (I2) = {1}, we see that φ(I) = IH1 ⊕ −IH2 on H = H1 ⊕ H2.

Let f1 ∈ H1, f2 ∈ H2, and Y = f1f
∗
2 + f2f

∗
1 . Then there is X ∈ S(H) such that φ(X) = Y .

But then W (X2) = W (Y 2) = [0, 1] and W (2X) = W (Y φ(I) + φ(I)Y ) = {0}, which is a
contradiction.

Assertion 3.1.2 Let A ∈ S(H) with W (A) = [0, 1]. Then A = xx∗ for some unit vector x
if and only if the following holds:

For any Y ∈ S(H) satisfying W (2Y ) = [0, 2] = W (AY + Y A) we have

{Z ∈ S(H) : Y Z + ZY = 0} ⊆ {Z ∈ S(H) : AZ + ZA = 0}.

Proof. We first prove the sufficiency part. Assume otherwise that A 6= xx∗ for all unit
vector x. Since W (A) = [0, 1], A has an eigenvalue 1 with a unit eigenvector u. Then

A = [1] ⊕ A2 on H = span {u} ⊕ {u}⊥, where A2 is non-zero. Then for Y = [1] ⊕ 0, the
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operator Z = [0] ⊕ I{u}⊥ satisfies Y Z + ZY = 0 but AZ + ZA = [0] ⊕ 2A2 6= 0. This

contradiction yields that A2 = 0 and therefore A = uu∗.

We now prove the necessity part. Suppose A = xx∗ = [1]⊕ 0 on H = span {x} ⊕ {x}⊥.

For any Y ∈ S(H) satisfying W (2Y ) = [0, 2] = W (AY + Y A), then Y = [1] ⊕ Y1 where Y1

is positive semi-definite. If Z ∈ S(H) satisfying ZY + Y Z = 0, says, Z =
(

α z∗1
z1 Z2

)
on

span {x} ⊕ {x}⊥. Then

0 = ZY + Y Z =
(

2α z∗1Y1 + z∗1
z1 + Y1z1 Z2Y1 + Y1Z2

)

It follows that α = 0 and (I{x}⊥ + Y1)z1 = 0. Note that I{x}⊥ + Y1 is invertible, thus z1 = 0

and Z = [0]⊕ Z2. It is easy to see that ZA + AZ = 0 as asserted.

Assertion 3.1.3 The mapping φ has the asserted form.

Proof. Assume that φ(I) = I. Otherwise, replace φ by −φ. Then W (A) = W (φ(A)) for all

A. In particular, W (φ(xx∗)) = W (xx∗) = [0, 1]. We want to show that φ(xx∗) = yy∗ for

some unit vector y. We will verify the condition in Assertion 3.1.2. If Y ∈ S(H) satisfies

W (2Y ) = [0, 2] = W (φ(xx∗)Y + Y φ(xx∗)), then

{Z ∈ S(H) : Y Z + ZY = 0} ⊆ {Z ∈ S(H) : φ(xx∗)Z + Zφ(xx∗) = 0}.

If Y Z + ZY = 0, there exist X and T in S(H) such that φ(X) = Y and φ(T ) = Z, then

XT + TX = 0. On the other hand, W (2X) = W (2Y ) = [0, 2] = W (φ(xx∗)Y + Y φ(xx∗)) =

W (xx∗X + Xxx∗), by Assertion 3.1.2, we obtain xx∗T + Txx∗ = 0. This implies that

φ(xx∗)Z + Zφ(xx∗) = 0. By Assertion 3.1.2, we have φ(xx∗) = yy∗ for some unit vector y.

The same arguments show that φ(R) = R.

Finally, since φ(R) = R, the fact that tr (AB) = tr (φ(A)φ(B)) for all A ∈ S(H) and
B ∈ R follows immediately from the same arguments in the proof of Section 2.1. By
Proposition 3, φ is linear surjective. Hence the assertion follows from [4, Theorem 2].

3.2 General operators

In this last subsection, we consider the case V = B(H) of Theorem 1. Suppose that φ :

B(H) → B(H) is surjective and satisfies (1.1).

Assertion 3.2.1 φ(I) = I.

Proof. Because φ(I)2 = I, we see that φ(I) is unitarily similar to
(

IH1 R
0 −IH1

)
⊕IH2⊕−IH3

on H = (H1 ⊕ H1) ⊕ H2 ⊕ H3, where R is positive definite, that is, (Rx, x) > 0 for all

nonzero vector x in H1 (e.g, see [7, Theorem 1.1]). Since ‖R‖ is in the closure of W (R),
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we take two orthonormal vectors f1, f2 ∈ H1 so that a ≡ (Rf1, f1) is very close to ‖R‖,
span {f1, Rf1} ⊆ span {f1, f2} and b ≡ (Rf1, f2) ≥ 0. Then R has the form a b 0

b ∗ ∗
0 ∗ ∗


on H1 = span {f1} ⊕ span {f2} ⊕ (H1 	 span {f1, f2}). Since a2 + b2 ≤ ‖R‖2, we obtain that

b → 0 as a → ‖R‖, thus we may assume that b, b/a ∈ [0, 1/10). Let K = span {f1, f2}, the

compression of φ(I) on K ⊕K equals
1 0 a b
0 1 b ∗
0 0 −1 0
0 0 0 −1

 .

That is, φ(I) has the form



1 0 a b |0 0
0 1 b ∗ |0 ∗
0 0 −1 0 |0 0
0 0 0 −1 |0 0
0 0 0 ∗ |I ∗
0 0 0 0 |0 −I

⊕ IH2 ⊕−IH3

on H = ((K ⊕K)⊕ ((H1 	K)⊕ (H1 	K)))⊕H2 ⊕H3. Let

Y1 =


−1 0 0 0
0 0 0 0

2/a 0 1 0
0 0 0 0

 ,

and consider the operator

Y =
(

Y1 0
0 0

)
⊕ 0H2 ⊕ 0H3

on H = ((K ⊕ K) ⊕ ((H1 	 K) ⊕ (H1 	 K))) ⊕ H2 ⊕ H3. Since φ is surjective, there

exists X ∈ B(H) such that φ(X) = Y . Then W (X2) = W (Y 2) = [0, 1] and W (2X) =

W (XI + IX) = W (Y φ(I) + φ(I)Y ) = W (2Z) with

Z =
1

2


0 0 0 −b

2b/a 0 b 0
0 0 0 2b/a
0 0 0 0

 .

Note that all the eigenvalues of X lie in W (X) = W (Z) ⊆ {µ ∈ C : |µ|2 ≤ tr (Z∗Z)}.
Thus, all eigenvalues of X have modulus less than 1, and X2 cannot have an eigenvalue 1,
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which contradicts the fact that W (X2) = [0, 1]. This contradiction yields that H1 cannot

appear in the above decomposition of H. Thus we may assume that φ(I) = IH2 ⊕−IH3 on
H = H2 ⊕H3. Applying the same argument in the proof of Assertion 3.1.1, we obtain that
φ(I) = ±I.

Assertion 3.2.2 The mapping has the asserted form.

Proof. Assume φ(I) = I. So, W (A) = W (φ(A)) for all A. Consequently, φ(S(H)) =

S(H). Applying the result in Section 3.1, we conclude that φ(R) = R for R = {xx∗ : x ∈
H, (x, x) = 1}. Thus, φ is linear on B(H). The result then follows from [4, Theorem 2].
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