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Abstract

We propose a definition for geometric mean of k positive (semi) definite matrices.
We show that our definition is the only one in the literature that has the properties
that one would expect from a geometric mean, and that our geometric mean generalizes
many inequalities satisfied by the geometric mean of two positive semidefinite matrices.
We prove some new properties of the geometric mean of two matrices, and give some
simple computational formulae related to them for 2× 2 matrices.
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1 Introduction

The geometric mean of two positive semi-definite matrices arises naturally in several areas,
and it has many of the properties of the geometric mean of two positive scalars. Researchers
have tried to define a geometric mean on three or more positive definite matrices, but there
is still no satisfactory definition. In this paper we present a definition of the geometric mean
of three or more positive semidefinite matrices and show that it has many properties one
would want of a geometric mean. We compare our definition with those proposed by other
researchers.

Let us consider first what properties should be required for a reasonable geometric mean
G(A, B, C) of three positive definite matrices A, B, C. It is clear what the corresponding
conditions would be for k matrices for k > 3.
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P1 Consistency with scalars. If A, B, C commute then G(A, B, C) = (ABC)1/3.

P1′ This implies G(A, A,A) = A.

P2 Joint Homogeneity. G(αA, βB, γC) = (αβγ)1/3G(A, B, C) (α, β, γ > 0).

P2′ This implies G(αA, αB, αC) = αG(A, B, C) (α > 0).

P3 Permutation invariance. For any permutation π(A, B, C) of (A, B, C)

G(A, B, C) = G
(
π(A, B, C)

)
.

P4 Monotonicity. The map (A, B, C) 7−→ G(A, B, C) is monotone, i.e., if A ≥ A0, B ≥ B0,

and C ≥ C0, then G(A, B, C) ≥ G(A0, B0, C0) in the positive semi-definite ordering.

P5 Continuity from above. If {An}, {Bn}, {Cn} are monotonic decreasing sequences (in the

positive semi-definite ordering) converging to A, B, C then {G(An, Bn, Cn)} converges

to G(A, B, C).

P6 Congruence invariance.

G(S∗AS, S∗BS, S∗CS) = S∗G(A, B, C)S ∀ invertible S.

P7 Joint concavity. The map (A, B, C) 7−→ G(A, B, C) is jointly concave:

G
(
λA1 + (1− λ)A2, λB1 + (1− λ)B2, λC1 + (1− λ)C2

)
≥ λG(A1, B1, C1) + (1− λ)G(A2, B2, C2) (0 < λ < 1).

P8 Self-duality. G(A, B, C) = G(A−1, B−1, C−1)−1.

P9 Determinant identity. det G(A, B, C) =
(

det A · det B · det C
)1/3

.

These properties are desirable, and perhaps we can add more desirable properties to the
list, but any geometric mean should satisfy properties P1–P6 at a bare minimum. These
properties quickly imply other properties, as we now discuss.

Notice that P2 and P4 imply P5. In fact, denote by ρ(X) the spectral radius of X. By
P4 we will have

ρ(A−1
n A)−1A ≤ An ≤ ρ(A−1An)A,

ρ(B−1
n B)−1B ≤ Bn ≤ ρ(B−1Bn)B,

ρ(C−1
n C)−1C ≤ Cn ≤ ρ(C−1Cn)C.

2



Now, setting G = G(A, B, C) and Gn = G(An, Bn, Cn), condition P2 gives

[ρ(A−1
n A)ρ(B−1

n B)ρ(C−1
n C)]−1/3G ≤ Gn ≤ [ρ(A−1An)ρ(B−1Bn)ρ(C−1Cn)]1/3G. (1.1)

Thus, if (An, Bn, Cn) −→ (A, B, C) then G(An, Bn, Cn) −→ G(A, B, C).

Notice that invertibility is essential in the above proof.

By P1, P3, P7, and P8, we have

P10 The arithmetic-geometric-harmonic mean inequality.

A + B + C

3
≥ G(A, B, C) ≥

(
A−1 + B−1 + C−1

3

)−1

.

If we partition all matrices conformally:

A =
(

A11 A12

A∗
12 A22

)
,

and define the pinching operator Φ by

Φ(A) =
(

A11 0
0 A22

)
,

then

Φ(A) = (A + S∗AS)/2 with S =
(

I 0
0 −I

)
.

Now, concavity, homogeneity and congruence invariance, yield

Φ(G(A, B, C)) ≤ G(Φ(A), Φ(B), Φ(C)). (1.2)

Once a geometric mean for three positive definite matrices is defined so as to satisfy P1-
P6, by monotonicity we can uniquely extend the definition of G(A, B, C) for every triple of

positive semidefinite matrices (A, B, C) by setting

G(A, B, C) = lim
ε↓0

G(A + εI, B + εI, C + εI).

Then it is immediate to see that by P5 for positive definite A, B, C the new definition
coincides with the original one for positive definite A, B, C and that the extended geometric
mean satisfies P1- P4 and P6. Since it is easy to see that for positive semidefinite A, B, C

G(A, B, C) = inf{G(Ã, B̃, C̃) : Ã > A, B̃ > B, C̃ > C},

P5 is valid for this extended geometric mean. If the original geometric mean satisfies P7, so
does the extended one.

We can derive a stronger form of P6 with help of P4 and P5:
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P6′ G(S∗AS, S∗BS, S∗CS) ≥ S∗G(A, B, C)S (∀ S).

In fact, if S is not invertible, let Sε = (1− ε)S + εI for 0 < ε < 1. Then by P6

G(S∗ε ASε, S
∗
ε BSε, S

∗
ε CSε) = S∗ε G(A, B, C)Sε.

The right hand side converges to S∗G(A, B, C)S as ε → 0. Since by the operator convexity
of the square function, for any X ≥ 0

(1− ε)S∗XS + εX ≥ ((1− ε)S∗ + εI)X((1− ε)S + εI)

and
S∗XS + εX ≥ (1− ε)S∗XS + εX,

by P4 (monotonicity) we have

G(S∗AS + εA, S∗AS + εA, S∗AS + εA) ≥ G(S∗ε AGε, S
∗
ε BGε, S

∗
ε CGε).

Since S∗XS + εX converges downward to S∗XS as ε ↓ 0, by P5 (continuity from above) we
conclude the inequality.

Our paper is organized as follows. In Section 2, we present some properties for the
geometric mean of two matrices, which will be useful when we define our geometric means for
three or more matrices, and when we compare our definition with those proposed by others.
In Section 3, we present our definition of geometric means for three or more matrices, and
show that it has all the desirable properties P1–P9. We then compare our definition with
those of others in Sections 4 and 5. In Section 6, we present some formulae for different
geometric means of 2 × 2 matrices. The formulae may be helpful for future study of the
topic.

2 The geometric mean of two matrices

Conditions P1 and P6 are sufficient to determine the geometric mean of two positive definite
matrices A and B. There is a non-singular matrix S that simultaneously diagonalizes A and
B by congruence:

A = S∗DAS and B = S∗DBS (2.1)

for some diagonal matrices DA and DB. For example, one can choose S = U∗A1/2 where U

is unitary such that U∗A−1/2BA−1/2U is a diagonal matrix. Since the diagonal matrices DA

and DB commute we have

G(A, B) = G(S∗DAS, S∗DBS)

= S∗G(DA, DB)S

= S∗(DADB)1/2S.
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One can show that the value of (S∗)−1(DADB)1/2S−1 is independent of the choice of the

matrix S. Thus we can compute G(A, B) numerically.
Actually there are many equivalent definitions of the geometric mean of two positive

definite matrices A and B. Researchers have tried to use these conditions to define geometric
means of three or more matrices (see [2, 4, 7, 10] and their references, and see also Sections

4 and 5).

D1 G(A, B) = S∗(DADB)1/2S, where S is any invertible matrix that simultaneously diag-

onalizes A and B by congruence as in (2.1).

D2 G(A, B) is the solution to the extremal problem

max
{
X ≥ 0 :

(
A X
X B

)
≥ 0

}
.

D3 G(A, B) = A1/2(A−1/2BA−1/2)1/2A1/2

In fact, one can use the fact that a function of a matrix is a polynomial in the matrix

to show that G(A, B) = A1−p(Ap−1BAp)1/2Ap, for any p ∈ IR, but there seems no

advantage in choosing p 6= 1/2.

D4 G(A, B) = A1/2UB1/2, where U is any unitary matrix that makes the right hand side

positive definite. For example, we can let U = (A−1/2BA−1/2)1/2A1/2B−1/2 so that

A1/2UB1/2 = A1/2(A−1/2BA−1/2)1/2A1/2. Note that even when the choice of U is not

unique, the value of A1/2UB1/2 is unique.

This definition has rarely been stated, but it will be useful in this paper.

D5 G(A, B) is the value of the definite integral

1

Γ(1/2)2

∫ 1

0

{
λB−1 + (1− λ)A−1

}−1
{λ(1− λ)}−1/2dλ.

This is actually the special case for k = 2 of a geometric mean proposed by H. Kosaki
[7] and modified by Kubo and Hiai.

To conclude this section we present some new computational results for G(A, B).

Proposition 2.1 Let A, B > 0 be 2× 2 and such that det(A) = det(B) = 1. Then

G(A, B) =
A + B√

det(A + B)
. (2.2)
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Proof. Let S be a matrix with det(S) = 1, that simultaneously diagonalizes A and B by
congruence. Then since A, B, and S all have determinant equal to 1 we have:

A = S∗
(

a 0
0 a−1

)
S, and B = S∗

(
b 0
0 b−1

)
S.

G(A, B) = S∗
(√

ab 0
0 1√

ab

)
S

=
1√

(a + b)(a−1 + b−1)
S∗
(

a + b 0
0 a−1 + b−1

)
S

=
A + B√

det(A + B)
.

2

Corollary 2.2 Let A, B > 0 be 2× 2. Let s =
√

det(A), t =
√

det(B). Then

G(A, B) =

√
st√

det(s−1A + t−1B)

(
s−1A + t−1B

)
; (2.3)

in particular,

A1/2 = G(A, I) =

√
s√

det(s−1A + I)
(s−1A + I). (2.4)

One can prove (2.4) directly using the arguments in the proof of Proposition 2.1. More
generally, for any continuous function f : IR+ → IR, if A is a 2 × 2 positive definite matrix

with eigenvalues a, b ∈ (0,∞), then f(A) = rA + sI with

r =
f(a)− f(b)

a− b
and s =

af(b)− bf(a)

a− b
.

Since

a =
1

2

{
tr A +

√
(tr A)2 − 4 det(A)

}
, b =

1

2

{
tr A−

√
(tr A)2 − 4 det(A)

}
,

and tr A =
√

det(A)
[
det

(
I + A/

√
det(A)

)
− 2

]
, one can express f(A) = r(A)A + s(A)I for

suitable functions r(A) and s(A) that only involve det(A) and det
(
I + A/

√
det(A)

)
.
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3 Geometric means of three or more matrices

Recall that ρ(X) denotes the spectral radius of X. We will use a limiting process to define a
new geometric mean. In proving convergence we will use the following multiplicative metric
on the space of pairs of positive definite matrices:

R(A, B) = max{ρ(A−1B), ρ(B−1A)}. (3.1)

Note that ρ(A−1B) = ρ(A−1/2BA−1/2) = ρ(B1/2A−1B1/2). The metric R(·, ·) has many nice
properties, for example, in the scalar case, we have

R(a, b) = max{a/b, b/a} = exp(| log a− log b|),

and in general, R satisfies a multiplicative triangle inequality:

R(A, C) ≤ R(A, B)R(B, C).

The properties we need here are

R(A, B) ≥ 1, and R(A, B) = 1 ⇔ A = B, (3.2)

and
R(A, B)−1A ≤ B ≤ R(A, B)A, (3.3)

which implies the norm bound

‖A−B‖ ≤ (R(A, B)− 1)‖A‖. (3.4)

Here is our inductive definition of the geometric mean of k > 2 positive definite matrices,
which will be extended to positive semidefinite matrices later. Suppose we have defined
the geometric mean G(X1, . . . , Xk) of k positive definite matrices X1, . . . , Xk. Consider the

transformation on (k + 1)-tuples of positive definite matrices A = (A1, . . . , Ak+1) by

T (A) ≡ (G((Ai)i6=1), G((Ai)i6=2), . . . , G((Ai)i6=k+1)). (3.5)

Here T should depend on k and may be better denoted by Tk+1. We drop the subscript k+1
for simplicity, and it is usually clear from the context.

Definition 3.1 1. Define G(A1, A2) = A1#A2 – the usual geometric mean.

2. Suppose we have defined the geometric mean G(X1, . . . , Xk) of k positive definite

matrices X1, . . . , Xk. We define the sequence {T r(A)}∞r=1. The limit of this sequence

exists and has the form (Ã, . . . , Ã). We define G(A1, . . . , Ak+1) to be Ã.

Sometimes it is useful to think of this iteration in terms of the components of the
iterates:

A(1) = (A1, . . . , Ak+1), A(r+1) = T (A(r)), r = 1, 2, . . . .
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To establish the validity of this definition we must show that the limit does indeed exist
and that it has the asserted form. We do this in the next theorem.

Theorem 3.2 Let A1, . . . , Ak be positive definite. The sequences {(A(r)
1 , . . . , A

(r)
k+1)}∞r=1 de-

fined in Definition 3.1 do indeed converge to limits of the form (Ã, . . . , Ã), and the geometric
means defined above satisfy properties P1 – P9, and

R (G(A1, . . . , Ak), G(B1, . . . , Bk)) ≤
{

k∏
i=1

R(Ai, Bi)

}1/k

, k = 2, 3, . . . (3.6)

Note:

• The continuity of G on the set of k-tuples of positive definite matrices follows from
(3.6).

• The right side of (3.6) can be viewed as a measure of the distance between (A1, . . . , Ak)

and (B1, . . . , Bk) in the multiplicative sense, i.e., the deviation of

(A1B
−1
1 , . . . , AkB

−1
k ) from (I, . . . , I).

• In fact, (3.6) follows from the special case: If for some i ∈ {1, . . . , k}, we have Aj = Bj

for j 6= i, then

R (G(A1, . . . , Ak), G(B1, . . . , Bk)) ≤ R(Ai, Bi)
1/k, k = 2, 3, . . .

Proof. We use induction. For k = 2 we know that A#B satisfies properties P1–P9. We
establish (3.6) when k = 2 with two proofs. The first one uses D4, and the second one uses
some of the properties P1-P9. Different readers may have different preferences for the two
proofs.

Proof 1. Using A#B = A1/2UB1/2 where U is any unitary that makes the right hand side
positive definite, we have

ρ(G(A1, A2)G(B1, B2)
−1) = ρ(A

1/2
1 UA

1/2
2 B

−1/2
2 V ∗B

−1/2
1 )

= ρ(B
−1/2
1 A

1/2
1 UA

1/2
2 B

−1/2
2 V ∗)

≤ ‖B−1/2
1 A

1/2
1 UA

1/2
2 B

−1/2
2 V ∗‖

≤ ‖B−1/2
1 A

1/2
1 U‖‖A1/2

2 B
−1/2
2 V ∗‖

= ‖B−1/2
1 A

1/2
1 ‖‖A1/2

2 B
−1/2
2 ‖

= {ρ(A1B
−1
1 )ρ(A2B

−1
2 )}1/2

≤ {R(A1, B1)R(A2, B2)}1/2.
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Proof 2. For any positive definite Ai, and Bi (i = 1, 2) we have

Bi ≤ ρ(A−1
i Bi)Ai.

so by monotonicity and homogeneity

G(B1, B2) ≤
√

ρ(A−1
1 B1)ρ−1(A−1

2 B2)G(A1, A2).

Thus

ρ(G(A1, A2)
−1G(B1, B2)) ≤

√
ρ(A−1

1 B1)ρ−1(A−1
2 B2).

Now, using Proof 1 or Proof 2, we can show

ρ(G(A1, A2)
−1G(B1, B2)) ≤ {R(A1, B1)R(A2, B2)}1/2.

As a result,

R(G(A1, A2), G(B1, B2)) ≤ {R(A1, B1)R(A2, B2)}1/2. (3.7)

Next, suppose that G(X1, . . . , Xk) is defined and satisfies properties P1 – P9, and (3.6).

We show that the sequence {T r(A)}∞r=1 in the proposed construction of G(A1, . . . , Ak+1) is

convergent. By the special case of (3.6), we see that for each r ≥ 1, we have

R(A(r+1)
p , A(r+1)

q ) ≤ R(A(r)
p , A(r)

q )1/k

for all (p, q) ∈ S = {(1, 2), . . . , (k, k + 1), (k + 1, 1)}. So,

1 ≤
∏

(p,q)∈S
R(A(r+1)

p , A(r+1)
q ) ≤

∏
(p,q)∈S

R(A(r)
p , A(r)

q )1/k. (3.8)

Again, we can use two different arguments to arrive at our conclusion.

Argument 1 Now, by the induction assumption, we have G.M. ≤ A.M. for k matrices, and
hence

A
(r+1)
j ≤ 1

k

∑
i6=j

A
(r)
i , j = 1, . . . , k + 1.

Thus,
k+1∑
i=1

A
(r+1)
i ≤

k+1∑
i=1

A
(r)
i ≤

k+1∑
i=1

Ai. (3.9)

So, the sequence {(A(r)
1 , . . . , A

(r)
k+1)}∞r=1 is bounded, and there must be a convergent subse-

quence, say, converging to (Ã1, . . . , Ãk+1). By (3.8) and (3.2), we have

∏
(p,q)∈S

R(Ãp, Ãq) = 1,
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and thus Ã1 = · · · = Ãk+1, i.e., the limit of the subsequence has the form (Ã, . . . , Ã). Suppose

that there is another convergent subsequence converging to (B̃, . . . , B̃). By (3.9), we have

Ã ≥ B̃ and B̃ ≥ Ã, i.e., Ã = B̃. Thus, the bounded sequence {(A(r)
1 , . . . , A

(r)
k+1)}∞r=1 has only

one limit point; so it is convergent.

Argument 2 Let Rr =
∏

(p,q)∈S R(A(r)
p , A(r)

q ). Then (3.8) is equivalent to

1 ≤ Rr+1 ≤ (Rr)
1/k. (3.10)

Take i 6= j (without loss of generality, i > j). The multiplicative triangle inequality for R,

and the fact that R(X, Y ) ≥ 1 for any X, Y gives us

R(A
(r)
j , A

(r)
i ) ≤

i−1∏
k=j

R(A
(r)
k , A

(r)
k+1) ≤

∏
(p,q)∈S

R(A(r)
p , A(r)

q ) = Rr. (3.11)

We will show that the sequence A
(r)
i is Cauchy to establish its convergence. To do this we

bound R(A
(r+1)
i , A

(r)
i ), and then convert it to a norm-wise bound via (3.4). Using (3.11) and

(3.10) we have

R(A
(r+1)
i , A

(r)
i ) = R( G((A

(r)
j )j 6=i), A

(r)
i )

= R( G((A
(r)
j )j 6=i), G(A

(r)
i , . . . , A

(r)
i ))

≤
∏
j 6=i

R(A
(r)
j , A

(r)
i )1/k

≤
∏
j 6=i

R1/k
r

= Rr

≤ R
1/k
r−1

...

≤ R
1/kr−1

1 .

Let R1 = 1 + α. Then R
1/kr−1

1 ≤ 1 + α/kr−1. So by (3.4) we have

‖A(r+1)
i − A

(r)
i ‖ ≤ (R

1/kr−1

1 − 1)M ≤ 1

kr−1
αM,

where M = max{‖Aj‖ : j = 1, . . . , k + 1}. Thus

∞∑
r=1

‖A(r+1)
i − A

(r)
i ‖ ≤

∞∑
r=1

1

kr−1
αM < ∞.

That is, {A(r)
i } is a Cauchy sequence, and hence is convergent.
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Now, we show that the newly defined G(A1, . . . , Ak+1) satisfies property (3.6). To this
end, take any positive definite matrices A1, . . . , Ak+1 and B1, . . . , Bk+1 and consider the
sequences

{(A(r)
1 , . . . , A

(r)
k+1)}∞r=1 and {(B(r)

1 , . . . , B
(r)
k+1)}∞r=1.

Then for any r ≥ 1 and j ∈ {1, . . . , k + 1},

R(A
(r+1)
j , B

(r+1)
j ) = R(G((A

(r)
i )i6=j), G((B

(r)
i )i6=j) ) ≤

∏
i6=j

R(A
(r)
i , B

(r)
i )


1/k

.

So,

k+1∏
j=1

R(A
(r+1)
j , B

(r+1)
j ) ≤

k+1∏
j=1

∏
i6=j

R(A
(r)
i , B

(r)
i )

1/k

=
k+1∏
i=1

R(A
(r)
i , B

(r)
i ).

At the limit (Ã, . . . , Ã) and (B̃, . . . , B̃), we have

R(Ã, B̃)k+1 ≤
k+1∏
i=1

R(Ai, Bi).

On taking (k + 1)th roots we have the bound in (3.6).

Finally, consider properties P1–P9. These properties can be easily proved by induction
and the fact that they are known to be true for k = 2. To illustrate that we prove

P3: For k ≥ 2 we have G(A1, . . . , Ak) = G(Ai1 , . . . , Aik) for any permutation (i1, . . . , ik) of

(1, . . . , k).
We know that the result is true for k = 2. Now let us assume it is true for k and prove it

for k+1. Let (i1, . . . , ik+1) be any permutation of (1, . . . , k+1). Let Bj = Aij , j = 1, . . . , k+1.

We will prove by induction that B
(r)
j = A

(r)
ij for j = 1, . . . , k + 1 and r = 2, 3, . . .. The result

is true for r = 1 by assumption. Now assume the result for some r ≥ 1 and prove it for r+1.

B
(r+1)
j = G((B

(r)
l )l 6=j)

= G((A
(r)
il

)l 6=j)

= G((A(r)
m )m6=ij)

= A
(r+1)
ij .

Now that we have shown that B
(r)
j = A

(r)
ij for j = 1, . . . , k + 1 and r = 2, 3, . . ., it follows

that

(B̃, . . . , B̃) = lim
r→∞

(B
(r)
1 , . . . , B

(r)
k+1) = lim

r→∞
(A

(r)
i1 , . . . , A

(r)
ik+1

) = (Ã, . . . , Ã).

Thus
G(Ai1 , . . . , Aik+1

) = B̃ = Ã = G(A1, . . . , Ak+1)
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as desired. 2

Since G(A1, . . . , Ak) is order preserving, it also preserves positive definiteness. In fact, if

A1, . . . , Ak are positive definite and λmin(Ai)I ≤ Ai ≤ λmax(Ai)I for i = 1, . . . , k, then

(
k∏

i=1

λmin(Ai)

)1/k

I ≤ G(A1, . . . , Ak) ≤
(

k∏
i=1

λmax(Ai)

)1/k

I.

Now extend the definition of the geometric mean to the case of positive semidefinite
matrices according to the standard procedure mentioned in Section 1. Then the extended
geometric mean satisfies P1 –P10 as well as P6′.

Theorem 3.3 For any positive semidefinite matrices A1, . . . , Ak

ran(G(A1, . . . , Ak)) =
k⋂

i=1

ran(Ai), k = 2, 3, . . . . (3.12)

Proof. Take positive definite Ai,ε (i = 1, 2, . . . , k; ε > 0) such that Ai,ε ↓ Ai (i = 1, 2, . . . , k)

as ε ↓ 0. Notice that by P10

G(A1,ε, . . . , Ak,ε) ≥ k(A−1
1,ε + . . . + A−1

k,ε)
−1.

By definition the left hand side converges to G(A1, . . . , Ak) while it is known [1] that the

right hand side converges to the so-called harmonic mean H(A1, . . . , Ak) of A1, . . . , Ak and
that

ran(H(A1, . . . , Ak)) =
k⋂

i=1

ran(Ai).

Since the order relation for a pair of positive semidefinite matrices implies the inclusion
relation of their ranges, we have

ran(G(A1, . . . , Ak)) ⊃
k⋂

i=1

ran(Ai).

To prove the reverse inclusion, notice that by P6′ we have for any orthoprojection Q

G(QA1Q, . . . , QAkQ) ≥ QG(A1, . . . , Ak)Q.

By taking as Q the orthoprojection onto ker(A1) and noting QA1Q = 0, by P2 we can see

G(0, QA2Q, . . . , QAkQ) = 0 ≥ QG(A1, . . . , Ak)Q

which implies that
ker(A1) ⊂ ker(G(A1, . . . , Ak)).

By taking the orthogonal complements of both sides, we are led to the inclusion

ran(A1) ⊃ ran(G(A1, . . . , Ak)).
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Since the same is true for each Ai in place of A1, we can conclude

k⋂
i=1

ran(Ai) ⊃ ran(G(A1, . . . , Ak)).

This completes the proof. 2

The next result states that certain statements about G(A1, A2) extend immediately to

G(A1, . . . , Ak) for k ≥ 3. Denote by Pr the set of r × r positive semidefinite matrices.

Theorem 3.4 Let φ : Pn → Pm be monotone, continuous from above, and continuous in
the interior of Pn. Suppose

G(φ(X), φ(Y ))− φ(G(X, Y ))

is positive semidefinite (respectively, negative semidefinite or zero) for any X, Y ∈ Pn. Then
so is

G(φ(A))− φ(G(A)) (3.13)

for any A = (A1, . . . , Ak) ∈ P k
n and any k ≥ 2, where φ(A) = (φ(A1), . . . , φ(Ak)).

Proof. Our proof is by induction on k. Assume that we have the result for k ≥ 2 and

we wish to prove it for k + 1. Then for any A = (A1, . . . , Ak+1) ∈ P k+1
n and ε > 0, let

Aε = (A1 + εI, . . . , Ak+1 + εI). By the induction assumption,

T (φ(Aε)) = T (φ(A1 + εI), . . . , φ(Ak+1 + εI))

= (G((φ(Ai + εI)i6=1), . . . , G((φ(Ai + εI)i6=k+1)))

≥ (φ(G((Ai + εI)i6=1)), . . . , φ((G(Ai + εI)i6=k+1)))

= φ(T (Aε)).

Iterating this we have
T r(φ(Aε)) ≥ φ(T r(Aε)), r = 1, 2, . . . .

For any δ > 0, we have T r(φ(Aε) + δ(I, . . . , I)) ≥ T r(φ(Aε)). So,

T r(φ(Aε) + δ(I, . . . , I)) ≥ φ(T r(Aε)), r = 1, 2, . . . . (3.14)

Letting r → ∞, we have T r(φ(Aε) + δ(I, . . . , I)) → G(φ(Aε) + δ(I, . . . , I)). Note that each

coordinate in T r(Aε) is larger than or equal to εI, and hence belongs to the interior of Pn.

By continuity of φ on the interior of Pn, we see that the right side of (3.14) converges to

φ(G(Aε)) as r →∞. Hence, G(φ(Aε) + δ(I, . . . , I)) ≥ φ(G(Aε)), and

G(φ(Aε)) = lim
δ↓0

G(φ(Aε) + δ(I, . . . , I)) ≥ φ(G(Aε)).

Now, by the monotonicity of φ and G, we conclude that G(φ(A)) ≥ φ(G(A)). 2

There are several inequalities one can derive from this result.
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Let Φ be a positive linear map such that Φ(I) is positive definite. Clearly Φ is mono-

tone, continuous from above (and continuous on the set of positive definite matrices just as

mentioned for the geometric mean in Section 1). Then it is known that

(
X Z
Z∗ Y

)
≥ 0, Z = Z∗ ⇒

(
Φ(X) Φ(Z)
Φ(Z∗) Φ(Y )

)
≥ 0

(see, e.g., [3, Corollary 4.4 (ii)]). Note that the assertion Z = Z∗ is essential. So now, by

definition D2, it follows that Φ(G(X, Y )) ≤ G(Φ(X), Φ(Y )). Thus by Theorem 3.4,

Φ(G(A)) ≤ G(Φ(A)) (3.15)

for any A = (A1, . . . , Ak) ∈ P k
n with k ≥ 2.

If we take

φ(X) =
r∏

i=1

λi(X),

where λi denotes the ith largest eigenvalue, then we obtain the fact that for any p×p positive
definite matrices A1, . . . , Ak and any 1 ≤ r ≤ p

r∏
i=1

λi(G(A1, . . . , Ak)) ≤
r∏

i=1

(
k∏

l=1

λi(Al)

)1/k

and
p∏

i=r

λi(G(A1, . . . , Ak)) ≥
p∏

i=r

(
k∏

l=1

λi(Al)

)1/k

.

We could partition a positive semidefinite matrix X as

X =
(

X11 X12

X∗
12 X22

)

and take

φ(X) =
(

X11 −X12X
†
22X

∗
12 0

0 0

)
≡
(

SX 0
0 0

)
.

That is, SX denotes the Schur complement. It is known [9] that the generalized Schur
complement can be characterized by

SA = max
{
X : A ≥

(
X 0
0 0

)}
. (3.16)

This implies the monotonicity and the continuity from above of the map A 7→ SA. Since

A =
(

A11 A12

A∗
12 A22

)
≥
(

SA 0
0 0

)
, and B =

(
B11 B12

B∗
12 B22

)
≥
(

SB 0
0 0

)
.
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using monotonicity, we have

G(A, B) = A#B ≥
(

SA 0
0 0

)
#
(

SB 0
0 0

)
=
(

SA#SB 0
0 0

)
. (3.17)

Now, by the inequality (3.17) and the extremal representation (3.16), we have

SG(A,B) ≥ G(SA, SB).

Thus for any positive semidefinite A1, . . . , Ak we have

SG(A1,...,Ak) ≥ G(SA1 , . . . , SAk
).

Here let us pause to show that the Schur complement is useful for giving a representation
of certain geometric means. For simplicity, with the orthoprojection

P =
(

I 0
0 0

)

let us abuse the notation X11 · P for the matrix(
X11 0
0 0

)
.

Let us show that for positive semidefinite A

A#P = S
1/2
A · P (3.18)

Now, by D2 the geometric mean G(A, P ) is the solution of the extremal problem

max
{
X ≥ 0 :

(
A X
X P

)
≥ 0

}
It is easy to see that positive definite X satisfies the inequality on the left hand side if and

only if X = PXP and X2 ≤ A. Then by the extremal representation (3.16) of the Schur

complement this implies X2 ≤ SA · P . Since the square-root function preserves the positive
semidefinite order, we have

X ≤ S
1/2
A · P

The matrix X0 ≡ S
1/2
A ·P satisfies the conditions PX0P = X0 and X2

0 ≤ A. This proves the
asserted relation.

Notice that for positive definite A

SA = (A−1)−1
11 ,

we can write

A#P = (A−1)
−1/2
11 · P (∀ A > 0). (3.19)
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If we take φ(A) = Cq(A), be the q-th multiplicative compound of an n × n matrix A

(1 ≤ q ≤ n), then D3 in Section 2 shows that Cq(G(A1, A2)) = G(Cq(A1), Cq(A2)); thus for

any A = (A1, . . . , Ak) ∈ P k
n with k ≥ 2 we have

Cq(G(A)) = G(Cq(A)).

Recall the qth additive compound ∆q is defined by

∆q(A) = lim
t→0

Cq(A + tI)− Cq(A)

t
.

Let

J =
(

I I
I I

)
≥ 0, and K =

(
A G(A, B)

G(A, B) B

)
.

Since the multiplicative compound preserves the positive semi-definite order we have

W ≡ lim
t→0

Cq(K + tJ)− Cq(K)

t
≥ 0.

One can check that

X ≡
(

∆q(A) ∆q(G(A, B))
∆q(G(A, B)) ∆q(B)

)
is a principal submatrix of the positive semidefinite matrix W , and so X is itself positive
semidefinite. Thus,

G(∆q(A), ∆q(B)) ≥ ∆q(G(A, B)).

So taking φ = ∆q we have

G(∆q(A)) ≥ ∆q(G(A))

for any A = (A1, . . . , Ak) ∈ P k
n with k ≥ 2.

To conclude this section, we observe that our geometric mean satisfies the following
functional characterization.

Proposition 3.5 The function G in Definition 3.1 is the only family of functions fk : P k
n →

Pn, k = 2, 3, . . . that satisfies

1. f2(A, B) = A#B

2. fk maps any k-tuples of positive semidefinite matrices to a positive semidefinite matrix
and it is monotone and continuous from above.

3. fk maps any k-tuples of positive definite matrices to a positive definite matrix and it
is continuous.

4. fk((Ai)
k
i=1) = fk(fk−1((Ai)i6=1), . . . , fk−1((Ai)i6=k)) for k = 3, . . . , n,.
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This can be viewed as a functional characterization of G. Unfortunately, the fourth
condition, which certainly is desirable, does not seem to be essential for a geometric mean.

One may wonder whether the properties P1-P9 are sufficient to characterize the geometric
mean of more than two matrices. They are not sufficient, at least in the case of 2×2 matrices,
as we show in Section 6.

We note that Dukes and Choi have proposed a geometric mean in the case k = 3 in
unpublished notes [4]. Their mean is the same as ours, but their convergence proof is very
different, not entirely clear, and appears to apply only to the case k = 3.

4 Other definitions of geometric means

In this section we show that extensions of some scalar definitions of the geometric mean
and the definitions of the geometric mean of more than 2 positive definite matrices in the
literature fail to satisfy at least one of the properties P1-P9, and that some even fail to
satisfy one of the minimal properties P1-P6.

First let us see whether any of definitions D1 – D5 of G(A, B) in Section 2 extend easily
to 3 matrices. Since three of more positive definite matrices may not be simultaneously
diagonalizable by invertible congruence, it is not possible to use D1 for extension. It is not
clear how to extend the definitions D2 and D3, but definition D4 suggests that we define the

geometric mean Guv(A, B, C) to be A1/3UB1/3V C1/3 where U and V to be unitary such that

A1/3UB1/3V C1/3 is positive definite. However, A1/3UB1/3V C1/3 > 0 depends on the choice
of U , and V . This is most easily seen when A, B, C are all diagonal, and (U, V ) = (P, P ∗)
where P is a permutation other than the identity.

The definition D5 generalizes to k > 2 very naturally, and satisfies many, but not all of
the desired properties. We dedicate the next section to it.

Let us now consider some other potential geometric means that generalize the scalar
(commutative matrix) case. One may define

Gexp(A1, . . . , Ak) = exp

{
log(A1) + · · ·+ log(Ak)

k

}
.

This definition satisfies many of the conditions, but, even in the case k = 2, it is not
monotone – because the exponential is not monotone on the space of Hermitian matrices,

that is, X ≥ Y 6⇒ eX ≥ eY .

There are Hermitian matrices X ≥ Y such that exp(X) 6≥ exp(Y )1. Let

X1 = Y1 = Y, X2 = X − Y, and Y2 = 0.

1Consider

X ≡ 2I +
(

0 1
1 0

)
=
(

2 1
1 2

)
≥
(

3/2 0
0 0

)
≡ Y.

Then

exp(X) = e2

(
e+e−1

2
e−e−1

2
e−e−1

2
e+e−1

2

)
, while exp(Y ) =

(
e3/2 0
0 1

)
.
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Then X1 ≥ Y1 and X2 ≥ Y2. Let Ai = exp(2Xi) and Bi = exp(2Yi), for i = 1, 2. Then,
because 2Xi and 2Yi commute and the exponential is monotone on IR, we have Ai ≥ Bi, for
i = 1, 2. However,

exp

{
log(A1) + log(A2)

2

}
= exp(X) 6≥ exp(Y ) = exp

{
log(B1) + log(B2)

2

}
.

One may try to define the geometric mean recursively in terms of # by

Grec(A, B, C) = (A4/3#B4/3) # C2/3.

The right hand side appears not be symmetric in A, B, and C and indeed it is not. Here is
an example. Let us consider 2× 2 matrices and let

P =
(

1 0
0 0

)
.

Recall that from (3.19) we have

A#P = (A−1)
−1/2
11 · P ∀ A > 0.

Now, take B = I and C = P =
(

1 0
0 0

)
. Then

Grec(A, B, C) = Grec(A, I, P )

= (A4/3#I4/3)#P 2/3

= (A4/3#I)#P

= A2/3#P

= (A−2/3)
−1/2
11 · P

A similar calculation yields

Grec(A, C,B) = (A−4/3)
−1/4
11 · P.

So Grec(A, B, C) = Grec(A, C,B) if and only if (A−2/3)
1/2
11 = (A−4/3)

1/4
11 , but this is not

generally true. Here is an example:

A−2/3 =
(

2 1
1 1

)
Taking x = [1 , −1]T , we have

xT (exp(X)− exp(Y ))x = 2e2e−1 − e3/2 − 1 = −0.045...

Thus exp(X) 6≥ exp(Y ).
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Then (A−2/3)
1/2
11 =

√
2 while (A−4/3)

1/4
11 = 4

√
5.

Another idea that has been used in the scalar case to prove the arithmetic-geometric
mean inequality is to define

G4rec(A, B, C,D) ≡ (A#B)#(C#D)

and then define G34 to be the unique positive definite solution X to

G4rec(A, B, C,X) = X.

This fails because G4rec itself is not symmetric in its arguments. Take 2× 2 positive definite
matrices A and B, and P as above, then

G4rec(A, B, P, P ) = (A#B)#(P#P ) = (A#B)#P

= ((A#B)−1)
−1/2
11 · P = (A−1#B−1)

−1/2
11 · P

while

G4rec(A, P, B, P ) = (A#P )#(B#P )

= (A−1)
−1/2
11 · P#(B−1)

−1/2
11 · P

= ((A−1)11(B
−1)11)

−1/4 · P.

Again these two are not the same since

(A−1#B−1)11 ≤ ((A−1)11(B
−1)11)

1/2

and typically equality does not hold; for example, consider

A−1 =
(

4 0
0 1

)
and B−1 =

(
8 2
2 2

)
.

In this case ((A−1)11(B
−1)11)

1/2 = 4
√

2, but (A−1#B−1)11 = 2(
√

3 + 1) by Corollary 2.2.
There is a special case when G4rec is a permutationally invariant function of its arguments:

Proposition 4.1 If A, B, C,D are positive definite n×n matrices such that A#B = C#D ≡
G. Then

(A#C)#(B#D) = (A#D)#(B#C) = G. (4.1)

Proof. First observe that if A#B = G then B = GA−1G. Secondly, for any positive definite
matrices X, Y

(X#Y )#(X−1#Y −1) = (X#Y )#(X#Y )−1 = I.

So now

G−1/2[(A#C)#(B#D)]G−1/2

= G−1/2[(A#GD−1G)#(GA−1G#D)]G−1/2

= (G−1/2AG−1/2#G−1/2GD−1GG−1/2)#(G−1/2GA−1GG−1/2#G−1/2DG−1/2)

= (G−1/2AG−1/2#G1/2D−1G1/2)#(G1/2A−1G1/2#G−1/2DG−1/2)

= I.
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For the last equality we have used the second observation with X = G−1/2AG−1/2 and

Y = G1/2D−1G1/2. 2

Trapp proposed two possible definitions for G3 [10], and we will define them below.

Anderson Morely and Trapp extended them to k matrices with k ≥ 3 in [2]. For two positive

definite matrices, define A : B = (A−1 +B−1)−1, which is twice the harmonic mean of A and
B. For three positive definite matrices A, B, C, define the symmetric means

Φ1(A, B, C) = (A + B + C)/3

Φ2(A, B, C) = [A : (B + C) + B : (C + A) + C : (A + B)]/2,

Φ3(A, B, C) = 3(A−1 + B−1 + C−1)−1,

and define
Φ+(A, B, C) = (Φ1(A, B, C), Φ2(A, B, C), Φ3(A, B, C)) .

Then the sequence {Φr
+(A, B, C)}∞r=1 will converge to a triple of matrices with all components

equal. This common limit is called the upper AMT mean and is denoted by G+
amt(A, B, C).

Furthermore, define

G−
amt(A, B, C) = G+

amt(A
−1, B−1, C−1)−1

as the lower AMT mean, and Gamt(A, B, C) = G+
amt(A, B, C)#G−

amt(A, B, C) as the AMT
mean. Unfortunately, none of the three functions satisfies P2 – joint homogeneity. Take

A =
(

2 1
1 1

)
, B =

(
1 1
1 2

)
, C = I2.

Numerical computation shows that G+
amt, G−

amt, Gamt for (A, B, C) are:

(
1.1587 0.5793
0.5793 1.1587

)
,
(

1.1507 0.5754
0.5754 1.1507

)
,
(

1.1547 0.5774
0.5774 1.1547

)
,

where as the corresponding means for (A, B, 8C) are:

(
2.3030 1.1393
1.1393 2.3030

)
,
(

2.2996 1.1376
1.1376 2.2996

)
,
(

2.3013 1.1385
1.1385 2.3013

)
.

So,
G3(A, B, 8I) 6= 2G3(A, B, I)

for any of these three AMT means. Nevertheless, we will give some computational formulae
related to them in the last section.
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5 Kosaki mean

Kosaki [7] proposed a definition of the geometric mean of k positive definite matrices, which
after later modification of the integral form by Kubo and Hiai, resulted in the following
definition. Let

αj ≥ 0 (j = 1, 2, . . . , k) and
k∑

j=1

αj = 1.

For Aj > 0 (j = 1, 2, . . . , k) define

(A1, . . . , Ak; α1, . . . , αk)
def
=

1∏k
j=1 Γ(αj)

∫
∆k

{ k∑
j=1

λjA
−1
j

}−1{ k∏
j=1

λ
αj−1
j

}
dλ1 · · · dλk,

where

∆k
def
= {(λ1, . . . , λk) ; λk ≥ 0 (k = 1, 2, . . . , n),

k∑
j=1

λj = 1}.

The Kosaki mean on k positive definite matrices is

G+
K(A1, . . . , Ak) = (A1, . . . , Ak; 1/k, . . . , 1/k) (5.1)

=
1

Γ (1/k)k

∫
∆k

{ k∑
j=1

λjA
−1
j

}−1{ k∏
j=1

λ
1/k−1
j

}
dλ1 · · · dλk. (5.2)

The reason for denoting this mean by G+
K rather than GK will become apparent later. An

attractive feature of (5.1) is that if the Ai commute then we have a weighted geometric mean:

(A1, . . . , Ak; α1, . . . , αk) = Aα1
1 · · ·Aαk

k . (5.3)

Let us show that in the case k = 2 this is indeed equal to #. We have the integral identity

∫ 1

0

λα−1(1− λ)β−1

{λa−1 + (1− λ)b−1}α+β
dλ =

Γ(α) · Γ(β)

Γ(α + β)
aαbβ.

With α = β = 1/2 and Γ(1/2)2 = π, so for any C > 0

C1/2 =
1

π

∫ 1

0

{
λC−1 + (1− λ)

}−1{
λ−1/2 · (1− λ)−1/2

}
dλ.

Thus

A#B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2

=
1

π

∫ 1

0

{
λB−1 + (1− λ)A−1

}−1{
λ−1/2 · (1− λ)−1/2

}
dλ.

= G+
K(A, B).
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It is easy to show that G+
K satisfies properties P1-P6. Some manipulation of integrals

shows that G+
K satisfies P7 (homogeneity), at least in the case k = 3.

However, numerical computation shows that G+
K does not satisfy the determinant identity

P9, nor self duality P8. Incidentally, when n = 2 and k = 3, G+
K does satisfy P9, but it still

does not satisfy P8.

There is an easy way to modify G+
K so that the result is self dual. Define

G−
K(A, B, C) ≡ G+

K(A−1, B−1, C−1)−1,

and set
GK(A, B, C) ≡ G+

K(A, B, C)#G−
K(A, B, C).

The resulting geometric mean still satisfies conditions P1-P7, and by construction P8 also.
However, numerical computation (below) shows that the new GK still does not satisfy the
determinant identity.

How did we compute GK(A, B, C)? We computed G+
K(A, B, C) as follows. First, since

G+
K satisfies congruence-invariance

G+
K(A, B, C) = C1/2G+

K(C−1/2AC−1/2, C−1/2BC−1/2, I)C1/2.

We can reduce the double integral representation of G+
K to a single integral in the special

case that C = I:

G+
K(A, B, I) = H(A, B) ≡ Γ(2/3)

Γ(1/3)2

∫ 1

0
[u(1− u)]−2/3

(
uA−1 + (1− u)B−1

)−2/3
du.

The resulting integral can be numerically evaluated using Gauss-Jacobi quadrature with

weight function u−2/3(1 − u)−2/3. Golub and Welch show how to compute the nodes and

weights stably [5].
Do numerical errors invalidate our computations? We believe not, for the following

reasons. Firstly we used well conditioned matrices, so there would be little error in computing

A−1 and B−1. It is known that for positive definite matrices and 0 ≤ u ≤ 1, (uA−1 + (1 −
u)B−1)−1 is at least as well conditioned as the worse conditioned of A and B, thus it too is
well conditioned, and we can expect to make only very small errors in the required matrix

computations2. What about the accuracy of the quadrature? The program delivered answers
correct to about 15 digits when A and B were chosen to be scalars. For 3 × 3 matrices, as
we increased p, the number of nodes used in quadrature, we noticed that the computed

integrals appeared to converge, and in the end had a relative difference of about 10−14 –

2It follows from [6, Cor 13.6] that if C is an n× n positive definite matrix, the X, the inverse computed
using the Cholesky factorization and unit round off u (see [6, §2.2] for a precise definition) satisfies

‖X − C−1‖2 ≤ 8n3.5κ(C)‖C−1‖2u + O(u2).

In Matlab u ≈ 2× 10−16, so provided that K(C), the condition number of C, and ‖C−1‖ are not too large,
one can be sure that the computed C−1 is indeed close the true inverse.
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that is, they agreed to about 14 significant figures. We have not performed a careful error
analysis because the above results suggest that our computations are more than accurate
enough to demonstrate that GK does not satisfy the determinant identity P9.

Here is a counter-example to the determinant identity: Let

A =

 3 0 1
0 2 1
1 1 1

 , and B =

 2 0 1
0 3 1
1 1 1

 .

Both these matrices have integer inverses, and for any u ∈ [0, 1], the linear combination

uA−1 + (1− u)B−1 has condition number less than 30. Then using Gauss quadrature with
40 nodes on MATLAB one gets

GK(A, B, I) =

 1.71456842623973 −0.02781758741820 0.61882347867050
−0.02781758741820 1.71456842623973 0.61882347867050
0.61882347867050 0.61882347867050 0.79431436889448


which has determinant 0.99999964649328, not 1. (Incidentally, when we used any number

of nodes between 12 and 40, the computed determinant of GK(A, B, I) agreed to 14 decimal

digits.)

Since G satisfies the determinantal identity, but GK does not (by numerical computation),
if follows that GK 6= G. In the next section we restrict attention to 2 × 2 matrices. We
show GK does satisfy the determinant identity, but that never-the-less GK 6= G, even in this
special case.

6 Formulae for the 2× 2 case

We would like to be able to define a geometric mean on k > 2 matrices without invoking
a limiting process. However, even for some special 2 × 2 matrices, finding the closed form
analytically does not not seem to be easy as shown in the example below.

In the subsequent discussion, we use the map

Θ(X) ≡
(

x22 −x12

−x21 x11

)
for X =

(
x11 x12

x21 x22

)
.

The map Θ(·) is linear, involutive, and anti-multiplicative, i.e.,

Θ(αA + βB) = αΘ(A) + βΘ(B), Θ2(A) = A, Θ(AB) = Θ(B) ·Θ(A). (6.1)

Important is the relation that

det(Θ(A)) = det(A) and A−1 =
Θ(A)

det(A)
invertible A, (6.2)
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in particular,

A−1 = Θ(A) (∀ det(A) = 1). (6.3)

Further the following relation holds; for A > 0

Θ(Ap) = Θ(A)p (p ∈ IR), in particular Θ(A)−1 = Θ(A−1). (6.4)

Example 6.1 If

A =
(

2 1
1 1

)
, B =

(
1 1
1 2

)
, and C = I2,

then numerical computations show that

G(A, B, C) =
1√
3

(
2 1
1 2

)
,

which is equal to c(A + B + C) with c > 0 satisfying det c(A + B + C) = 1.

To prove the result analytically, let (A0, B0, C0) = (A, B, C), and for r ≥ 1

Ar+1 ≡ Br#Cr, Br+1 ≡ Cr#Ar, Cr+1 ≡ Ar#Br.

We prove by induction that there are αr, βr ≥ 0 such that

Ar = αrA + βrB + βrC,

Br = βrA + αrB + βrC,

Cr = βrA + βrB + αrC.

Clearly, α0 = 1 and β0 = 0. Suppose that the relations are true for r. Since

det(Ar) = det(Br) = det(Cr) = 1,

we have, Proposition 2.1,

Ar+1 =
1√

2 + tr
(
Θ(Br) · Cr

)(Br + Cr),

Br+1 =
1√

2 + tr
(
Θ(Cr) · Ar

)(Cr + Ar),

Cr+1 =
1√

2 + tr
(
Θ(Ar) ·Br

)(Ar + Br).

Since

tr
(
Θ(A) · A

)
= tr

(
Θ(B) ·B

)
= tr

(
Θ(C) · C

)
= 2
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and

tr
(
Θ(A) ·B

)
= tr

(
Θ(A) · C

)
= 3,

tr
(
Θ(B) · A

)
= tr

(
Θ(B) · C

)
= 3,

tr
(
Θ(C) · A

)
= tr

(
Θ(C) ·B

)
= 3,

by the induction assumption

tr(Θ(Br) · Cr) = tr
(
{βrΘ(A) + αrΘ(B) + βrΘ(C)}{βrA + βrB + αrC}

)
= βr(2βr + 3βr + 3αr) + αr(3βr + 2βr + 3αr) + βr(3βr + 3βr + 2αr)

= 3α2
r + 10αrβr + 11β2

r ;

similarly,

tr(Θ(Cr) · Ar) = 3α2
r + 10αrβr + 11β2

r ,

and
tr(Θ(Ar) ·Br) = 3α2

r + 10αrβr + 11β2
r .

Therefore we have

tr
(
Θ(Br) · Cr

)
= tr

(
Θ(Cr) · Ar

)
= tr

(
Θ(Ar) ·Br

)
≡ γr.

Then by definition and the induction assumption

Ar+1 = Br#Cr =
Br + Cr√

2 + tr
(
Θ(Br) · Cr

) =
(2βr)A + (αr + βr)B + (αr + βr)C√

2 + γr

and similarly

Br+1 = Cr#Ar =
Cr + Ar√

2 + tr
(
Θ(Cr) · Ar

) =
(αr + βr)A + (2βr)B + (αr + βr)C√

2 + γr

Cr+1 = Ar#Br =
Ar + Br√

2 + tr
(
Θ(Ar) ·Br

) =
(αr + βr)A + (αr + βr)B + (2βr)C√

2 + γr

.

Therefore with

αr+1 ≡ 2βr√
2 + γr

=
2βr√

2 + 3α2
r + 10αrβr + 11β2

r

βr+1 ≡ αr + βr√
2 + γr

=
αr + βr√

2 + 3α2
r + 10αrβr + 11β2

r
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we have

Ar+1 = αr+1A + βr+1B + βr+1C,

Br+1 = βr+1A + αr+1B + βr+1C,

Cr+1 = βr+1A + βr+1B + αr+1C.

This completes the induction. Since A, B, C are linearly independent and

G(A, B, C) = lim
r→∞

Ar = lim
r→∞

Br = lim
r→∞

Cr,

we can conclude that
lim
r→∞

αr = lim
r→∞

βr ≡ α

and
G(A, B, C) = α(A + B + C).

Since det
(
G(A, B, C)

)
= 1, the value α is determined by

α2 det(A + B + C) = 1,

so that

α =
1√
12

and G(A, B, C) =
1√
3

(
2 1
1 2

)
.

This completes the proof. 2

Next, we prove some formulae for the other geometric means on three 2×2 matrices that
may be useful for future study.

Proposition 6.2 If A, B, C > 0 are 2 × 2 and such that det(A) = det(B) = det(C) = 1,
then for the Kosaki mean the following holds:

G+
K(A, B, C) = αA + βB + γC

where

α ≡ 1

Γ(1/3)3

∫
∆3

λ1 · (λ1λ2λ3)
−2/3

det(λ1A + λ2B + λ3C)
dλ1dλ2dλ3

β ≡ 1

Γ(1/3)3

∫
∆3

λ2 · (λ1λ2λ3)
−2/3

det(λ1A + λ2B + λ3C)
dλ1dλ2dλ3

γ ≡ 1

Γ(1/3)3

∫
∆3

λ3 · (λ1λ2λ3)
−2/3

det(λ1A + λ2B + λ3C)
dλ1dλ2dλ3.

Moreover,

G−
K(A, B, C) =

G+
K(A, B, C)

det(G+
K(A, B, C))

and GK(A, B, C) =
G+

K(A, B, C)√
det(G+

K(A, B, C))
.
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Proof. For simplicity, write

σ(λ1, λ2, λ3) ≡ 1

Γ(1/3)3
(λ1λ2λ3)

−2/3dλ1dλ2dλ3.

Then

G+
K(A, B, C) =

∫
∆3

(λ1A
−1 + λ2B

−1 + λ3C
−1)−1dσ(λ1, λ2, λ3). (6.5)

Since in the present case

A−1 = Θ(A), B−1 = Θ(B), C−1 = Θ(C)

we have

G+
K(A, B, C) =

∫
∆3

Θ(λ1A + λ2B + λ3C)−1dσ(λ1, λ2, λ3)∫
∆3

λ1A + λ2B + λ3C

det(λ1A + λ2B + λ3C)
dσ(λ1, λ2, λ3).

Next

G−
K(A, B, C) ≡ G+

K(A−1, B−1, C−1)−1 = G+
K(Θ(A), Θ(B), Θ(C))−1

= Θ(G+
K(A, B, C))−1 =

G+
K(A, B, C)

det(G+
K(A, B, C))

.

Finally

GK(A, B, C) = G+
K(A, B, C)#G−

K(A, B, C) =
G+

K(A, B, C)√
det(G+

K(A, B, C))
.

This completes the proof. 2

The formula for GK given in Proposition 6.2 shows that GK satisfies the determinant
identity (P9) when A, B, C are 2 × 2 and have determinant 1. Since GK can be shown to

satisfy joint homogeneity (P2), it follows that GK satisfies P9 for all A, B, C > 0 (assumed

2 × 2). Thus, both GK and our new G satisfy conditions P1-P9, but they are not equal.
Here is an example. Take

A =
(

2 1
1 1

)
, B =

(
1 2
2 5

)
, C =

(
1 0
0 1

)
.

Then numerical computation shows that

G(A, B, C) =
(

0.9319 0.6636
0.6636 1.5456

)
, GK(A, B, C) =

(
0.9320 0.6628
0.6628 1.5444

)
.

Finally, we give a closed formula for the AMT means of 2× 2 positive definite matrices
A, B, C each of which has determinant 1. Since these means are not jointly homogeneous
this proposition does not yield a formula for general triplets of positive definite matrices.
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Proposition 6.3 Let A, B, C > 0 be 2 × 2 and such that det(A) = det(B) = det(C) = 1.
Then

G+
amt(A, B, C) =

1

det(Ã)1/3
Ã1/2 ·

(
Ã−1/2B̃Ã−1/2

)1/3
· Ã1/2,

where Ã, B̃ (and C̃) are the matrices in the first step of the iterations

Ã ≡ 1

3
(A + B + C),

B̃ ≡ 1

2

{
A : (B + C) + B : (C + A) + C : (A + B)

}
C̃ ≡ 3(A : B : C)

Moreover,

G−
amt(A, B, C) =

G+
amt(A, B, C)

det(G+
amt(A, B, C))

and Gamt(A, B, C) =
G+

amt(A, B, C)√
det(G+

amt(A, B, C))
.

Proof. First, note that

C̃ = 3(A−1 + B−1 + C−1)−1

= 3
(
Θ(A) + Θ(B) + Θ(C)

)−1

=
3

det(A + B + C)
(A + B + C) =

1

det(Ã)
Ã.

Next, we show that if C = ρA with ρ > 0, then

G+
amt(A, B, C) = ρ1/3A1/2 · (A−1/2BA−1/2)1/3 · A1/2.

This is true because

G+
amt(A, B, C) = A1/2 ·G+

amt

(
I, A−1/2BA−1/2, ρI

)
· A1/2

and I, A−1/2BA−1/2, ρI are commuting, and thus

G+
amt

(
I, A−1/2BA−1/2, ρI

)
= ρ1/3(A−1/2BA−1/2)1/3.

Combining the above observations, we get the formula for G+
amt(A, B, C).

Let (A1, B1) = (Ã, B̃). Then

G+
amt(A, B, C) =

1

det(A1)1/3
A

1/2
1

(
A
−1/2
1 B1A

−1/2
1

)1/3
A

1/2
1 . (6.6)
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First notice that
A−1 + B−1 + C−1

3
= Θ(A1)

and

2B1 = (A + B + C)− A(A + B + C)−1A−B(A + B + C)−1B − C(A + B + C)−1C.

Replacing A, B, C by A−1, B−1, C−1, by (6.4) we have

(A−1 + B−1 + C−1)− A−1(A−1 + B−1 + C−1)−1A−1

−B−1(A−1 + B−1 + C−1)−1B−1 − C−1(A−1 + B−1 + C−1)−1C−1

= Θ(A + B + C)−Θ(A)Θ(A + B + C)−1Θ(A)

−Θ(B)Θ(A + B + C)−1Θ(B)−Θ(C)Θ(A + B + C)−1Θ(C)

= 2Θ(B1).

Therefore by (6.6) and (6.4)

G+
amt(A

−1, B−1, C−1)−1

=
{ 1

det(Θ(A1))1/3
Θ(A1)

1/2
(
Θ(A1)

−1/2Θ(B1)Θ(A1)
−1/2

)1/3
Θ(A1)

1/2
}−1

= Θ(G+
amt(A, B, C))−1 =

G+
amt(A, B, C)

det(G+
amt(A, B, C))

;

hence

G−
amt(A, B, C) =

G+
amt(A, B, C)

det(G+
amt(A, B, C))

and GA(A, B, C) =
G+

amt(A, B, C)√
det(G+

amt(A, B, C))
.

This completes the proof. 2

As explained at the end of Section 2, by Proposition 6.3 one can write Gamt(A, B, C) in
a form αA + βB + γC. But the explicit formulas for α, β, γ are quite complicated. For the
matrices in Example 6.1 we can show

GK(A, B, C) = Gamt(A, B, C) =
1√
3

(
2 1
1 2

)
= G(A, B, C).
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