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Abstract

For a square matrix A, let S(A) be an eigenvalue inclusion set such as the Gershgorin region,
the Brauer region in terms of Cassini ovals, and the Ostrowski region. Characterization is obtained
for maps Φ on n × n matrices satisfying S(Φ(A) − Φ(B)) = S(A − B) for all matrices A and
B. From these results, one can deduce the structure of additive or (real) linear maps satisfying
S(A) = S(Φ(A)) for every matrix A.
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Ostrowski region.
AMS Subject Classification: 15A86, 15A18.

1 Introduction

Motivated by pure and applied problems, researchers often need to understand the eigenvalues of
matrices. For example, in numerical analysis or population dynamics, a square matrix A satisfies
limm→∞A

m = 0 if and only if each eigenvalue has modulus less than 1; in stability theory of
differential equations, the solution of the system of differential equations x′ = Ax is stable if and
only if all the eigenvalues of A lie in the left half plane; in the study of quadratic forms a Hermitian
matrix is positive definite if and only if all the eigenvalues are positive real; see [2]. However, it is
sometimes difficult to compute the eigenvalues efficiently and accurately, due to reasons such as the
dimension of the matrix is too high, there are numerical or measuring errors in the entries, etc. So,
researchers consider eigenvalue inclusion sets; see [2, 5]. For instance, the well known Gershgorin
theorem asserts that the eigenvalues of a matrix lie in the union of circular disks centered at the
diagonal entries with radii determined by the off diagonal entries (see Section 2). These eigenvalue
inclusion sets give effective ways to estimate the location of the eigenvalues for matrices. To further
improve the estimate, one may apply simple transformations such as diagonal similarities to a
matrix to get better or easier estimates of the location of the eigenvalues of a given matrix.
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In this paper, we study maps on matrices leaving invariant the eigenvalue inclusion sets such
as the Gershgorin region, the Brauer region in terms of Cassini ovals, and the Ostrowski region
(see Sections 2, 3, and 4, respectively). The study of maps on matrix spaces leaving invariant some
properties, functions or subsets is known as preserver problems. Early study on the subject focused
on linear preservers; i.e., linear maps having the preserving properties; see [3] and its references.
Recently, researchers work on more general preservers; see [4] and its references.

In our study, let S(A) be an eigenvalue inclusion set for the matrix A. We characterize maps
Φ on square matrices satisfying S(Φ(A)− Φ(B)) = S(A−B) for any two matrices A and B. It is
shown that such Φ are real affine maps. From our results or proofs, one can deduce the structure
of additive or (real) linear maps satisfying the following:

S(A) = S(Φ(A)). (1.1)

Note that if one just assumes that a map Φ satisfies (1.1) for every matrix A, the structure of Φ
can be quite arbitrary. For instance, one can partition the set of matrices into equivalence classes
so that two matrices A and B belong to the same class if S(A) = S(B). If Φ sends each of these
classes back to itself, then Φ satisfies (1.1) for every matrix A.

We will always assume that n ≥ 2 to avoid trivial consideration. The following notation and
definitions will be used in our discussion.

Mn: the set of n× n complex matrices.
{E11, E12, . . . , Enn}: the standard basis for Mn.
Pn: the group of permutation matrices in Mn.
DUn: the group of diagonal unitary matrices in Mn.
GPn = {DP : D ∈ DUn, P ∈ Pn}: the group of generalized permutation matrices in Mn.

2 Gershgorin Regions

In this section, we consider preservers of the Gershgorin region of A = (aij) ∈Mn defined by

G(A) = ∪nk=1Gk(A),

where for k = 1, . . . , n,

Gk(A) = {µ ∈ C : |µ− akk| ≤ Rk} with Rk =
∑
j 6=k
|akj |.

It is known that G(A) contains all the eigenvalues of A; one may see [2, Chapter 6] for general
properties of G(A).

Theorem 2.1 A map Φ : Mn →Mn satisfies

G(Φ(A)− Φ(B)) = G(A−B) for all A,B ∈Mn (2.1)

if and only if Φ is a composition of maps of the following forms:
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(1) A 7→

A1Q1
...

AnQn

 for A ∈ Mn with rows A1, . . . , An, where Q1, . . . , Qn ∈ GPn are such that

the (j, j) entry of Qj is 1 for j = 1, . . . , n.

(2) A 7→ PAP t + S, where P ∈ Pn and S ∈Mn.

(3) A = (ars) 7→ (ψrs(ars)), where ψrs is either the complex conjugation map z 7→ z or identity
map z 7→ z, and the latter always occurs if r = s.

It is easy to verify that maps of the form (1), (2), and (3) in the theorem indeed satisfy (2.1).
Hence the sufficiency of the theorem is clear. To prove the necessity part of the theorem, we need
some lemmas.

Lemma 2.2 Let w = ei2π/n and

Γ =
{

1− wk

1− wj
: j ∈ {1, . . . , n− 1}, k ∈ {1, . . . , n}

}
. (2.2)

Suppose µ ∈ C \ Γ. Then R ∈ Pn is such that the set of entries of the vector µ(w,w2, . . . , wn) −
(w,w2, . . . , wn)R equals {(µ− 1)wj : 1 ≤ j ≤ n} if and only if R = In.

Proof. The sufficiency is clear. To verify the necessity part, assume that the kth entry of the
vector µ(w,w2, . . . , wn)− (w,w2, . . . , wn)R equals µwk−wi with k 6= i. Then µwk−wi = µwj−wj

for some j ∈ {1, . . . , n} so that µ(wj − wk) = wj − wi. If j = i, then j 6= k and hence µ = 0 =
(1−wn)/(1−w); if j 6= i, then µ = (1−wk−j)/(1−wi−j). This contradicts the fact that µ /∈ Γ. �

The next lemma should be known to researchers on distance preserving maps. We include a
proof for completeness.

Lemma 2.3 Let V = C1×m. A map f : V → V satisfies `1(f(x) − f(y)) = `1(x − y) for all
x, y ∈ V if and only if there is z ∈ V and Q ∈ GPn such that f has the form

(x1, . . . , xm) 7→ (f1(x1), . . . , fm(xm))Q+ z,

where fj is either the identity map µ 7→ µ or the complex conjugation µ 7→ µ̄.

Proof. The sufficiency is clear. We consider the converse. We divide the proof into two
assertions.

Assertion 1 Let B = {x ∈ V : `1(x) ≤ 1} and E = {x ∈ B : x 6= (u+ v)/2 with different u, v ∈ B}
be the set of extreme points of B. Then x ∈ E if and only if x has only one nonzero entry with
modulus 1.

Proof. Let x = (x1, . . . , xm) ∈ B. We consider three possible cases.
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Case 1 Suppose x has a single nonzero entry at the jth position with |xj | = 1. If u =
(u1, . . . , un), v = (v1, . . . , vn) ∈ B satisfy x = (u + v)/2, then xj = (uj + vj)/2. Since |xj | = 1 ≥
|uj |, |vj |, we see that uj = vj = xj . Because u, v ∈ B, all other entries of u and v must be zero.
Thus, x = u = v. Hence x ∈ E .

Case 2 Suppose x has a single nonzero entry at the jth position such that |xj | < 1. Then there
exists a δ 6= 0 such that |xj + δ|, |xj − δ| ≤ 1. We can then let u = (0, . . . , 0, xj + δ, 0, . . . , 0), v =
(0, . . . , 0, xj − δ, 0, . . . , 0) ∈ B such that x = (u+ v)/2. Thus, x /∈ E .

Case 3 Suppose x ∈ B has at least two nonzero entries, say, at the jth and kth positions
such that xj = ρje

itj , xk = ρke
itk and ρj , ρk ∈ (0, 1), where ρj + ρk ≤ 1. Then there exists u =

(u1, . . . , um) with two nonzero entries, namely, uj = δeitj and uk = −δeitk with min{ρj , ρk} > δ > 0
so that x+ u, x− u ∈ B are different vectors and x = [(x+ u) + (x− u)]/2 /∈ E .

Combining these three cases we see that x ∈ E if and only if x has only one nonzero entry with
modulus 1.

Assertion 2 The map g(x) = f(x) − f(0) is real linear and satisfies g(E) = E , and f has the
asserted form with f(0) = z.

Proof. By the result in [1], we know that g(x) = f(x)− f(0) is real linear. Note that g(x) = 0
if and only if 0 = `1(g(x)) = `1(x), i.e., x = 0. Hence g is a real linear injective map, and therefore
is bijective. As a result, g(B) = B. Clearly, x = (u + v)/2 for distinct u, v ∈ B if and only if
g(x) = (g(u) + g(v))/2 with distinct g(u), g(v) ∈ B. Thus, g(E) = E .

Let {e1, e2, . . . , em} be the standard basis for C1×m. Because g(E) = E , we see that g(ej) = µjerj

for some rj ∈ {1, . . . ,m} and µj ∈ C with |µj | = 1. Since `1(ej + γek) = `1(g(ej) + γg(ek)) for
all γ ∈ R and j 6= k, we see that (r1, . . . , rm) is a permutation of (1, . . . ,m). Now, g(iej) = νjesj

for some sj ∈ {1, . . . ,m} and νj ∈ C with |νj | = 1. Since `1(ej + γiej) = `1(g(ej) + γg(iej))
for all γ ∈ R, we see that sj = rj and νj ∈ {iµj ,−iµj}. Thus, g has the form (x1, . . . , xm) 7→
(f1(x1), . . . , fm(xm))Q, where f1, . . . , fm and Q satisfy the conclusion of the lemma. Thus, f has
the asserted form. �

Proof of Theorem 2.1. The sufficiency is clear, as remarked before. We consider the necessity.
Replacing Φ by the map X 7→ Φ(X)− Φ(0), we may assume that Φ(0) = 0 and G(Φ(X)) = Φ(X)
for all X ∈Mn in addition to the assumption that G(Φ(A)−Φ(B)) = G(A−B) for all A,B ∈Mn.
Let Γ be defined as in Lemma 2.2.

Assertion 1 Let D = diag (w,w2, . . . , wn−1, 1) for w = ei2π/n. There is a permutation matrix P

such that PΦ(D)P t = D. Furthermore, if µ ∈ C \ Γ, then PΦ(µD)P t = µD.
To verify the assertion, note that G(Φ(µD)) = G(µD) = {µwj : 1 ≤ j ≤ n}. Hence, Φ(µD)

has digonal entries µwj with j = 1, . . . , n, and all off-diagonal entries equal to zero. Thus, there is
a permutation matrix P such that PΦ(D)P t = D. We may assume that Φ(D) = D. Otherwise,
replace Φ by the map A 7→ P tΦ(A)P . Suppose µ ∈ C \ Γ. Then

G(Φ(µD)− Φ(D)) = G(µD −D) = {(µ− 1)wj : j = 1, . . . , n}.
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Thus, the vector of diagonal entries of Φ(µD)− Φ(D) equals µ(w,w2, . . . , wn)− (w,w2, . . . , wn)R
for some R ∈ Pn, and the entries constitute the set {(µ − 1)wj : 1 ≤ j ≤ n}. By Lemma 2.2, the
(j, j) entry of Φ(µD) is µwj for each j = 1, . . . , n, i.e., Φ(µD) = µD.

Assertion 2 Assume that P in the conclusion in Assertion 1 is In. Then Φ(Wk) ⊆ Wk for
k = 1, . . . , n, where

Wk =

∑
j 6=k

ajEkj : a1, . . . , ak−1, ak+1, . . . , an ∈ C

 .

Moreover, define Φk : C1×(n−1) → C1×(n−1) by

Φk(a1, . . . , ak−1, ak+1, . . . , an) = (b1, . . . , bk−1, bk+1, . . . , bn)

if Φ(
∑

j 6=k ajEkj) =
∑

j 6=k bjEkj . Then Φk satisfies the conclusion of Lemma 2.3 with z = 0.
To prove the assertion, let A =

∑
j 6=k ajEkj ∈ Wk and Φ(A) = B = (bij). Let µ ∈ (0,∞) \ Γ

satisfy µ|1 − w| >
∑

j 6=k |akj | = Rk. Then Φ(µD) = µD by Assertion 1. Moreover, since G(B) =
G(A) = {z ∈ C : |z| ≤ Rk},

min{µ|wi − wj | : 1 ≤ i < j ≤ n} = µ|1− w| > Rk ≥ max{|bjj | : 1 ≤ j ≤ n}. (2.3)

Thus,

G(µD −B) = G(Φ(µD)− Φ(A)) = G(µD −A) = {µwj : j 6= k} ∪ {γ : |γ − µwk| ≤ Rk}.

For i = 1, . . . , n, the (i, i) entry of µD − B equals µwi − bii is the center of one of the disks
in G(µD − A). Thus, µwi − bii = µwj implies that µ|wi − wj | = |bii| < µ|1 − w| by (2.3). It
follows that i = j and bii = 0. Thus, µD − B has diagonal entries µw, µw2, . . . , µwn−1, µ. Since
G(µD−B) = G(µD−A), we see that only the kth row of B can have nonzero off diagonal entries,
and

∑
j 6=k |bkj | = Rk.

Now, define Φk as in Assertion 2. Since G(Φ(A1)−Φ(A2)) = G(A1 −A2) for any A1, A2 ∈Wk

and Φ(0) = 0, we see that `1(Φk(u) − Φk(v)) = `1(u − v) for all u, v ∈ C1×(n−1). Thus, the last
statement of Assertion 2 follows.

Assertion 3 The map Φ has the asserted form.
By Assertion 2, we may compose the map Φ with maps of the form (1) – (3) described in the

theorem and assume that

(I) Φ(µD) = µD whenever µ ∈ C \ Γ, and (II) Φ(X) = X whenever X ∈ ∪nk=1Wk.

Under conditions (I) and (II), we will show that Φ(A) = A for each A ∈ Mn. First, we consider
the special case when A = µD + B with µ ∈ C \ Γ and B ∈ Wk where G(A) consists of n disjoint
disks with at most one of them having positive radius. Suppose Φ(A) = C = (cij). Let ν > 0 be
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such that ν, νµ /∈ Γ and G(νµD − A) = G(µ(ν − 1)D − B) consists of n connected components.
Then Φ(νµD) = νµD by (I), and

G(νµD − C) = G(Φ(νµD)− Φ(A)) = G(νµD −A) = G(µ(ν − 1)D −B)

consists of n circular disks with only one of them having positive radius. Considering the centers
of the n disks, we conclude that the diagonal entries of νµD−C equal µ(ν − 1)wj for j = 1, . . . , n.
Similarly, since G(C) = G(A) consists of n disks, we see that C has diagonal entries lying in
{µwj : j = 1, . . . , n}. Suppose the cjj = µwk such that k 6= j. Then the vector of diagonal entries
of Φ(νµD)−Φ(A) equals νµ(w,w2, . . . , wn)−µ(w,w2, . . . , wn)R for some R ∈ Pn, and has entries
which constitute the set {µ(ν − 1)wj : 1 ≤ j ≤ n}. It follows that the vector ν(w,w2, . . . , wn) −
(w,w2, . . . , wn)R has entries in {(ν − 1)wj : 1 ≤ j ≤ n}. By Lemma 2.2, we see that cjj = µwj .
Since G(C) = G(A), we see that only the kth row of C can have off-diagonal entries. Since
G(Φ(A)−Φ(B)) = G(A−B) = {µwj : 1 ≤ j ≤ n}, we see that Φ(A)−Φ(B) is a diagonal matrix,
which is µD. It follows that Φ(A) = µD + Φ(B) = µD +B.

Next, we consider a general matrix A = (aij) ∈ Mn. Suppose Φ(A) = C = (cij). Let µ ∈
(0,∞) \ Γ be such that G(µD − A) consists of n disjoint disks. Moreover, we can choose µ > 0
such that µ|1 − w| >

∑n
j=1(|ajj | + |cjj |) so that µwj − cjj 6= µwk − akk for any j 6= k. Since

Φ(µD) = µD, G(µD − C) = G(Φ(µD) − Φ(A)) = G(µD − A). By our choice of µ, we see that
µwj − cjj = µwj − ajj so that cjj = ajj for j = 1, . . . , n. Furthermore, since

G

µD +
∑
j 6=k

akjEkj − C

 = G

Φ

µD +
∑
j 6=k

akjEkj

− Φ(A)

 = G

µD +
∑
j 6=k

akjEkj −A

 ,

we see that

Gk

µD +
∑
j 6=k

akjEkj − C

 =
{
µwk − ckk

}
.

Thus, akj = ckj for all j 6= k. Since k is arbitrary, we see that C = A as asserted. �

Corollary 2.4 Let Φ : Mn →Mn. The following conditions are equivalent.
(a) The map Φ is real linear and satisfies

G(Φ(A)) = G(A) for all A ∈Mn.

(b) The map Φ is additive and satisfies

G(Φ(A)) = G(A) for all A ∈Mn.

(c) The map Φ has the form in Theorem 2.1 with S = 0.
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Proof. The implications (c) ⇒ (a) ⇒ (b) are clear. We focus on (b) ⇒ (c). Clearly, X ∈ Mn

satisfies G(X) = {0} if and only if X = 0 and thus Φ(X) = 0 if and only if X = 0 since
G(Φ(A)) = G(A) for all A ∈Mn. For any B ∈Mn, since G(Φ(B)+Φ(−B)) = G(Φ(B−B)) = {0},
it follows that Φ(−B) = −Φ(B). Therefore, G(Φ(A−B)) = G(Φ(A) + Φ(−B)) = G(Φ(A)−Φ(B))
for all A,B ∈ Mn. Thus Φ has the asserted form in Theorem 2.1. Since Φ(0) = {0}, we see that
S = 0 in case condition (2) in Theorem 2.1 holds. The conclusion follows. �

Corollary 2.5 A (complex) linear map Φ : Mn →Mn satisfies

G(Φ(A)) = G(A) for all A ∈Mn

if and only if it is a compositions of maps of the forms in (1) or (2) described in Theorem 2.1 with
S = 0.

It is clear that one can have the column vector version of Gershgorin regions. This is the same
as considering G(At), and we can prove analogous results on preservers.

3 Brauer Regions

In this section, we consider preservers of the Brauer region of a matrix A = (aij) ∈Mn defined as

C(A) = ∪1≤i<j≤nCij(A),

with
Cij(A) = {µ ∈ C : |(µ− aii)(µ− ajj)| ≤ RiRj}

is a Cassini oval, with Ri =
∑

j 6=i |aij | as defined in Section 2. The values aii and ajj are the foci
of the oval. One may see the discussion of the Cassini oval in standard references; for example,
[2, Chapter 6] and Wikipedia. The following facts can be easily verified and will be used in our
discussion.

Lemma 3.1 Let A = (aij) ∈Mn.
(a) The set C(A) consists of a collection of isolated points if and only if A has at most one row

with nonzero off diagonal entries. In such case, C(A) coincides with the spectrum of A.
(b) If |aii − ajj |2 > 4RiRj, then Cij(A) consists of two closed convex regions, each of which

contains a focus. Consequently, if |aii − ajj |2 > 4 max{|Rk|2 : 1 ≤ k ≤ n} whenever i 6= j, then
C(A) consists of n disjoint connected regions, each of which contains a diagonal entry of A.

(c) Suppose akk is an isolated point of C(A). Then either C(A) is a collection of isolated points
so that (a) holds or the kth row of A has only zero off diagonal entries.

Theorem 3.2 A map Φ : Mn →Mn satisfies

C(Φ(A)− Φ(B)) = C(A−B) for all A,B ∈Mn
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if and only if one of the following holds.
(a) n = 2 and Φ has the form

A 7→ P

(
a11 uτ1(a12)

vτ2(a21) a22

)
P t + S or A 7→ P

(
a11 uτ1(a21)

vτ2(a12) a22

)
P t + S,

where S ∈ M2, P ∈ P2, u, v ∈ C satisfy |uv| = 1, and τj is the identity map or the conjugation
map for j = 1, 2.

(b) Φ has the form described in Theorem 2.1.

Proof. The sufficiency is clear. We consider the necessity. We may replace Φ by the map
A 7→ Φ(A)− Φ(0) and assume that C(A) = C(Φ(A)) for any A ∈Mn.

Case 1 Suppose n = 2. For any µ ∈ C, we have C(Φ(µE12)) = C(µE12) = {0}. It follows
that Φ(µE12) = f1(µ)E12 + f2(µ)E21 with f1(µ)f2(µ) = 0. Similarly, for any ν ∈ C, C(Φ(νE21)) =
C(νE21) = {0}, we see that Φ(νE21) = g1(ν)E12+g2(ν)E21 with g1(ν)g2(ν) = 0. Since C(Φ(µE12)−
Φ(νE21)) = C(µE12−νE21) is a circular disk centered at the origin with radius

√
|µν|, Φ(µE12) 6= 0

and Φ(νE21) 6= 0 whenever µν 6= 0. Now for any µ1, µ2 ∈ C,

C(Φ(µ1E12)− Φ(µ2E12)) = C(µ1E12 − µ2E12) = {0}.

We see that

(1) Φ(µE12) = f(µ)E12 for all µ ∈ C, or (2) Φ(µE12) = f(µ)E21 for all µ ∈ C.

We may assume that (1) holds. Otherwise, replace Φ by the map A 7→ Φ(A)t. It will then follow
that Φ(νE21) = g(ν)E21 for all ν ∈ C.

Note that C(Φ(µE12)−Φ(νE21)) = C(µE12− νE21) = {z ∈ C : |z2| ≤ |µν|}. Thus, we see that
|f(µ)g(ν)| = |µν|. In particular, f(µ) = 0 if and only if µ = 0, and g(ν) = 0 if and only if ν = 0.

Since C(Φ(E11)) = C(E11) = {1, 0}, we see that Φ(E11) has diagonal entries 1, 0 and at most
one nonzero off diagonal entry. Since C(Φ(E11)−Φ(X)) = Φ(E11−X) = {1, 0} for X ∈ {E12, E21},
we see that Φ(E11) = E11 or Φ(E11) = E22. We may assume the former case holds. Otherwise,
we may replace Φ by the map A 7→ PΦ(At)P t with P = E12 + E21. Then we have Φ(E11) = E11,
Φ(µE12) = f(µ)E12 and Φ(νE21) = g(ν)E21. Now one may use the facts that C(Φ(µE11) −
Φ(E11)) = {µ − 1, 0}, C(Φ(µE11) − Φ(E12)) = {µ, 0}, and C(Φ(µE11) − Φ(E21)) = {µ, 0} to
conclude that Φ(µE11) = µE11. Similarly, we can argue that Φ(µE22) = µE22.

Up to this point, we may assume that for j ∈ {1, 2} and µ ∈ C, Φ(µEjj) = µEjj and there are
two functions f, g ∈ C 7→ C such that Φ(µE12) = f(µ)E12 and Φ(νE21) = g(ν)E21, with ν ∈ C.
Now suppose Φ(A) = (bij) for A = (aij). Since C(Φ(A)− Φ(aijEij)) = C(A− aijEij) = {a11, a22}
for (i, j) ∈ {(1, 2), (2, 1)}, we see that b12 = f(a12) and b21 = g(a21). For i ∈ {1, 2}, since
C(Φ(A)− Φ(µEii)) = C(A− µEii) for all µ ∈ C, we see that bii = aii. Thus,

Φ(A) =
(

a11 f(a12)
g(a21) a22

)
8



such that |f(a12)g(a21)| = |a12a21|.
Now, for any µ1, µ2 ∈ C, since C (Φ(E21 + µ1E12)− Φ(µ2E12)) = C(E21 + µ1E12 − µ2E12), we

see that |uf(µ1) − uf(µ2)| = |µ1 − µ2| if u = g(1). By Lemma 2.3, we see that uf = τ1 is the
identity map or the conjugation map.

Similarly, using the fact that C(Φ(E12 + ν1E21)−Φ(ν2E21)) = C(E12 + ν1E21− ν2E21), we can
show that vg = τ2 is the identity map or the conjugation map, where v = f(1).

Combining the above arguments, we get condition (a).

Case 2 Suppose n > 2. We prove condition (b) holds by establishing several assertions. We will
assume Γ is defined as in Lemma 2.2.

Assertion 1 Let D = diag (w,w2, . . . , wn−1, 1) for w = ei2π/n. Then there is a permutation matrix
P such that PΦ(µD)P t has (j, j) entry equal to µwj for j = 1, . . . , n, for any µ ∈ C \ Γ.

The verification to this assertion is identical to that of Assertion 1 in the proof of Theorem 2.1.

In the following, we will always assume that D is defined as in Assertion 1, and the matrix P
in the conclusion is the identity matrix.

Assertion 2 For k ∈ {1, . . . , n}, if

Wk =

∑
j 6=k

ajEkj : a1, . . . , ak−1, ak+1, . . . , an ∈ C

 ,

then Φ(Wk) ⊆Wk.
For any µ > 0 and k ∈ {2, . . . , n}, since

C(Φ(µD + Ek1)) = C(µD + Ek1) = {µwj : 1 ≤ j ≤ n},

we see that Φ(µD + Ek1) has diagonal entries µw, . . . , µwn−1, µ, and there is at most one row of
Φ(µD + Ek1) with nonzero off diagonal entries by Lemma 3.1(a). Note that

C(Φ(µD + Ek1)− Φ(D)) = C(µD + Ek1 −D) = {(µ− 1)wj : 1 ≤ j ≤ n}.

Suppose A =
∑n

j=2 ajE1j 6= 0. Since C(Φ(A)) = C(A) = {0}, we see that all diagonal entries
of Φ(A) equal zero and there is at most one row of Φ(A) with nonzero off diagonal entries. Let
µ > 0 be sufficiently large so that the (j, j) entry of Φ(µD+Ek1) is µwj for sufficiently large µ > 0.
Then

C(Φ(µD + Ek1)− Φ(A)) = C(µD + Ek1 −A)

is the union of {µwj : 1 < j ≤ n, j 6= k} and the Cassini oval with two connected regions containing
the foci µw and µwk, which is two disconnected regions. Thus, Φ(µD + Ek1)− Φ(A) has nonzero
off diagonal entries in row 1 and row k. Since this is true for all k ∈ {2, . . . , n}, we see that the
only nonzero row of Φ(A) is row 1. Furthermore, we see that for sufficiently large µ, Φ(µD +Ek1)
has nonzero off diagonal entries at row k for k ∈ {2, . . . , n}.
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Now, for k ∈ {2, . . . , n}, let A =
∑

j 6=k ajEkj 6= 0. Since C(Φ(A)) = C(A) = {0}, we see that
Φ(A) has zero diagonal entries and has at most one nonzero row. Since

C(Φ(µD + Em1)− Φ(A)) = C(µD + Em1 −A)

for m ∈ {1, . . . , n} \ {k} and sufficiently large µ, we see that the kth row of Φ(A) is nonzero.
Combining the above arguments, we see that Assertion 2 holds.

Assertion 3 Suppose A = (aij) and Φ(A) = (bij). Then for k ∈ {1, . . . , n}, we have

(i) bkk = akk and (ii)
∑
j 6=k

bkjEkj = Φ

∑
j 6=k

akjEkj

 .

Step 1 We prove (i). Since C(µD−A) = C(Φ(µD)−Φ(A)) = C(µD−Φ(A)) for all sufficiently
large µ > 0, we see that Φ(A) has (j, j) entry equal to ajj . See Assertion 3 in the proof of Theorem
2.1.

Step 2 We prove (ii) for the special case when A = (aij) has two rows with nonzero diagonal
entries such that C(A) consists of n− 2 distinct points and a Cassini oval consisting of two discon-
nected components. Without loss of generality, we assume that the first two rows of A have nonzero
off diagonal entries. Since Φ(A) = (bij) satisfies bjj = ajj for j ∈ {1, . . . , n}, C(A) = C(Φ(A))
and C(Φ(µD + Em1) − Φ(A)) = C(µD + Em1 − A) for m ∈ {1, . . . , n} and sufficiently large
µ, we see that only the first two rows of Φ(A) have nonzero off diagonal entries. Moreover, for
k = 1, 2, C(Φ(A)−Φ(

∑
j 6=k akjEkj)) = C(A−

∑
j 6=k akjEkj). Thus by Assertion 2, the kth row of

Φ(A)− Φ(
∑

j 6=k akjEkj) equals zero, i.e.,
∑

j 6=k bkjEkj = Φ(
∑

j 6=k akjEkj).
Step 3 We prove (ii) for the case when A = (aij) ∈ Mn has a single row with nonzero off

diagonal entries. Without loss of generality, we may assume the first row of A has nonzero off
diagonal entries. Let X ∈ Mn have two nonzero rows such that X = µD +

∑
j 6=1 a1jE1j + Ekj ,

µ ∈ C\Γ, k 6= 1, and Φ(X) = (yij). By Steps 1 and 2, we see that yii = xii for all i ∈ {1, . . . , n}, only
rows 1 and k of Φ(X) have nonzero off diagonal entries, and that

∑
j 6=1 y1jE1j = Φ(

∑
j 6=1 a1jE1j).

Because

C (Φ(A)− Φ(X)) = C

(bij)−

µD +
∑
j 6=1

y1jE1j +
∑
j 6=k

ykjEkj

 = C (A−X)

consists of n distinct points for sufficiently large µ > 0, we can conclude that Φ(A) − Φ(X) has
only 1 row with nonzero off diagonal entries. Since C(Φ(A)) = C(A) implies that Φ(A) has only
1 row with nonzero off diagonal entries, it follows that this row must be row 1 or row k. As this
result holds for any k ∈ {2, . . . , n}, we see that only row 1 of Φ(A) has nonzero off diagonal entries,
and hence only row k of Φ(A)− Φ(X) has nonzero off diagonal entries. Therefore the first row of
Φ(A)− Φ(X) equals zero, i.e.,

∑
j 6=1

b1jE1j =
∑
j 6=1

y1jE1j = Φ

∑
j 6=1

a1jE1j


10



.
Step 4 We prove (ii) for a diagonal matrix A = (aij). If Φ(A) = B = (bij), then we can show

ajj = bjj for all j ∈ {1, . . . , n} as in the previous two cases. Since C(B) = C(A) does not contain
a disk with positive radius, we see that B has at most one row with nonzero off diagonal entries.
If B has such a row, then we can find X ∈ Wk so that B − Φ(X) has two rows with nonzero off
diagonal entries. But then C(A−X) = C(B − Φ(X)) contains a disk with positive radius, which
is a contradiction. Hence, we see that Φ(A) = A if A is a diagonal matrix.

Step 5 We prove (ii) for a matrix A = (aij) ∈ Mn with at least three rows having nonzero
off diagonal entries. Let Φ(A) = B = (bij) and k ∈ {1, . . . , n}. We are going to show that∑

j 6=k bkj = Φ(
∑

j 6=k akjEkj). To this end, let X = (xij) ∈ Mn be such that X has exactly two
nonzero rows indexed by k and k′, where the off diagonal entries in these two rows are the same as
those of A = (aij). Moreover, the diagonal entries x11, . . . , xnn are chosen so that

(1) C(X) consists of n − 2 distinct points and a Cassini oval consisting of two connected
components,

(2) C(Φ(X)−Φ(A)) = C(X −A) consists of n− 2 distinct points and a Cassini oval consisting
of two connected components which include {xkk − akk} and {xk′k′ − ak′k′}.

Since we have proved the result for the special cases covering the case forX, if Φ(X) = Y = (yij),
then ∑

j 6=k
ykjEkj = Φ

∑
j 6=k

xkjEkj

 = Φ

∑
j 6=k

akjEkj

 .

By (2), we see that ∑
j 6=k

ykjEkj =
∑
j 6=k

bkjEkj .

It follows that ∑
j 6=k

bkjEkj = Φ

∑
k 6=j

akjEkj

 .

Since this is true for any k ∈ {1, . . . , n}, the conclusion of the Assertion 3 holds.

Assertion 4 Condition (b) in the theorem holds.
By Assertion 2, we may define Φk : C1×(n−1) → C1×(n−1) by

Φk(a1, . . . , ak−1, ak+1, . . . , an) = (b1, . . . , bk−1, bk+1, . . . , bn)

if Φ(
∑

j 6=k ajEkj) =
∑

j 6=k bjEkj . We claim that `1(Φ1(a) − Φ1(a′)) = `1(a − a′) for any a =

(a2, . . . , an), a′ = (a′2, . . . , a
′
n) ∈ C1×(n−1). To see this, consider Ak =

∑n
j=2 ajE1j + Ek1 and

A′ =
∑n

j=2 a
′
jE1j . By Assertion 3 and the fact that C(Φ(Ak)) = C(Ak), R1(Φ(Ak))Rk(Φ(Ak)) =
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R1(Ak)Rk(Ak) = `1(a). Also, since C(Φ(Ak)− Φ(A′)) = C(Ak −A′), by Assertion 3 we have

`1(a− a′) = R1(Ak −A′)Rk(Ak)

= R1(Φ(Ak)− Φ(A′))Rk(Φ(Ak))

= `1(Φ1(a)− Φ1(a′))`1(Φk(1, 0, . . . , 0))

By Assertion 3, Rk(Φ(Ak)) = Rk(Φ(Ek1)). Thus, for k ∈ {2, . . . , n},

`1(Φk(1, 0, . . . , 0)) = Rk(Φ(Ek1)) = `1(a− a′)/`1(Φ1(a)− Φ1(a′)) = ν > 0.

Since C(Φ(E21)−Φ(Ek1)) = C(E21−Ek1) = {z ∈ C : |z| ≤ 1}, we have 1 = R2(Φ(E21))Rk(Φ(Ek1)
for k ∈ {3, . . . , n}. (Here we use the fact that n ≥ 3.) Thus, ν = 1, and

`1(a− a′) = `1(Φ1(a)− Φ1(a′)).

So, Φ1 satisfies the conclusion of Lemma 2.3. Similarly, we can show that Φk satisfies the conclusion
of Lemma 2.3 for k ∈ {2, . . . , n}. Consequently, Φ has the asserted form. �

As with the Gershgorin discs, it is clear that one can have the column version of Cassini ovals
by considering C(At). However, there is no extension for

Cijk(A) = {µ ∈ C : |(µ− aii)(µ− ajj)(µ− akk)| ≤ RiRjRk}

or higher dimensions.
Note that we cannot deduce the structure of additive preservers of C(A) using Theorem 3.2 as

in Corollary 2.4 because C(A) = {0} does not imply that A = 0. Nevertheless, we can apply a
similar proof to characterize additive preservers of C(A) and then deduce the results on (real or
complex) linear preservers of C(A).

4 Ostrowski Regions

In this section, we consider the Ostrowski region of A ∈Mn defined by

Oξ(A) = ∪nk=1Oξ,k(A),

for a given ξ ∈ (0, 1), where

Oξ,k(A) = {µ ∈ C : |µ− akk| ≤ Rk(A)ξRk(At)1−ξ}, k ∈ {1, . . . , n}.

One may see the discussion of the Ostrowski region in [2, Chapter 6].

Theorem 4.1 Let ξ ∈ (0, 1). A map Φ : Mn →Mn satisfies

Oξ(Φ(A)− Φ(B)) = Oξ(A−B) for all A,B ∈Mn
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if and only if there exist P ∈ Pn and maps ψij : C → C, where ψjj is the identity map and for
i 6= j, ψij has the form z 7→ νijz or z 7→ νij z̄ for a norm one complex number νij, such that one of
the following holds.

(a) (ξ, n) = (1/2, 2) and the map Φ has the form in Theorem 3.2 (a).
(b) There is S ∈Mn such that the map Φ has the form A = (aij) 7→ P (ψij(aij))P t + S.
(c) ξ = 1/2 and there is S ∈Mn such that Φ has the form A = (aij) 7→ P (ψij(aij))tP t + S.

Proof. The sufficiency is clear. We consider the proof of the necessity. The proof for the case
when n = 2 is similar to that of Theorem 3.2. So, we assume that n > 2 and Oξ(Φ(A)− Φ(B)) =
Oξ(A − B) for all A,B ∈ Mn. Replacing Φ by the map X 7→ Φ(X) − Φ(0), we may assume
that Oξ(Φ(A)) = Oξ(A) for all A ∈ Mn. Let D = diag (w,w2, . . . , wn−1, 1) with w = ei2π/n.
Furthermore, let Γ be defined as in Lemma 2.2.

Assertion 1 There is a permutation matrix P such that one of the following holds for any µ ∈ C\Γ.
(i) PΦ(Eij)P t = uijEij and PΦ(µD + Eij)P t = µD + vijEij with uij , vij ∈ C satisfying

|uij | = |vij | = 1 whenever 1 ≤ i, j ≤ n and i 6= j.
(ii) PΦ(Eij)P t = uijEji and PΦ(µD + Eij)P t = µD + vijEji with uij , vij ∈ C satisfying

|uij | = |vij | = 1 whenever 1 ≤ i, j ≤ n and i 6= j.
To prove the assertion, let µ ∈ C\Γ. Suppose ν ∈ C is such that ν, νµ /∈ Γ. Since Oξ(Φ(νµD)) =

Oξ(νµD) = {νµwj : 1 ≤ j ≤ n}, there is a permutation P (depending on µ and ν) such that
PΦ(νµD)P t = νµD + F , where F has zero diagonal entries and Rj(F )Rj(F t) = 0 for all j =
1, . . . , n. We will show that condition (i) or (ii) holds. Once this is done, we conclude that P is
independent of the choice of µ and ν by examining Φ(Eij) for 1 ≤ i, j ≤ n.

For simplicity, we assume that P = In. Otherwise, replace Φ by the map X 7→ P tΦ(X)P . For
pairs (i, j) with i 6= j consider Vij = Φ(µD + Eij). Since Oξ(Vij) = Oξ(µD + Eij), we see that Vij
has diagonal entries µw, . . . , µwn−1, µ. Since Φ(νµD) and νµD have the same diagonal entries, and

Oξ(Φ(νµD)− Vij) = Oξ((ν − 1)µD − Eij) = {(ν − 1)µwj : 1 ≤ j ≤ n},

the vector of the diagonal of the matrix (νµD− Vij)/µ equals ν(w,w2, . . . , wn)− (w,w2, . . . , wn)R
with R ∈ Pn, and has entries in {(ν − 1)wj : 1 ≤ j ≤ n}. Since ν ∈ C \ Γ, it follows from Lemma
2.2 that Vij = µD + Fij such that Fij has zero diagonal and Rk(Fij)Rk(F tij) = 0 for k = 1, . . . , n.

For pairs (i, j) with i 6= j let Uij = Φ(Eij). Since Oξ(Uij) = Oξ(Eij) = {0} we see that for
k = 1, . . . , n, Rk(Uij)Rk(U tij) = 0 and Uij has zero diagonal entries. Moreover, Oξ(Vij − Uji) =

Oξ(µD + Eij − Eji) contains non-degenerate circular disks centered at µwi and µwj . Considering
the disk with center µwi, we see that either

• Ri(Uij) 6= 0 = Ri(U tij) and Ri(V t
ji) 6= 0 = Ri(Vji) or

• Ri(Uij) = 0 6= Ri(U tij) and Ri(V t
ji) = 0 6= Ri(Vji).

Suppose R1(U12) 6= 0 = R1(U t12). If U12 has a nonzero (k, j) entry with j > 2, then the jth row
of U12 is zero as Rj(U12)Rj(U t12) = 0. Since Oξ(Vj1 − U1j) = Oξ(µD + Ej1 − E1j) contains a unit
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disk centered at µwj , either Rj(V t
j1)Rj(U1j) 6= 0 = Rj(Vj1) = Rj(U t1j) or Rj(Vj1)Rj(U t1j) 6= 0 =

Rj(V t
j1) = Rj(U1j). In the former case, Oξ(E1j − E12) = Oξ(U1j − U12) contains a non-degenerate

circular disk; in the latter case, Oξ(µD + Ej1 − E12) = Oξ(Vj1 − U12) contains a non-degenerate
circular disk centered at µwj . In both cases, we have a contradiction.

By the above paragraph, only the second column of U12 can be nonzero. Now, suppose U12 has
a nonzero (k, 2) entry with k > 2. Then Rk(U12) 6= 0 = Rk(U t12). Since Oξ(Vk1 − U1k) = Oξ(µD +
Ek1−E1k) contains a unit disk centered at µwk, either Rk(V t

k1)Rk(U1k) 6= 0 = Rk(Vk1) = Rk(U t1k) or
Rk(Vk1)Rk(U t1k) 6= 0 = Rk(V t

k1) = Rk(U1k). In the former case, Oξ(µD+Ek1−E12) = Oξ(Vk1−U12)
contains a non-degenerate circular disk centered at µwk; in the latter case, Oξ(E1k − E12) =
Oξ(U1k − U12) contains a non-degenerate circular disk. In both cases, we have a contradiction.
Thus, we conclude that U12 = u12E12 for some nonzero u12.

If R1(U12) = 0 6= R1(U t12), we can use a similar argument to show that U12 = u12E21 for some
nonzero u12.

Applying the above argument to Uij , we see that Uij = uijEij or uijEji for pairs (i, j) with
i 6= j.

Interchanging the roles of Uij and Vij in the above proof, we see that Vij = µD + vijEij or
µD + vijEji for pairs (i, j) with i 6= j.

Now, suppose U12 = u12E12. Since Oξ(Vj1−U12) = Oξ(µD+Ej1−E12), we see that Vj1 = µD+
vj1Ej1 with |u12|ξ|vj1|(1−ξ) = 1 for all j = 2, . . . , n. Next, by the fact that Oξ(Vj1−Ukj) = Oξ(µD+
Ej1−Ekj), we see that Ukj = ukjEjk such that |ukj |(1−ξ)|vj1|ξ = 1 for all (j, k) with j 6= k, j > 1 and
k ∈ {1, . . . , n}. In particular, there is uj such that |ukj | = |uj | for all k 6= j. Since Oξ(U1j −Uj1) =
Oξ(E1j − Ej1), we see that Uj1 = uj1Ej1 with max{|u1j |ξ|uj1|(1−ξ), |u1j |(1−ξ)|uj1|ξ} = 1 for j =
2, . . . , n; since Oξ(Vij − Uji) = Oξ(µD +Eij −Eji), we see that |vij |ξ|uji|(1−ξ) = 1 = |vij |(1−ξ)|uji|ξ

for all pairs (i, j) with i 6= j. It follows that |uij | = |vij | = 1 for pairs (i, j) with i 6= j. Thus,
condition (i) holds.

Suppose U12 = u12E21. We can use a similar argument to show that condition (ii) holds.

Assertion 2 There exist functions ψij as described in the theorem such that the following holds.
(I) If conclusion (i) of Assertion 1 holds, then PΦ(νEij)P t = ψij(ν)Eij for all i 6= j and ν ∈ C.
(II) If conclusion (ii) of Assertion 1 holds, then ξ = 1/2 and PΦ(νEij)P t = ψij(ν)Eji for all

i 6= j and ν ∈ C.
To prove the assertion, let P satisfy the conclusion of Assertion 1. For simplicity, assume that

P = In.

(I) Suppose condition (i) in Assertion 1 holds. Consider Φ(νEij). Since

Oξ(Φ(νEij)− µD − vrsErs) = Oξ(Φ(νEij)− Φ(µD + Ers)) = Oξ(νEij − µD − Ers)

for any pairs (r, s) with r 6= s, we see that Φ(νEij) = γEij . Let ψij : C → C be such that
Φ(νEij) = ψij(ν)Eij .

We claim that |ψij(ν1)− ψij(ν2)| = |ν1 − ν2| for any ν1, ν2 ∈ C. Note that

Oξ(Φ(ν1Eij+Eji)−(µD+vrsErs)) = Oξ(Φ(ν1Eij+Eji)−Φ(µD+Ers)) = Oξ(ν1Eij+Eji−µD−Ers)
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for any pairs (r, s) with r 6= s. It follows that Φ(ν1Eij + Eji) = γEij + vjiEji. By the fact that
Oξ(Φ(ν1Eij + Eji)− Φ(ν1Eij)) = {0}, we see that γ = ψij(ν1). Now,

Oξ(ψij(ν1)Eij + vjiEji − ψij(ν2)Eij) = Oξ(Φ(ν1Eij + Eji)− Φ(ν2Eij)) = Oξ((ν1 − ν2)Eij + Eji).

We get the desired conclusion. By Lemma 2.3, ψij has the asserted form.

(II) Suppose condition (ii) in Assertion 1 holds. We can use a similar argument to that in the
proof of (I) to conclude that Φ(νEij) = ψij(ν)Eji for all (i, j) with i 6= j. Now,

Oξ(ψ12(2)E21 − ψ31(1)E13)) = Oξ(Φ(2E12)− Φ(E31)) = Oξ(2E12 − E31).

Thus, |2|(1−ξ) = |2|ξ and hence ξ = 1/2.

Assertion 3 The map has the asserted form.
To prove the assertion, we may assume that condition (I) in Assertion 2 holds. Otherwise,

replace Φ by the map A 7→ Φ(At). For simplicity, we assume that P = In and ψij is the identity
map for all pairs (i, j). We will show that Φ(A) = A for all A ∈ Mn. Note that if µ ∈ C \ Γ with
sufficiently large magnitude, we will have

Oξ(Φ(A)− µD − vrsErs) = Oξ(Φ(A)− Φ(µD + Ers))

= Oξ(A− µD − Ers) = Oξ(νEij + Eki − µD − Ers)
(4.1)

We consider 5 special cases before the general case.

Case 1 Suppose A =
∑n

j=1 djEjj is a diagonal matrix.
Assume Φ(A) has a nonzero entry at the (p, q) position for some p 6= q. Since Oξ(Φ(A)) =

Oξ(A) = {d1, . . . , dn}, we see that the pth column of Φ(A) is zero. But then we can choose a
suitable µ ∈ C \ Γ so that Oξ(Φ(A)− µD− vqpEqp) contains a non-degenerate disk centered at the
p diagonal entry of Φ(A) − µD − vqpEqp, where as Oξ(A − µD − Eqp) = {dj − µwj : 1 ≤ j ≤ n},
which is a contradiction. Thus, Φ(A) is a diagonal matrix. Since Oξ(φ(A) − µD − v12E12) =
Oξ(A− µD − E12) = {dj − µwj : 1 ≤ j ≤ n} for any µ ∈ C \ Γ, we see that Φ(A) = A.

Case 2 Suppose A = νEij + Eki with ν 6= 0 and i /∈ {j, k}.
For notational simplicity, we assume that (i, j) = (1, 2) so that A = νE12 + E21 or (i, j, k) =

(1, 2, 3) so that A = νE12+E31. It is easy to adapt the arguments to the general case. Assume Φ(A)
has a nonzero (p, q) entry with p 6= q and (p, q) ∈ {1, . . . , n} × {3, . . . , n}. Taking (r, s) = (q, p) in
(4.1), we see that Oξ(Φ(A)−µD−vqpEqp) = Oξ(A−µD−Eqp) has µwq as an isolated point. Since
Φ(A)−µD−vqpEqp has nonzero (p, q) position, the qth column of Φ(A) has only one nonzero entry
at the (q, p) position equal to vqp. But then Oξ(µD − Φ(A)) contains a non-degenerate circular
disk centered at µwq, whereas µwq is an isolated point of Oξ(µD − A), which is a contradiction.
Similarly, if Φ(A) has a nonzero (p, q) entry with (p, q) ∈ {k, . . . , n} × {1, 2} with k = 3 or 4
depending on A = νE12 + E21 or A = νE12 + E31. Taking (r, s) = (q, p) in (4.1), we see that
Oξ(Φ(A)− µD − vqpEqp) = Oξ(A− µD −Eqp) has µwp as an isolated point. Thus, the pth row of
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Φ(A) has only one nonzero entry at the (q, p) position equal to vqp. But then using Φ(µD) = µD,
we see that Oξ(µD − Φ(A)) will contain a non-degenerate circular disk centered at µwp, whereas
Oξ(µD −A) does not, which is a contradiction. Thus, Φ(A) only has a nonzero entry at the (p, q)
positions with (p, q) ∈ K, whereK = {(1, 2), (2, 1)} orK = {(1, 2), (2, 1), (3, 1), (3, 2)} depending on
A = νE12+E21 or A = νE13+E31. If A = νE12+E21, then Oξ(Φ(A)−νE12) = Oξ(A−νE12) = {0}
and Oξ(Φ(A) − E21) = Oξ(A − E21) = {0}. We conclude that Φ(A) = νE12 + E21. Suppose
A = νE12 +E31. Since Oξ(Φ(A)−X) = Oξ(A−X) for X ∈ {0, νE12, E23, µD+E12} for a suitable
µ ∈ C \ Γ, we see that Φ(A) = A as asserted.

Case 3 Suppose A = µD +R, where R has nonzero off diagonal entries in at most one row and µ

satisfies µ|1− w| > 2 or µ = 0.
For simplicity, assume that the nonzero off diagonal entries of A = µD+

∑n
j=2 a1jE1j lie in the

first row.
For µ|1−w| > 2 since (I) holds, we see that Φ(µD+Eij) = µD+ vijEij with |vij | = 1 for pairs

(i, j) with i 6= j. Suppose Φ(A) = (yij). Since Oξ(Φ(A)−Φ(µD+Eij)) = Oξ(A−µD−Eij) for all
pairs (i, j) with i 6= j, we see that yij = 0 for i > 1 and i 6= j. Moreover, since Oξ(Φ(A)−Φ(νE1j +
E21)) = Oξ(A− νE1j − E21) for all ν ∈ C by Case 2, we see that y1j = a1j for j = 2, . . . , n.

Now, suppose µ = 0. Since Oξ(Φ(A)−Φ(Eij)) = Oξ(A−Eij) for all pairs (i, j) with i 6= j, we see
that yij = 0 for i > 1 and i 6= j. Moreover, since Oξ(Φ(A)−Φ(νE1j +E21)) = Oξ(A− νE1j −E21)
for all ν ∈ C by Case 2, we see that y1j = a1j for j = 2, . . . , n.

Case 4 Suppose A = ajiEji +
∑

k 6=i aikEik with aji 6= 0 and Ri(A) 6= 0.
We may assume without loss of generality that (i, j) = (1, 2), a21 6= 0, and R1(A) 6= 0. Let

Φ(A) = Y = (yrs).
There is a choice of µ for which Oξ(Y −µD) = Oξ(A−µD) yields ykk = akk = 0 for k = 1, . . . , n.

We must have yrs = 0 for r > 2 because

Oξ (Y − (µD + νE1r)) = Oξ (A− (µD + νE1r))

which shows that the latter set will have a degenerate circular disk at −µwr whereas, if yrs 6= 0,
the former will have a non-degenerate circular disk at −µwr for ν 6= y1r. Now if y21 6= 0 then

Oξ

Y −
∑
k 6=1

a1kE1k

 = Oξ

A−
∑
k 6=1

a1kE1k

 = Oξ (a21E21) = {0}

which implies y1k = a1k for all k 6= 1. Similarly, if y12 6= 0 then y2k = a2k for all k 6= 2. Now if
y21 = 0, y12 6= 0 then y21 = a21 6= 0 will be a contradiction. Thus y21 = 0 implies y12 = 0, which
implies Oξ (Y ) = {0} 6= Oξ (Φ(A)), again a contradiction. Hence we have Φ(A) = A.

Case 5 Suppose A = (aij) has exactly two indices i and j with Ri(A) 6= 0 and Rj(A) 6= 0.
For simplicity, assume that i = 1 and j = 2. Let Φ(A) = Y = (yij). By an appropriate choice

of µ and using Oξ(Y − µD) = Oξ(A − µD), we get that ykk = akk for k = 1, . . . , n. As before, if

16



yrs 6= 0 for r > 2 and r 6= s, then Oξ(Y − µD) = Oξ(A− µD) implies Rr(Y t) = 0. Now

Oξ (Y − (µD + E1r)) = Oξ (A− (µD + E1r)) .

The latter set has a degenerate circular disk at arr−µwr whereas the former set has a non-degenerate
circular disk centered at that point. Thus we must have yrs = 0 for r > 2 and r 6= s.

Now, using essentially the same arguments as in Case 4 yields Φ(A) = A. Again, generalizing
to any i and j with i 6= j, we have Φ(A) = A for all A with both Ri(A) 6= 0 and Rj(A) 6= 0.

General Case We complete the proof by now taking A = (aij) to be arbitrary. Let Φ(A) = Y =
(yij). As before, we can get ykk = akk by using µD with an appropriate choice of µ.

If Rk(Y t) 6= 0 then using

Oξ

Y −
µD +

∑
j 6=i

akjEkj

 = Oξ

A−
µD +

∑
j 6=i

akjEkj


we get that the ykj = akj for all j 6= k since the latter set has a degenerate circular disk centered
at akk − µwk.

If Rk(Y t) = 0 then using

Oξ

Y −
µD + νEik +

∑
j 6=i

akjEkj

 = Oξ

A−
µD + νEik +

∑
j 6=i

akjEkj


where i 6= j and ν 6= aik, we conclude that ykj = akj for all j 6= k since the latter set has a
degenerate circular disk centered at akk − µwk. �

One can use a similar proof to obtain the structure of additive preservers of Oξ(A), and then
deduce the results on linear preservers.
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