Distances from a Hermitian pair to diagonalizable and non-diagonalizable Hermitian pairs *

Chi-Kwong Li and Roy Mathias Department of Mathematics, College of William & Mary, Williamsburg, VA 23187 E-mail: ckli@math.wm.edu, mathias@math.wm.edu

July 25, 2005

Abstract

Denote by W(T), r(T) and ||T|| the numerical range, the numerical radius and the spectral norm of a complex matrix T. Let (A, B) be a pair of Hermitian matrices. It is shown that if $0 \in W(A + iB)$ then

 $d(A, B) = \inf\{|\mu| : \mu \notin W(A + iB)\}$

is an upper bound for

 $\inf\{r(E+iF): (A+E)+i(B+F) \text{ is diagonalizable by congruence}\};$

if $0 \notin W(A + iB)$ then the Crawford number

 $c(A, B) = \min\{|\mu| : \mu \in W(A + iB)\}$

is equal to

 $\min\{r(E+iF): (A+E) + i(B+F) \text{ is not diagonalizable by congruence}\},\$

which in turn is equal to

 $\inf\{||E+iF||: (A+E)+i(B+F) \text{ is not diagonalizable by congruence}\}.$

The infimum is not always attained.

AMS Subject Classifications: 15A60, 15A18.

Keywords: Definite Hermitian pair, non-diagonalizable, numerical range, numerical radius, Crawford number.

^{*}Both authors were supported in part by NSF grants DMS-9704534, and DMS-0071994. The work was completed while the second author was supported by an Engineering and Physical Sciences Research Council Visiting Fellowship under grant GR/T08739 at the University of Manchester, UK.

1 Introduction

Let M_n (respectively, H_n) be the set of $n \times n$ complex (respectively, Hermitian) matrices. Two Hermitian matrices $A, B \in H_n$ are said to be a definite pair if $|x^*(A+iB)x| \neq 0$ for every nonzero vector $x \in \mathbb{C}^n$.

Definite Hermitian pairs have useful algorithmic and theoretical properties. For example, it is known (see [4, Theorem 1.7.17]) that if (A, B) is a definite Hermitian pair, then it is diagonalizable by congruence, i.e., there is an invertible matrix $S \in M_n$ so that both S^*AS and S^*BS are diagonal matrix, equivalently, $S^*(A+iB)S$ is a diagonal matrix. This property is very useful in the analysis of the Hermitian generalized eigenvalue problem; $Ax = \lambda Bx$. If (A, B) is a definite pair, then the corresponding generalized eigenvalues are real, and can be found by solving a related Hermitian eigenvalue problem [2, §8.7.3].

Recall that the numerical range of $T \in M_n$ is

$$W(T) = \{ x^*Tx : x \in \mathbb{C}^n, \ x^*x = 1 \},\$$

and that the numerical radius of T is

$$r(T) = \max\{|x^*Tx| : x \in \mathbb{C}^n, x^*x = 1\},\$$

which is the maximum distance of a point in the numerical range to the origin.

It is known that W(T) is always a compact convex set in \mathbb{C} , and that the numerical radius is a norm on M_n satisfying

$$r(T) \le ||T|| \le 2r(T) \quad \text{for all } T \in M_n, \tag{1}$$

in comparison with the spectral norm ||T||; for example, see [4, 5]. Also, it is known that (A, B) is a definite Hermitian pair if and only if W(A + iB) does not contain the origin, which is equivalent to the existence of $a, b \in \mathbb{R}$ such that aA + bB is positive definite; see [4, p. 72]. We define the Crawford number of (A, B) by

$$c(A, B) = \min\{|x^*(A + iB)x| : x \in \mathbb{C}^n, x^*x = 1\},\$$

which is the shortest distance between a point in W(A + iB) and the origin. The Crawford number often appears in the study of perturbation bounds in the study of problems involving definite Hermitian pairs; see [6, Chapter VI].

It is easily shown, Proposition 1, that c(A, B) is the distance to the nearest non-definite pair. The purpose of this note, Theorem 3, is to show that c(A, B) is also the distance from (A, B) to the set of non-diagonalizable pairs even though diagonalizability by congruence is not equivalent to definiteness. If c(A, B) = 0, i.e., $0 \in W(A + iB)$, then A + iB may or may not be diagonalizable by congruence, but in Proposition 2, we give an upper bound for the distance between (A, B) to the set of diagonalizable pairs.

2 Results and proofs

Proposition 1 Let (A, B) be a definite Hermitian pair. Suppose $x \in \mathbb{C}^n$ is a unit vector such that |x(A+iB)x| = c(A, B), and $(E_0, F_0) = -(x^*AxI, x^*BxI)$. Then $(A + E_0, B + F_0)$

is not a definite pair and

 $c(A, B) = r(E_0 + iF_0) = \min\{r(E + iF) : (A + E, B + F) \text{ is not a definite pair}\}.$ (2)

Furthermore, (2) is valid when $r(\cdot)$ is replaced by $\|\cdot\|$.

Proof. Let r_D denote the right hand side of (2). Let $r_{D,\|\cdot\|}$ denote the right hand side of (2) when $r(\cdot)$ is replaced by $\|\cdot\|$.

Suppose $x \in \mathbb{C}^n$ is a unit vector such that $|x^*(A + iB)x| = c(A, B)$ and $(E_0, F_0) = -(x^*AxI, x^*BxI)$. Then $0 \in W((A + E_0) + i(B + F_0))$ and hence $(A + E_0, B + F_0)$ is not definite. Since $E_0 + iF_0$ a multiple of the identity,

$$||E_0 + iF_0|| = |(x^*Ax) + i(x^*Bx)| = c(A, B).$$

Thus $r_{D,\|\cdot\|} \leq c(A, B).$

By (1), we have $r_D \leq r_{D,\|\cdot\|}$. Let (E, F) be a Hermitian pair such that (A + E, B + F)is not definite. Consider a unit vector $y \in \mathbb{C}^n$ such that $y^*(A + E)y = y^*(B + F)y = 0$, or equivalently, $y^*Ay = -y^*Ey$ and $y^*By = -y^*Fy$. So,

$$c(A,B) \le |y^*(A+iB)y| = |y^*(E+iF)y| \le r(E+iF).$$
 (3)

Thus $c(A, B) \leq r_D$. Combining this with the conclusion of the previous paragraph we have $c(A, B) = r_D = r_{D, \|\cdot\|}$.

Proposition 2 Let (A, B) be a Hermitian pair such that $0 \in W(A + iB)$. Then

$$d(A,B) = \inf\{|\mu| : \mu \notin W(A+iB)\}$$

$$\geq \inf\{r(E+iF) : (A+E) + i(B+F) \text{ is diagonalizable by congruence}\}. (4)$$

Furthermore, (4) is valid when $r(\cdot)$ is replaced by $\|\cdot\|$.

Proof. Let T = A + iB. Since W(T) is compact, there is a boundary point μ with minimum modulus. We may replace (T, μ) by $(e^{it}T, e^{it}\mu)$ for a suitable $t \in [0, 2\pi)$ so that there is a left support line of W(T) passing through μ . Then for any $\varepsilon > 0$, we can let $E + iF = (\varepsilon - \mu)I$ so that $0 \notin W(T + (E + iF))$ and hence T + (E + iF) is diagonalizable by congruence. Since $||E + iF|| = r(E + iF) \leq |\mu| + \varepsilon$ and ε is arbitrary, we get the desired inequality. \Box

Let (A, B) be a Hermitian pair such that $0 \in W(A + iB)$. Since W(A + iB) is closed, inf $\{|\mu| : \mu \notin W(A + iB)\}$ is not attained by any element not in W(A + iB). Also,

$$\inf\{r(E+iF): (A+E)+i(B+F) \text{ is diagonalizable by congruence}\}$$

is not always attainable. For example, if

$$A = \begin{pmatrix} 0 & 10 \\ 10 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 11 & 0 \\ 0 & -1 \end{pmatrix}.$$

Then W(A + iB) is an elliptical disk with minor axis joining the numbers 11i and -i, and major axis joining the numbers 10 + 5i and -10 + 5i. Clearly, d(A, B) = 1, and -i is the boundary point of W(A + iB) nearest to the origin. Suppose E + iF satisfies $r(E + iF) \leq 1$. We claim that T = (A + E) + i(B + F) is not diagonalizable by congruence. Suppose it is not true and that $S \in M_2$ is invertible such that S^*TS is in diagonal form. Note that $0 \in W(T)$. It follows that $W(S^*TS)$ is a line segment containing 0. Thus, there exists a complex unit ξ such that ξS^*TS is Hermitian. So, ξT is Hermitian and $\xi W(T)$ is a real line segment containing 0. Let $x, y, z \in \mathbb{C}^n$ be unit vectors such that $x^*(A + iB)x = 11i$, $y^*(A + iB)y = 10 + 5i$, and $z^*(A + iB)z = -10 + 5i$. Let $x^*Tx = \mu_1, y^*Ty = \mu_2$, and $z^*Tz = \mu_3$. Then $|11i - \mu_1| \leq 1$, $|10 + 5i - \mu_2| \leq 1$, and $|-10 + 5i - \mu_3| \leq 1$. So, W(T)cannot be a line segment. Hence, T is not diagonalizable.

Next, we turn to our main result.

Theorem 3 Let (A, B) be a definite pair. Then

 $c(A,B) = \min\{r(E+iF) : (A+E) + i(B+F) \text{ is not diagonalizable by congruence}\}$ (5)

and

 $c(A,B) = \inf\{\|E + iF\| : (A + E) + i(B + F) \text{ is not diagonalizable by congruence}\}.$ (6)

We need two lemmas to prove Theorem 3. The first one is a standard result characterizing diagonalizability of a pair by congruence when one of the matrices is invertible. The second presents a perhaps surprising difference between the numerical radius and the spectral norm. This difference is the reason that the result in Theorem 3 contains a "min" for the numerical radius but only an "inf" for the spectral norm.

Lemma 4 [3, Table 4.5.15, part 1 (b)] Let $A, B \in H_n$ with A invertible. Then A + iB is diagonalizable by congruence if and only if $A^{-1}B$ is similar to a real diagonal matrix.

Lemma 5 [4, Theorem 1.3.6 (b)] *Take* $t \in (0, 1/2]$ *and set*

$$X = \begin{pmatrix} 0 & it \\ it & 1 \end{pmatrix}.$$

Then r(X) = 1 < ||X||.

Proof of Theorem 3. Suppose that

$$\min\{|z|: z \in W(A+iB)\}$$

occurs at $z = re^{i\theta}$ then replacing A + iB by $e^{-i\theta}(A + iB)$ if necessary we may assume that $z = i\gamma$. After a unitary similarity Now, we may assume with loss of generality that

 $B = B_1 \oplus [\gamma]$ with $B_1 - \gamma I_{n-1} \in M_{n-1}$. This implies that $a_{nn} = 0$, so write $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{12}^* & 0 \end{pmatrix}$ with $A_{11} \in M_{n-1}$. Let

$$E = \operatorname{diag}(d_1, \dots, d_{n-2}) \oplus \begin{pmatrix} 0 & t \\ t & 0 \end{pmatrix}$$
 and $F = 0_{n-2} \oplus \operatorname{diag}(0, -\gamma).$

Using a Schur Complement argument for example, we can show that for any $t \neq 0$ we can choose d_1, \ldots, d_{n-2} with $\gamma > d_j > 0$ such that $\tilde{A} = A + E$ is invertible. We claim that $\tilde{A} + iB$ is not diagonalizable by congruence.

Firstly, note that $\tilde{B} = B + F = B_1 \oplus 0$ has rank n - 1 and hence so has $\tilde{A}^{-1}\tilde{B}$. Write

$$\tilde{A}^{-1} = \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix}$$
, where $X \in M_{n-1}, Z \in M_1$.

Notice that $\tilde{a}_{nn} = a_{nn} = 0$ is singular. Thus, by the Nullity Theorem [1], it follows that the complementary submatrix in \tilde{A}^{-1} , that is X, is also singular. Hence XB_1 has at least one zero eigenvalue. So, the rank n-1 matrix

$$\tilde{A}^{-1}\tilde{B} = \begin{pmatrix} XB_1 & 0\\ S^*\tilde{B}_1 & 0 \end{pmatrix}$$

has at most n-2 nonzero eigenvalues. Thus, $\tilde{A}^{-1}\tilde{B}$ is not diagonalizable, and our claim is proved.

Now, by Lemma 5, taking $t \in (0, \gamma/2)$ ensures $r(E + iF) = \gamma$, establishing (5). Taking $t = \epsilon > 0$ ensures $||E + iF|| \le \gamma + \epsilon$ and establishes (6).

A slightly more careful argument shows that if in the proof above $A_{12} \neq 0$, then we can take t = 0 in constructing (E + iF) such that (A + iB) + (E + iF) is not diagonalizable by congruence. The resulting (E + iF) will have $||E + iF|| = \gamma$. Thus generically, the infimum in (6) is attained.

Here is an instance where the infimum in (6) is not attained. Take the 2×2 matrices A = 0 and B = I. Clearly c(A, B) = 1. Let E, F be Hermitian and such that

$$(A+iB) + (E+iF)$$
 is not diagonalizable by congruence. (7)

Since both A and B are invariant under unitary similarity, we may assume without loss of generality that F is diagonal. Note that $\max\{||E||, ||F||\} \le ||E + iF||$ so if $||E + iF|| \le 1$ and if the pair (A + E, B + F) is not definite, then F must be of the form

$$\begin{pmatrix} -1 & 0 \\ 0 & t \end{pmatrix} \text{ or } \begin{pmatrix} t & 0 \\ 0 & -1 \end{pmatrix}.$$

In either case B + F is diagonal, so the condition (7) requires that A + E = E has non-zero off-diagonal. However, for such E and F it is the case that ||E + iF|| > 1.

References

- M. Fiedler and T. Markham. Completing a matrix when certain entries of its inverse are specified. *Lin. Alg. Appl.*, Vol. 74, pp. 225-237, 1986.
- [2] G. H. Golub and C. F. Van Loan. *Matrix Computations*. The Johns Hopkins University Press, Baltimore, third edition, 1996.
- [3] R. A. Horn and C. R. Johnson. *Matrix Analysis*. Cambridge University Press, New York, 1985.
- [4] R. A. Horn and C. R. Johnson. *Topics in Matrix Analysis*. Cambridge University Press, New York, 1991.
- [5] B. Istratescu. Introduction to Linear Operator Theory. Marcel Dekker, New York, 1981.
- [6] G. Stewart and J.-G. Sun. *Matrix Perturbation Theory*. Academic Press, Boston, 1990.