Distances from a Hermitian pair to diagonalizable and non-diagonalizable Hermitian pairs *

Chi-Kwong Li and Roy Mathias
Department of Mathematics, College of William \& Mary, Williamsburg, VA 23187
E-mail: ckli@math.wm.edu, mathias@math.wm.edu

July 25, 2005

Abstract

Denote by $W(T), r(T)$ and $\|T\|$ the numerical range, the numerical radius and the spectral norm of a complex matrix T. Let (A, B) be a pair of Hermitian matrices. It is shown that if $0 \in W(A+i B)$ then $$
d(A, B)=\inf \{|\mu|: \mu \notin W(A+i B)\}
$$ is an upper bound for $$
\inf \{r(E+i F):(A+E)+i(B+F) \text { is diagonalizable by congruence }\} ;
$$ if $0 \notin W(A+i B)$ then the Crawford number $$
c(A, B)=\min \{|\mu|: \mu \in W(A+i B)\}
$$ is equal to $$
\min \{r(E+i F):(A+E)+i(B+F) \text { is not diagonalizable by congruence }\},
$$ which in turn is equal to $$
\inf \{\|E+i F\|:(A+E)+i(B+F) \text { is not diagonalizable by congruence }\} \text {. }
$$

The infimum is not always attained. AMS Subject Classifications: 15A60, 15A18. Keywords: Definite Hermitian pair, non-diagonalizable, numerical range, numerical radius, Crawford number.

^[*Both authors were supported in part by NSF grants DMS-9704534, and DMS-0071994. The work was completed while the second author was supported by an Engineering and Physical Sciences Research Council Visiting Fellowship under grant GR/T08739 at the University of Manchester, UK.]

1 Introduction

Let M_{n} (respectively, H_{n}) be the set of $n \times n$ complex (respectively, Hermitian) matrices. Two Hermitian matrices $A, B \in H_{n}$ are said to be a definite pair if $\left|x^{*}(A+i B) x\right| \neq 0$ for every nonzero vector $x \in \mathbb{C}^{n}$.

Definite Hermitian pairs have useful algorithmic and theoretical properties. For example, it is known (see [4, Theorem 1.7.17]) that if (A, B) is a definite Hermitian pair, then it is diagonalizable by congruence, i.e., there is an invertible matrix $S \in M_{n}$ so that both $S^{*} A S$ and $S^{*} B S$ are diagonal matrix, equivalently, $S^{*}(A+i B) S$ is a diagonal matrix. This property is very useful in the analysis of the Hermitian generalized eigenvalue problem; $A x=\lambda B x$. If (A, B) is a definite pair, then the corresponding generalized eigenvalues are real, and can be found by solving a related Hermitian eigenvalue problem [2, §8.7.3].

Recall that the numerical range of $T \in M_{n}$ is

$$
W(T)=\left\{x^{*} T x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

and that the numerical radius of T is

$$
r(T)=\max \left\{\left|x^{*} T x\right|: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

which is the maximum distance of a point in the numerical range to the origin.
It is known that $W(T)$ is always a compact convex set in \mathbb{C}, and that the numerical radius is a norm on M_{n} satisfying

$$
\begin{equation*}
r(T) \leq\|T\| \leq 2 r(T) \quad \text { for all } T \in M_{n} \tag{1}
\end{equation*}
$$

in comparison with the spectral norm $\|T\|$; for example, see [4, 5]. Also, it is known that (A, B) is a definite Hermitian pair if and only if $W(A+i B)$ does not contain the origin, which is equivalent to the existence of $a, b \in \mathbb{R}$ such that $a A+b B$ is positive definite; see [4, p. 72]. We define the Crawford number of (A, B) by

$$
c(A, B)=\min \left\{\left|x^{*}(A+i B) x\right|: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

which is the shortest distance between a point in $W(A+i B)$ and the origin. The Crawford number often appears in the study of perturbation bounds in the study of problems involving definite Hermitian pairs; see [6, Chapter VI].

It is easily shown, Proposition 1, that $c(A, B)$ is the distance to the nearest non-definite pair. The purpose of this note, Theorem 3, is to show that $c(A, B)$ is also the distance from (A, B) to the set of non-diagonalizable pairs even though diagonalizability by congruence is not equivalent to definiteness. If $c(A, B)=0$, i.e., $0 \in W(A+i B)$, then $A+i B$ may or may not be diagonalizable by congruence, but in Proposition 2, we give an upper bound for the distance between (A, B) to the set of diagonalizable pairs.

2 Results and proofs

Proposition 1 Let (A, B) be a definite Hermitian pair. Suppose $x \in \mathbb{C}^{n}$ is a unit vector such that $|x(A+i B) x|=c(A, B)$, and $\left(E_{0}, F_{0}\right)=-\left(x^{*} A x I, x^{*} B x I\right)$. Then $\left(A+E_{0}, B+F_{0}\right)$
is not a definite pair and

$$
\begin{equation*}
c(A, B)=r\left(E_{0}+i F_{0}\right)=\min \{r(E+i F):(A+E, B+F) \text { is not a definite pair }\} . \tag{2}
\end{equation*}
$$

Furthermore, (2) is valid when $r(\cdot)$ is replaced by $\|\cdot\|$.
Proof. Let r_{D} denote the right hand side of (2). Let $r_{D,\|\cdot\|}$ denote the right hand side of (2) when $r(\cdot)$ is replaced by $\|\cdot\|$.

Suppose $x \in \mathbb{C}^{n}$ is a unit vector such that $\left|x^{*}(A+i B) x\right|=c(A, B)$ and $\left(E_{0}, F_{0}\right)=$ $-\left(x^{*} A x I, x^{*} B x I\right)$. Then $0 \in W\left(\left(A+E_{0}\right)+i\left(B+F_{0}\right)\right)$ and hence $\left(A+E_{0}, B+F_{0}\right)$ is not definite. Since $E_{0}+i F_{0}$ a multiple of the identity,

$$
\left\|E_{0}+i F_{0}\right\|=\left|\left(x^{*} A x\right)+i\left(x^{*} B x\right)\right|=c(A, B) .
$$

Thus $r_{D,\|\cdot\|} \leq c(A, B)$.
By (1), we have $r_{D} \leq r_{D,\|\cdot\| \cdot}$ Let (E, F) be a Hermitian pair such that $(A+E, B+F)$ is not definite. Consider a unit vector $y \in \mathbb{C}^{n}$ such that $y^{*}(A+E) y=y^{*}(B+F) y=0$, or equivalently, $y^{*} A y=-y^{*} E y$ and $y^{*} B y=-y^{*} F y$. So,

$$
\begin{equation*}
c(A, B) \leq\left|y^{*}(A+i B) y\right|=\left|y^{*}(E+i F) y\right| \leq r(E+i F) \tag{3}
\end{equation*}
$$

Thus $c(A, B) \leq r_{D}$. Combining this with the conclusion of the previous paragraph we have $c(A, B)=r_{D}=r_{D,\|\cdot\|}$.

Proposition 2 Let (A, B) be a Hermitian pair such that $0 \in W(A+i B)$. Then

$$
\begin{align*}
d(A, B) & =\inf \{|\mu|: \mu \notin W(A+i B)\} \\
& \geq \inf \{r(E+i F):(A+E)+i(B+F) \text { is diagonalizable by congruence }\} \tag{4}
\end{align*}
$$

Furthermore, (4) is valid when $r(\cdot)$ is replaced by $\|\cdot\|$.
Proof. Let $T=A+i B$. Since $W(T)$ is compact, there is a boundary point μ with minimum modulus. We may replace (T, μ) by $\left(e^{i t} T, e^{i t} \mu\right)$ for a suitable $t \in[0,2 \pi)$ so that there is a left support line of $W(T)$ passing through μ. Then for any $\varepsilon>0$, we can let $E+i F=(\varepsilon-\mu) I$ so that $0 \notin W(T+(E+i F))$ and hence $T+(E+i F)$ is diagonalizable by congruence. Since $\|E+i F\|=r(E+i F) \leq|\mu|+\varepsilon$ and ε is arbitrary, we get the desired inequality.

Let (A, B) be a Hermitian pair such that $0 \in W(A+i B)$. Since $W(A+i B)$ is closed, $\inf \{|\mu|: \mu \notin W(A+i B)\}$ is not attained by any element not in $W(A+i B)$. Also,

$$
\inf \{r(E+i F):(A+E)+i(B+F) \text { is diagonalizable by congruence }\}
$$

is not always attainable. For example, if

$$
A=\left(\begin{array}{cc}
0 & 10 \\
10 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
11 & 0 \\
0 & -1
\end{array}\right) .
$$

Then $W(A+i B)$ is an elliptical disk with minor axis joining the numbers $11 i$ and $-i$, and major axis joining the numbers $10+5 i$ and $-10+5 i$. Clearly, $d(A, B)=1$, and $-i$ is the boundary point of $W(A+i B)$ nearest to the origin. Suppose $E+i F$ satisfies $r(E+i F) \leq 1$. We claim that $T=(A+E)+i(B+F)$ is not diagonalizable by congruence. Suppose it is not true and that $S \in M_{2}$ is invertible such that $S^{*} T S$ is in diagonal form. Note that $0 \in W(T)$. It follows that $W\left(S^{*} T S\right)$ is a line segment containing 0 . Thus, there exists a complex unit ξ such that $\xi S^{*} T S$ is Hermitian. So, ξT is Hermitian and $\xi W(T)$ is a real line segment containing 0 . Let $x, y, z \in \mathbb{C}^{n}$ be unit vectors such that $x^{*}(A+i B) x=11 i$, $y^{*}(A+i B) y=10+5 i$, and $z^{*}(A+i B) z=-10+5 i$. Let $x^{*} T x=\mu_{1}, y^{*} T y=\mu_{2}$, and $z^{*} T z=\mu_{3}$. Then $\left|11 i-\mu_{1}\right| \leq 1,\left|10+5 i-\mu_{2}\right| \leq 1$, and $\left|-10+5 i-\mu_{3}\right| \leq 1$. So, $W(T)$ cannot be a line segment. Hence, T is not diagonalizable.

Next, we turn to our main result.
Theorem 3 Let (A, B) be a definite pair. Then

$$
\begin{equation*}
c(A, B)=\min \{r(E+i F):(A+E)+i(B+F) \text { is not diagonalizable by congruence }\} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
c(A, B)=\inf \{\|E+i F\|:(A+E)+i(B+F) \text { is not diagonalizable by congruence }\} . \tag{6}
\end{equation*}
$$

We need two lemmas to prove Theorem 3. The first one is a standard result characterizing diagonalizability of a pair by congruence when one of the matrices is invertible. The second presents a perhaps surprising difference between the numerical radius and the spectral norm. This difference is the reason that the result in Theorem 3 contains a "min" for the numerical radius but only an "inf" for the spectral norm.

Lemma 4 [3, Table 4.5.15, part 1 (b)] Let $A, B \in H_{n}$ with A invertible. Then $A+i B$ is diagonalizable by congruence if and only if $A^{-1} B$ is similar to a real diagonal matrix.

Lemma 5 [4, Theorem 1.3.6 (b)] Take $t \in(0,1 / 2]$ and set

$$
X=\left(\begin{array}{cc}
0 & i t \\
i t & 1
\end{array}\right)
$$

Then $r(X)=1<\|X\|$.
Proof of Theorem 3. Suppose that

$$
\min \{|z|: z \in W(A+i B)\}
$$

occurs at $z=r e^{i \theta}$ then replacing $A+i B$ by $e^{-i \theta}(A+i B)$ if necessary we may assume that $z=i \gamma$. After a unitary similarity Now, we may assume with loss of generality that
$B=B_{1} \oplus[\gamma]$ with $B_{1}-\gamma I_{n-1} \in M_{n-1}$. This implies that $a_{n n}=0$, so write $A=\left(\begin{array}{cc}A_{11} & A_{12} \\ A_{12}^{*} & 0\end{array}\right)$ with $A_{11} \in M_{n-1}$. Let

$$
E=\operatorname{diag}\left(d_{1}, \ldots, d_{n-2}\right) \oplus\left(\begin{array}{cc}
0 & t \\
t & 0
\end{array}\right) \text { and } F=0_{n-2} \oplus \operatorname{diag}(0,-\gamma)
$$

Using a Schur Complement argument for example, we can show that for any $t \neq 0$ we can choose d_{1}, \ldots, d_{n-2} with $\gamma>d_{j}>0$ such that $\tilde{A}=A+E$ is invertible. We claim that $\tilde{A}+i B$ is not diagonalizable by congruence.

Firstly, note that $\tilde{B}=B+F=B_{1} \oplus 0$ has rank $n-1$ and hence so has $\tilde{A}^{-1} \tilde{B}$.
Write

$$
\tilde{A}^{-1}=\left(\begin{array}{cc}
X & Y \\
Y^{*} & Z
\end{array}\right), \text { where } X \in M_{n-1}, Z \in M_{1}
$$

Notice that $\tilde{a}_{n n}=a_{n n}=0$ is singular. Thus, by the Nullity Theorem [1], it follows that the complementary submatrix in \tilde{A}^{-1}, that is X, is also singular. Hence $X B_{1}$ has at least one zero eigenvalue. So, the rank $n-1$ matrix

$$
\tilde{A}^{-1} \tilde{B}=\left(\begin{array}{ll}
X B_{1} & 0 \\
S^{*} \tilde{B}_{1} & 0
\end{array}\right)
$$

has at most $n-2$ nonzero eigenvalues. Thus, $\tilde{A}^{-1} \tilde{B}$ is not diagonalizable, and our claim is proved.

Now, by Lemma 5 , taking $t \in(0, \gamma / 2)$ ensures $r(E+i F)=\gamma$, establishing (5).
Taking $t=\epsilon>0$ ensures $\|E+i F\| \leq \gamma+\epsilon$ and establishes (6).
A slightly more careful argument shows that if in the proof above $A_{12} \neq 0$, then we can take $t=0$ in constructing $(E+i F)$ such that $(A+i B)+(E+i F)$ is not diagonalizable by congruence. The resulting $(E+i F)$ will have $\|E+i F\|=\gamma$. Thus generically, the infimum in (6) is attained.

Here is an instance where the infimum in (6) is not attained. Take the 2×2 matrices $A=0$ and $B=I$. Clearly $c(A, B)=1$. Let E, F be Hermitian and such that

$$
\begin{equation*}
(A+i B)+(E+i F) \text { is not diagonalizable by congruence. } \tag{7}
\end{equation*}
$$

Since both A and B are invariant under unitary similarity, we may assume without loss of generality that F is diagonal. Note that $\max \{\|E\|,\|F\|\} \leq\|E+i F\|$ so if $\|E+i F\| \leq 1$ and if the pair $(A+E, B+F)$ is not definite, then F must be of the form

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & t
\end{array}\right) \text { or }\left(\begin{array}{cc}
t & 0 \\
0 & -1
\end{array}\right)
$$

In either case $B+F$ is diagonal, so the condition (7) requires that $A+E=E$ has non-zero off-diagonal. However, for such E and F it is the case that $\|E+i F\|>1$.

References

[1] M. Fiedler and T. Markham. Completing a matrix when certain entries of its inverse are specified. Lin. Alg. Appl., Vol. 74, pp. 225-237, 1986.
[2] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, third edition, 1996.
[3] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, New York, 1985.
[4] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, New York, 1991.
[5] B. Istratescu. Introduction to Linear Operator Theory. Marcel Dekker, New York, 1981.
[6] G. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.

