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Abstract

Denote by W (T ), r(T ) and ‖T‖ the numerical range, the numerical radius and the

spectral norm of a complex matrix T . Let (A, B) be a pair of Hermitian matrices. It is

shown that if 0 ∈ W (A + iB) then

d(A, B) = inf{|µ| : µ /∈ W (A + iB)}

is an upper bound for

inf{r(E + iF ) : (A + E) + i(B + F ) is diagonalizable by congruence};

if 0 /∈ W (A + iB) then the Crawford number

c(A, B) = min{|µ| : µ ∈ W (A + iB)}

is equal to

min{r(E + iF ) : (A + E) + i(B + F ) is not diagonalizable by congruence},

which in turn is equal to

inf{‖E + iF‖ : (A + E) + i(B + F ) is not diagonalizable by congruence}.

The infimum is not always attained.
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1 Introduction

Let Mn (respectively, Hn) be the set of n × n complex (respectively, Hermitian) matrices.

Two Hermitian matrices A, B ∈ Hn are said to be a definite pair if |x∗(A + iB)x| 6= 0 for
every nonzero vector x ∈ Cn.

Definite Hermitian pairs have useful algorithmic and theoretical properties. For example,
it is known (see [4, Theorem 1.7.17]) that if (A, B) is a definite Hermitian pair, then it is
diagonalizable by congruence, i.e., there is an invertible matrix S ∈ Mn so that both S∗AS
and S∗BS are diagonal matrix, equivalently, S∗(A+iB)S is a diagonal matrix. This property
is very useful in the analysis of the Hermitian generalized eigenvalue problem; Ax = λBx.
If (A, B) is a definite pair, then the corresponding generalized eigenvalues are real, and can

be found by solving a related Hermitian eigenvalue problem [2, §8.7.3].
Recall that the numerical range of T ∈ Mn is

W (T ) = {x∗Tx : x ∈ Cn, x∗x = 1},

and that the numerical radius of T is

r(T ) = max{|x∗Tx| : x ∈ Cn, x∗x = 1},

which is the maximum distance of a point in the numerical range to the origin.
It is known that W (T ) is always a compact convex set in C, and that the numerical

radius is a norm on Mn satisfying

r(T ) ≤ ‖T‖ ≤ 2r(T ) for all T ∈ Mn, (1)

in comparison with the spectral norm ‖T‖; for example, see [4, 5]. Also, it is known that

(A, B) is a definite Hermitian pair if and only if W (A + iB) does not contain the origin,
which is equivalent to the existence of a, b ∈ IR such that aA + bB is positive definite; see
[4, p. 72]. We define the Crawford number of (A, B) by

c(A, B) = min{|x∗(A + iB)x| : x ∈ Cn, x∗x = 1},

which is the shortest distance between a point in W (A + iB) and the origin. The Crawford
number often appears in the study of perturbation bounds in the study of problems involving
definite Hermitian pairs; see [6, Chapter VI].

It is easily shown, Proposition 1, that c(A, B) is the distance to the nearest non-definite

pair. The purpose of this note, Theorem 3, is to show that c(A, B) is also the distance from

(A, B) to the set of non-diagonalizable pairs even though diagonalizability by congruence is

not equivalent to definiteness. If c(A, B) = 0, i.e., 0 ∈ W (A + iB), then A + iB may or may
not be diagonalizable by congruence, but in Proposition 2, we give an upper bound for the
distance between (A, B) to the set of diagonalizable pairs.

2 Results and proofs

Proposition 1 Let (A, B) be a definite Hermitian pair. Suppose x ∈ Cn is a unit vector

such that |x(A + iB)x| = c(A, B), and (E0, F0) = −(x∗AxI, x∗BxI). Then (A + E0, B + F0)
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is not a definite pair and

c(A, B) = r(E0 + iF0) = min{r(E + iF ) : (A + E, B + F ) is not a definite pair}. (2)

Furthermore, (2) is valid when r(·) is replaced by ‖ · ‖.

Proof. Let rD denote the right hand side of (2). Let rD,‖ · ‖ denote the right hand side of

(2) when r(·) is replaced by ‖ · ‖.
Suppose x ∈ Cn is a unit vector such that |x∗(A + iB)x| = c(A, B) and (E0, F0) =

−(x∗AxI, x∗BxI). Then 0 ∈ W ((A + E0) + i(B + F0)) and hence (A + E0, B + F0) is not
definite. Since E0 + iF0 a multiple of the identity,

‖E0 + iF0‖ = |(x∗Ax) + i(x∗Bx)| = c(A, B).

Thus rD,‖ · ‖ ≤ c(A, B).

By (1), we have rD ≤ rD,‖ · ‖. Let (E, F ) be a Hermitian pair such that (A + E, B + F )

is not definite. Consider a unit vector y ∈ Cn such that y∗(A + E)y = y∗(B + F )y = 0, or
equivalently, y∗Ay = −y∗Ey and y∗By = −y∗Fy. So,

c(A, B) ≤ |y∗(A + iB)y| = |y∗(E + iF )y| ≤ r(E + iF ). (3)

Thus c(A, B) ≤ rD. Combining this with the conclusion of the previous paragraph we have

c(A, B) = rD = rD,‖ · ‖. 2

Proposition 2 Let (A, B) be a Hermitian pair such that 0 ∈ W (A + iB). Then

d(A, B) = inf{|µ| : µ /∈ W (A + iB)}
≥ inf{r(E + iF ) : (A + E) + i(B + F )is diagonalizable by congruence}. (4)

Furthermore, (4) is valid when r(·) is replaced by ‖ · ‖.

Proof. Let T = A+iB. Since W (T ) is compact, there is a boundary point µ with minimum

modulus. We may replace (T, µ) by (eitT, eitµ) for a suitable t ∈ [0, 2π) so that there is a left

support line of W (T ) passing through µ. Then for any ε > 0, we can let E + iF = (ε− µ)I

so that 0 /∈ W (T +(E + iF )) and hence T +(E + iF ) is diagonalizable by congruence. Since

‖E + iF‖ = r(E + iF ) ≤ |µ|+ ε and ε is arbitrary, we get the desired inequality. 2

Let (A, B) be a Hermitian pair such that 0 ∈ W (A + iB). Since W (A + iB) is closed,

inf{|µ| : µ /∈ W (A + iB)} is not attained by any element not in W (A + iB). Also,

inf{r(E + iF ) : (A + E) + i(B + F ) is diagonalizable by congruence}

is not always attainable. For example, if

A =
(

0 10
10 0

)
and B =

(
11 0
0 −1

)
.
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Then W (A + iB) is an elliptical disk with minor axis joining the numbers 11i and −i, and

major axis joining the numbers 10 + 5i and −10 + 5i. Clearly, d(A, B) = 1, and −i is the

boundary point of W (A+ iB) nearest to the origin. Suppose E + iF satisfies r(E + iF ) ≤ 1.

We claim that T = (A + E) + i(B + F ) is not diagonalizable by congruence. Suppose it
is not true and that S ∈ M2 is invertible such that S∗TS is in diagonal form. Note that
0 ∈ W (T ). It follows that W (S∗TS) is a line segment containing 0. Thus, there exists a

complex unit ξ such that ξS∗TS is Hermitian. So, ξT is Hermitian and ξW (T ) is a real

line segment containing 0. Let x, y, z ∈ Cn be unit vectors such that x∗(A + iB)x = 11i,

y∗(A + iB)y = 10 + 5i, and z∗(A + iB)z = −10 + 5i. Let x∗Tx = µ1, y∗Ty = µ2, and

z∗Tz = µ3. Then |11i − µ1| ≤ 1, |10 + 5i − µ2| ≤ 1, and | − 10 + 5i − µ3| ≤ 1. So, W (T )
cannot be a line segment. Hence, T is not diagonalizable.

Next, we turn to our main result.

Theorem 3 Let (A, B) be a definite pair. Then

c(A, B) = min{r(E + iF ) : (A + E) + i(B + F ) is not diagonalizable by congruence} (5)

and

c(A, B) = inf{‖E + iF‖ : (A + E) + i(B + F ) is not diagonalizable by congruence}. (6)

We need two lemmas to prove Theorem 3. The first one is a standard result characterizing
diagonalizability of a pair by congruence when one of the matrices is invertible. The second
presents a perhaps surprising difference between the numerical radius and the spectral norm.
This difference is the reason that the result in Theorem 3 contains a “min” for the numerical
radius but only an “inf” for the spectral norm.

Lemma 4 [3, Table 4.5.15, part 1 (b)] Let A, B ∈ Hn with A invertible. Then A + iB is

diagonalizable by congruence if and only if A−1B is similar to a real diagonal matrix.

Lemma 5 [4, Theorem 1.3.6 (b)] Take t ∈ (0, 1/2] and set

X =
(

0 it
it 1

)
.

Then r(X) = 1 < ‖X‖.

Proof of Theorem 3. Suppose that

min{|z| : z ∈ W (A + iB)}

occurs at z = reiθ then replacing A + iB by e−iθ(A + iB) if necessary we may assume
that z = iγ. After a unitary similarity Now, we may assume with loss of generality that
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B = B1⊕ [γ] with B1−γIn−1 ∈ Mn−1. This implies that ann = 0, so write A =
(

A11 A12

A∗
12 0

)
with A11 ∈ Mn−1. Let

E = diag(d1, . . . , dn−2)⊕
(

0 t
t 0

)
and F = 0n−2 ⊕ diag(0,−γ).

Using a Schur Complement argument for example, we can show that for any t 6= 0 we can

choose d1, . . . , dn−2 with γ > dj > 0 such that Ã = A+E is invertible. We claim that Ã+ iB

is not diagonalizable by congruence.

Firstly, note that B̃ = B + F = B1 ⊕ 0 has rank n− 1 and hence so has Ã−1B̃.
Write

Ã−1 =
(

X Y
Y ∗ Z

)
, where X ∈ Mn−1, Z ∈ M1.

Notice that ãnn = ann = 0 is singular. Thus, by the Nullity Theorem [1], it follows that the

complementary submatrix in Ã−1, that is X, is also singular. Hence XB1 has at least one
zero eigenvalue. So, the rank n− 1 matrix

Ã−1B̃ =
(

XB1 0
S∗B̃1 0

)

has at most n − 2 nonzero eigenvalues. Thus, Ã−1B̃ is not diagonalizable, and our claim is
proved.

Now, by Lemma 5, taking t ∈ (0, γ/2) ensures r(E + iF ) = γ, establishing (5).

Taking t = ε > 0 ensures ‖E + iF‖ ≤ γ + ε and establishes (6). 2

A slightly more careful argument shows that if in the proof above A12 6= 0, then we can
take t = 0 in constructing (E + iF ) such that (A + iB) + (E + iF ) is not diagonalizable by

congruence. The resulting (E + iF ) will have ‖E + iF‖ = γ. Thus generically, the infimum

in (6) is attained.

Here is an instance where the infimum in (6) is not attained. Take the 2 × 2 matrices

A = 0 and B = I. Clearly c(A, B) = 1. Let E, F be Hermitian and such that

(A + iB) + (E + iF ) is not diagonalizable by congruence. (7)

Since both A and B are invariant under unitary similarity, we may assume without loss of
generality that F is diagonal. Note that max{‖E‖, ‖F‖} ≤ ‖E + iF‖ so if ‖E + iF‖ ≤ 1

and if the pair (A + E, B + F ) is not definite, then F must be of the form

(−1 0
0 t

)
or

(
t 0
0 −1

)
.

In either case B + F is diagonal, so the condition (7) requires that A + E = E has non-zero

off-diagonal. However, for such E and F it is the case that ‖E + iF‖ > 1.
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