
MULTIPLICATIVE MAPS ON INVERTIBLE MATRICES THAT
PRESERVE MATRICIAL PROPERTIES

ROBERT M. GURALNICK, CHI-KWONG LI, AND LEIBA RODMAN

Abstract. Descriptions are given of multiplicative maps on complex and real ma-
trices that leave invariant a certain function, property, or set of matrices: norms,
spectrum, spectral radius, elementary symmetric functions of eigenvalues, certain
functions of singular values, (p, q) numerical ranges and radii, sets of unitary, nor-
mal, or Hermitian matrices, as well as sets of Hermitian matrices with fixed inertia.
The treatment of all these cases is unified, and is based on general group theoretic
results concerning multiplicative maps of general and special linear groups, which
in turn are based on classical results by Borel - Tits. Multiplicative maps that leave
invariant elementary symmetric functions of eigenvalues and spectra are described
also for matrices over a general commutative field.

1. Introduction

There has been considerable interest in studying linear or multiplicative maps on

matrices that leave invariant some special functions, sets, and relations, see [4, 24,

10]. In this paper, we study multiplicative maps on invertible matrices with such

preserver properties. Although our main interest is in complex and real matrices,

we have found it advantageous to present first descriptions of multiplicative maps of

the general linear group and the special linear groups over any (commutative) field.

These descriptions are based on the Borel–Tits results, and are presented in the next

section. In this connection we note that multiplicative maps on full matrix algebras

are well understood [14].

Our main results for the complex field are presented in Section 3. Here, we describe

multiplicative maps that preserve a certain function, property, or set of matrices:

norms, spectrum, spectral radius, elementary symmetric functions of eigenvalues,

certain functions of singular values, (p, q) numerical ranges and radii, sets of unitary,
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normal, or Hermitian matrices, as well as sets of Hermitian matrices with fixed inertia.

The corresponding results for the real field are presented in Section 4. There, we also

describe multiplicative preservers of elementary symmetric functions of eigenvalues

and of spectra for matrices over a general field.

2. Group Theory Results

The following notation and conventions will be used in this section (some of the

notation will be used in subsequent sections as well).

|X| cardinality of a set X.

All fields F are commutative.

F the algebraic closure of a field F.

F∗ the group of nonzero elements of a field F.

GL(n,F) the group of n× n invertible matrices with entries in a field F.

SL(n,F) = {A ∈ GL(n,F) : det(A) = 1}.
PSL(n,F) = SL(n,F)/{xI : x ∈ F∗, xn = 1}.
At the transpose of a matrix A.

Mn(F) the algebra of n × n matrices over the field F. To avoid trivialities, we

assume n ≥ 2 everywhere.

Fq the finite field of q elements.

Sm the group of permutations of m elements.

G1 ≤ G2 means that G1 is a subgroup of G2.

A map α : X → Y is called nontrivial if its image α(X) consists of more than one

element.

2.1. Multiplicative maps on SL(n,F). The results in this and the next subsec-

tion are based on a special case of the Borel–Tits results [2]. We need to do some

work in order to apply them. Let E,F be fields. We first dispose of the case where E
and F have different characteristics. The following is known:

Lemma 2.1. Let E and F be fields of distinct characteristics pE and pF. Assume

that n > 1. Let φ : SL(n,F) →Mm(E) be a nontrivial multiplicative map. Then F is

finite, say of order q, and one of the following holds:

(1) n = 2, and m ≥ (q − 1)/2; or

(2) n = 2, q = 3 and m = 1; or

(3) q = 2 and n ≤ 4; or

(4) n > 2 and m ≥ (qn − 1)/(q − 1)− 2.
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Proof. There is no harm in assuming that E is algebraically closed and also that

φ maps into GL(m,E) (passing to a smaller m if necessary). If F is infinite, then

the only proper normal subgroups of SL(n,F) are contained in the scalars. Consider

the subgroup consisting of I + tE12, t ∈ F, where E12 is the matrix with 1 in the

(1, 2) position and zeros elsewhere. We note that any two nontrivial elements in this

group are conjugate in SL(n,F). The image of this group has the same property

but also is an abelian group of semisimple elements. In particular, this group can be

diagonalized – but all elements are conjugate and so in particular have the same set

of eigenvalues. The image is thus finite and so this subgroup intersects the kernel

nontrivially, whence φ is trivial.

In the finite case, this result is known – see [9] (or [17] for a somewhat weaker

result). �

We assume from now on that F and E have the same characteristic.
Fix a positive integer n > 1. We make the assumption that if n = 2, then |F| > 3.

This is equivalent to assuming that SL(n,F) is perfect (cf. [3]). Recall that a group

G is called perfect if it coincides with its commutator [G,G]:

G = [G,G] := {the subgroup generated by xyx−1y−1 : x, y ∈ G}.

We first record the well known fact (see, e.g., [6]):

Lemma 2.2. Let fi, i = 1, 2 be two representations of a semigroup A into End(V )

with V a finite dimensional vector space over E. If f1 and f2 are equivalent over any

extension field of Ẽ of E, i.e., there exists Q ∈ GL(n, Ẽ) such that f1(x) = Q−1f2(x)Q

for every x ∈ A, then f1 and f2 are equivalent over E.

Lemma 2.3. There are no nontrivial homomorphisms from SL(n,F) to GL(m,E)

for m < n.

Proof. There is no harm in assuming that E is algebraically closed. We induct on

n. If n = 2 and |F| > 3, then the result is clear (since SL(n,F) is perfect and so any

1-dimensional representation is trivial, because GL(1,E) is abelian). Still assuming

n = 2, consider the remaining cases SL(2,F3) and SL(2,F2). We have |SL(2,F3)| =
24 and |[SL(2,F3), SL(2,F3)]| = 8. So if there were a nontrivial homomorphism

SL(2,F3) → GL(1,E), then GL(1,E) would have an element of order 3, which is

impossible because E has characteristic 3. For SL(2,F2) we have that |SL(2,F2)| = 6

and |[SL(2,F2), SL(2,F2)]| = 3 (because SL(2,F2) is isomorphic to S3), and a similar

argument applies.
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So assume that n > 2. Since PSL(n,F) is simple (see [3], for example), any

nontrivial representation of SL(n,F) has kernel contained in the center of SL(n,F).

Consider the embedding

SL(n− 1,F) −→ SL(n,F)

given by

A ∈ SL(n− 1,F) 7→
[
A 0
0 1

]
∈ SL(n,F).

Thus, the restriction to SL(n− 1,F) (via the above embedding) of a nontrivial rep-

resentation of SL(n,F) is again a nontrivial representation of SL(n− 1,F), and this

nontrivial representation of SL(n− 1,F) is one-to-one. By induction, m ≥ n− 1. If

m = n− 1, then SL(n− 1,F) acts irreducibly (otherwise, the matrices of the repre-

sentation of SL(n − 1,F) are nontrivially block triangular with respect to a certain

basis, and by restricting the representation to one of the diagonal blocks, we obtain

a contradiction with the induction hypothesis). The centralizer of SL(n − 1,F) in

SL(n,F) is the set {[
xIn−1 0

0 y

]
: x, y ∈ F and xn−1y = 1

}
(recall that the centralizer of a group G1 in an overgroup G2 is the set {y ∈ G2 : yx =

xy for every x ∈ G1}). Assume first that the centralizer is nontrivial (which is always

the case if F is infinite). The centralizer maps (under the irreducible representation

of SL(n − 1,F) which is the restriction of a nontrivial representation of SL(n,F))

into the center of GL(n−1,E). The inverse image of the center is a normal subgroup

of SL(n,F) and so is either contained in the center of SL(n,F), or coincides with

SL(n,F), a contradiction.

If F = Fq, q = pα, we note that SL(n − 1,F) is contained in the normalizer of an

elementary abelian subgroup A of order qn−1. (An abelian group is called elementary

if the order of any non-identity element is a prime.) Namely,

A =

{[
In−1 y

0 1

]
: y ∈ Fn−1×1

}
,

and fgf−1 ∈ A for every f ∈ SL(n − 1,F), g ∈ A. It is well known that any

representation of a p-group in characteristic p has a nonzero vector subspace of vectors

that are fixed by the representation, which must be invariant under its normalizer.

Thus, there is a nonzero vector subspace which consists of vectors fixed by A and
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which is invariant under SL(n − 1,F). Since SL(n − 1,F) acts irreducibly, this

subspace must be the whole n−1-dimensional space. Thus, the kernel of the original

nontrivial representation of SL(n,F) contains A, a contradiction with the previously

established fact that the kernel of this representation must be contained in the center

of SL(n,F). �

A large part of Lemma 2.3 is contained in [5, Theorem 2.3] which deals with ho-

momorphisms of special linear groups into general linear groups over division rings.

Lemma 2.3 also follows from well known results about the representation theory of

SL(n,Fp) and SL(n,Q); Q is the field of rational numbers (see [25] if the character-

istic is positive and [26] if F = Q).

Note that we do need to exclude the cases n = 2 and |F| ≤ 3 in the next result.

Lemma 2.4. Let φ be a nontrivial multiplicative map from SL(n,F) into Mn(E). If

n = 2, assume that |F| > 3. Then φ is injective and φ(SL(n,F)) ≤ SL(n,E).

Proof. The only nontrivial normal subgroups of SL(n,F) are contained in the

group of scalars in SL(n,F). Since |φ(SL(n,F)| > 1, the element φ(1) is an idempo-

tent and is the identity of the group φ(SL(n,F)). If φ(1) is not the identity matrix,

then we have a nontrivial group homomorphism from SL(n,F) to GL(m,F) where

m is the rank of φ(1). The previous lemma implies that m = n. Since SL(n,F) is

perfect, so is its image, whence the image is contained in SL(n,E).

Next, we show that φ is injective. First suppose that n = 2. Then the only

nontrivial normal subgroup consists of ±I. Since the image of φ is contained in

SL(2,E) and the only elements of order 2 in SL(2,E) are scalars, it follows that

φ is injective. So assume that n > 2. Recall that any nontrivial proper normal

subgroup of SL(n,F) consist of the scalars matrices of order dividing n. If φ is not

injective, then there is a prime r with r|n and F containing the rth roots of unity,

with aI ∈ Kerφ, where a ∈ F is an rth root of unity. Let M be the subgroup of

monomial matrices of determinant 1 all of whose nonzero entries are rth roots of
unity (recall that a monomial matrix is one which has exactly one nonzero entry in

each row and column). The representation theory of this group is well known and

it is easy to see that the smallest representation that has kernel properly contained

in D, the subgroup of diagonal matrices in SL(n,F), has dimension n and any such

representation of degree n is faithful on D (and in particular, aI ∈ D is not in the

kernel of φ). The main idea is the following. Let Z be the subgroup of scalar matrices

in D. Then M permutes the nontrivial characters of D/Z a group of order rn−2 and
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that and M/Z-module must be a direct sum of characters for D that are permuted

by M . If n > 4, then the smallest such orbit has size n(n − 1)/2 > n. If n = r = 3

or n = 4, r = 2, , then any such representation has kernel not contained in D, a

contradiction. �

Note that if φ : SL(n,F) → Mm(E), then the space V of column vectors is a

module for SL(n,F) in the obvious way (any representation gives a module). We

denote this module by V φ.

Define the map τ by τ(A) = (At)−1, A ∈ GL(n,F). If σ : F → E is a field

embedding, then we can extend this to a homomorphism SL(n,F) → SL(n,E)

in the obvious manner (entrywise). Indeed, we can extend this to an embedding

from GL(n,F) → GL(n,E). As above, we let V σ or V ∗σ denote the corresponding

SL(n,F)-module over E.

Theorem 2.5. Let φ : SL(n,F) → Mn(E) be a nontrivial multiplicative map. As-

sume that |F| > 3 if n = 2. Then φ is a group homomorphism into SL(n,E) and

there exists a field embedding σ : F → E and S ∈ GL(n,E) such that φ has the form

(1) A 7→ Sσ(A)S−1 or A 7→ Sσ(τ(A))S−1.

Proof. If F is finite and SL(n,F) is perfect, then the result of Theorem 2.5 follows

easily from basic results in the representation theory of the finite Chevalley groups,

see [25, 13].

So assume that F is infinite. First consider the case that E is algebraically closed.

Then the closure H of φ(SL(n,F)) (in the Zariski topology of GL(n,E)) is an al-

gebraic group. Since φ(SL(n,F)) is infinite (because SL(n,F) is infinite and φ is

injective by the previous lemma) and simple modulo the center (because SL(n,F)

has the this property and φ is injective), it follows that φ(SL(n,F)) is connected

(here we use the fact that an infinite simple group cannot have subgroups of finite

index). Since the closure of a connected group is itself connected, we conclude that

H is connected. Since φ(SL(n,F)) is perfect, the same is true for H (here we use the

properties that homomorphic images of a perfect group are perfect and the closure

of a perfect group in Zariski topology is perfect), and so H ≤ SL(n,E). It follows

that H is semisimple and again by the previous lemma, H is a simple algebraic group

(otherwise, we have a nontrivial map from SL(n,F) into a group with a smaller

representation).

Now apply the main result in [2] to conclude that φ is as above. The hypotheses

of [2] are: φ is a homomorphism from a subgroup of GL(n,F) which is generated
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by unipotent elements (i.e., matrices all of which eigenvalues are equal to 1) and the

closure of the image of φ is a simple algebraic group over an algebraically closed field

E; it is also hypothesized that E and F have the same characteristic.

We now need to descend to E from the algebraic closure of E. What we have shown

so far amounts to saying that the only irreducible representations of SL(n,F) over E
of dimension n are V σ or V ∗σ where σ is a field embedding of F into E. Note that the

character of the representation of V σ is just σ ◦ trace (and similarly for V ∗). Since

we have a representation into GL(n,E), the character takes on values in E, whence

σ(F) ⊆ E. Thus, the representation corresponding to φ is equivalent to V σ or V ∗σ

over E, whence also over E. Thus, the conjugating element S can always be taken to

be in GL(n,E) rather than just in GL(n,E). �

A special case of Theorem 2.5 (for n = 2) is contained in [5].

2.2. Multiplicative Maps on GL(n,F). It is quite easy to determine the multi-

plicative maps on GL(n,F) using Theorem 2.5. We first prove:

Lemma 2.6. Let X,Y be groups and α, β : X → Y group homomorphisms. Let Z

denote the center of Y. Let W be a normal subgroup of X. Assume the following:

(a) α is one-to-one on X;

(b) α(w) = β(w) for all w ∈ W;

(c) X/W is abelian; and

(d) the centralizer of α(W) in Y coincides with Z;

Then β(x) = α(x)γ(xW) where γ : X/W → Z is a homomorphism.

Proof. Since α is one-to-one, there is no harm in identifying X with α(X) and

assuming that X is a subgroup of Y (and α is the identity). Define γ : X → X by

γ(x) = x−1β(x).

Note that if w ∈ W, x ∈ X, then wxw−1x−1 ∈ W and so

β(wxw−1x−1) = wxw−1x−1 = wβ(x)w−1β(x)−1.

Thus, β(x)−1x commutes with w−1 for all w ∈ W. Hence β(x)−1x ∈ Z. This implies

that β(x) commutes with x and γ(x) ∈ Z.

It follows that

γ(x)γ(y) = x−1β(x)y−1β(y) = y−1x−1β(x)β(y) = (xy)−1β(xy) = γ(xy), x, y ∈ X.

So γ : X → Z is a homomorphism. Clearly, γ(W) = 1 and we can view γ as a

homomorphism from X/W → Z. �
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Fix a field F. We assume that n > 1 and if n = 2, then |F| > 3. Let φ : GL(n,F) →
Mn(F) be a multiplicative map. We consider two cases.

Case 1. |φ(SL(n,F))| = 1. Then φ(SL(n,F)) is just an idempotent E of rank

m ≤ n. It follows that φ is a group homomorphism from GL(n,F)/SL(n,F) into

GL(m,F) (where we view GL(m,F) inside GL(n,F) in the obvious way). There is

not much to say here.

Case 2. |φ(SL(n,F))| > 1. By Theorem 2.5 we know the possible forms for φ

restricted to SL(n,F). Since φ(I) = I, it follows that φ maps GL(n,F) into GL(n,F).

Formula (1) gives a homomorphism ψ : GL(n,F) → GL(n,F).

In the previous lemma take X = GL(n,F), Y = GL(n,F), W = SL(n,F), α = ψ

and β = φ. Note that φ(SL(n,F)) = ψ(SL(n,F)) acts irreducibly (since there are no

representations of dimension less than n) and so by Schur’s Lemma its centralizer in

Y is just the group of scalars. The lemma implies that φ(A) = ψ(A)f(det(A)).

In the excluded cases GL(2,F2) ∼= S3 and GL(2,F3), there are more normal sub-

groups and one can get other homomorphisms which are easy to describe. We leave

this as an exercise to the reader.

This leads to the following result.

Theorem 2.7. Let E/F be an extension of fields. Let φ : GL(n,F) → Mn(E) be a

multiplicative map. Assume that |F| > 3 if n = 2. Then one of the following holds
true:

(a) |φ(SL(n,F))| = 1; or

(b) there exists a field embedding σ : F → E, a homomorphism f : F ∗ → E∗, and

S ∈ GL(n,E) such that φ has the form

(2) A 7→ f(det(A))Sσ(A)S−1 or A 7→ f(det(A))Sσ(τ(A))S−1.

3. Multiplicative Preservers: The complex field

In this section, we use the group theory results of Section 2 to study multiplicative

preservers problems on matrices. In particular, we show that many results on classi-

cal linear preserver problems have nice multiplicative analogs. We also derive general

results to connect the group theory results and the multiplicative preserver applica-

tions. Sometimes, we will reduce the multiplicative preserver problem to well studied

linear preserver problems, and use the known results on linear preservers. Since there

are many interesting preserver problems, presenting all the multiplicative preserver



MULTIPLICATIVE PRESERVER MAPS OF INVERTIBLE MATRICES 9

results we can obtain will be too lengthy. We will select a list of well known examples

from linear preserver problems and show how our techniques can be used to derive

results on multiplicative preservers. In our discussion, we will focus on the complex

field F = C, and the group H to be either H = SL(n,C) or H = GL(n,C). Anal-

ogous results on real matrices and other fields will be discussed in the next section.

The following notations will be used.

Ck = {cos(2jπ
k

) + i sin(2jπ
k

) : j = 0, . . . , k − 1} the group of k-th roots of unity.

H: either H = SL(n,C) or H = GL(n,C).

Spec (A) the spectrum of A ∈Mn(C).

r(A) the spectral radius of A ∈Mn(C).

T the unit circle in C.
{e1, . . . , en} the standard orthonormal basis for Cn.

Mn(C) the algebra of complex n× n matrices.

{E11, E12, . . . , Enn} the standard basis for Mn(C).

diag (a1, . . . , an) diagonal matrix with diagonal entries a1, . . . , an (in that order).

τ(A) = (A−1)t, for an invertible matrix A.

σ : C −→ C a complex field embedding.

‖x‖ the Euclidean length of a vector x ∈ Cn.

3.1. Preliminary results. The following characterizations of continuous complex

field embeddings will be useful.

Lemma 3.1. The following statements for a complex field embedding σ are equivalent:

(a) σ is continuous.

(b) either σ(z) = z for every z ∈ C or σ(z) = z for every z ∈ C.

(c) σ(R) ⊆ R.

(d) σ(z) > 0 for every positive z.

(e) |σ(z)| = |z| for every z ∈ C.

(f) there exist rational numbers s and r 6= 0 such that

z ∈ C and |s+ rz| = 1 =⇒ |s+ rσ(z)| = 1.

Proof. For the equivalence of (a) – (c), see [29]. Evidently, (b) =⇒ (d), (e), and (f).

It is also clear that (d) =⇒ (c) and (e) =⇒ (a). We prove the part (f) =⇒ (a).

First, using the transformation w = s+ rz and replacing z by w we see that (f) holds

with s = 0, r = 1. Note that |z| < 1, z ∈ C, if and only if

(3) |z − w| = |z + w| = 1 for some nonzero w ∈ C.
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Thus, assuming (f) holds we have for every z ∈ C∗, |z| < 1:

|σ(z)− σ(w)| = |σ(z) + σ(w)| = 1,

where w is taken from (3). So

0 < |z| < 1 =⇒ |σ(z)| < 1.

By scaling z, we obtain

0 < |z| < 1

m
=⇒ |σ(z)| < 1

m
,

for m = 1, 2, . . ., and the continuity of σ follows easily. �

The following observation will also be used frequently.

Lemma 3.2. Let f : C∗ → C∗ be a multiplicative map.

(a) Suppose k is a positive integer such that f(µ)k = 1 for all µ ∈ C∗. Then

f(µ) = 1 for all µ ∈ C∗.

(b) Suppose m, n are positive integers such that (f(µ))n = µm for all µ ∈ C∗. Then

n divides m.

Proof. Part (a). The assumption implies that f maps into Ck. Since the multiplica-

tive group C∗ is infinitely divisible (for every x ∈ C∗ and every positive integer m

there is y ∈ C∗ such that ym = x), the only multiplicative map f : C∗ −→ Ck is the

trivial one.
Part (b). Considering the multiplicative map

g(µ) = f(µ)n/(gcd (m,n))µ−m/(gcd (m,n)), µ ∈ C∗,

and using the part (a) of the lemma, we may assume that n and m are relatively

prime. Let q be a primitive m-th root of 1, and let α = f(q). Then

αn = f(q)n = qm = 1 and 1 = f(1) = f(qm) = (f(q))m = αm,

hence α = 1. Let r be a primitive mn-th root of 1 such that q = rn. Then

1 = f(q) = f(rn) = (f(r))n = rm,

a contradiction, unless n = 1. �

Next, we have the following general result.

Theorem 3.3. Suppose S ∈ SL(n,C) and a multiplicative map f : C∗ → C∗ are

given, and φ : H →Mn(C) is defined by

(a) φ(A) = f(det(A))Sσ(A)S−1, or
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(b) φ(A) = f(det(A))Sσ(τ(A))S−1.

Assume that there exists a function γ : Mn(C) → [0,∞) satisfying the following

properties:

(i) There exists k1 > 0 such that

γ
(
S−1φ(diag (a1, . . . , an))S

)
≤ k1 max{|a1|, . . . , |an|}

for all a1, . . . , an ∈ C such that
∏

1≤j≤n aj = 1;

(ii) There exists k2 > 0 such that

γ(diag (a1, . . . , an)) ≥ k2 max{|a1|, . . . , |an|}

for all a1, . . . , an ∈ C such that
∏

1≤j≤n aj = 1.

Then (a) holds true with σ such that σ(A) = A for all A ∈ H, or σ(A) = A for all

A ∈ H.

Proof. We give the proof for the case H = GL(n,C); the case H = SL(n,C) is

completely analogous.

First, we show that (b) cannot occur. To this end, assume n > 2 (if n = 2,

forms (a) and (b) are the same). Consider the matrix A = diag (m, . . . ,m,m−n+1),

where m is a positive integer. Note that det(A) = 1. If φ is given by (b), then

φ(A) = Sdiag (m−1, . . . ,m−1,mn−1)S−1, and therefore

mn−1 ≤ 1

k2

γ(diag (m−1, . . . ,m−1,mn−1))

=
1

k2

γ(S−1φ(A)S) ≤ 1

k2

k1 max{m,m−n+1} =
k1

k2

m,

which is a contradiction for large m.

Next, we show that σ is either identity or complex conjugation. It is enough to

prove that σ(x) > 0 for every positive x. Assume not, then there exists x > 0

such that σ(x) = reiθ, where r > 0, 0 < θ < 2π. Obviously, x is irrational. By a

theorem in number theory ([23, Theorem 6.9]), for m = 2, 3, . . . there exist integers

am, bm 6= 0 such that |am + bmx − 1| < 1/m. Clearly, the sets {am : m = 2, 3, . . . , }
and {bm : m = 2, 3, . . . , } are unbounded, and without loss of generality (passing to

a subsequence if necessary) we may assume that

lim
m→∞

|am| = lim
m→∞

|bm| = ∞.
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Clearly, am and bm are of opposite signs, at least for m large enough, say am < 0,

bm > 0. Let

Am = diag
(
am + bmx, (am + bmx)

−1, 1, . . . , 1
)
, m = 2, 3, . . . .

Then

max{|am + bmx|, |(am + bmx)
−1|} ≤ 2,

and

max{|am + bmσ(x)|, |(am + bmσ(x))−1|}

≤ 1

k2

γ(σ(Am)) =
1

k2

γ(S−1φ(Am)S)

≤ k1

k2

max{|am + bmx|, |(am + bmx)
−1|}

≤ 2k1

k2

,

and therefore the set {am + bmσ(x) : m = 2, 3, . . .} must be bounded. But in fact

|am+bmσ(x)| > |am| if θ = π, and |am+bmσ(x)| ≥ |bm|| sin θ| if θ 6= π, a contradiction

in both cases. �

Although the above theorem seems to be artificial, it can be used to deduce results

on multiplicative preservers very effectively, as shown in the following theorem and

results in the next few subsections.

Theorem 3.4. Let ‖ · ‖ be a norm on Mn(C). Then a multiplicative map φ : H →
Mn(C) satisfies

‖φ(A)‖ = ‖A‖ for all A ∈ H

if and only if there exist S ∈ SL(n,C) and a multiplicative map f : C∗ → T, which

collapses to the constant function f(µ) = 1 when H = SL(n,C), such that φ has the

form

A 7→ f(det (A))SAS−1 or A 7→ f(det(A))SAS−1,

where S is such that ‖SAS−1‖ = ‖A‖ for every A ∈ H, or ‖SAS−1‖ = ‖A‖ for every

A ∈ H, as the case may be.

Proof. The “if” part is clear. For the “only if” part apply Theorems 2.5 and 2.7

to conclude that φ has the form (a) or (b) in Theorem 3.3, where f is the constant

function if H = SL(n,C), and S ∈ GL(n,C). We may assume that S ∈ SL(n,C);

otherwise, replace S by S/ det(S)1/n. Now, the result follows from Theorem 3.3 with
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γ(A) = ‖A‖. Note that f maps C∗ into the unit circle in the case H = GL(n,C)

because for any µ ∈ C∗ we have

‖µI‖ = ‖φ(µI)‖ = ‖f(µn)σ(µ)I‖ = |f(µ)n||µ|‖I‖,

as σ(µ) = µ or µ̄. �

3.2. Functions of Eigenvalues. Many researchers have studied linear preservers

of the functions of eigenvalues; see [24]. We have the following multiplicative analogs.

We begin with the preservers of spectral radius r(A).

Theorem 3.5. A multiplicative map φ : H →Mn(C) satisfies

r(φ(A)) = r(A) for all A ∈ H

if and only if there exist S ∈ SL(n,C) and a multiplicative map f : C∗ → T, which

collapses to the constant function f(µ) = 1 when H = SL(n,C), such that φ has the

form

A 7→ f(det(A))SAS−1 or A 7→ f(det(A))SAS−1.

Proof. Use arguments similar to those in the proof of Theorem 3.4, and use Theorem

3.3 with γ(A) = r(A). �

The following result describes multiplicative preservers of Spec(A); see [10, Theo-

rem 2].

Corollary 3.6. A multiplicative map φ : H →Mn(C) satisfies

Spec(φ(A)) = Spec(A) for all A ∈ H

if and only if there exist S ∈ SL(n,C) such that φ has the form

A 7→ SAS−1.

As we will see in the next section, the result of Corollary 3.6 extends to matrices

over any field (with few exceptions).

Multiplicative preservers behave much better than linear preservers. For example,

let Ek(A) be the kth elementary symmetric function of the eigenvalues of A ∈Mn(C).

Thus, E1(A) = trace (A) and En(A) = det (A). The linear preservers for E1(A) do

not have much structure, and the description of the linear preservers for E2(A) is

very involved; see [15, 24, 1, 22]. In contrast, for multiplicative preservers, we have

the following transparent description.
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Theorem 3.7. Fix 1 ≤ k < n. A multiplicative map φ : H → Mn(C) satisfies

Ek(φ(A)) = Ek(A) for all A ∈ H if and only if there is an S ∈ SL(n,C) such that

(a) φ has the form X 7→ SXS−1, or

(b) n = 2k, H = SL(n,C), and φ has the form X 7→ Sτ(X)S−1.

Proof. The “if” part is clear if (a) holds true. If (b) holds true, then for X ∈ H

with eigenvalues λ1, . . . , λn, we have

Ek(φ(X)) = det(X)Ek(τ(X)) =

(
n∏

j=1

λj

)
Ek(1/λ1, . . . , 1/λn) = Ek(λ1, . . . , λn).

Consider the “only if” part. Clearly, φ cannot be trivial. Suppose H = SL(n,C).

So, φ has one of the two standard forms of Theorem 2.5. If φ(X) = Sτ(σ(X))S−1,

then for any integer m and X = diag(m, . . . ,m, 1/mn−1),

Ek(diag (m, . . . ,m, 1/mn−1)) = Ek(X)

= Ek(Sτ(X)S−1) = Ek(diag (1/m, . . . , 1/m,mn−1));

thus (
n− 1

k

)
mk+n +

(
n− 1

k − 1

)
mk =

(
n− 1

k

)
mn−k +

(
n− 1

k − 1

)
m2n−k

for all positive integers m, which is impossible unless n = 2k. So,

(i) φ(X) = Sσ(X)S−1, or

(ii) n = 2k and φ(X) = Sσ(τ(X))S−1.

In both cases of (i) and (ii), consider

X = In + aE11 + aE12 + E21 ∈ H, for a ∈ C.
If k = 1, then

n+ a = E1(X) = E1(φ(X)) = n+ σ(a)

implies that σ(a) = a. If k ≥ 2, then

Ek(X) = (a+ 2)

(
n− 2

k − 1

)
+

(
n− 2

k − 2

)
+

(
n− 2

k

)
and

Ek(φ(X)) = (σ(a) + 2)

(
n− 2

k − 1

)
+

(
n− 2

k − 2

)
+

(
n− 2

k

)
.

So, Ek(X) = Ek(φ(X)) implies that σ(a) = a. Hence, our assertion is proved if

H = SL(n,C).
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Let H = GL(n,C). If (i) holds true on SL(n,C), then φ(X) = f(det(X))SXS−1,

where f : C∗ −→ C∗ is multiplicative. Applying the equality Ek(µI) = Ek(φ(µI)),

we have f(µ)nk = 1 for every µ ∈ C∗. By Lemma 3.2, we see that f(µ) = 1 for all

µ ∈ C∗. If (ii) holds true on SL(n,C), then φ(X) = f(det(X))Sτ(X)S−1. Since

Ek(X) = Ek(φ(X)) for all X ∈ H, we see, by considering X = µI and using Lemma

3.2, that f(det(X))n = det(X)2 for all X ∈ H. However, when n > 2, by Lemma

3.2(b) there is no such multiplicative map, and when n = 2, the form (ii) is the same

as (i). �

3.3. Functions related to singular values, norms, numerical ranges.

Recall that a norm ‖ · ‖ on Mn(C) is unitary similarity invariant if ‖A‖ = ‖U∗AU‖
for every A ∈Mn(C) and every unitary U . We have the following.

Theorem 3.8. Let ‖ · ‖ be a unitary similarity invariant norm on Mn(C). Then a

multiplicative map φ : H →Mn(C) satisfies

‖φ(A)‖ = ‖A‖ for all A ∈ H

if and only if there exist a unitary S ∈ SL(n,C) and a multiplicative map f : C∗ → T
such that φ has the form

A 7→ f(det (A))SAS−1 or A 7→ f(det (A))SAS−1,

where the latter form holds true if and only if ‖A‖ = ‖A‖ for all A ∈Mn(C).

Proof. “Only if” part. By Theorem 3.4, there exists S ∈ SL(n,C) such that either

‖SAS−1‖ = ‖A‖ for every A ∈ H, or ‖SAS−1‖ = ‖A‖ for every A ∈ H. Suppose

the former case holds true. By continuity and homogeneity of the norm function,

‖SAS−1‖ = ‖A‖ for every A ∈Mn(C).

To prove that S is unitary, let S = UDV for some unitary matrices U and V , and

D = diag(d1, . . . , dn) with d1 ≥ · · · ≥ dn > 0. Now, A1 = V ∗E1nV and A2 = V ∗En1V

are unitarily similar, and thus ‖A1‖ = ‖A2‖. However, SA1S
−1 = (d1/dn)UE1nU

∗

and SA2S
−1 = (dn/d1)UEn1U

∗ so that ‖SA1S
−1‖ = (dn/d1)

2‖SA2S
−1‖. Thus, d1 =

dn. Analogously one proves d1 = dj for j = 2, . . . , n−1, and hence it follows that S is

unitary. Similarly, one can show that S is unitary if φ has the form A 7→ SAS−1. �

Theorem 3.8 covers all the norms on square matrices depending only on the singular

values s1(A) ≥ · · · ≥ sn(A) of a matrix A ∈Mn(C). Well–known examples include:

(i) the spectral norm: the largest singular value;
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(ii) the Ky Fan k-norm: the sum of the k largest singular values for 1 ≤ k ≤ n;

(iii) the Schatten p-norm: the `p norm of the vector of singular values for p ≥ 1.

Of course, the Schatten 2-norm is just the Frobenius norm, which admits all unitary

operators onMn(C) as linear preservers (isometries), but the multiplicative Frobenius

norm preservers have rather specific form.

One can use a similar technique to study other functions on matrices induced

by singular values. For example, in the linear preserver context, researchers have

studied F (A) =
∑n

j=1 sj(A)p with p 6= 0 or F (A) = Ek(s1(A), . . . , sn(A)) − the

kth elementary symmetric function of the singular values, see [24, Chapter 5] and its

references. We will prove a general result for multiplicative preservers of functions of

matrices depending only on singular values. To achieve that, we need the following

lemma.

Lemma 3.9. Let S ∈ SL(n,C). If SEijS
−1 has singular values 1, 0, . . . , 0 for all

(i, j) ∈ {(r, s) : 1 ≤ r, s ≤ n, r 6= s}, then S is unitary.

Proof. Suppose S has columns u1, · · · , un and S−1 has rows v∗1, . . . , v
∗
n with

u1, . . . , un, v1, . . . , vn ∈ Cn.

Since s1(SEijS
−1) = ‖ui‖‖vj‖, the given condition ensures that ‖ui‖‖vj‖ = 1 for any

i 6= j. Suppose ‖ui‖ = ri for i = 1, . . . , n. Then ‖vj‖ = 1/ri for any j 6= i. If n ≥ 3,

then r1 = · · · = rn. If n = 2, then ‖u1‖ = r1 = 1/‖v2‖ and ‖u2‖ = r2 = 1/‖v1‖.
Since 1 = v∗1u1 ≤ ‖v1‖‖u1‖ = r1/r2, and 1 = v∗2u2 ≤ ‖v2‖‖u2‖ = r2/r1, we see that

r1 = r2 = 1.

Now, by Hadamard inequality (see, e.g., [12, Corollary 7.8.2]), 1 = | det(S)| ≤ rn
1

and 1 = | det(S−1)| ≤ r−n
1 . It follows that r1 = 1 and 1 = | det(S)| =

∏n
j=1 ‖uj‖.

Using the conditions for equality in Hadamard inequality (see the same [12, Corollary

7.8.2]), it follows that the columns of S are orthogonal. We conclude that S is

unitary. �

Theorem 3.10. Suppose F : Mn(C) → R is a function depending only on singular

values of matrices such that F (D) 6= F (D̃) whenever

(i) D = aI and D̃ = bI with 0 < a < b, or

(ii) D ∈ SL(n,C) is a diagonal matrix with positive diagonal entries and D̃ is

obtained from D = diag (d1, . . . , dn) by replacing two of the diagonal entries of D,

say dr ≥ ds, by tdr and ds/t, respectively, where t > 1.
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If φ : H →Mn(C) is a multiplicative map such that F (A) = F (φ(A)) for all A ∈ H,

then there is a unitary U ∈Mn(C) such that one of the following holds true.

(a) There is a multiplicative map f : C∗ → T such that φ has the form

A 7→ f(det(A))UAU∗ or A 7→ f(det(A))UAU∗.

(b) F (D) = F (D−1) for every diagonal matrix D ∈ SL(n,C), and there is a

multiplicative map f : C∗ → C∗ satisfying |f(z)| = |z2/n| for every z ∈ C∗ such that

φ has the form

A 7→ f(det(A))Uτ(A)U∗ or A 7→ f(det(A))Uτ(A)U∗.

Proof. The map φ has the form as in Theorem 2.5 (if H = SL(n,C)), or as in

Theorem 2.7(b) (if H = GL(n,C)).

Suppose H = SL(n,C). First, we show that S is unitary. If it is not true,

then by Lemma 3.9 there exist i 6= j such that the rank one matrix SEijS
−1 has

singular values r, 0, . . . , 0 with r 6= 1. Thus, A = I + Eij has singular values

γ1, 1, . . . , 1, 1/γ1, where γ1 =
{
1 +

√
5
}
/2, and φ(A) = φ(I +Eij) = I +SEijS

−1 (or

φ(A) = I − SEjiS
−1 if φ is given by the second formula in (1)) has singular values

γ2, 1, . . . , 1, 1/γ2, where γ2 =
{
r +

√
r2 + 4

}
/2. (To verify the last assertion, write

SEijS
−1 = uv∗ for some u, v ∈ Cn, and note that tr (SEijS

−1) = 0, hence v∗u = 0,

and therefore there exists a unitary V such V (uv∗)V ∗ is a scalar multiple of Eij.)

Let D = diag(γ1, 1, . . . , 1, 1/γ1) and D̃ = diag(γ2, 1, . . . , 1, 1/γ2). By condition (ii)

and the fact that r 6= 1, we have F (D) 6= F (D̃). Since F depends only on singular

values, we have F (A) = F (D) 6= F (D̃) = F (φ(A)), which is a contradiction. So, S

is unitary.

Next, we show that |σ(z)| = |z| for all z ∈ C. To this end, let B = I + zE12. Then

B has singular values µ1, 1, . . . , 1, 1/µ1 and φ(B) has singular values µ2, 1, . . . , 1, 1/µ2,

where

µ1 =
{
|z|+

√
|z|2 + 4

}
/2 and µ2 =

{
|σ(z)|+

√
|σ(z)|2 + 4

}
/2.

Since F (B) = F (φ(B)), we see that µ1 = µ2, and hence |σ(z)| = |z|. As a result, σ

has the form z 7→ z or z 7→ z̄ by Lemma 3.1.

Suppose F (D) 6= F (D−1) for some D ∈ SL(n,C). Then (b) cannot hold, and

condition (a) follows. If F (D) = F (D−1) for every D ∈ SL(n,C), then either (a) or

(b) holds true.
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Now, suppose H = GL(n,C) and condition (a) holds true for A ∈ SL(n,C). Then

φ(A) = f(det(A))Sσ(A)S−1 for every A ∈ GL(n,C), where S is unitary and σ(A) =

A or A. Now, F (A) = F (φ(A)) implies that |f(det(A))| = 1 for all A ∈ GL(n,C).

Thus, f(z) = 1 for all z ∈ C∗. If condition (ii) holds true for A ∈ SL(n,C), then

φ(A) = f(det(A))Sτ(σ(A))S−1 for every A ∈ GL(n,C), where S is unitary and

σ(A) = A or A. Then for A = zI we have

F (zI) = F (φ(zI)) = F (f(zn)z−1I).

Thus, |f(zn)z−1| = |z| for all z ∈ C∗. It follows that |f(z)| = |z2/n|. �

By the above result, one easily checks that φ has the form (a) if p 6= 0 and

F (A) =
∑n

j=1 sj(A)p; for 1 < k < n and F (A) = Ek(s1(A), . . . , sn(A)), φ has the

form (a), or φ has the form (b) provided n = 2k.

Next, we turn to functions F on Mn(C) that are invariant under unitary similarity,

i.e., F (A) = F (U∗AU) for any A ∈ Mn(C) and unitary U ∈ Mn(C), but do not

necessarily depend only on the singular values of matrices. Examples of such functions

include the numerical radius w(A) of A ∈ Mn(C), the numerical range W (A), and

their generalizations. For example, for 1 ≤ p ≤ q ≤ n integers such that (p, q) 6=
(n, n), the (p, q)-numerical range and (p, q)-numerical radius are defined by

Wp,q(A) = {Ep(X
∗AX) : X ∈Mn×q(C), X∗X = Iq},

where Ep(Y ) denotes the pth elementary symmetric function of the eigenvalues of Y ,

and

wp,q(A) = max{|z| : z ∈ Wp,q(A)}.

Note that W1,1(A) = W (A) and w1,1(A) = w(A). The proofs for the linear pre-

servers of these functions are very intricate [7, 8, 18, 19, 21], whereas the proofs for

multiplicative preservers are easier using the group theory results.

The multiplicative preservers of the (p, q)-numerical range and (p, q)-numerical

radius are described in the following theorems. We exclude the case (p, q) = (n, n),

as in this case Wn,n(A) = detA, and there exist multiplicative maps φ such that

det (φ(A)) = detA for all A ∈ H of various forms, e.g., φ(A) = diag (detA, 1, . . . , 1).

Theorem 3.11. Suppose p, q are integers, 1 ≤ p ≤ q ≤ n, and (p, q) 6= (n, n). A

multiplicative map φ : H → Mn(C) satisfies wp,q(φ(A)) = wp,q(A) for all A ∈ H if

and only if there is S ∈ SL(n,C) such that one of the following conditions holds true.
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(a) There is a multiplicative map f : C∗ → T such that φ has the form

A 7→ f(detA)SAS−1 or A 7→ f(detA)SAS−1,

where S is unitary if n > q.

(b) 2p = 2q = n > 2, and there is a multiplicative map f : C∗ → T such that φ

has the form

A 7→ f(detA)Uτ(A)U−1 or A 7→ f(detA)Uτ(A)U−1,

where U is unitary.

(c) 2p = q = n > 2, and there is a multiplicative map f : C∗ → C∗ such that

|f(µ)|n = |µ|2 for all µ ∈ C∗ and φ has the form

A 7→ f(detA)Sτ(A)S−1 or A 7→ f(detA)Sτ(A)S−1.

Proof. Note that wp,q(UAU
∗) = wp,q(A) = wp,q(A) for any A ∈ H and unitary U .

So, if (a) holds, then φ is multiplicative and preserves wp,q.

Denote the k × k principal submatrix in the top left corner of A ∈ H by A[k] and

its complementary (n − k) × (n − k) principal submatrix by A(k). It is well known

that det(A[k]) = det(A) det(A−1(k)). Thus, for any unitary U of the form [U1|U2]

where U1 is n× k, we have

det(U∗1A
tU1) = det(A) det(U∗2 (A−1)tU2) = det(A) det(U∗2 τ(A)U2).

Consequently, if A ∈ SL(n,C) we have

(4) Wp,n−p(A) = Wp,n−p(A
t) = Wn−p,p(τ(A)).

So, if (b) holds, then wn/2,n/2(A) = wn/2,n/2(φ(A)) for all A ∈ H.

Suppose (c) holds, say, φ has the first asserted form. Assume A ∈ H has eigenvalues

a1, . . . , an. Then

wp,q(φ(A)) = |En/2(φ(A))|

= |En/2(f(det(A))Sτ(A)S−1)|

= |f(det(A))|n/2|En/2(1/a1, . . . , 1/an)|

= | det(A)| |En/2(1/a1, . . . , an)|

= |En/2(a1, . . . , an)|

= wp,q(A).
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Next, we consider the converse. Suppose q < n. If p = 1, then w1,q(A) is a unitary

similarity invariant norm, and the result follows from Theorem 3.8.

Suppose 2 ≤ p ≤ q < n. Assume H = SL(n,C). Then φ is clearly non-trivial, and

has the standard form

A 7→ Sσ(A)S−1 or A 7→ Sτ(σ(A))S−1

for some S ∈ SL(n,C). We first show that S is unitary. Note that if A = I + rZ

such that Z is a rank one matrix with trace zero and singular values 1, 0, . . . , 0, then

wp,q(A) = Ep(1 + r/2, 1, . . . , 1).

To see this, consider any n × q matrix X with X∗X = Iq; then the matrix X∗ZX

has rank at most one. Thus, X∗ZX is unitarily similar to λE11 + µE12 ∈ Mq. In

particular, X∗ZX has eigenvalues λ, 0, . . . , 0 with λ = v∗Zv for some unit vector

v ∈ Cn, i.e., λ ∈ W (Z). Since Z is unitarily similar to E12 ∈Mn(C), we have

W (Z) = W (E12) = {z ∈ C : |z| ≤ 1/2};

see [11, Section 22]. Thus, |λ| ≤ 1/2, and

|Ep(X
∗(I + rZ)X)| ≤ Ep(1 + r|λ|, 1, . . . , 1) ≤ Ep(1 + r/2, 1, . . . , 1).

Now, suppose U is unitary with columns u1, . . . , un such that U∗ZU = E12. Let X

have columns (u1 + u2)/
√

2, u3, . . . , uq+1. Then X∗ZX = E11/2 ∈Mq, and

Ep(X
∗(I + rZ)X) = Ep(1 + r/2, 1, . . . , 1).

Suppose S is not unitary. By Lemma 3.9, there is Eij with i 6= j so that Z̃ = SEijS
−1

has trace zero and singular values r, 0, . . . , 0 such that r 6= 1. If φ has the form

A 7→ Sσ(A)S−1, then

wp,q(I + Eij) 6= wp,q(I + Z̃) = wp,q(φ(I + Eij)).

If φ has the form A 7→ Sτ(σ(A))S−1, then

wp,q(I − Eji) = wp,q(I + Eji) 6= wp,q(I + Z̃) = wp,q(τ(I − Eji)) = wp,q(φ(I − Eji)).

In both cases, we have a contradiction.

Next, we show that σ is the identity map, or the complex conjugation z 7→ z̄. For

any positive number a, let m be a positive integer such that |m + σ(a)| > 1. For

Dm = diag(m+ a, 1, . . . , 1, (m+ a)−1), we have

Ep(m+ a, 1, . . . , 1︸ ︷︷ ︸
q−1

) = wp,q(Dm) = wp,q(φ(Dm)) = Ep(|m+ σ(a)|, 1, . . . , 1︸ ︷︷ ︸
q−1

).
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Thus,

(5) m+ a = |m+ σ(a)| = |m+ a+ (σ(a)− a)|.

Since there is more than one positive integer m such that |m + σ(a)| > 1, using (5)

for two different such values of m leads to equality σ(a) = a. By Lemma 3.1, σ has

the form z 7→ z or z 7→ z̄. Hence, φ has the form

(i) A 7→ UAU∗, (ii) A 7→ UAU∗, (iii) A 7→ Uτ(A)U∗, or (iv) A 7→ Uτ(A)U∗,

for some unitary U .

Next, we show that the (iii) and (iv) cannot hold if it is not the case that 2p = 2q =

n ≥ 4. To this end, consider two cases. If n ≤ 2p, letAm = diag(1/m, . . . , 1/m,mn−1).

Since it is not the case that 2p = 2q = n ≥ 4, we have n − p < p or
(

q−1
p−1

)
<
(

q
p

)
.

Then for a sufficiently large positive integer m we have

wp,q(Am) = Ep(1/m, . . . , 1/m,︸ ︷︷ ︸
q−1

mn−1)

=

(
q − 1

p− 1

)
mn−1

mp−1
+

(
q − 1

p

)
1

mp

<

(
q

p

)
mp

≤ wp,q(Sτ(Am)S−1)

as Wp,q(Sτ(Am)S−1) contains Ep(λ1, . . . , λq) for any q eigenvalues of τ(Am). This

contradicts the fact that wp,q(A) = wp,q(φ(A)). If n > 2p, let

Bm = diag(m, . . . ,m, 1/mn−1).

Then for a sufficiently large positive integer m we have

wp,q(Bm) =

(
q

p

)
mp <

(
q − 1

p− 1

)
mn−1

mp−1
+

(
q − 1

p

)
1

mp
≤ wp,q(Sτ(Bm)S−1),

which is a contradiction.
Now continue to assume that 2 ≤ p ≤ q < n, and consider H = GL(n,C). Since

the restriction of φ on SL(n,C) has one of the forms (i) – (iv), we have by Theorem

2.7: (
q

p

)
|f(zn)z|p = wp,q(φ(zI)) = wp,q(zI) =

(
q

p

)
|z|p

for any z ∈ C, and the conclusion on f follows.
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Now suppose n = q > p. One can modify the proof of Theorem 3.7 to get the

conclusion as follows. When H = SL(n,C), the map φ has the standard form

A 7→ Sσ(A)S−1 or A 7→ Sτ(σ(A))S−1.

If the latter form holds true, one can consider A = diag(m, . . . ,m, 1/mn−1), and

conclude that∣∣∣∣(n− 1

p

)
mp+n +

(
n− 1

p− 1

)
mp

∣∣∣∣ =

∣∣∣∣(n− 1

p

)
mn−p +

(
n− 1

p− 1

)
m2n−p

∣∣∣∣
for all positive integers m, which is impossible unless n = 2p. So,

(v) φ(X) = Sσ(X)S−1, or (vi) n = 2p and φ(X) = Sσ(τ(X))S−1.

In both cases of (v) and (vi), consider

X = In + aE11 + aE12 + E21 ∈ H, for a ∈ C.

If p = 1, then

|n+ a| = |E1(X)| = |E1(φ(X))| = |n+ σ(a)|

implies (in view of Lemma 3.1) that either σ(a) = a or σ(a) = a. If p ≥ 2, then

|Ep(X)| =
∣∣∣∣(a+ 2)

(
n− 2

p− 1

)
+

(
n− 2

p− 2

)
+

(
n− 2

p

)∣∣∣∣
and

|Ep(φ(X))| =
∣∣∣∣(σ(a) + 2)

(
n− 2

p− 1

)
+

(
n− 2

p− 2

)
+

(
n− 2

p

)∣∣∣∣ .
So, |Ep(X)| = |Ep(φ(X))| implies that either σ(a) = a or σ(a) = a. Hence, our

assertion is proved if H = SL(n,C).

Let H = GL(n,C). If (v) holds true on SL(n,C), then

φ(X) = f(det(X))SXS−1 or φ(X) = f(det(X))SXS−1,

where f : C∗ −→ C∗ is a multiplicative map. Applying the equality |Ep(µI)| =

|Ep(φ(µI))|, µ ∈ C∗, one shows that |f(µ)| = 1 for every µ ∈ C∗. If (vi) holds true

on SL(n,C), then

φ(X) = f(det(X))Sτ(X)S−1 or φ(X) = f(det(X))Sτ(X)S−1.

Since |Ep(X)| = |Ep(φ(X))| for all X ∈ H, we see that |f(det(X))|n = | det(X)|2 for

all X ∈ H. �
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Theorem 3.12. Suppose p, q are integers, 1 ≤ p ≤ q ≤ n, and (p, q) 6= (n, n). A

multiplicative map φ : H → Mn(C) satisfies Wp,q(φ(A)) = Wp,q(A) for all A ∈ H if

and only if there is an S ∈ SL(n,C) such that one of the following conditions holds
true.

(a) φ has the form

A 7→ SAS−1,

where S is unitary if n > q.

(b) 2p = 2q = n > 2, and φ has the form A 7→ Sτ(A)S−1, where S is unitary.

(c) n = q = 2p > 2, H = SL(n,C), and φ has the form

A 7→ Sτ(A)S−1.

Proof. The “if part” is clear (use (4)), and we prove the “only if” part.

Let q < n. Any mapping preserving Wp,q(A) also preserves wp,q(A); thus, we need

to look for multiplicative Wp,q(A) preservers among the set of multiplicative wp,q(A)

preservers. Consider

A =
1

(1 + i)1/n
diag (1 + i, 1, . . . , 1).

Then we have Wp,q(A) = (1 + i)−p/nWp,q(I + iE11). For any n × q matrix X with

X∗X = Iq, the matrix X∗(I + iE11)X ∈ Mq has eigenvalues 1 + ti, 1, . . . , 1 with

t ∈ [0, 1], and all such eigenvalues can be constructed in this way. Thus,

Wp,q(I + iE11) = {Ep(1 + ti, 1, . . . , 1︸ ︷︷ ︸
q−1

) : t ∈ [0, 1]}

=

{(
q − 1

p

)
+

(
q − 1

p− 1

)
(1 + ti) : t ∈ [0, 1]

}
.

Similarly, Wp,q(A) = (1− i)−p/nWp,q(I − iE11) with

Wp,q(I − iE11) =

{(
q − 1

p

)
+

(
q − 1

p− 1

)
(1− ti) : t ∈ [0, 1]

}
.

Clearly, Wp,q(A) 6= Wp,q(A). Also, if 2p = 2q = n > 2, then

Wp,q(A) 6= Wp,q(τ(A)),

in view of (4). Thus, φ on SL(n,C) has the form A 7→ UAU∗, or in case 2p =

2q = n > 2 the map φ may also have the form A 7→ Uτ(A)U∗, where U is unitary.
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Consequently, φ on GL(n,C) has the form

(6) φ(A) = f(det(A))UAU∗,

or possibly

(7) φ(A) = f(det(A))Uτ(A)U∗ (if 2p = 2q = n > 2).

Now,

Wp,q(zI) =

{(
q

p

)
zp

}
.

Thus, assuming φ has the form (6), we have(
q

p

)
zp = Wp,q(zI) = Wp,q(φ(zI)) = Wp,q ((f(z))nzI) =

(
q

p

)
(f(z))npzp.

Thus, f(z)np = 1 for any z ∈ C∗. By Lemma 3.2, f(z) = 1 for all z ∈ C∗. If φ has

the form (7) we analogously obtain

zp = (f(z))npz−p, z ∈ C∗.

Thus, (f(z))np = z2p, which is impossible by Lemma 3.2(b).

If n = q > p, then Wp,n(A) = {Ep(A)}, and the multiplicative preservers of Wp,n

are characterized in Theorem 3.7. �

3.4. Multiplicative Set Preservers. Theorems 2.5 and 2.7 allow one to obtain
results on multiplicative maps of GL(n,C) and SL(n,C) that preserve various sets

of matrices. We demonstrate this approach in the case of multiplicative preservers

of the sets of unitary matrices, normal matrices, invertible Hermitian matrices, or

invertible Hermitian matrices with prescribed inertia. The interest in these classes is

motivated by extensive results concerning linear preservers (see [24, Chapter 3] and

references there, [16, 20, 28]). Denote

(8) Un = {U ∈Mn(C) : U is unitary}, Nn = {A ∈Mn(C) : A is normal},

Hn = {A ∈Mn(C) : A is invertible and Hermitian },

Hn(k, n− k) = {A ∈ Hn : A has k positive and n− k negative eigenvalues}.

Here k is a fixed integer, 0 ≤ k ≤ n. Clearly, trivial maps such as A 7→ det(A)I are

multiplicative preservers of some of these sets. We exclude multiplicative maps that

map into the set of scalar multiples of I from our consideration.
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Theorem 3.13. Let Ξ be one of the sets Un, Nn, Hn, or Hn(k, n− k). Assume that

n− k is even if H = SL(n,C) (otherwise Hn(k, n− k) does not intersect SL(n,C)).

Then φ : H →Mn(C) is a multiplicative map such that

(9) φ(H ∩ Ξ) ⊆ Ξ

and φ(SL(n,C)) is not a singleton if and only if there is a unitary U ∈ SL(n,C) and

a multiplicative map f : C∗ → C∗ such that φ has one of the following four forms:

A 7→ f(det(A))UAU∗, A 7→ f(det(A))Uτ(A)U∗,

A 7→ f(det(A))UAU∗, A 7→ f(det(A))Uτ(A)U∗,

where:

(a) |f(z)| = 1 for all z ∈ T if Ξ = Un;

(b) f(R∗) ⊆ R∗ if Ξ = Hn or if Ξ = Hn(k, k) (and n = 2k);

(c) f(R∗) ⊆ R∗ if Ξ = Hn(k, n− k) with k 6= n− k and n− k even;

(c’) f(R∗) ⊆ (0,∞) if Ξ = Hn(k, n− k) with k 6= n− k and n− k odd.

The condition that φ(SL(n,C)) is not a singleton is automatic if Ξ = Hn(k, n − k)

with k < n and n− k even.

Proof. The “if” part is clear; note that if σ is a complex field automorphism such

that σ(R) = R then σ(Ξ) = Ξ for Ξ = Un, Ξ = Hn, and Ξ = Nn.

We prove the “only if” part. Suppose H = SL(n,C). Then φ has the standard

form A 7→ Sσ(A)S−1 or A 7→ Sτ(σ(A))S−1, for some S ∈ SL(n,C). First, we show

that S is unitary. Assume that S has columns u1, . . . , un and S−1 has rows v∗1, . . . , v
∗
n,

where u1, . . . , un, v1, . . . , vn ∈ Cn.

Suppose Ξ is one of Nn, Hn, or Hn(k, n− k). Let

Am = mE11 +
k∑

j=2

Ejj −
n−1∑

j=k+1

Ejj ± Enn/m,

where m is a positive integer, and the sign ± is chosen so that det (Am) = 1. Then

φ(Am) = mu1v
∗
1 +

k∑
j=2

ujv
∗
j −

n−1∑
j=k+1

ujv
∗
j ±

unv
∗
n

m

or

φ(Am) =
u1v

∗
1

m
+

k∑
j=2

ujv
∗
j −

n−1∑
j=k+1

ujv
∗
j ±munv

∗
n.
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Clearly,

lim
m→∞

φ(Am)

m
=

{
u1v

∗
1 or

±unv
∗
n

is normal, and hence v1 and u1 (or vn and un) are multiples of each other. Applying

the above argument to any pair of indices i 6= j instead of 1 and n, we conclude that

ur is a multiple of vr for every r ∈ {1, . . . , n}. Since v∗juj = 1 for j = 1, . . . , n, it

follows that S−1 = DS∗ for some diagonal matrix D with positive diagonal entries.

Then S = U
√
D
−1

, where U is unitary, and where
√
D is the positive definite diagonal

square root of D. We show next that
√
D = I. Consider the matrix

A =

[
0 1
1 0

]
⊕ δ3 ⊕ δ4 ⊕ · · · ⊕ δn,

where δj = ±1, and the signs are adjusted so that A ∈ Ξ. (This is possible unless

k = 0 or k = n.) Then
√
DA(

√
D)−1 is normal, which implies that the first two

diagonal entries of
√
D are equal. It follows analogously that all diagonal entries of√

D are the same, hence
√
D = rI for some r > 0. Now

1 = detS = (detU)(det
√
D)−1 = r−n(detU),

and since |detU | = 1, r = 1. Thus, S is unitary. In the remaining cases k = n or

k = 0, use

A = ±
([

5/4 3/4
3/4 5/4

]
⊕ In−2

)
.

Then
√
DA(

√
D)−1 is normal, which implies again that the first two diagonal entries

of
√
D are equal, and as before we conclude that S is unitary.

Suppose Ξ = Un. Let A be a generalized permutation matrix, i.e., A = DP , where

D is diagonal with ±1’s on the diagonal and P is a permutation matrix, such that

detA = 1. Then σ(A) = A, and φ(A) is unitary means: S∗SA = AS∗S. Thus,

S∗S commutes with every matrix in the algebra A generated by the generalized

permutation matrices with determinant 1. It is easy to see that A = Mn(C) if n > 2.

(Use the property that A is invariant under multiplication by diagonal matrices with

±1’s on the diagonal having determinant 1.) It follows that S∗S is a scalar matrix.

Since detS = 1, we obtain that S is unitary. If n = 2, a similar argument shows that
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S∗S commutes with the matrices:

I2,

[
0 1
−1 0

]
,

[
i 0
0 −i

]
,

[
0 i
i 0

]
∈ U2 ∩ SL(2,C).

We can also conclude that S∗S is a scalar matrix and S is unitary.

Next, consider σ. Since S is already proven to be unitary, we obviously have

σ(Ξ) ⊆ Ξ. Letting A ∈ Ξ ∩ SL(n,C) be an appropriately chosen diagonal matrix,

and using Lemma 3.1 if necessary, we conclude that σ has the desired form in the

cases when Ξ = Un, Ξ = Hn, Ξ = Hn(k, n − k). In the remaining case Ξ = Nn

consider

A(q) = qE11 + E12 − E21 + E33 + · · ·+ Enn ∈ SL(n,C), q ∈ C∗,

and observe that A(q) is normal if and only if q = ir for some r ∈ R. Clearly σ(A(q))

is normal for every normal A(q) if and only if σ(R) ⊆ R, and use Lemma 3.1 again.

It remains to prove the “only if” part for the case H = GL(n,C). For now we

leave aside the case when Ξ = Hn(k, n − k) with odd n − k. Restricting the map φ

to SL(n,C), we obtain the required properties for U and σ. As for the additional

properties of f specified in (a), (b), and (c), they are evident (and can be easily proved

arguing by contradiction, for example) in cases Ξ = Nn (no additional properties),

Ξ = Un, Ξ = Hn, and Ξ = Hn(k, k). Consider Ξ = Hk,n−k with k 6= n− k. Then we

clearly have (c) as well (recall that n− k is assumed to be even).

Finally, consider the case H = GL(n,C), Ξ = Hn(k, n− k) with odd n− k. Then

φ has one of the two forms

A 7→ f(det(A))Sσ(A)S−1 or A 7→ f(det(A))Sτ(σ(A))S−1,

where f : C∗ −→ C∗ is a multiplicative map, σ is a complex field embedding, and

S ∈ SL(n,C). Using the matrices

Am = mE11 +
k∑

j=2

Ejj −
n−1∑

j=k+1

Ejj − Enn/m,

m an integer, we prove that S is in fact unitary, similarly to the proof given in the case

H = SL(n,C). For the consideration of σ, notice that f(detA)σ(A) ∈ Hn(k, n− k)

for every A ∈ Hn(k, n − k). Letting here A to be a suitable real diagonal matrix

with determinant −1, we see that σ(R) ⊆ R, hence σ is either trivial or complex

conjugation. Properties (b) or (c’) of f (whichever case is applicable) now follow

easily. �
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If the hypothesis that φ(SL(n,C)) is not a singleton is omitted in Theorem 3.13,

then various forms of φ are possible. For example, let Aµ be a group of invertible

n×n complex matrices, indexed by µ ∈ T, so that Aµν = AµAν for µν ∈ T, such that

A−1 ∈ Hn(k, n − k). For example, Aµ = diag (µ, . . . , µ, 1, 1, . . . , 1), where µ appears

n− k times. Then define

φ(X) = A(det X)/|(det X)|, X ∈ GL(n,C).

Clearly, if n−k is odd, we have φ(Hn(k, n−k)) ⊆ Hn(k, n−k). Analogous degenerate

maps can be constructed for Un, Nn, and Hn.

Note also that if φ is a multiplicative map on H, with the property (9), Ξ is one

of Un, Hn, or Hn(k, n− k) (with n− k even if H = SL(n,C)), and φ(SL(n,C)) is a

singleton, then necessarily φ(SL(n,C)) = {I}.

4. Multiplicative Preservers on Matrices over Other Fields

One may use the techniques of the previous section to obtain results on multiplica-

tive preservers on matrices over fields other than C, such as the real field R. For

the real field, the situation simplifies somewhat because there is only the trivial field

embedding of R (see, e.g., [29]). For example, the real analog of Theorem 3.5 reads

as follows (the spectral radius of a real matrix is defined as in the complex case, i.e.,

non-real eigenvalues, if any, are taken into account):

Theorem 4.1. Let H = SL(n,R) or H = GL(n,R). A multiplicative map φ : H →
Mn(R) satisfies

r(φ(A)) = r(A) for all A ∈ H

if and only if there exist an S ∈ GL(n,R) and a multiplicative map f : R∗ → {1,−1},
which collapses to the constant function f(µ) = 1 when H = SL(n,R), such that φ

has the form

φ(A) = f(det(A))SAS−1, A ∈ H.

Real analogs of Theorems 3.3, 3.8, and 3.4 can be formulated analogously, with

essentially the same proofs (note that the proof of Theorem 3.3 simplifies considerably

in the real case); as in Theorem 4.1, here we require only that S be real orthogonal,

not necessarily having determinant 1.

Next, we present a real analog of Theorem 3.13. We denote Un(R) = Un ∩Mn(R),

and analogously Nn(R), Hn(R), Hn(k, n − k)(R). Multiplicative maps φ that map

into the set of scalar multiples of I are excluded in the next theorem.
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Theorem 4.2. Let H = SL(n,R) or H = GL(n,R), and let Ξ be one of the sets

Un(R), Nn(R), Hn(R), or Hn(k, n − k)(R). Assume that n − k is even if H =

SL(n,R). Then φ : H →Mn(R) is a multiplicative map such that φ(H∩Ξ) ⊆ Ξ and

φ(SL(n,R)) is not a singleton if and only if there is a real orthogonal U ∈ Mn(R),

and a multiplicative map f : R∗ → R∗ such that φ has one of the following two forms:

A 7→ f(det(A))UAU∗, A 7→ f(det(A))Uτ(A)U∗,

where f(R∗) ⊆ (0,∞) if Ξ = Hn(k, n− k) with k 6= n− k and n− k odd.

The proof is completely analogous to that of Theorem 3.13. The only detail that

perhaps requires additional explanation is the proof that S∗S is a scalar matrix in

the case Ξ = Un and n = 2. In this case the algebra A generated by the generalized

permutation 2× 2 matrices having determinant 1 coincides with{[
a b
−b a

]
: a, b ∈ R

}
.

It is easy to see that every real 2 × 2 matrix that commutes with every element of

A actually belongs to A. So S∗S ∈ A. Since in addition S∗S is real and positive

definite we must have that S∗S is a scalar matrix.

Note that the kth elementary symmetric function Ek(A) of eigenvalues of A ∈
Mn(F) can be viewed as the sum of determinants of the k × k principal submatrices

of A, or as ± the coefficient of λn−k in the characteristic polynomial det(A − λI);

thus, Ek(A) ∈ F. So for multiplicative preservers of elementary symmetric functions

of eigenvalues it makes sense to consider matrices over any field F. We have an analog

of Theorem 3.7. If n = 2, there is not much to say. So we assume that n > 2.

Theorem 4.3. Let F be a field, and let H = SL(n,F) or H = GL(n,F), with n > 2.

Fix 1 ≤ k < n. A multiplicative map φ : H → Mn(F) satisfies Ek(φ(A)) = Ek(A)

for all A ∈ H if and only if there is an S ∈ GL(n,F) and a multiplicative map

f : F∗ → F∗ such that

(a) φ has the form X 7→ f(detX)SXS−1 and f is such that f(µ)k = 1 for every

µ ∈ F∗, or

(b) n = 2k, and φ has the form X 7→ f(detX)Sτ(X)S−1, where f is such that

f(µ)k = µ for every µ ∈ F∗.

Proof. Note that in particular there is no restriction on the characteristic of F in

Theorem 4.3. Clearly, φ is nontrivial on SL(n,F). So we assume that φ has the usual

form (2), as given in Theorem 2.7. There is no loss of generality in taking S = I
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(since conjugation by S preserves Ek). Now take A to be the companion matrix of

a polynomial f(x) ∈ F[x] with det(A) = 1. Applying σ preserves the corresponding

coefficient of f(x) (since that is ±Ek(A)). Since that coefficient is arbitrary, it follows

that σ is the identity map.

First assume that n 6= 2k. We show that τ cannot be involved. Consider monic

polynomials f(x) of degree n with constant term (−1)n and let A be the companion

matrix of f(x). Then applying τ gives a matrix similar to the companion matrix of

g(x) := xnf(1/x). Aside from the case n = 2k, there will always be such a polynomial

so that the kth coefficient of f(x) is not the kth coefficient of g(x). Since det(A) = 1,

this shows that τ cannot be involved when n 6= 2k.

So assume (even for the case n = 2k) that τ is not involved. Noting that Ek(µA) =

µkEk(A) shows that f(detA)k = 1 for any A with Ek(A) 6= 0. We can always find

A with det(A) arbitrary and Ek(A) 6= 0 (take a companion matrix). Thus, fk is

identically 1.

Finally, consider the case that n = 2k and τ is involved. Then Ek(µτ(A)) =

µkEk(A)/ det(A). In particular, if Ek(A) is nonzero, this forces f(det(A))k = det(A),

whence the result. �

The result of Corollary 3.6 can be generalized for arbitrary fields (with few excep-

tions), as stated in the next theorem. We say that a multiplicative map φ : H →
Mn(F), where H = SL(n,F) or H = GL(n,F), preserves spectra if for every A ∈ H

we have

(10) {λ ∈ F : det (A− λI) = 0} ⊇ {λ ∈ F : det (φ(A)− λI) = 0}.

The case when one or both sides of (10) are empty sets is not excluded.

Theorem 4.4. Let F be a field, and let H = SL(n,F) or H = GL(n,F). Assume

that |F| > 4. Then a multiplicative map φ : H →Mn(F) preserves spectra if and only

if φ has the form SXS−1 for some S ∈ GL(n,F).

Proof. Clearly such maps have the preservation of spectra property. Assume

now that φ is a multiplicative map on H that preserves spectra. Then φ cannot be

trivial on SL(n,F) (indeed, the only way φ can be trivial is when φ(H) = In, but

if |F| > 2 then a diagonal matrix A ∈ SL(n,F) can be found with some eigenvalues

in F different from 1, a contradiction with the preservation of spectra property). So

assume that φ(A) = f(det(A))Sσ(A)S−1 or φ(A) = f(det(A))Sσ(τ(A))S−1 as in

Theorem 2.7.
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We first show that σ = 1. By composing f with conjugation by S, we may take

S = I (since conjugation certainly keeps the preservation of spectra property). Now

φ maps diagonal matrices to diagonal matrices. We claim that σ is the identity.

Assume not, and let a ∈ F\{0} be such that σ(a) 6= a. Taking A to have exactly the

distinct eigenvalues a, a−1, 1 with det(A) = 1, we see that σ(a) = a−1. Thus, σ either

fixes or inverts every element of F – this cannot happen unless F has characteristic 2.

Indeed, clearly σ2 = 1 on F, and therefore, assuming the characteristic of F is not 2,

F (as a vector space over the prime field) can be decomposed into a direct sum of the

subspace fixed by σ, which is actually a field, and the eigenspace of σ corresponding

to the eigenvalue −1, and furthermore, if σ(x) = −x = x−1, x ∈ F∗, then x2 = −1,

so the −1 eigenspace has cardinality at most 3. We note also that x 6= ±1 inverted

by σ implies that 1 + x is also inverted by σ, whence

(11) 1 = (1 + x)(1 + x−1) = 2 + x+ x−1,

and so x2 + x + 1 = 0. Since this equation holds for any xy with y 6= 0 fixed by σ,

it follows that the fixed field of σ has cardinality at most 3. These considerations

rule out any characteristic of F but 2, and moreover the fixed field of σ must have

cardinality 2, whereas the equation (11) shows that there are at most two elements

x such that σ(x) 6= x. We are left with the case |F| = 4, which is excluded by the

hypotheses of the theorem.

So σ = 1. If n > 2, we see that τ cannot be involved, since there are matrices of

determinant 1 whose spectrum in F is not closed under inverses (here the hypothesis

that |F| > 3 is essential). If n = 2, we can modify f and assume again that τ is not

involved.
It remains to consider f . Suppose that f(a) 6= 1, a ∈ F∗. Now take A to be diagonal

with all but one diagonal entry 1 (and the remaining diagonal entry a = det(A)).

The spectrum of φ(A) consists of f(a) and af(a). Now {1, a} = {f(a), af(a)} implies

that f(a) = a = a−1. Thus a = −1 and the kernel of f is trivial, whence |F| = 3, an

excluded case. �

Note that Theorem 4.4 fails if |F| ≤ 4: If |F| = 4, then the map φ(A) = σ(τ(A))

on SL(n,F), where σ is the squaring map on F, preserves spectra; if |F| ≤ 3, then

the map φ(A) = τ(A) on SL(n,F) preserves spectra.

If we adopt a more stringent definition of the spectrum preservation property,

namely that (10) is replaced by

(12) {λ ∈ F : det (A− λI) = 0} ⊇ {λ ∈ F : det (φ(A)− λI) = 0},
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where F is the algebraic closure of F, then the exceptions of Theorem 4.4 disappear:

Theorem 4.5. Let F be a field, and let H = SL(n,F) or H = GL(n,F). Then a

multiplicative map φ : H → Mn(F) satisfies (12) for every A ∈ H if and only if φ

has the form SXS−1 for some S ∈ GL(n,F).

Proof. In view of Theorem 4.4 we may assume |F| ≤ 4. Assume now that φ

is a multiplicative map on H that preserves spectra. Then φ cannot be trivial on

SL(n,F) (there are matrices of determinant 1 that have a nontrivial spectrum in F).

Assume first that |F| > 3 if n = 2. Then φ has the form φ(A) = f(det(A))Sσ(A)S−1

or φ(A) = f(det(A))Sσ(τ(A))S−1 as in Theorem 2.7. We show that σ = 1. Arguing

as in the proof of Theorem 4.4, we need to consider only the case |F| = 4. In that

case, we choose matrix A whose eigenvalues are a, a4, 1, . . . , 1 where a is a root of the

polynomial x2+bx+1, b ∈ F4\{0, 1}, in a quadratic extension F16 of F4. Then a5 = 1,

and if φ 6= 1, then φ(A) has eigenvalues a2, a3, 1 . . . , 1, a contradiction. So σ = 1. If

n > 2, we see that τ cannot be involved, since there are matrices of determinant 1

whose spectrum in F is not closed under inverses (if |F| = 4, this is clear; if |F| = 2,

take A to have three nontrivial eigenvalues of order 7 with product 1; and if |F| = 3,

take such an A with 7 replaced by 13). If n = 2, we can modify f and assume again

that τ is not involved. It remains to consider f (in the case H = GL(n,F)). The

proof of Theorem 4.4 shows that we need only to consider the field of order 3. In this

case, we take a matrix A whose eigenvalues are a, a3, 1 . . . , 1 where a is a primitive

8-th root of 1. So det(A) = −1 and, assuming f is non-trivial, the spectrum of φ(A)

is {−a,−a3,−1, . . . ,−1} which is different from that of A.

Finally, we treat the remaining case n = 2 and |F| ≤ 3. Note that SL(2,F)

has a unique minimal normal subgroup that has order prime to the characteristic

of F. This subgroup cannot be contained in the kernel of the multiplicative map

(since spectra are preserved) and so the map is bijective. Since S3 = GL(2,F2)

is its own automorphism group and since the automorphism group of SL(2,F3) is

S4 = PGL(3,F3), it follows that any automorphism of GL(2,F2) or of SL(2,F3) is

a conjugation by an element of GL(2,F). The same argument shows the result for

GL(2,F3). �

In a different direction, multiplicative preservers of certain algebraic groups may

be characterized.
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Theorem 4.6. Let F be a field and H = SL(n,F) or GL(n,F). Assume that |F| > 3 if

n = 2. Let F be the algebraic closure of F. Let G be an algebraic subgroup of GL(n,F)

defined over the prime field. Then a nontrivial multiplicative map φ : H → Mn(F)

preserves G in the sense that φ(G) ⊆ G if and only if there exists an S in GL(n,F)

and a field embedding σ : F → F such that one of the following holds:

(1) φ(A) = Sσ(A)S−1 and SGS−1 = G; or

(2) φ(A) = Sσ(τ(A))S−1 with Sτ(G)S−1 = G.

Proof. Let φ be a multiplicative map preservingG with the notation as in Theorem

2.7. Let σ be the associated field embedding. We can extend φ to F. SinceG is defined

over the prime field, σ(G) ⊆ G and so the maps above certainly preserve G. Let P

denote the prime field. Then σ(P ) = P and so σ is an automorphism of the P points

of G. Thus, σ(G) is Zariski dense in G. because σ sends P onto itself and so the

image of σ (after extending to the algebraic closure), σ sends G(P ) to itself. Now it

is well known that if A < B are algebraically closed fields and V is a variety defined

over A, then V (A) is Zariski dense in V (B). Thus, S or τ(S) must normalize G

depending which case we are in. �

There is a version of Theorem 4.6 for the excluded cases n = 2 and |F | ≤ 3, but it

is a bit complicated to state and has very little content.

Theorem 4.6 in particular applies to the symplectic group or orthogonal group or

any split simple algebraic group (since they are defined over the prime field), as well

as the groups of triangular or block triangular matrices.
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[2] A. Borel and J. Tits, Théorèmes de structure et de conjugaison pour les groupes algébriques
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