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HIGHER-RANK NUMERICAL RANGES AND DILATIONS

HWA-LONG GAU, CHI-KWONG LI, and PEI YUAN WU

ABSTRACT. For any n-by-n complex matrix A and any k, 1 ≤ k ≤ n, let
Λk(A) = {λ ∈ C : X∗AX = λIk for some n-by-k X satisfying X∗X = Ik}
be its rank-k numerical range. It is shown that if A is an n-by-n contraction,
then

Λk(A) = ∩{Λk(U) : U is an (n + dA)-by-(n + dA) unitary dilation of A},
where dA = rank (In − A∗A). This extends and refines previous results of
Choi and Li on constrained unitary dilations, and a result of Mirman on Sn-
matrices.
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1. INTRODUCTION

We say that the operator A on space H dilates to B on K or B compresses to A if
there is an isometry V from H to K such that A = V∗BV. It is easily seen that this
is equivalent to B being unitarily similar to a 2-by-2 operator matrix of the form[

A ∗
∗ ∗

]
. The classical dilation result of Halmos asserts that every contraction A,

i.e., an A with ‖A‖ ≤ 1, can be dilated to the unitary operator[
A (I − AA∗)1/2

(I − A∗A)1/2 −A∗

]
(cf. [11, Problem 222 (a)]). With more care, the unitary dilation can be achieved
in a most economical way: if A is a contraction on H, then A can be dilated to a
unitary operator U from H ⊕ K1 to H ⊕ K2 with K1 and K2 of dimensions dA∗ ≡
dim ran (I − AA∗)1/2 and dA ≡ dim ran (I − A∗A)1/2, respectively, and, moreover,
in this case dA∗ and dA are the smallest dimensions of such spaces K1 and K2. Here dA
and dA∗ are called the defect indices of the contraction A. They provide a measure
on how far A deviates from the unitary operators and play a prominent role in
the unitary dilation theory. Note that dA∗ = dA if H is finite-dimensional.

Let Mn be the algebra of n-by-n complex matrices. In [4], the authors in-
troduced the notion of the rank-k numerical range of A ∈ Mn in connection to the
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study of quantum error correction; see [5]. This can be defined equivalently as

Λk(A) = {λ ∈ C : X∗AX = λIk, for some n-by-k X satisfying X∗X = Ik}.

Evidently, λ ∈ Λk(A) if and only if λIk dilates to A. When k = 1, this concept re-
duces to the classical numerical range. Many properties of the classical numerical
range have been extended to the higher-rank numerical range; see [2, 3, 4, 5, 20].
In particular, it was shown in [13] that

(1.1) Λk(A) = {µ ∈ C : eitµ + e−itµ ≤ λk(eit A + e−it A∗) for all t ∈ [0, 2π)} .

Here λ1(X) ≥ · · · ≥ λn(X) denote the eigenvalues of a Hermitian X ∈ Mn. In
particular, Λk(A) is the intersection of closed half planes in C, and therefore is
always convex. If N ∈ Mn is normal with eigenvalues λ1, . . . , λn, then

(1.2) Λk(N) =
⋂

1≤j1<···<jn−k+1≤n
conv {λj1 , . . . , λjn−k+1

}

is a polygon (including interior). In [12], it was shown that for a given positive
integer n, Λk(A) is nonempty for every A ∈ Mn if and only if n ≥ 3k− 2.

In this paper, we refine and extend a result in [6] on constrained unitary
dilation by proving the following.

THEOREM 1.1. Let A ∈ Mn be a contraction, and k ∈ {1, . . . , n}. Then A has a
unitary dilation U ∈ Mn+dA such that λk(A + A∗) = λk(U + U∗).

When k = 1, our result improves [6, Theorem 2.1] in the finite-dimensional
case as [6, Theorem 2.1] requires the use of unitary dilations of A ∈ Mn of size
2n. The authors of [6] gave examples to demonstrate that extending [6, Theorem
2.1] in certain directions are impossible. Nevertheless, Theorem 1.1 shows that
one can obtain useful generalizations of the result under a proper setting. In par-
ticular, Theorem 1.1 above can be used to deduce the following theorem, which
extends a result on classical numerical range to the higher-rank numerical range.

THEOREM 1.2. Let A ∈ Mn be a contraction. Then, for each k, 1 ≤ k ≤ n,

Λk(A) = ∩{Λk(U) : U ∈ Mn+dA is a unitary dilation of A}.
When k = 1 and without the dimension assumption on the unitary U, The-

orem 1.2 was conjectured by Halmos [10] and proved in [6]. Clearly, if A ∈ Mn
is nonzero then A/‖A‖ is a contraction. Thus, by Theorem 1.2, if A ∈ Mn then
Λk(A) is the intersection of Λk(‖A‖U), where U ∈ Mn+dA is a unitary dilation of
A/‖A‖. Consequently, Λk(A) is the intersection of polygons Λk(N) of the form
(1.2), where N is a (norm-preserving) normal dilation of A.
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2. PROOFS

We begin with several lemmas. The first two are adaptations of Lemmas 3.2
and 3.3 in [6]. Part of the proofs are similar to those in [6]. We include the details
for completeness.

LEMMA 2.1. Let H ∈ Mn be the leading principal submatrix of a Hermitian
matrix H̃ ∈ Mn+1. Suppose there exists a unit vector u ∈ Cn+1 with nonzero (n + 1)st
entry such that H̃u = ξu. For 1 ≤ k ≤ n, if λk(H) ≤ ξ, then λk(H̃) ≤ ξ.

Proof. On the contrary, suppose that λk(H̃) > ξ. Since ξ is an eigenvalue for
H̃, by the interlacing inequality [1, Corollary III.1.5], we must have λk+1(H̃) =
ξ = λk(H). Let vj ∈ Cn+1 be the unit eigenvector of H̃ corresponding to the
eigenvalue λj(H̃) for j = 1, 2, . . . , k, M = span{u, v1, . . . , vk} and N = M∩ (Cn ⊕
{0}). Then dim N = k, because u 6∈ Cn ⊕ {0}. Consider the compression A of
H̃ on N. Since Λ1(A) ⊆ Λ1(H̃|M) = [ξ, λ1(H̃)], it is clear that λk(A) ≥ ξ. On
the other hand, since N ⊆ Cn ⊕ {0}, we also have ξ = λk(H) ≥ λk(A). Thus
λk(A) = ξ. Let y ∈ N be a unit eigenvector of A corresponding to the eigenvalue
ξ. Say, y = c0u + c1v1 + · · · + ckvk, where ∑k

j=0 |cj|2 = 1. Since ξ = 〈Ay, y〉 =
〈H̃y, y〉 = |c0|2ξ + ∑k

j=1 |cj|2λj(H̃) and λ1(H̃) ≥ · · · ≥ λk(H̃) > ξ, we infer
that |c0| = 1 and c1 = · · · = ck = 0. This implies that u ∈ N ⊆ Cn ⊕ {0}, a
contradiction. Hence λk(H̃) ≤ ξ as asserted.

LEMMA 2.2. Let A ∈ Mn be a contraction with dA ≥ 1 and denote λk(A +
A∗) = 2 cos θ for some θ ∈ R. Suppose neither eiθ nor e−iθ is an eigenvalue for A.
Then A has a contractive dilation Ã ∈ Mn+1 such that λk(Ã + Ã∗) = λk(A + A∗),
dÃ = dA − 1 and e±iθ are two eigenvalues for Ã.

Proof. Let v be a unit vector such that (A + A∗)v = (2 cos θ)v. By [6, Lemma
3.1], we have ‖Av‖ < 1. Since

‖A∗v‖2 − ‖Av‖2 = v∗(AA∗ − A∗A)v = v∗{A(A + A∗)− (A + A∗)A}v
= v∗A(2 cos θ)v− (2 cos θ)v∗Av = 0,

we have ‖A∗v‖ = ‖Av‖. Let α =
√

1− ‖Av‖2 =
√

1− ‖A∗v‖2. Then x =
(In − A∗A)1/2v/α and y = (In − AA∗)1/2v/α are unit vectors in Cn. Write

X =

[
In
−→
0n

0n x

]
, Y =

[
In
−→
0n

0n y

]
, Z =

[
A −(In − AA∗)1/2

(In − A∗A)1/2 A∗

]
,

and

Ã = X∗ZY =
[

A −(In − AA∗)v/α
v∗(In − A∗A)/α x∗A∗y

]
∈ Mn+1.
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Then X and Y are 2n-by-(n + 1) matrices satisfying X∗X = Y∗Y = In+1, Z∗Z =

I2n and Ã is a contractive dilation of A. Let ṽ =
[

v
0

]
∈ Cn+1. Then

Ãṽ =
[

Av
v∗(In − A∗A)v/α

]
=
[

Av
α

]
is a unit vector because α =

√
1− ‖Av‖2, and

(Ã + Ã∗)ṽ =
[

(A + A∗)v
v∗(AA∗ − A∗A)v/α

]
=
[

(2 cos θ)v
0

]
= (2 cos θ)ṽ

because ‖A∗v‖ = ‖Av‖. It follows from [6, Lemma 3.1] that M = span{ṽ, Ãṽ}
is a reducing subspace of Ã and the restriction of Ã on M has e±iθ as two of its

eigenvalues. So, Ãṽ =
[

Av
α

]
is also an eigenvector of Ã + Ã∗ corresponding to

the eigenvalue 2 cos θ. Note that the last entry of Ãṽ is α 6= 0. Applying Lemma
2.1 with H = A + A∗, H̃ = Ã + Ã∗ and ξ = 2 cos θ, we have λk(Ã + Ã∗) ≤ 2 cos θ.
By the interlacing inequality [1, Corollary III.1.5], we conclude that λk(Ã + Ã∗) =
2 cos θ.

We now check that dÃ = dA − 1. Note that the leading n-by-n principal
submatrix of Ã∗ Ã equals A∗A + ww∗ with w = (In − A∗A)v/α. Thus,

dÃ = rank (In+1 − Ã∗ Ã) ≥ rank (In − A∗A− ww∗)
≥ rank (In − A∗A)− 1 = dA − 1.

It remains to show that dÃ ≤ dA − 1. Let K be the eigenspace of A∗A corre-
sponding to the eigenvalue 1. Then K has dimension m = n − dA, and there is
an orthonormal basis {u1, . . . , um} for K such that ‖Auj‖ = 1 for all j = 1, . . . , m.

Now, consider the vectors of the form ũj =
[

uj
0

]
∈ Cn+1 for j = 1, . . . , m, and

let K̃ be the space spanned by them. Clearly, ṽ /∈ K̃ and Ãṽ does not lie in the
span of K̃ ∪ {ṽ}. Now, ‖Ãw‖ = 1 for all w ∈ {ũ1, . . . , ũm, ṽ, Ãṽ}, which spans an
(m + 2)-dimensional subspace. Thus Ã∗ Ã has at least m + 2 linearly independent
eigenvectors for 1. So, dÃ ≤ n + 1− (m + 2) = dA − 1.

LEMMA 2.3. Let A ∈ Mn be a contraction with dA ≥ 1 such that λn(A + A∗) ≥
γ for some γ > −2. Then A has a contractive dilation Ã ∈ Mn+1 such that dÃ =
dA − 1, λn(Ã + Ã∗) ≥ γ and −1, eiθ are two eigenvalues for Ã, where 2 cos θ ≥ γ.

Proof. Since A is a contraction, it is unitarily similar to U0⊕ A0, where U0 ∈
Mn−m (1 ≤ m ≤ n) is unitary and A0 ∈ Mm is a contraction with no eigenvalues
on the unit circle. Clearly, dA0 = dA. Note that Λ1(A0) is a compact convex
set contained in the open unit disc, and −1 6∈ Λ1(A0). Hence there are two
chords [−1, eiθ ] and [−1, eiφ] which are tangent to ∂Λ1(A0), where −π < φ ≤
θ < π. It is clear that 2 cos θ ≥ γ, because Λ1(A0) is contained in the closed
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half plane {z ∈ C : z + z ≥ γ}. Let A′0 = e−i(θ+π)/2 A0. Then the line segment
[ei(π−θ)/2, ei(θ−π)/2] is tangent to ∂Λ1(A′0), and Λ1(A′0) is contained in the closed
half plane {z ∈ C : z + z ≤ 2 cos((π− θ)/2)}. That is, λ1(A′0 + A′0

∗) = 2 cos((π−
θ)/2). By Lemma 2.2 for k = 1, A′0 has a contractive dilation Ã′0 ∈ Mm+1 such that

d
Ã′0

= dA′0
− 1 = dA− 1, λ1(Ã′0 + Ã′0

∗
) = 2 cos((π− θ)/2) and e±i(π−θ)/2 are two

eigenvalues for Ã′0. Let Ã0 = ei(θ+π)/2 Ã′0 and Ã = U0 ⊕ Ã0. We deduce that Ã
is a contractive dilation of A, dÃ = d

Ã′0
= dA − 1 and −1, eiθ are two eigenvalues

for Ã. By the interlacing inequality, it is clear that λn(Ã + Ã∗) ≥ λn(A + A∗) ≥ γ
as desired.

We are now ready for the

Proof of Theorem 1.1. We prove the result by induction on dA. If dA = 0, then
U = A as asserted. Assume dA ≥ 1 and the result holds if dA is smaller. For
convenience, say, λk(A + A∗) = 2 cos θ, where θ ∈ R. It suffices to show that A
has a contractive dilation A1 ∈ Mn+1 such that λk(A1 + A∗1) = λk(A + A∗) and
dA1 = dA − 1. The result will then follow from the induction hypothesis.

Since A is a contraction, it is unitarily similar to U0⊕ A0, where U0 ∈ Mn−m
(1 ≤ m ≤ n) is unitary and A0 ∈ Mm is a contraction with no eigenvalue on the
unit circle. Clearly, dA0 = dA ≥ 1. Let

j0 = max{j : λj(A0 + A∗0) > 2 cos θ}

and
j1 = max{j : λj(U0 + U∗0 ) > 2 cos θ}

with the convention that j0 = 0 and j1 = 0 when the corresponding set of indices
is empty. Then

j0 ≤ m, j0 + j1 < k and λj0+j1+1(A + A∗) = 2 cos θ.

We consider two cases.
Case 1. Suppose j0 < m. Then 2 cos θ ≥ λj0+1(A0 + A∗0) = 2 cos θ0. Note

that neither eiθ0 nor e−iθ0 is an eigenvalue for A0. By Lemma 2.2, A0 has a contrac-
tive dilation Ã0 ∈ Mm+1 such that λj0+1(Ã0 + Ã∗0) = λj0+1(A0 + A∗0) = 2 cos θ0 ≤
2 cos θ, dÃ0

= dA0 − 1 and e±iθ0 are two eigenvalues for Ã0. Moreover, by the

interlacing inequality, λj(Ã0 + Ã∗0) ≥ λj(A0 + A∗0) > 2 cos θ for j ≤ j0. Conse-
quently, max{j : λj(Ã0 + Ã∗0) > 2 cos θ} = j0. Thus, A1 = U0 ⊕ Ã0 ∈ Mn+1
is a contractive dilation of A satisfying dA1 = dÃ0

= dA0 − 1 = dA − 1 and
max{j : λj(A1 + A∗1) > 2 cos θ} equal to

max{j : λj(U0 + U∗0 ) > 2 cos θ}+ max{j : λj(Ã0 + Ã∗0) > 2 cos θ} = j1 + j0.

It follows that

2 cos θ ≥ λj0+j1+1(A1 + A∗1) ≥ λk(A1 + A∗1) ≥ λk(A + A∗) = 2 cos θ,
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because j0 + j1 < k. Hence λk(A1 + A∗1) = λk(A + A∗) and A1 is a desired
dilation.

Case 2. Suppose j0 = m. Then λm(A0 + A∗0) > 2 cos θ. By Lemma 2.3, A0

has a contractive dilation Ã0 ∈ Mm+1 such that

λm(Ã0 + Ã∗0) > 2 cos θ, dÃ0
= dA0 − 1 = dA − 1 and λm+1(Ã0 + Ã∗0) = −2.

Then A1 = U0 ⊕ Ã0 ∈ Mn+1 is a contractive dilation of A satisfying dA1 = dÃ0
=

dA − 1 and

max{j : λj(A1 + A∗1) > 2 cos θ}

= max{j : λj(U0 + U∗0 ) > 2 cos θ}+ max{j : λj(Ã0 + Ã∗0) > 2 cos θ}
= j1 + m = j1 + j0.

It follows that

2 cos θ ≥ λj0+j1+1(A1 + A∗1) ≥ λk(A1 + A∗1) ≥ λk(A + A∗) = 2 cos θ,

because j0 + j1 < k. Hence λk(A1 + A∗1) = λk(A + A∗) and A1 is a desired
dilation.

We can now use Theorem 1.1 to prove Theorem 1.2. The proof depends
heavily on (1.1) and is similar to the proof of Theorem 2.4 in [6].

Proof of Theorem 1.2. Let A ∈ Mn be a contraction. It is obvious that Λk(A) ⊆
Λk(B) if B is a dilation of A. Thus, we have

Λk(A) ⊆ ∩{Λk(U) : U ∈ Mn+dA is a unitary dilation of A}.

To prove the reverse inclusion, we consider any particular ζ 6∈ Λk(A). Since
Λk(A) is a compact convex set, there exists θ ∈ [0, 2π) and µ ∈ R such that eiθζ +
e−iθζ > µ, while eiθΛk(A) = Λk(eiθ A) is included in the closed half plane {z ∈
C : z + z ≤ µ}. From (1.1), we see that λk(eiθ A + e−iθ A∗) ≤ µ. By Theorem 1.1,
there is a unitary dilation U ∈ Mn+dA of A such that λk(eiθU + e−iθU∗) ≤ µ.
By (1.1) again, Λk(eiθU) ⊆ {z ∈ C : z + z ≤ µ}. Hence eiθζ 6∈ Λk(eiθU) and
ζ 6∈ Λk(U). This completes the proof.

We end this paper by relating the rank-k numerical ranges of Sn-matrices
to the Poncelet property. An n-by-n complex matrix A is said to be of class Sn
if (i) A is a contraction, (ii) the eigenvalues of A are all in the open unit disc D,
and (iii) dA = 1. In recent years, properties of the classical numerical ranges of
Sn-matrices have been intensely studied (cf. [7, 8, 9, 15, 16, 17, 18, 19, 21]). Among
other things, it was obtained that the boundary of the classical numerical range
Λ1(A) of an Sn-matrix A has the (n + 1)-Poncelet property. This means that there
are infinitely many (n + 1)-gons interscribing between the unit circle ∂D and the
boundary ∂Λ1(A) or, put more precisely, for any point a on ∂D there is a (unique)
(n + 1)-gon with a as one of its vertices such that all its n + 1 vertices are in ∂D
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and all its n + 1 edges are tangent to ∂Λ1(A) (cf. [7, Theorem 2.1] or [15, Theorem
1]).

If A is in Sn, so is e−it A for any real t. Hence the eigenvalues of (e−it A +
eit A∗)/2 are all distinct by [7, Corollary 2.7]. The curve Γj, j = 1, . . . , n, is the
envelope of chords

x cos t + y sin t = λj(t),

where λj(t) = λj((e−it A + eit A∗)/2). Equations for the curves Γj are described
by αj(t) = (xj(t), yj(t)) with

xj(t) = λj(t) cos t− λ′j(t) sin t,

yj(t) = λj(t) sin t + λ′j(t) cos t.

These curves Γj are expected to have a Poncelet-type property just as Γ1 = ∂Λ1(A)
does. This is indeed the case and is proved in [15, Theorem 8]. Note that, in this
case, Γj and Γn−j+1 coincide for any j, and if U = diag (b1, . . . , bn+1) is a unitary
dilation of A, where the bj’s are arranged counterclockwise around ∂D, then, for
each j, the not-necessarily-convex (n + 1)-gon b1 bj+1 b2j+1 . . . bnj+1 (bp = bq
if p ≡ q (mod n + 1)) has all its sides [bkj+1, b(k+1)j+1] tangent to Γj. A detailed
analysis of such curves, called a package of Poncelet curves, has been carried out by
Mirman [15, 16, 18]. Note that the curve Γ1 is convex and Λ1(A) is equal to the
convex hull of Γ1. Other curves Γj’s (2 ≤ j ≤ n− 1) are not necessarily convex (cf.
[15, Example 7]), and hence Λj(A) does not necessarily coincide with the convex
hull of Γj. However, by Theorem 1.2 and [15, Theorem 8], the former is always
contained in the latter and when Γj (1 ≤ j ≤ n/2) is convex, they are equal to
each other.
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