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1 Introduction

Let Mn be the algebra of n×n complex matrices. The numerical range of A ∈ Mn is defined
by

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}

and the numerical radius of A is defined by

w(A) = sup{|z| : z ∈ W (A)}.

These concepts and their generalizations have been studied extensively because of their
connections and applications to many different areas (see e.g. Chapter 1 of [3]). There has
been considerable interest in studying those linear operators L which preserve the numerical
range or radius, i.e.,

W (L(A)) = W (A) for all A,

or
w(L(A)) = w(A) for all A.

For instance, one may see [1, 2, 4, 5, 6, 7, 9, 10, 11] and Chapter 5 of [12]. The purpose of
this note is to solve these problems on Tn, the algebra of n×n triangular matrices, and Dn,
the algebra of n× n diagonal matrices.

We will use {e1, . . . , en} to denote the standard basis for Cn, and use {E11, E12, . . . , Enn}
to denote the standard basis for Mn.
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2 Preliminaries

In the following, we collect some basic results on W (A) and w(A) that are useful in our

study. One may see Chapter 1 of [3] for general background.

Proposition 2.1 [3, §1.2] Let A ∈ Mn.

(a) W (A) = W (At).

(b) W (A) = W (U∗AU) for any unitary U .

(c) W (λA) = λW (A) for any λ ∈ C.

(d) W (λI + A) = λ + W (A) for any λ ∈ C.

Proposition 2.2 [3, §1.3] The numerical range of A ∈ Mn is always convex. In particular,

if A ∈ M2 is unitarily similar to
(

λ1 b
0 λ2

)
, then W (A) is an elliptical disk with λ1 and λ2

as foci, and length of minor axis equal to |b|.

Proposition 2.3 [3, 1.2.9 and 1.2.10] If A ∈ Mn is unitarily similar to A1 ⊕ A2, then

W (A) = conv {W (A1) ∪W (A2)}. Hence, if A is unitarily similar to diag (a1, . . . , an), then

W (A) = conv {a1, . . . , an}.

Proposition 2.4 [3, 1.6.3 and 1.6.4] Let A ∈ Mn and λ ∈ C. Then λ is a non-differentiable

boundary point of W (A) if and only if A is unitarily similar to λIk⊕A2 such that λ /∈ W (A2).

Hence, if W (A) is an n-side convex polygonal disk with vertices λ1, . . . , λn, then A is normal
with eigenvalues λ1, . . . , λn.

Proposition 2.5 [3, Problem 1 in §1.2] Let A ∈ Mn. Then W (A) = {λ} if and only if
A = λI.

Proposition 2.6 [3, 1.2.11] Suppose B is a principal submatrix of A ∈ Mn. Then W (B) ⊆
W (A) and w(B) ≤ w(A).

Proposition 2.7 [3, 1.6.1] Suppose A ∈ Mn is nonscalar. Then tr A/n belongs to the

relative interior of W (A).

Proposition 2.8 [3, 1.2.5] Suppose A ∈ Mn so that A + A∗ has λ1 and λn as the largest
and smallest eigenvalues. Then

[λn, λ1] = {z + z̄ : z ∈ W (A)}.
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3 Linear Preservers of W (A)

This section is devoted to studying the linear preservers of W (A) on Dn or Tn. We begin
with the following relatively easy result.

Theorem 3.1 A linear operator L : Dn → Dn satisfies W (L(A)) = W (A) for all A ∈ Dn

if and only if there is a permutation matrix P such that L is of the form A 7→ P tAP .

Proof. The sufficiency part is clear by Proposition 2.1. Conversely, suppose L is a linear
preserver of W (A) on Dn. First, we show that L(E11) = Ejj for some 1 ≤ j ≤ n. To this end,

let µ = eiπ/(2n) and A(t) = E11 + t(
∑n

j=2 µn+jEjj) for t > 0. Then W (A(t)) = W (L(A(t)))

is a convex polygonal disk with vertices 1, tµn+2, . . . , tµ2n. By Proposition 2.4, we see that

L(A(t)) = B(t) ∈ Dn has eigenvalues 1, tµn+2, . . . , tµ2n. Now, for any t1, t2 ∈ (0, 1), we have

A(t1), A(t2), (A(t1) + A(t2))/2 = A((t1 + t2)/2) ∈ Dn with eigenvalues 1, tµn+2, . . . , tµ2n for

t = t1, t2 and (t1 + t2)/2, respectively. We conclude that B(t1), B(t2) and (B(t1) + B(t2))/2

have the same properties, and hence B(t) = Ej1,j1 + t(
∑n

s=2 µn+sEjs,js) for some permutation

(j1, . . . , jn) of (1, . . . , n). Taking the limit t → 0+, we see that L(E11) = Ej1,j1 . By the same

argument, we can show that if r = 2, . . . , n, then L(Err) = Ejr,jr for some 1 ≤ jr ≤ n. We

claim that j1, . . . , jn are all different. If it is not true, i.e., L(Epp) = L(Eqq) = Ejp,jp for some

p 6= q, then L(Epp + Eqq) = 2Ejp,jp . But then W (Epp + Eqq) = [0, 1] 6= [0, 2] = W (2Ejp,jp)

by Proposition 2.3, which is a contradiction. Consequently, L(
∑n

s=1 µsEss) =
∑n

s=1 µsEjs,js .

The result follows. 2

As pointed out by Professor Jor-Ting Chan, Theorem 3.1 actually follows easily from
Theorem 4.1 in the next section, whose proof depends on the knowledge of the isometry for
the sup norm on Cn. Since the above proof of Theorem 3.1 is independent and not very
long, and it contains some basic techniques illustrating how to use geometrical properties of
the numerical range to study linear preservers, we include it in our discussion.

Theorem 3.2 A linear operator L : Tn → Tn satisfies W (L(A)) = W (A) for all A ∈ Tn

if and only if there is a unitary matrix D ∈ Dn such that L is of the form A 7→ D∗AD
or A 7→ D∗A′D, where A′ is the “transpose” of A with respect to the anti-diagonal, i.e,

A′ = D0A
tD0 with D0 = E1n + E2,n−1 + · · ·+ En1.

Proof. By Proposition 2.1, W (D∗AD) = W (A), W (A) = W (D∗
0AD0) = W (D0AD0)

and W (A) = W (At). Hence, if L is of the form A 7→ D∗AD or A 7→ D∗D0A
tD0D, then

L(Tn) = Tn and W (L(A)) = W (A). The sufficiency part follows.

Conversely, let L be a numerical range preserver on Tn. By Proposition 2.5, W (A) = {λ}
if and only if A = λI. It follows that L(I) = I. Furthermore, L(A) = 0 if and only if A = 0,
and hence L is invertible.

We prove that L is of the asserted form by induction on n ≥ 2. Suppose n = 2. Then
A ∈ T2 satisfies W (A) = [0, 1] if and only if A = Ejj for j = 1 or 2 by Proposition 2.2.

Thus we see that {L(E11), L(E22)} = {E11, E22}. Furthermore, by Proposition 2.2 again, we
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see that for A ∈ T2, W (A) is a circular disk centered at 0 with radius one if and only if

A = µE12 with |µ| = 2. Hence, L(E12) = µ0E12 for some µ0 with |µ0| = 1.

Let D = E11 + µ0E22. One easily checks that L is of the form A 7→ D∗AD or D∗A′D
depending on L(E11) = E11 or L(E11) = E22.

Now, suppose n ≥ 3 and assume that numerical range preservers on Tk with k ≤ n− 1
are of the asserted form. Consider a numerical range preserver L on Tn. We show that L is
of the standard form by proving a number of assertions.

Assertion 1. There is a permutation matrix P such that L(A) = P tAP for any A ∈ Dn.
Proof. This statement follows from Proposition 2.4 and Theorem 3.1.

By Assertion 1, we see that L(E11) = Ejj for some 1 ≤ j ≤ n. For 1 ≤ k ≤ n, let Vk

be the subspace of Tn consisting of matrices with the kth row and kth column equal to zero
row and column, respectively. Furthermore, let X(j) be the matrix obtained from X ∈ Tn

by removing the jth row and jth column. We have the following.

Assertion 2. Suppose L(E11) = Ejj. Then L(V1) ⊆ Vj. Moreover, the mapping L̃ :

Tn−1 → Tn−1 defined by L̃(A) = L([tr A/(n− 1)]⊕A)(j) preserves the numerical range and
is of the asserted form by the induction assumption.

Proof. For any Epq ∈ V1, if A(µ) = E11 + µEpq with |µ| = 1, then 1 = w(A(µ)) =

w(L(A(µ))). If the (j, j) entry of L(Epq) is nonzero, then we can find µ ∈ C with |µ| = 1 such

that the (j, j) entry of L(E11 +µEp,q) is a positive real number larger than 1. Consequently,

w(A(µ)) = 1 < w(L(A(µ))), which is a contradiction. So, the (j, j) entry of L(Epq) must be

0. Now, if L(Epq) /∈ Vj, then L(E11 +Epq) has a nonzero entry at the (j, k) or (k, j) position

for some k 6= j. But then the 2 × 2 submatrix B of L(E11 + Epq) lying in the jth and kth

rows and columns will be an upper triangular matrix with nonzero (1, 2) entry and with 1

as a diagonal entry. By Proposition 2.2, W (B) is a nondegenerate elliptical disk with 1 as a

focus. By Proposition 2.6, we have w(E11 + Epq) = 1 < w(B) ≤ w(L(E11 + Epq)), which is

a contradiction. Hence, L(V1) ⊆ Vj as asserted.

Now, suppose A ∈ Tn−1. By Proposition 2.7, tr A/(n− 1) lies in the relative interior of

W (A). Note that W (L([tr A/(n−1)]⊕A)) = conv {{tr A/(n−1)}∪W (L̃(A))} by Proposition

2.3. If tr A/(n− 1) /∈ W (L̃(A)), then tr A/(n− 1) is a non-differentiable boundary point of

W (L([tr A/(n− 1)]⊕A)) = W ([tr A/(n− 1)]⊕A) = W (A), which is a contradiction. Thus,

tr A/(n− 1) ∈ W (L̃(A)) and

W (A) = W ([tr A/(n− 1)]⊕ A) = W (L([tr A/(n− 1)]⊕ A))

= conv {{tr A/(n− 1)} ∪W (L̃(A))} = W (L̃(A)).

Assertion 3. We have L(E11) ∈ {E11, Enn} or L(Enn) ∈ {E11, Enn}. Moreover, one of the
following operators will preserve the numerical range and map E11 to E11:

(a) A 7→ L(A), (b) A 7→ L(A)′, (c) A 7→ L(A′), (d) A 7→ L(A′)′.
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Proof. Suppose L(E11) = Ejj such that j 6= 1, n. Then the operator L̃ defined in

Assertion 2 preserves the numerical range and is of the asserted form. Suppose L̃(B) =

D∗
1BD1. Then L(Enn) = Enn. Suppose L̃(B) = D∗

1B
′D1. Then L(Enn) = E11. Hence, the

first assertion is true. The second assertion follows readily from the first one.

By the above assertion, we may assume that L(E11) = E11. Otherwise, replace it by one

of the three operators in (b) – (d).

Assertion 4. Suppose L(E11) = E11. Then L is of the form A 7→ D∗AD for some unitary
D ∈ Dn.

Proof. Define L̃ on Tn−1 as in Assertion 2, i.e., L̃(B) = L([tr B/(n− 1)]⊕ B)(1). Then

by Assertion 2 L̃ preserves the numerical range, and hence is of the form

(i) B 7→ D∗
1BD1 or (ii) B 7→ D∗

1B
′D1

for some unitary D1 ∈ Dn−1. In both cases, we assume that D1 = I. Otherwise, replace L

by the map A 7→ D̃1L(A)D̃∗
1 with D̃1 = [1]⊕D1. Thus, L̃ is the identity map, or of the form

B 7→ B′.
Suppose n = 3. We show that (ii) cannot hold. If it does hold, then L(E22) = E33 and

hence L(V2) = V3. By arguments similar to those in the proof of Assertion 2, we see that
the restriction of L from V2 to V3 induces a linear preserver of the numerical range on T2.
Thus, there exists µ1 with |µ1| = 1 such that L(aE11 + bE13 + cE33) = aE11 + µ1bE12 + cE22

for any a, b, c ∈ C. Similarly, we can consider the restriction of L on V3 and conclude that
there exists µ2 with |µ2| = 1 such that L(aE11 + bE12 + cE22) = aE11 + µ2bE13 + cE33 for
any a, b, c ∈ C. Hence, for

A = a1E11 + a2E22 + a3E33 + b1E12 + b2E23 + c1E13,

we have
L(A) = a1E11 + a2E33 + a3E22 + µ2b1E13 + b2E23 + µ1c1E12.

We may replace L by the mapping A 7→ D∗L(A)D with D = diag (µ1, 1, 1). Then, we have

L(A) = a1E11 + a2E33 + a3E22 + µb1E13 + b2E23 + c1E12

with µ = µ2/µ1. Now, consider

A =

 0 1 1
0 1 1
0 0 0

 and L(A) =

 0 1 µ
0 0 1
0 0 1

 .

One can check that A+A∗ has eigenvalues 3, 0,−1. Since W (A) = W (L(A)), by Proposition

2.8 L(A) + L(A)∗ has 3 and −1 as the largest and smallest eigenvalues. Now det(L(A) +

L(A)∗ − 3I) = 0 implies that µ = 1. Next, consider

A =

 0 1 + i i
0 0 1− i
0 0 0

 and L(A) =

 0 i 1 + i
0 0 1− i
0 0 0

 .
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One can check that A + A∗ has eigenvalues
√

5, 0,−
√

5. Since W (A) = W (L(A)), by

Proposition 2.8 L(A) + L(A)∗ has ±
√

5 as the largest and smallest eigenvalues. However,

det(L(A) + L(A)∗ −
√

5I) 6= 0, which is a contradiction. Thus, (ii) cannot hold.

Now, we see that condition (i) is valid. Then L(Epq) = Epq for p = q and (p, q) = (2, 3).

Considering the restriction of L on V2 and V3, we conclude that L(E12) = µ1E12 and

L(E13) = µ2E13 for some µ1, µ2 ∈ C with |µ1| = |µ2| = 1. Again, we may replace L by the

mapping A 7→ D∗L(A)D with D = diag (µ1, 1, 1). Then, we have L(Epq) = Epq for all p = q

and (p, q) = (1, 2), (2, 3), and L(E13) = µE13 with µ = µ2/µ1. Now consider

A =

 0 1 1
0 1 1
0 0 0

 and L(A) =

 0 1 µ
0 1 1
0 0 0

 .

Then A + A∗ has eigenvalues 3, 0,−1. By Proposition 2.8, L(A) + L(A)∗ has 3 and −1 as

the largest and smallest eigenvalues. Since det(L(A) + L(A)∗ − 3I) = 0 implies that µ = 1,
we see that L is of the asserted form.

Next, suppose n ≥ 4. We claim that (ii) cannot hold. If it does hold, then L(E22) = Enn

and hence L(V2) = Vn. By arguments similar to those in the proof of Assertion 2, we see
that the restriction of L from V2 to Vn induces a linear preserver of the numerical range on
Tn−1. By induction assumption, the induced map is of the asserted form. However, we have

L(E11) = E11 and L(Ejj) = En−j+2,n−j+2 for j = 3, . . . , n, which is a contradiction. Thus,

condition (i) must hold.

Now, L(V2) = V2 and the restriction of L on V2 induces a linear preserver of the
numerical range on Tn−1. By induction assumption, the induced map is of the asserted

form. Since L(Eij) = Eij for i, j ≥ 3, we conclude that there exist µ1 ∈ C with |µ1| = 1

and X = [µ1] ⊕ In−2 so that the induced map is of the form A 7→ X∗AX for all A ∈ Tn−1.

Similarly, we can conclude that there exist µ2 ∈ C with |µ2| = 1 and Y = [µ2]⊕ In−2 so that
the map induced by the restriction of L on V3 is of the form A 7→ Y ∗AY for all A ∈ Tn−1.

Notice that we have L(E14) = µ1E14 by the induced map on V2 and L(E14) = µ2E14 by the
induced map on V3. Thus µ1 = µ2, and the result follows. 2

4 Numerical radius preservers

First of all, we consider the numerical radius preservers on Dn.

Theorem 4.1 A linear operator L : Dn → Dn satisfies w(L(A)) = w(A) for all A ∈ Dn if
and only if there is a permutation matrix P and a unitary matrix D ∈ Dn such that L is of

the form A 7→ DPAP t.

Proof. Note that L preserves the numerical radius on Dn if and only if the induced map

L̃ on Cn defined by L̃((µ1, . . . , µn)t) = (ν1, . . . , νn)t, where L(
∑n

j=1 µjEjj) =
∑n

j=1 νjEjj,
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preserves the sup norm. It is well-known that a linear isometry L̃ of the sup norm on Cn

must be of the form v 7→ DPv for some unitary D ∈ Dn and permutation matrix P . One

can check that the corresponding map L on Dn is of the form A 7→ DPAP t. 2

To characterize numerical radius preservers on Tn, we need the following characterization
of scalar matrices, which is of independent interest.

Proposition 4.2 A matrix A ∈ Tn is a scalar matrix if and only if for any B ∈ Tn there
is µ ∈ C with |µ| = 1 such that w(A + µB) = w(A) + w(B).

Proof. For each A ∈ Mn define

SA = {x ∈ Cn : x∗x = 1 and |x∗Ax| = w(A)}.

Then it is clear that for any A, B ∈ Mn, there exists µ ∈ C with |µ| = 1 such that

w(A + µB) = w(A) + w(B) if and only if SA ∩ SB 6= ∅.
Suppose A = λI. Then SA ∩ SB 6= ∅ for any B ∈ Tn. Hence there is µ ∈ C with |µ| = 1

such that w(A + µB) = w(A) + w(B).

Conversely, suppose A ∈ Tn is such that SA ∩ SB 6= ∅ for all B ∈ Tn. For 1 ≤ j ≤ n
and B = Ejj, we have SB = {µej : µ ∈ C, |µ| = 1}. Since SA ∩ SB 6= ∅, we conclude that

the (j, j) entry aj of A has modulus w(A). Furthermore, the (j, k) entry of A must be 0 for

k > j. Otherwise, we can let B be the 2 × 2 principal submatrix of A lying in the jth and
kth rows and columns, and conclude that aj is a focus of the nondegenerate elliptical disk

W (B). It follows that |aj| < w(B) ≤ w(A), which is a contradiction.

Finally, consider B = E1j for 2 ≤ j ≤ n. We have

SB = {µ1e1 + µjej : |µ1| = |µj| = 1/
√

2}.

Since SA ∩ SB 6= ∅, we have |a1 + aj|/2 = w(A) = |a1| = |aj|. It follows that a1 = aj for all
2 ≤ j ≤ n. 2

We are now ready to state and prove the following result on numerical radius preservers.

Theorem 4.3 A linear operator L : Tn → Tn satisfies w(L(A)) = w(A) for all A ∈ Tn

if and only if there is a unitary matrix D ∈ Dn and a complex number ξ with |ξ| = 1 such

that L is of the form A 7→ ξD∗AD or A 7→ ξD∗A′D, where A′ is the “transpose” of A with

respect to the anti-diagonal, i.e, A′ = D0A
tD0 with D0 = E1n + E2,n−1 + · · ·+ En1.

Proof. The sufficiency part is clear. We consider the necessity part. Let L be a numerical
radius preserver on Tn. If L(A) = 0, then 0 = w(L(A)) = w(A), and hence A = 0. Thus L

is invertible. Furthermore, L−1 also preserves the numerical radius.
Let A = L(I). Then for any B ∈ Tn there exists µ ∈ C such that

w(A + µB) = w(I + µL−1(B)) = w(I) + w(L−1(B)) = w(A) + w(B).

Thus L(I) = ξI for some ξ ∈ C by Proposition 4.2. Since w(I) = w(ξI), we see that |ξ| = 1.
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We may assume that ξ = 1; otherwise, replace L by the mapping A 7→ ξ−1L(A). We
show that L actually preserves the numerical range on Tn. The result will then follow from
Theorem 3.2.

Suppose there exists A ∈ Tn such that W (L(A)) 6= W (A). Then (i) there exists µ ∈
W (L(A))\W (A), or (ii) there exists µ ∈ W (A)\W (L(A)). Suppose (i) holds. Since W (A) is
convex and compact, there exists a circle with sufficiently large radius centered at a certain
λ ∈ C so that W (A) lies inside the circle, but µ lies outside the circle. Hence, for any

z ∈ W (A), we have |z − λ| < |µ− λ|. Consequently,

w(A− λI) < |µ− λ| ≤ w(L(A)− λI) = w(L(A− λI)),

which is a contradiction.
If (ii) holds, we can apply the same argument to L−1 to get a contradiction. Thus, we

have W (A) = W (L(A)) for all A ∈ Tn as asserted. 2

5 Remarks

In general, linear preservers on Tn may not have nice structures. For example, for spectrum
preservers, invertibility preservers, etc., one can only have some information about the di-
agonal entries, but have no control on the strictly upper triangular part. Nonetheless, it is
worth noting that linear preservers of numerical range and radius on Tn have nice structure.

By Theorem 2.2 in [10], L preserves the numerical range on the matrix space V = Mn,Tn

or Dn if and only if the dual transformation L∗ preserves the state space defined by

S = {C ∈ V : tr C = 1 ≥ |tr C∗A| whenever A ∈ V satisfies ‖A‖ ≤ 1}.

Similar idea has been used in [7]. In any event, one can get a corollary on the dual linear

transformation for each linear preserver of W (A). For V = Mn or Dn, there is a simple
description of S, namely, it is the collection of trace one positive semidefinite matrices in V.
However, for V = Tn, there does not seem to have an easy description of S.

There are many generalizations of the numerical range and numerical radius. It would be
interesting to consider the corresponding preserver problems on Tn and Dn. For example,
one may consider the k-numerical range and radius preservers on Tn (cf. [4, 9, 11]).

One may also consider extending the results to infinite dimensional context, for instance,
to nested algebras.
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