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Abstract. The higher rank numerical range is closely connected to

the construction of quantum error correction code for a noisy quantum

channel. It is known that if a normal matrix A ∈ Mn has eigenvalues

a1, . . . , an, then its higher rank numerical range Λk(A) is the intersection

of convex polygons with vertices aj1 , . . . , ajn−k+1 , where 1 ≤ j1 < · · · <
jn−k+1 ≤ n. In this paper, it is shown that the higher rank numerical

range of a normal matrix with m distinct eigenvalues can be written

as the intersection of no more than max{m, 4} closed half planes. In

addition, given a convex polygon P a construction is given for a normal

matrix A ∈ Mn with minimum n such that Λk(A) = P. In particular,

if P has p vertices, with p ≥ 3, there is a normal matrix A ∈ Mn with

n ≤ max {p + k − 1, 2k + 2} such that Λk(A) = P.

1. Introduction

Let Mn be the algebra of n×n complex matrices regarded as linear oper-

ators acting on the n-dimensional Hilbert space Cn. The classical numerical

range of A ∈Mn is defined and denoted by

W (A) = {x∗Ax ∈ C : x ∈ Cn with x∗x = 1},

which is a useful concept in studying matrices and operators; see [6].

In the context of quantum information theory, if the quantum states are

represented as matrices in Mn, then a quantum channel is a trace preserving

completely positive map L : Mn → Mn with the following operator sum

representation

(1.1) L(A) =

r∑
j=1

E∗jAEj ,
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where E1, . . . , Er ∈ Mn satisfy
∑r

j=1EjE
∗
j = In. The matrices E1, . . . , Er

are known as the error operators of the quantum channel L. A subspace V

of Cn is a quantum error correction code for the channel L if and only if the

orthogonal projection P ∈Mn with range space V satisfies PE∗i EjP = γijP

for all i, j ∈ {1, . . . , r}; for example, see [7, 8, 9]. In this connection, for

1 ≤ k < n researchers define the rank-k numerical range of A ∈Mn by

Λk(A) = {λ ∈ C : PAP = λP for some rank-k orthogonal projection P},

and the joint rank-k numerical range ofA1, . . . , Am ∈Mn by Λk(A1, . . . , Am)

to be the collection of complex vectors (a1, . . . , am) ∈ C1×m such that

PAjP = ajP for a rank-k orthogonal projection P ∈ Mn. Evidently, there

is a quantum error correction code V of dimension k for the quantum chan-

nel L described in (1.1) if and only if Λk(A1, . . . , Am) is non-empty for

(A1, . . . , Am) = (E∗1E1, E
∗
1E2, . . . , E

∗
rEr). Also, it is easy to see that if

(a1, . . . , am) ∈ Λk(A1, . . . , Am) then aj ∈ Λk(Aj) for j = 1, . . . ,m. When

k = 1, Λk(A) reduces to the classical numerical range W (A).

Recently, interesting results have been obtained for the rank-k numerical

range and the joint rank-k numerical range; see [1, 2, 3, 4, 5, 11, 12, 13, 14,

16]. In particular, an explicit description of the rank-k numerical range of

A ∈Mn is given in [14], namely,

Λk(A) =
⋂

ξ∈[0,2π)

{µ ∈ C : e−iξµ+ eiξµ ≤ λk(e−iξA+ eiξA∗)},(1.2)

where λk(X) is the kth largest eigenvalue of a Hermitian matrix X.

In the study of quantum error correction, there are channels such as the

randomized unitary channels and Pauli channels whose error operators are

commuting normal matrices. Thus, it is of interest to study the rank-k

numerical ranges of normal matrices. Although the error operators of a

generic quantum channel may not commute, a good understanding of the

special case would lead to deeper insights and more proof techniques for the

general case.

Given S ⊆ C, let convS denote the smallest convex subset of C contain-

ing S. For a normal matrix A ∈ Mn with eigenvalues a1, . . . , an, it was

conjectured in [3, 4] that

(1.3) Λk(A) =
⋂

1≤j1<···<jn−k+1≤n
conv {aj1 , . . . , ajn−k+1

},

which is a convex polygon including its interior (if it is non-empty). This

conjecture was confirmed in [14] using the description of Λk(A) in (1.2).
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In our discussion, a polygon would always mean a convex polygon with its

interior.

In this paper, we improve the description (1.3) of the rank-k numerical

range of a normal matrix. In particular, in Section 2 we show that for a

normal matrix A with m distinct eigenvalues, Λk(A) can be written as the

intersection of no more than max{m, 4} closed half planes in C. Moreover,

if Λk(A) 6= ∅, then it is a polygon with no more than m vertices. We then

consider the “inverse” problem, namely, for a given polygon P, construct

a normal matrix A ∈ Mn with Λk(A) = P. In other words, we study

the necessary condition for the existence of quantum channels whose error

operators have prescribed rank-k numerical ranges. It is easy to check that

Λk(Ã) = P if Ã = A ⊗ Ik with W (A) = P. Our goal is to find a normal

matrix Â with smallest size so that Λk(Â) = P. To achieve this, we give

a necessary and sufficient condition for the existence of a normal matrix

A ∈ Mn so that Λk(A) = P in terms of k-regular sets in C (see Definition

3.3). Furthermore, we show that the problem of finding a desired normal

matrix A is equivalent to a combinatorial problem of extending a given p

element set of unimodular complex numbers to a k-regular set. We then give

the solution of the problem in Section 4. As a consequence of our results, if

P is a polygon with p vertices, then there is a normal matrix A ∈Mn with

n ≤ max {p+ k − 1, 2k + 2}

such that Λk(A) = P. Moreover, this upper bound is best possible in the

sense that there exists P so that there is no matrix of smaller dimension

with rank-k numerical range equal to P.

2. Construction of higher rank numerical ranges

By (1.2), Λk(A) can be obtained as the intersection of infinitely many

closed half planes for a given A ∈ Mn. Suppose A is normal. By (1.3), one

can write Λk(A) as the intersection of
(
n
k−1

)
convex polygons so that Λk(A)

is a polygon. In particular, it is well known that Λ1(A) = conv {a1, . . . , am},
where a1, . . . , am are the distinct eigenvalues of A.

There are nice interplay between the algebraic properties of A ∈Mn and

the geometric properties of Λ1(A) = W (A). For instance, Λ1(A) is always

non-empty; Λ1(A) is a singleton if and only if A is a scalar matrix; Λ1(A) is

a non-degenerate line segment if and only if A is a non-scalar normal matrix

and its eigenvalues lie on a straight line. Unfortunately, these results have

no analogs for Λk(A) if k > 1. First, the set Λk(A) may be empty, see [13];
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there are non-scalar matrices A such that Λk(A) is a singleton; and there are

non-normal matrices A such that Λk(A) is a line segment. Even for a normal

matrix A, it is not easy to determine whether Λk(A) is empty, a point or a

line segment without actually constructing the set Λk(A). Moreover, there

is no easy way to express the vertices of the polygon Λk(A) (if it is non-

empty) in terms of the eigenvalues of the normal matrix A as in the case

of Λ1(A). Of course, one can use (1.3) to construct Λk(A) for the normal

matrix A, but the number of polygons needed in the construction will grow

exponentially for large n and k. In the following, we will study efficient ways

to generate Λk(A) for a normal matrix A ∈ Mn. While it is difficult to use

the eigenvalues of A to determine the set Λk(A), it turns out that we can

use half planes determined by the eigenvalues to generate Λk(A) efficiently.

In the following, we will focus on the following problem.

Problem 2.1. Determine the minimum number of half planes needed to

construct Λk(A) using the eigenvalues of the normal matrix A ∈Mn.

As by-products, we will show that for a normal matrix A with m distinct

eigenvalues, Λk(A) is either empty or is a polygon with at most m vertices.

In fact, by examining the location of the eigenvalues of A on the complex

plane, one may further reduce the number of half planes needed to construct

Λk(A).

Suppose the eigenvalues of A ∈ Mn are collinear. Then by a translation,

followed by a rotation, we may assume that A is Hermitian with eigenvalues

a1 ≥ · · · ≥ an. Then we have Λk(A) = [an−k+1, ak]. So we focus on those

normal matrices whose eigenvalues are not collinear.

Let us motivate our result with the following examples, which can be

verified by using (1.3).

Λ2(A) with n = 9 in Example 2.2 Λ3(A) with n = 9 in Example 2.2
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Example 2.2. Let A = diag (1, w, w2, . . . , wn−1) with w = e2πi/n. Then for

k ≤ n/2, we have Λk(A) = ∩n−1
j=0Hj , where

Hj =

{
z ∈ C : Re

(
e−

(2j+k)πi
n z

)
≤ cos

kπ

n

}
,

and only a small part of conv {wj−1, wj−1+k} lies in Λk(A).

More generally, we have the following.

Example 2.3. Let a1, . . . , an be the eigenvalues of A ∈ Mn, with n ≥ 3.

Suppose conv {a1, . . . , an} = P is an n-sided convex polygon containing the

origin in the interior. We may assume that a1, . . . , an are arranged in the

counterclockwise direction on the boundary of P. For j ∈ {1, . . . , n}, let Lj

be the line passing through aj and aj+k, where aj+k = aj+k−n if j + k > n,

and Hj be the closed half plane determined by Lj which does not contain

a` for j < ` < j + k. Then

Λk(A) =
n⋂
j=1

Hj .

Note that each Hj in Example 2.3 contains exactly n− k+ 1 eigenvalues

of A.

The situation is more complicated if Λ1(A) is not an n-sided convex poly-

gon for the normal matrix A ∈Mn.

Example 2.4. Suppose B = diag (1, i,−1,−i, 2, 2i,−2,−2i, 3, 3i,−3,−3i).

One can see from the figures that the eigenvalues 1, i,−1,−i are interior

points of Λ2(B) while these eigenvalues are the vertices of Λ3(B).

Λ2(B) Λ3(B)
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To deal with normal matrices A ∈Mn as in Example 2.4 that Λ1(A) is not

an n-side convex polygon, we need to construct some half spaces using the

eigenvalues of the normal matrix A. To do this, we introduce the following.

Given any two distinct complex numbers a and b, let L(a, b) be the (directed)

line passing through a and b. The closed half plane

H(a, b) = {z ∈ C : Im
(
(b̄− ā)(z − a)

)
≥ 0}

is called the left closed half plane determined by L(a, b). For example,

H(0, i) = {z ∈ C : Re (z) ≤ 0} and H(i, 0) = {z ∈ C : Re (z) ≥ 0}.
Remark that in Example 2.2, the set Hj is indeed the closed half plane

H(wj , wj+k). Note that L(a, b) 6= L(b, a). In our discussion, it is sometimes

convenient to write

H(a, b) = {z ∈ C : Re (e−iξz) ≤ Re (e−iξa)}

with ξ = arg(b− a)− π/2. Also, we use H0(a, b) to denote the left open half

plane determined by L(a, b), i.e., H0(a, b) = H(a, b) \ L(a, b).

We have the following result showing that for a normal matrix A ∈ Mn

with m distinct eigenvalues, Λk(A) can be written as the intersection of

at most max{m, 4} half spaces. Even without any knowledge about the

final shape of the set Λk(A), one can use m(m− 1) half spaces to generate

Λk(A). Evidently, the construction is more efficient than the construction

using (1.2) or (1.3). Furthermore, we can conclude that Λk(A) is either an

empty set, a singleton, a line segment, or a non-degenerate polygon with at

most m vertices.

Theorem 2.5. Let A ∈ Mn be normal with distinct eigenvalues a1, . . . , am

that are not collinear. Let S be the set of index pairs (r, s) such that H(ar, as)

contains at least n− k + 1 eigenvalues (counting multiplicities) of A, and

S0 = {(r, s) ∈ S : H0(ar, as) contains at most

n− k − 1 eigenvalues (counting multiplicities) }.

Then

Λk(A) =
⋂

(r,s)∈S

H(ar, as) =
⋂

(r,s)∈S0

H(ar, as).(2.1)

Moreover, Λk(A) can be written as intersection of at most max{m, 4} half

planes H(ar, as), with (r, s) ∈ S0.
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Proof. In the first part of the proof, we assume that A ∈Mn has n eigen-

values a1, . . . , an. For notational simplicity, we write H(ar, as) = H(r, s),

H0(ar, as) = H0(r, s), and L(ar, as) = L(r, s) for any two distinct eigenval-

ues ar and as of A. For each (r, s) ∈ S, since H(r, s) is convex and contains

at least n− k + 1 eigenvalues of A, by (1.3), we have

Λk(A) =
⋂

1≤j1<···<jn−k+1≤n
conv {aj1 , . . . , ajn−k+1

} ⊆ H(r, s).

It follows that

(2.2) Λk(A) ⊆
⋂

(r,s)∈S

H(r, s).

To prove the reverse inclusion of (2.2), note that if z is a point not in

Λk(A), then z will lie outside a convex polygon which equals the convex hull

of n− k+ 1 eigenvalues of A. So, it suffices to show that the convex hull W
of any n − k + 1 eigenvalues of A can be written as an intersection of half

planes, W = ∩`j=1H(rj , sj) for some (r1, s1), . . . , (r`, s`) ∈ S. We consider

the following three cases.

Case 1 Suppose W is a singleton. Then W = {ar} for some eigenvalue ar

with multiplicity at least n − k + 1. Since the eigenvalues of A are non-

collinear, there are eigenvalues as and at such that ar, as, and at are not

collinear. Then

W = H(r, s) ∩H(s, r) ∩H(r, t) ∩H(t, r).

Case 2 Suppose W is a non-degenerate line segment. In this case, W =

conv {ar, as} for some eigenvalues ar and as with ar 6= as. Since the eigen-

values of A are non-collinear, there is another eigenvalue at such that ar,

as, and at are not collinear. Without loss of generality, we assume that

at ∈ H(r, s). Otherwise, we interchange ar and as. Then

W = H(r, s) ∩H(s, r) ∩H(s, t) ∩H(t, r).

Case 3 SupposeW is a non-degenerate polygonal disk. We may relabel the

eigenvalues of A and assume that W has vertices a1, . . . , aq arranged in the

counterclockwise direction, where q ≥ 3. For convenience of notation, we

will let aq+1 = a1 and H(q, q + 1) = H(q, 1). Then

W =
⋂

1≤t≤q
H(t, t+ 1).
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Thus, the first equality in (2.1) is proved. To prove the second equality in

(2.1), we claim the following.

Claim For each (r, s) ∈ S \ S0, there exist two ordered pairs (r1, s1) and

(r2, s2) in S0 such that H(r1, s1) ∩H(r2, s2) ⊆ H0(r, s).

Once the claim is proved, all the half planes H(r, s) with (r, s) ∈ S \ S0

are not needed in the intersection
⋂

(r,s)∈S H(ar, as) and hence the second

equality in (2.1) holds.

To prove the claim, suppose (r, s) ∈ S \ S0. Then H0(r, s) contains at

least n − k eigenvalues of A. By a translation followed by a rotation, we

may assume that H(r, s) = {z ∈ C : Im z ≥ 0} and we can relabel the

index of eigenvalues so that for 1 ≤ j ≤ n − 1, either Im aj > Im aj+1 or

Im aj = Im aj+1 with Re aj ≥ Re aj+1. Let

U = conv {a1, . . . , an−k} and V = conv {an−k+1, . . . , an}.

Then U and V are disjoint if an−k 6= an−k+1 or U ∩ V = {an−k} if an−k =

an−k+1. By the assumption, U ⊆ H0(r, s) and {ar, as} ⊆ V. Define the set

W = conv {ai − aj : 1 ≤ i ≤ n− k < j ≤ n} = {u− v : u ∈ U and v ∈ V},

which is a convex polygon. Note that W ⊆ {z ∈ C : Im (z) ≥ 0} since

Im (ai − aj) ≥ 0 for all 1 ≤ i ≤ n − k < j ≤ n. By the facts that U and V
can intersect at at most one point, and the union U ∪V cannot be contained

in any line, the setW does not lie in any line that passes through the origin,

and the point 0 can only be either an extreme point of W or is not in W.

Under these conditions, one can find two extreme points w1 and w2 in W
with Im (w̄1w2) 6= 0 such that

Im (w̄1w) ≥ 0 ≥ Im (w̄2w) for all w ∈ W.(2.3)

Since w1 is an extreme point inW, there are eigenvalues as1 ∈ U and ar1 ∈ V
such that w1 = as1 − ar1 . Then (2.3) gives

Im (ās1 − ār1)(u− ar1) ≥ 0 and Im (ār1 − ās1)(v − as1) ≥ 0

for all u ∈ U and v ∈ V, and thus, U ⊆ H(r1, s1) and V ⊆ H(s1, r1).

With the fact that ar1 and as1 lie in the line L(r1, s1), the closed half plane

H(r1, s1) contains at least n − k + 1 eigenvalues of A while the open half

plane H0(r1, s1) contains at most n − k − 1 eigenvalues only. Therefore,

(r1, s1) ∈ S0. By a similar argument, one can show that there are eigenvalues

ar2 ∈ U and as2 ∈ V such that w2 = ar2 − as2 . Then (2.3) yields

Im (ār2 − ās2)(u− as2) ≤ 0 and Im (ās2 − ār2)(v − ar2) ≤ 0
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for all u ∈ U and v ∈ V, and thus, U ⊆ H(r2, s2) and V ⊆ H(s2, r2), and

one can conclude that (r2, s2) ∈ S0. Observe that the two lines L(r1, s1)

and L(r2, s2) are not parallel as Im (ār1 − ās1)(as2 − ar2) = Im (w̄1w2) 6= 0.

Using the fact that the two distinct eigenvalues ar and as are in V, which is

contained in the intersection H(s1, r1)∩H(s2, r2), one can conclude that the

intersection H(r1, s1)∩H(r2, s2) must lie in H0(r, s), the interior of H(r, s).

Therefore, the claim holds.

Next, we turn to the last part of the Theorem. It is trivial that if Λk(A)

is either an empty set, a singleton, or a non-degenerate line segment, then

only at most 4 half planes are needed in the construction of Λk(A).

Suppose A has m distinct eigenvalues a1, . . . , am and Λk(A) is a non-

degenerate polygon. Let T be a minimal subset of S0 such that Λk(A) =

∩(r,s)∈TH(r, s). Since T is minimal, the half planes H(r, s), (r, s) ∈ T , are

all distinct. We may further assume that for all (r, s) ∈ T , {a1, . . . , am} ∩
L(ar, as) ⊆ conv {ar, as}. Since Λk(A) is a non-degenerate polygon, for each

1 ≤ t ≤ m, there exist at most two pairs (r, s) ∈ T such that t ∈ {r, s}.
Therefore, T contains at most m ordered pairs. �

Example 2.6. Let A = diag (0, 0, 1, 1, i). Then

Λ2(A) = [0, 1] = H(0, 1) ∩H(1, 0) ∩H(1, i) ∩H(i, 0)

Λ3(A) = ∅ = H(1, 0) ∩H(1, i) ∩H(i, 0)

and the intersection of any 2 half planes H(ar, as) is non-empty. This ex-

ample also shows that one cannot replace max{m, 4} by m in the conclusion

in Theorem 2.5.

Example 2.7. Let A = diag (1,−1, i,−i). Then

Λ2(A) = {0} = H(1,−1) ∩H(−1, 1) ∩H(i,−i) ∩H(−i, i)

and Λ2(A) cannot be written as an intersection of less than 4 half planes

H(ar, as).

Corollary 2.8. Suppose A ∈ Mn is normal such that W (A) is an n-sided

polygon containing the origin as its interior point. Let v1, . . . , vn be the

vertices of W (A) having arguments 0 ≤ ξ1 < · · · < ξn < 2π. If k < n/2,

then Λk(A) is an n-sided convex polygon obtained by joining vj and vj+k,

where vj+k = vj+k−n if j + k > n.

By Theorem 2.5, it is easy to see that the boundary of Λk(A) are subsets

of the union of line segments of the form conv {ar, as} such that ar and as
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satisfy the H(ar, as) condition. However, it is not easy to determine which

part of the line segment actually belong to Λk(A) as shown in Examples

2.2, 2.3, and 2.4. By Theorem 2.5, if the normal matrix A ∈ Mn has m

distinct eigenvalues, we need no more than max{m, 4} half planes H(ar, as)

to generate Λk(A). Can one determine these half planes effectively? We will

answer this question by presenting an algorithm in Section 5 based on the

discussion in this section.

3. Matrices with prescribed higher rank numerical ranges

We study the following problem in this section.

Problem 3.1. Let k > 1 be a positive integer, and let P be a p-sided

polygon in C. Construct a normal matrix A with smallest size (dimension)

such that Λk(A) = P.

If P degenerates to a line segment joining two points a1 and a2. Then the

smallest n to get a normal matrix with Λk(A) = P is n = 2k, if a1 and a2

are distinct and n = k if a1 = a2. So we focus on the case when the polygon

P is non-degenerate.

A natural approach to Problem 3.1 is to reverse the construction of Λk(A)

in Example 2.3. Suppose we have a non-degenerate p-sided polygon P, with

vertices, v1, . . . , vp.

Without loss of generality, we may assume that 0 lies in the interior

of P and the arguments of vj in [0, 2π) are arranged in ascending order.

Our goal is to use the support line Lj which passes through vj , vj+1 for

j = 1, . . . , p, where vp+1 = v1, to construct A = diag (a1, . . . , ap) such that

Λk(A) = P. Note that if the desired values a1, . . . , ap exist and are arranged

in counter-clockwise direction, then (by proper numbering) the line Lj will

coincide with the line passing through aj and aj+k, where aj+k = aj+k−p if

j+k > p. Consequently, aj will lie at the intersection of Lj and Lj−k, where

Lj−k = Lj−k+p if j−k < 0. Consequently, there exists A = diag (a1, . . . , ap)

satisfying Λk(A) = P if the following hold.

(1) k < p/2.

(2) There exist a1, . . . , ap ∈ C such that

(2.a) Lj ∩ Lj−k = {aj} for j = 1, . . . , p,

(2.b) a1, . . . , ap have arguments ξ1 < · · · < ξp in the interval [ξ1, ξ1 +

2π) and 0 lie in the interior of their convex hull.
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Note that by Theorem 2.5, A has the smallest dimension among all normal

matrices B such that Λk(B) = P.

Clearly, conditions (1) and (2a) are necessary in the above construction.

From the following example, one can see that the above construction also

fails when condition (2b) is not satisfied.

Example 3.2. Let P be the 5-sided polygon with vertices {v1, . . . , v5} =

{2 + i, 1 + 2i,−1 + 3i,−1− i, 3− i}, see the below figure. Then, with k = 2,

we have

{a1, . . . , a5} = {−1 + 4i, 7− i,−1 + 7i, 4− i, (5 + 5i)/3},

which does not satisfy the condition (2b). Clearly, for A = diag (a1, . . . , a5),

Λ2(A) lies in the convex hull of {a1, . . . , a5}, which does not contain P.

The polygon P
Conditions (2a) and (2b) motivate the following definition.

Definition 3.3. Let Ω = {z ∈ C : |z| = 1}. A subset Π = {α1, . . . , αm},
with distinct α1, . . . , αm ∈ Ω, is k-regular if every semi-circular arc of Ω

without endpoints contains at least k elements in Π.

Given distinct α1, α2 ∈ Ω, α2/α1 = eiθ for a unique 0 < θ < 2π. Then

[α1, α2] = {eitα1 : 0 ≤ t ≤ θ} is the closed arc on Ω from α1 to α2 in the

counterclockwise direction. Also define the open arc

(α1, α2) = [α1, α2] \ {α1, α2}.

The value θ is called the length of these intervals. Suppose 1 ≤ k ≤ n and

Π ⊆ Ω. Then Π is k-regular if for each α ∈ Π, (α,−α)∩Π contains at least

k elements.

Note that if Π = {eiξj : 1 ≤ j ≤ n} with distinct ξ1, . . . , ξn ∈ [0, 2π), then

Π is k-regular if and only if for each r = 1, . . . , n, there are 1 ≤ j1 < · · · <
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jk ≤ n such that

eiξj1 , . . . , eiξjk ∈
(
eiξr , ei(ξr+π)

)
.(3.1)

For this reason, a set {ξ1, . . . , ξn} ⊆ [0, 2π) of n distinct numbers is also

called k-regular if {eiξj : 1 ≤ j ≤ n} is k-regular as defined in Definition 3.3.

For ξ, ξ′ ∈ [0, 2π), [ξ, ξ′] will denote the subset {t ∈ [0, 2π) : eit ∈ [eiξ, eiξ
′
]};

the intervals [ξ, ξ′), (ξ, ξ′] and (ξ, ξ′) will also be defined similarly.

In Example 2.2, a direct computation shows that for 1 ≤ r, k ≤ n,

ξr+k − ξr =

{
2kπ/n if r + k ≤ n,
2kπ/n− 2π if r + k > n.

Therefore, the set {ξ1, . . . , ξn} is k-regular and Λk(A) is nonempty for 1 ≤
k < n/2. Otherwise, the set {ξ1, . . . , ξn} is not k-regular and Λk(A) is either

empty or a singleton.

In the following, we need an alternate formulation of (1.2). For any d, ξ ∈
R, consider the closed half plane

(3.2) H(d, ξ) = {µ ∈ C : Re (e−iξµ) ≤ d},

and its boundary, which is the straight line

(3.3) L(d, ξ) = ∂H(d, ξ) = {µ ∈ C : Re (e−iξµ) = d}.

For A ∈Mn, let ReA = (A+A∗)/2. Then (1.2) is equivalent to

Λk(A) =
⋂

ξ∈[0,2π)

H(λk(Re (e−iξA)), ξ).

The following result is easy to verify.

Proposition 3.4. Let A ∈ Mn and Λk(A) = ∩mj=1H(dj , ξj) 6= ∅, where

H(dj , ξj) is defined as in (3.2) for some d1, . . . , dm ∈ R and distinct ξ1, . . . , ξm ∈
[0, 2π).

(a) We have 0 ∈ Λk(A) if and only if d1, . . . , dm ≥ 0, and 0 is an interior

point of Λk(A) if and only if d1, . . . , dm > 0.

(b) If µ = reiξ with r > 0 and ξ ∈ R, then Λk(µA) = ∩mj=1H(rdj , ξj + ξ)

and Λk(A+ µI) = ∩mj=1H(dj + r cos(ξ − ξj), ξj).

In connection to Problem 3.1, we have the following.
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Theorem 3.5. Suppose P =
⋂p
j=1 H(dj , ξj) is a non-degenerate p-sided

polygon, where H(dj , ξj) is defined as in (3.2) with d1, . . . , dp ∈ R and dis-

tinct ξ1, . . . , ξp ∈ [0, 2π). Let q be a nonnegative integer. The following two

statements are equivalent.

(I) There is a (p+ q)× (p+ q) normal matrix A such that Λk(A) = P.

(II) There are distinct ξp+1, . . . , ξp+q ∈ [0, 2π) such that {ξ1, . . . , ξp+q} is

k-regular.

Notice that a necessary condition for the set
⋂p
j=1 H(dj , ξj) to be a non-

degenerate polygon is that

{eiξ1 , . . . , eiξp} is 1-regular.(3.4)

By Proposition 3.4, one may assume that 0 lies in the interior of P in

our proofs. However, it is equally convenient for us not to impose this

assumption so that we need not verify dj > 0 in H(dj , ξj) in our proofs.

To prove Theorem 3.5, we need some lemmas.

Lemma 3.6. Given A = diag (a1, . . . , an) and 1 ≤ m < n. Suppose the

eigenvalues am+1, . . . , an are in Λk(A) but not extreme points of Λk(A).

Then

Λk(diag (a1, . . . , am)) = Λk(A).

Proof. It suffices to show that if an is in Λk(A) but not an extreme point

of Λk(A), then Λk(diag (a1, . . . , an−1)) = Λk(A).

Suppose an satisfy the above assumption. Clearly, Λk(diag (a1, . . . , an−1))

is a subset of Λk(A). On the other hand, for any 1 ≤ j1 < · · · < jn−k ≤
n − 1, Λk(A) ⊆ conv {aj1 , . . . , ajn−k , an}. Since an is not an extreme point

of Λk(A), it follows that an lies in conv {aj1 , . . . , ajn−k , an} but is not its

extreme point. Therefore,

conv {aj1 , . . . , ajn−k} = conv {aj1 , . . . , ajn−k , an}.

Thus,

Λk(A) =
⋂
{conv {aj1 , . . . , ajn−k+1

} : 1 ≤ j1 < · · · < jn−k < jn−k+1 ≤ n}

⊆
⋂
{conv {aj1 , . . . , ajn−k , an} : 1 ≤ j1 < · · · < jn−k ≤ n− 1}

=
⋂
{conv {aj1 , . . . , ajn−k} : 1 ≤ j1 < · · · < jn−k ≤ n− 1}

= Λk(diag (a1, . . . , an−1)). �

The next lemma shows that if a convex polygon P is the intersection

of half planes H(dj , ζj) for j = 1, . . . ,m, such that the set {ζ1, . . . , ζm} is
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“almost” k-regular (in the sense that {ζ1, . . . , ζm} is k-regular if we count

the multiplicity of each element in the set), one may replace these half planes

by n other half planes H(d̃j , ζ̃j) for j = 1, . . . , n, n ≥ m, with ζ̃i 6= ζ̃j for

all i 6= j, such that {ξ̃1, . . . , ξ̃n} is k-regular and the boundary L(d̃j , ζ̃j) of

H(d̃j , ζ̃j) touches the polygon P for each j = 1, . . . , n.

Lemma 3.7. Suppose P = ∩mj=1H(dj , ζj) such that 0 ≤ ζ1 ≤ · · · ≤ ζm < 2π

and for each r = 1, . . . ,m, there are 1 ≤ j1 < · · · < jk ≤ m such that

ζj1 , . . . , ζjk ∈ (ζr, ζr + π). For every n ≥ m, there exist d̃1, . . . , d̃n ∈ R
and distinct ζ̃1, . . . , ζ̃n ∈ [0, 2π) with {ζ̃1, . . . , ζ̃n} being k-regular such that

P = ∩nj=1H(d̃j , ζ̃j) and P ∩ L(d̃j , ζ̃j) 6= ∅ for each j = 1, . . . , n.

Proof. Set ζ̃1 = ζ1, and for s ∈ {2, . . . ,m}, let ζ̃s = ζs if ζs−1 < ζs. For

the remaining values, we have ζs−1 = ζs and we can set

ζ̃s−t1 = ζs−t1+1 = · · · = ζs = · · · = ζs+t2 < ζ̃s+t2+1

for some t1 ≥ 1 and t2 ≥ 0. Let ` = min{j : ζ̃j > ζ̃s−t1 + π}, then

we can replace ζs+j by ζ̃s+j = ζs+j + εj for sufficient small εj > 0 for

j = −t1 + 1,−t1 + 2, . . . , 0, . . . , t2 such that

ζ̃s−t1 < ζ̃s−t1+1 < · · · < ζ̃s < · · · < ζ̃s+t2 < min{ζ̃` − π, ζ̃s+t2+1}.

After this modification, ζ̃1, . . . , ζ̃m are distinct and {ζ̃1, . . . , ζ̃m} is k-regular.

If n > m, pick distinct ζ̃m+1, . . . , ζ̃n ∈ [0, 2π)\{ζ̃1, . . . , ζ̃m}. Then {ζ̃1, . . . , ζ̃n}

also forms a k-regular set. Finally, let d̃j = maxµ∈P Re
(
e−iζ̃jµ

)
for

j = 1, . . . , n. Clearly, we have P ∩ L(d̃j , ζ̃j) 6= ∅ and P ⊆ H(d̃j , ζ̃j) for

all j. By construction, {ζ1, . . . , ζm} ⊂ {ζ̃1, . . . , ζ̃n} and P = ∩mj=1H(dj , ζj) =

∩nj=1H(d̃j , ζ̃j).

We can now present the proof of Theorem 3.5.

Proof of Theorem 3.5. Let P =
⋂p
j=1 H(dj , ξj) be a non-degenerate

p-sided polygon, where d1, . . . , dp ∈ R and ξ1, . . . , ξp ∈ [0, 2π).

Suppose (I) holds. We may assume that A = diag (a1, . . . , ap+q) and

Λk(A) = P. By Lemma 3.6, one can remove the eigenvalues of A in Λk(A)

that are not extreme points of Λk(A) to get Ã ∈Mn for some positive integer

n ≤ p+ q so that Λk(A) = Λk(Ã). We have the following.
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Claim There are f1, . . . , fn ∈ R and ζ1, . . . , ζn ∈ [0, 2π) such that Λk(Ã) =

∩nj=1H(fj , ζj). Furthermore, for each r = 1, . . . , n, there exist 1 ≤ j1 <

· · · < jk ≤ n such that ζj1 , . . . , ζjk ∈ (ζr, ζr + π).

Once the claim holds, Lemma 3.7 will ensure that Λk(Ã) = ∩p+qj=1H(d̃j , ξ̃j)

for some d̃1, . . . , d̃p+q ∈ R and a k-regular set {ξ̃1, . . . , ξ̃p+q}, with

p⋂
j=1

H(dj , ξj) = P = Λk(A) = Λk(Ã) = ∩p+qj=1H(d̃j , ξ̃j) .

Then {ξ1, . . . , ξp} ⊆ {ξ̃1, . . . , ξ̃p+q}. Thus, we can take ξp+1, . . . , ξp+q ∈
[0, 2π) so that {ξ1, . . . , ξp+q} = {ξ̃1, . . . , ξ̃p+q}. Therefore, (II) holds.

For notational convenience, we assume that A = Ã in the claim so that

every eigenvalue of A is either an extreme point of Λk(A) or does not lie in

Λk(A).

We first construct ζ1, . . . , ζn ∈ [0, 2π) and f1, . . . , fn ∈ R. For r = 1, . . . , n,

let Γr be the set containing all ξ ∈ [0, 2π) such that the closed half plane

H(Re (e−iξar), ξ) contains at least n−k+1 eigenvalues of A. As ar is either

an extreme point of Λk(A) or not in Λk(A), there is a ζ ∈ [0, 2π) such that

Re (e−iζar) ≥ λk(Re (e−iζA)) and hence the half plane H(Re (e−iζar), ζ)

contains at least n − k + 1 eigenvalues. Then Γr is always nonempty. Fur-

thermore, by the definition of Γr, the set Γr is an union of closed arcs of Ω.

Clearly,

P = Λk(A) ⊆
⋂
ξ∈Γr

H(Re (e−iξar), ξ).

Also the above intersection, which containing P, is a non-degenerate conical

region. Then Γr is contained in some open semi-circular arc of Ω; otherwise,

the above intersection of half planes is equal to the singleton {ar}. As Γr

is a union of closed arcs in some open semi-circular arc of Ω, there exists a

unique ζr ∈ Γr such that

Γr ⊆ (ζr − π, ζr].(3.5)

Let fr = Re (e−iζrar) for 1 ≤ r ≤ n. We show that Λk(A) =
⋂n
j=1H(fj , ζj).

Suppose T is a minimal subset of S0 such that Λk(A) =
⋂

(r,s)∈T H(ar, as).

We may further assume that for all (r, s) ∈ T , {a1, . . . , am} ∩ L(ar, as) ⊆
conv {ar, as}. For each (r, s) ∈ T , write H(ar, as) = H(Re (e−iζar), ζ) with

ζ = arg(as−ar)−π/2. Then ζ ∈ Γr. We claim that ζ = ζr. Suppose not. By

the above assumption on ar, one can see that for a sufficiently small ε > 0,
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the half plane H(Re (e−iζ̂ar), ζ̂) with ζ̂ = ζ − ε will contain all eigenvalues

of A that are in H(ar, as), i.e., ζ̂ ∈ Γr. With (3.5), we have

Λk(A) ⊆ H(Re (e−iζrar), ζr) ∩H(Re (e−iζ̂ar), ζ̂) ⊆ H0(ar, as) ∪ {ar}.

So L(ar, as) ∩ Λk(A) contains at most one point. But this contradicts the

fact that (r, s) is an element in the minimal subset T . Therefore, ζ = ζr.

Then for each (r, s) ∈ T , H(ar, as) = H(fr, ζr) and so

n⋂
j=1

H(fj , ζj) ⊆
⋂

(r,s)∈T

H(ar, as) = Λk(A) ⊆
n⋂
j=1

H(fj , ζj).

Thus, Λk(A) =
⋂n
j=1H(fj , ζj) and the first part of the claim holds.

To prove the second part of the claim, without loss of generality, we may

assume that ar = 0 and ζr = 0. Then fr = 0 and

H(fr, ζr) = H = {z ∈ C : Re (z) ≤ 0}.

Thus, the closed left half plane contains at least n− k+ 1 eigenvalues of A.

Suppose that the closed right half plane −H contains eigenvalues aj1 , . . . , ajh
of A with ζjt 6= 0 for t = 1, . . . , g, and ζjt = 0 for t = g + 1, . . . , h for some

g ≤ h. Fix a sufficiently small ε > 0. We choose g + 1 ≤ ` ≤ h so that

Re (e−iεaj`) = max
g+1≤t≤h

Re (e−iεajt).

Then {ajg+1 , . . . , ajh} ⊆ H(Re (e−iεaj`), ε). On the other hand, this closed

half plane H(Re (e−iεaj`), ε) also contains all eigenvalues of A that are in

the left open half plane. Thus, this closed half plane H(Re (e−iεaj`), ε) has

at least n− g eigenvalues of A. On the other hand by (3.5), ε /∈ Γj` and so

H(Re (e−iεaj`), ε) can have at most n− k eigenvalues. Thus, we have g ≥ k.

Now for each t = 1, . . . , k, let d̂t = Re (ajt), then d̂t ≥ 0 and H ⊆ H(d̂t, 0).

Thus, the closed half plane H(d̂t, 0) contains at least n − k + 1 eigenvalues

of A, i.e., ζr = 0 ∈ Γjt . Recall that ζjt 6= 0. By (3.5), one see that

ζr ∈ (ζjt − π, ζjt) for t = 1, . . . , k.

Equivalently, ζj1 , . . . , ζjk ∈ (ζr, ζr + π). Thus, our claim is proved, and (II)

holds.

Suppose now (II) holds, namely, there are distinct ξp+1, . . . , ξp+q such that

{ξ1, . . . , ξp+q} is k-regular. For j = p+ 1, . . . , p+ q, define

dj = max
µ∈P

Re (e−iξjµ).
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Then P ⊆ H(dj , ξj) and so

P =

p⋂
j=1

H(dj , ξj) =

n⋂
j=1

H(dj , ξj)

with n = p + q. By Lemma 3.7, we may assume that P ∩ L(dj , ξj) 6= ∅ for

all j = 1, . . . , n, and 0 ≤ ξ1 < · · · < ξn < 2π such that condition (3.1) holds.

For each r = 1, . . . , n, let

ar =
i

sin(ξr+k − ξr)

(
eiξrdr+k − eiξr+kdr

)
and A = diag (a1, . . . , an). Then

Re (e−iξrar) = dr and Re (e−iξr+kar) = dr+k.

Note that ar ∈ L(dr, ξr) ∩ L(dr+k, ξr+k) is the vertex of the conical region

H(dr, ξr) ∩H(dr+k, ξr+k), which contains P. Therefore,

Re (e−iξr(ar − µ)) ≥ 0 and Re (e−iξr+k(ar − µ)) ≥ 0,

for all µ ∈ P. Since ξr+k ∈ (ξr, ξr + π), we have

Re (e−iξar) ≥ max
µ∈P

Re (e−iξµ) for all ξ ∈ [ξr, ξr+k].(3.6)

Let µj ∈ L(dj , ξj) ∩ P for j = r, r + k. As ξr+k ∈ (ξr, ξr + π), we have

µr = ar − ieiξrbr and µr+k = ar + ieiξr+kcr for some br, cr ≥ 0. Note that

Re (e−iξ(µr − ar)) = br sin(ξr − ξ) ≥ 0 for all ξ ∈ [ξr − π, ξr],

and

Re (e−iξ(µr+k − ar)) = cr sin(ξ − ξr+k) ≥ 0 for all ξ ∈ [ξr+k, ξr+k + π].

Since {ξ1, . . . , ξn} is k-regular, it is easily seen that

[0, 2π) \ [ξr, ξr+k] = [ξr − π, ξr) ∪ (ξr+k, ξr+k + π].

Therefore, for ξ ∈ [0, 2π) \ [ξr, ξr+k], we have

max{Re (e−iξ(µr − ar)),Re (e−iξ(µr+k − ar))} ≥ 0.

Moreover, we have

(3.7) max{Re (e−iξµr),Re (e−iξµr+k)} ≥ Re (e−iξar).

Let ξ ∈ [0, 2π). Then ξ ∈ [ξs, ξs+1) for some s ∈ {1, . . . , n}. It follows

that ξ ∈ [ξr, ξr+k] for r = s−k+1, . . . , s, and ξ ∈ [0, 2π)\ [ξr, ξr+k] for other

r. By (3.6) and (3.7),

min
r∈{s−k+1,...,s}

Re (e−iξar) ≥ max
µ∈P

Re (e−iξµ) ≥ max
r/∈{s−k+1,...,s}

Re (e−iξar).
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Thus, λk(Re (e−iξA)) = minr∈{s−k+1,...,s}Re (e−iξar) and so

P ⊆ H
(
λk(Re (e−iξA)), ξ

)
.

Hence, P ⊆ Λk(A). Furthermore, if ξ = ξs, then Re (e−iξsas) = ds. Thus

λk(Re (e−iξsA)) = min
r∈{s−k+1,...,s}

Re (e−iξsar) ≤ ds.

It follows that

Λk(A) =
⋂

ξ∈[0,2π)

H
(
λk(Re (e−iξA)), ξ

)
⊆

⋂
1≤s≤n

H
(
λk(Re (e−iξsA)), ξs

)
⊆

⋂
1≤s≤n

H (ds, ξs) = P.

Thus, P = Λk(A). �

By Theorem 3.5, Problem 3.1 is equivalent to the following combinatorial

problem, whose solution will be given in the next section.

Problem 3.8. Suppose {ξ1, . . . , ξp} ⊆ [0, 2π) is 1-regular. For k > 1, deter-

mine the smallest nonnegative integer q so that {ξ1, . . . , ξp+q} is k-regular

for some distinct ξp+1, . . . , ξp+q ∈ [0, 2π).

4. Solutions for Problems 3.1 and 3.8

In this section, we give the solutions for Problems 3.1 and 3.8. Given a

non-empty set Π = {ξ1, . . . , ξp} ⊆ Ω, Problem 3.8 is equivalent to the study

of smallest nonnegative integer q so that {ξ1, . . . , ξp+q} is k-regular for some

distinct ξp+1, . . . , ξp+q ∈ Ω. We have the following.

Theorem 4.1. Let k > 1 be a positive integer and Π be a p element subset

of Ω, including s pairs of antipodal points: {β1,−β1}, . . . , {βs,−βs}, where

p ≥ 3 and s ≥ 0. Suppose Π is 1-regular but not k-regular and q is the

minimum number of points in Ω one can add to Π to form a k-regular set.

(a) If k ≥ p− s, then

q =

{
2k + 1− p if s = 0,

2k + 2− p if s > 0.
(4.1)

(b) If k < p − s, then q is the smallest nonnegative integer t such that one

can remove t non-antipodal points from Π to get a (k− t)-regular set. More
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precisely,

(4.2) q = min{t ∈ N : Π \ {β1,−β1, . . . , βs,−βs} has a t-element

subset T such that Π \ T is (k − t)-regular }.

Consequently,

(4.3) q ≤ min{2k + 2− p, k − 1}.

The inequality in (4.3) becomes equality if Π = {1, i,−1, α4, . . . , αp} where

α4, . . . , αp lie in the open lower half plane.

Several remarks concerning Theorem 4.1 are in order. If condition (a)

in the theorem holds, then the value q can be determined immediately.

However, it is important to consider two cases depending on whether Π has

pairs of antipodal points as illustrated by the following.

Example 4.2. Suppose S1 = {1, w, w2, w3} with w = e2iπ/5. Then α 6= −β
for any two elements α, β ∈ S1 and adding w4 to S1 results in a 2-regular

set. Suppose S2 = {1,−1, i,−i}. Then we need to add at least two points,

say, z,−z ∈ Ω \ S2, to get a 2-regular set.

Suppose condition (b) in the theorem holds. We can determine the value q

by taking t non-antipodal elements away from Π at a time and check whether

the resulting set is (k−t)-regular. The value q can then be determined in no

more than
∑p−2s

i=0

(
p − 2s

i

)
= 2p−2s steps. The success of reducing Problem

3.8 to a problem which is solvable in finite steps depends on Lemma 4.7 and

Proposition 4.8.

It would be nice to have a simple formula for q in terms of p, k, s in case

(b) of the theorem. However, the following example show that the value q

depends not only on the values p,k,s, but also on the relative positions of

the points in Π.

Example 4.3. Let S1 = {1, w, w2, w3, w4, w5} with w = e2πi/7 and S2 =

{z2, z3, z7, z8, z12, z13} with z = e2πi/15. Notice that both S1 and S2 contain

6 elements and have no antipodal pairs. Furthermore, both of them are

2-regular but not 3-regular. Clearly, adding w6 to S1 results a 3-regular

set. However, as each of the open arcs (z3,−z3), (z8,−z8) and (z13,−z13)

contains only two elements of S2 while the intersection of this three open

arcs is empty, at least two elements has to be added to S2 to form a 3-regular

set.
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Note that our proofs are constructive; see Lemma 4.7 and Propositions

4.6 and 4.8. One can actually construct a subset Π′ ⊆ Ω with q elements so

that Π ∪Π′ is k-regular.

By Theorem 4.1, we can answer Problems 3.1 and 3.8, and obtain some

additional information on their solutions. We will continue to use the nota-

tion H(d, ξ) defined in (3.2) in the following.

Theorem 4.4. For Problem 3.1, if a p-sided polygon P is expressed as

P = ∩pj=1H(dj , ξj) for some d1, . . . , dp ∈ R and ξ1, . . . , ξp ∈ [0, 2π), then the

minimum dimension n for the existence of a normal matrix A ∈ Mn such

that Λk(A) = P is equal to p + q, where q is determined in Theorem 4.1.

Moreover,

(4.4) n ≤ max{2k + 2, p+ k − 1}.

The inequality in (4.4) becomes equality if (ξ1, ξ2, ξ3) = (0, π/2, π) and

ξ4, . . . , ξp lie in (π, 2π).

We break down the proofs of Theorems 4.1 and 4.4 in several propositions.

We first give a lower bound for the number of elements in a k-regular set.

Proposition 4.5. Suppose S = {α1, . . . , αn} ⊆ Ω is k-regular. Then n ≥
2k + 1. Furthermore, if S contains a pair of antipodal points {α,−α}, then

n ≥ 2k + 2.

Proof. For any r ∈ {1, . . . , n}, each of the open arcs (αr,−αr) and

(−αr, αr) contains k elements of S. Thus, n ≥ 2k+1. For the last statement,

if we take αr = α, then together with α and −α, we see that n ≥ 2k + 2.

The proof of the assertion is complete. �

As shown in Proposition 4.5, the existence of a pair of antipodal points

{α,−α} has implication on the size of a k-regular set Π. The next result

together with Proposition 4.5 show that the lower bound in (4.1) is best

possible.

Proposition 4.6. Let k > 1 and Π is a p element subset of Ω containing s

pairs of antipodal points, where p ≥ 3 and s ≥ 0. If Π is 1-regular but not

k-regular and k ≥ p− s, then one can extend Π to a k-regular set by adding

2k + 1− p or 2k + 2− p elements, depending whether s is zero.

Proof. Assume k ≥ p − s. Suppose first that s > 0. Let Π′′ be a set

containing (k − p + s + 1) pairs of antipodal points such that Π′′ ∩ Π is
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empty. Take

Π′ = Π′′ ∪ −(Π \ {β1,−β1, . . . , βs,−βs}).

Then Π′ contains (2k+2−p) elements. Furthermore, the set Π∪Π′ contains

exactly k+1 pairs of antipodal points hence it is k-regular. Thus, the result

follows if s > 0.

Next, suppose s = 0. Without loss of generality, we may assume that

1 ∈ Π. Hence, −1 ∈ Π′. We now modify Π′. We first delete the point −1

in Π′. Then for all other points α ∈ Π′, we replace α by eiξα if α lies in the

upper open half plane P = {z ∈ C : Im (z) > 0}, and by e−iξα if α lies in

the lower open half plane −P , with sufficiently small ξ > 0. Then we see

that for every α ∈ Π∪Π′, αP still contains exactly k elements. Thus, Π∪Π′

is k-regular. Furthermore, the modified set Π′ has one fewer point, i.e., Π′

has only 2k + 1− p elements. The proof of is complete. �

A referee pointed out that each (k − 1)-regular set can be enlarged to a

k-regular set by adding in not more than 2 extra elements. The following

result shows that sometimes 2 may not be the minimum number needed.

Lemma 4.7. Let k > 1 and Π be a subset of Ω containing at least one

non-antipodal point. The following are equivalent.

(a) One can add a point β /∈ Π so that Π ∪ {β} is k-regular.

(b) One can delete a non-antipodal point γ ∈ Π so that Π\{γ} is (k−1)-

regular.

Here, an element α ∈ Π is called a non-antipodal point of Π if −α /∈ Π.

Proof. Suppose first that (b) holds. Let P = {z ∈ C : Im (z) > 0}.
Without loss of generality, we may assume that γ = 1 is a non-antipodal

point in Π. Suppose Π \ {γ} = {eiθ1 , . . . , eiθp−1} such that

0 < θ1 < · · · < θm < π < θm+1 < · · · < θp−1 < 2π.

As Π\{γ} is (k−1)-regular, by Proposition 4.5, Π\{γ} has p−1 ≥ 2(k−1)+1

elements. Therefore, for every α ∈ Ω, the open half plane αP contains at

least k − 1 elements in Π \ {γ} and either P or −P contains at least k

elements in Π \ {γ}. Hence, we have either m = k − 1 or k ≤ m ≤ p− k.

Choose β = eiθ where

θ =

max{π + θm, θp−1}/2 if m = k − 1,

min{2π + θ1, π + θm+1}/2 if k ≤ m ≤ p− k.
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Now for every α 6= ±1, the open half plane αP contains at least k − 1

elements of Π \ {γ} and either γ or β. Hence, αP contains at least k

elements of Π∪ {β}. On the other hand, when α = ±1, the open half plane

αP contains either k elements of Π or k − 1 elements of Π and β. Again,

αP contains at least k elements of Π ∪ {β}. Thus, (a) holds.

Conversely, suppose (a) holds. If −β ∈ Π, then it is easy to see that the

set Π\{−β} is (k−1)-regular. From now, we assume that −β /∈ Π. Without

loss of generality, we may assume that β = −1. Furthermore, by replacing

Π with the set {ξ̄ : ξ ∈ Π}, if necessary, we can assume that the number of

elements in Π∩P is greater or equal to the number of elements in Π∩ (−P ).

Under this assumption, the upper open half plane must contain at least one

non-antipodal point of Π.

Let γ be the non-antipodal point in Π such that 0 < arg(γ) ≤ arg(α)

for all non-antipodal points α ∈ Π. Then γ ∈ P . We show that Π \ {γ} is

(k − 1)-regular.

Take any α ∈ Π \ {γ}. Suppose α ∈ βP ∪ γP . Then the open half plane

αP can contain at most one of points β and γ. As the open half plane αP

contains at least k elements of Π∪{β}, αP contains at least k−1 elements of

Π\{γ}. Thus, Π\{γ} is (k−1)-regular if Π\{γ} ⊆ βP ∪γP . Now suppose

(Π \ {γ}) \ (βP ∪ γP ) is nonempty and let ω1, . . . , ωt be the points in this

set. Notice that all of them lie in the upper open half plane P . Therefore,

we may assume that

0 < arg(ω1) < · · · < arg(ωt) < arg(γ) < π.

Also by the choice of γ, ω1, . . . , ωt cannot be non-antipodal points and hence

−ω1, . . . ,−ωt are in Π. Clearly, each open half plane ωjP contains at least

k elements of Π ∪ {β}. Notice that (wjP ) \ P contains exactly j elements

of Π∪ {β}, namely, −ω1, . . . ,−ωj−1 and β. Also the set P \ (wjP ) contains

exactly j elements of Π ∪ {β}, namely, ω1, . . . , ωj . It follows that the half

plane wjP contains the same number of elements of P ∪ {β} as the upper

half plane P . By Proposition 4.5, Π∪{β} contains at least 2k+ 2 elements.

Then by assumption, the upper open half plane P contains at least k + 1

elements of Π ∪ {β}. Thus, every open half plane wjP contains at least

k+ 1 elements of Π∪ {β} and it contains at least k− 1 elements of Π \ {γ}.
Therefore, Π \ {γ} is a (k − 1)-regular set and the assertion follows. �

Applying the above lemma inductively (repeatedly), we have the follow-

ing.
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Proposition 4.8. Let k > 1 and Π is a p element subset of Ω containing s

pairs of antipodal points, where p ≥ 3 and s ≥ 0. Suppose p > 2s. For any

positive t ≤ min{k, p− 2s, p− 1}, the following are equivalent.

(a) One can add t points β1, . . . , βt /∈ Π so that Π ∪ {β1, . . . , βt} is k-

regular.

(b) One can delete t non-antipodal points γ1, . . . , γt ∈ Π so that Π \
{γ1, . . . , γt} is (k − t)-regular.

Proof. Clearly, the result holds for t = 1 by Proposition 4.7. Assume the

statement holds for all ` < t. Suppose Π ∪ {β1, . . . , βt} is k-regular. Let

Π1 = Π ∪ {β1}. Then Π1 ∪ {β2, . . . , βt} is k-regular and it follows from the

assumption that one can find t− 1 non-antipodal points γ1, . . . , γt−1 ∈ Π ∪
{β1} such that Π1\{γ1, . . . , γt−1} is (k−t+1)-regular. If β1 /∈ {γ1, . . . , γt−1},
by applying Lemma 4.7 to the set (Π \ {γ1, . . . , γt−1}) ∪ {β1}, one can find

another non-antipodal point γt ∈ Π1 \ {γ1, . . . , γt−1} so that Π \ {γ1, . . . , γt}
is (k − t)-regular. On the other hand, if β1 is one of the γj , say β1 =

γ1, then Π \ {γ2, . . . , γt−1} is (k − t + 1)-regular. In this case, take an

arbitrary element γt ∈ Π \ {γ2, . . . , γt−1} and apply Lemma 4.7 to the set

(Π \ {γ2, . . . , γt}) ∪ {γt}, one can find another non-antipodal point γt+1 so

that the set Π\{γ2, . . . , γt+1} is (k− t)-regular. Then (b) follows. The proof

of (b) implying (a) can also be done by induction in a similar way. �

Suppose k < p − s. Given a p element subset Π of Ω containing s pairs

of antipodal points, β1,−β1, . . . , βs,−βs with s > 0, which is not k-regular,

the set obtained from Π by deleting all p − 2s non-antipodal points is a

(s − 1)-regular set. On the other hand, if Π does not have any pair of

antipodal points, then k ≤ p − 1 and one can always delete k elements to

form a 0-regular set. In both cases, one see that the following minimum

always exist.

q = min{t ∈ N : Π \ {β1,−β1, . . . , βs,−βs} has a t-element

subset T such that Π \ T is (k − t)-regular }.

By Proposition 4.8, one can always add this minimum number q of points

to Π to form a k-regular set. Furthermore, this number q is optimal in the

sense that one cannot add fewer than q elements to do so.

By definition, q is a positive integer bounded above by min{k, p − 2s}.
The following proposition gives more information about the minimum value

(4.2) in Theorem 4.1.
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Proposition 4.9. Using the notation in Theorem 4.1. If k < p − s, then

the value q in (4.2) exists and satisfies

q ≤

{
k if (p, s) = (k + 1, 0) or (k + 2, 1),

min{k − 1, p− 2s} otherwise.

Also q is bounded below by 2k + 1− p or 2k + 2− p, depending whether s is

zero. Furthermore, q = 2k+ 1− p if p ≤ k+ 2 with s = 0 and q = 2k+ 2− p
if p ≤ k + 3 with s > 0.

Proof. The lower bound can be seen easily from Proposition 4.5. Also

the case when (p, s) = (k + 1, 0) or (k + 2, 1) has already discussed. Now

we assume that (p, s) /∈ {(k + 1, 0), (k + 2, 1)}. Consider the case when

s ≥ 2. Take t = min{k − 1, p − 2s} and delete t non-antipodal elements

in Π. Then the resulting set is (s − 1)-regular and hence (k − t)-regular as

k − t = max{1, k − p+ 2s} ≤ s− 1. Thus, q ≤ t.
Next we consider the case when s = 1 and p ≥ k+ 3. Let {α, −α} be the

pair of antipodal points in Π. Since Π is 1-regular, there are α1 ∈ (α, −α)∩Π

and α2 ∈ (−α, α)∩Π. Pick another k−1 non-antipodal points α3, . . . , αk+1

in Π. The set Π \ {α3, . . . , αk+1} containing {α1, α2, α,−α} is 1-regular.

Then q ≤ k − 1.

Finally consider the case when s = 0 and p ≥ k+ 2. We may assume that

Π = {eiξj : 1 ≤ j ≤ p} with 0 = ξ1 < · · · < ξp < 2π. Since Π is 1-regular, we

can choose ` such that ξ` = max{ξj : 0 < ξj < π}. Then S = {ξ1, ξ`, ξ`+1} is

1-regular. Then any p− k + 1 subset of Π containing S is 1-regular. Thus,

q ≤ k − 1. �

Now we are ready to present the following:

Proof of Theorems 4.1 and 4.4. The assertions on q and n follows by

Propositions 4.6 and 4.8. For the last assertion in Theorem 4.1, we see that

in order to get a k-regular set by adding q points to Π, we need to add at

least k − 1 points eiξ, with 0 < ξ < π. If 2k + 2− p > k − 1, then p− 3 < k

and we need to add an extra k− (p− 3) points eiξ, with π < ξ < 2π, giving

a total of k − 1 + k − (p− 3) = 2k + 2− p points. This proves the equality

in (4.3). The equality in (4.4) now follows readily. �

To close this section, let us illustrate our results by the following example.

Example 4.10. Let the polygon P = conv {1, w, w2, w3, w4, w5, w6, w9}
with w = e2πi/12, see the following.
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The polygon P

Then P =
⋂8
j=1H(dj , ξj) with d1 = · · · = d6 = cos π

12 , d7 = d8 = cos π4 , and

(ξ1, . . . , ξ8) =

(
π

12
,
3π

12
,
5π

12
,
7π

12
,
9π

12
,
11π

12
,
15π

12
,
21π

12

)
.

Thus,

Π = {α1, . . . , α8} =
{
e
πi
12 , e

3πi
12 , e

5πi
12 , e

7πi
12 , e

9πi
12 , e

11πi
12 , e

15πi
12 , e

21πi
12

}
.

In particular, Π has two pairs of antipodal points, namely,
{
e

3πi
12 , e

15πi
12

}
and{

e
9πi
12 , e

21πi
12

}
, i.e., p = 8 and s = 2. By Theorem 4.4 and Proposition 4.9,

for k ≥ 5, a (2k+ 2)× (2k+ 2) normal matrix A can be constructed so that

Λk(A) = P.

It remains to consider the cases for k ≤ 4. Clearly, Π is 2-regular. Thus,

a 8×8 normal matrix A2 can be constructed so that Λ2(A2) = P. However,

Π is not k-regular for k ≥ 3.

Now we consider the case k = 3. Clearly, Π \ {e
5πi
12 } is 2-regular. Then

Theorem 4.4 shows that there is a 9×9 normal matrix A3 such that Λ3(A3) =

P. Indeed, following the proof of Lemma 4.7, we see that if Π′ = {e
18πi
12 },

Π ∪Π′ is 3-regular.

Finally, we turn to the case when k = 4. Notice that Π \ {e
5πi
12 , e

7πi
12 } is

2-regular. Thus, Theorem 4.4 shows that there is a 10 × 10 normal matrix

A4 such that Λ4(A4) = P.

In the following, we display the higher rank numerical ranges of A2, A3,

and A4. In the figures, the points “o” correspond to the vertices of the

polygon while the points “∗” correspond to the eigenvalues of the normal

matrices.
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Λ2(A2) = P Λ3(A3) = P

Λ4(A4) = P

5. An algorithm

In this section, we further present a detail procedure for constructing

the rank-k numerical ranges of normal matrices based on the discussion in

Section 2.

Given a normal matrix A with m distinct eigenvalues a1, . . . , am, one can

easily construct Λk(A) through the following algorithms.

Basic Algorithm First construct the set S0. For each ordered pair (r, s)

with r < s, count the number of eigenvalues of A (counting multiplicities)

in the open planes H0(ar, as) and H0(as, ar).

(1) If H0(ar, as) has at most n− k − 1 eigenvalues while H0(as, ar) has

at most k − 1 eigenvalues, then collect the index pair (r, s) in S0.

(2) If H0(as, ar) has at most n− k − 1 eigenvalues while H0(ar, as) has

at most k − 1 eigenvalues, then collect the index pair (s, r) in S0.
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Notice that one can already construct Λk(A) by determine the intersection

of all the half planes H(ar, as) with (r, s) ∈ S0. Nevertheless, one can per-

form the following additional steps to simplify the set S0 before constructing

Λk(A).

Modified Algorithm 1 Suppose in basic algorithm, there is an index pair

(p, q) satisfying both (1) and (2), i.e., both pairs (p, q) and (q, p) are in

S0. Then Λk(A) is a subset of a line segment. In this case, Λk(A) can be

constructed as follows.

Set âj = (aj − ap)/(aq − ap) and define S1 = {(r, s) ∈ S0 : Im (âr) 6=
Im (âs)}. If S1 = ∅, then Λk(A) = ∅. Suppose S1 6= ∅. For each (r, s) ∈ S1,

compute

brs =
Im (âr) Re (âs)− Im (âs) Re (âr)

Im (âr)− Im (âs)
.

Take

b1 = max{brs : (r, s) ∈ S1, Im (âr) ≥ 0 and Im (âs) ≤ 0},
b2 = min {brs : (r, s) ∈ S1, Im (âr) ≤ 0 and Im (âs) ≥ 0}.

Then Λk(A) is the line segment in C joining the points (aq − ap)b1 + ap and

(aq − ap)b2 + ap if b1 ≤ b2; otherwise, Λk(A) = ∅.

Modified Algorithm 2 Assume the situation mentioned in modified algo-

rithm 1 does not hold. Check if the set S0 satisfy the following.

(5.1) There are (r1, s1), . . . , (r`, s`) ∈ S0 with ` ≥ 3 such that

{r1, s1} ∩ {r2, s2} ∩ · · · ∩ {r`, s`} = {t} for some 1 ≤ t ≤ m.

If yes, define

θj =

{
arg(asj − t) if rj = t,

arg(t− arj ) if sj = t.

Relabel the indices so that 0 ≤ θ1 ≤ · · · ≤ θ` < 2π. Consider the following

three cases.

(1) If θ` − θ1 < π, remove the all pairs (rj , sj) in S0 for j 6= 1, `. Then

check again whether the modified set still satisfies (5.1).

(2) If θk+1 − θk > π for some k, remove the all pairs (rj , sj) in S0 for

j 6= k, k+1. Then check again whether the modified set still satisfies

(5.1)

(3) If the above two items are not satisfied, then Λk(A) is either the

empty set or the singleton set {at}. In this case, check whether at
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lies in H(ar, as) for all (r, s) ∈ S0. If yes, Λk(A) is the singleton set;

otherwise it is the empty set.

Finally, if the modified set S0 does not satisfy (5.1), then one can construct

Λk(A) by determine the intersection of all the half planes H(ar, as) with

(r, s) in the modified set S0.
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[4] M.D. Choi, D. W. Kribs, and K. Życzkowski, Quantum error correcting codes

from the compression formalism, Rep. Math. Phys., 58 (2006), 77–91.

[5] H.L. Gau, C.K. Li, and P.Y. Wu, Higher-Rank Numerical Ranges and Dilations,

J. Operator Theory, 63 (2010), 181–189.

[6] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University

Press, Cambridge, 1991.

[7] E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phys. Rev.

A 55 (1997), 900-911.

[8] E. Knill, R. Laflamme, and L. Viola, Theory of quantum error correction for

general noise, Phys. Rev. Lett. 84 (2000), 2525.

[9] D.W. Kribs, R. Laflamme, D. Poulin, and M. Lesosky, Operator quantum error

correction, Quant. Inf. & Comp., 6 (2006), 383-399.

[10] S.R. Lay, Convex Sets and Their Applications, Pure and Applied Mathematics,

John Wiley & Sons, Inc., New York, 1982.

[11] C.K. Li and Y.T. Poon, Generalized numerical ranges and quantum error cor-

rection, J. Operator Theory, to appear.

e-preprint http://arxiv.org/abs/0812.4772.

[12] C.K. Li, Y.T. Poon, and N.S. Sze, Higher rank numerical ranges and low rank

perturbation of quantum channels, J. Math. Anal. Appl. 348 (2008), 843-855.

[13] C.K. Li, Y.T. Poon, and N.S. Sze, Condition for the higher rank numerical range

to be non-empty, Linear and Multilinear Algebra, 57(2009), 365-368.



HIGHER RANK NUMERICAL RANGES OF NORMAL MATRICES 29

[14] C.K. Li and N.S. Sze, Canonical forms, higher rank numerical ranges, totally

isotropic subspaces, and matrix equations, Proc. Amer. Math. Soc., 136 (2008),

3013-3023.
[15] M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information,

Cambridge, New York, 2000.

[16] H. Woerdeman, The higher rank numerical range is convex, Linear and Multi-

linear Algebra 56 (2008), 65-67.

Department of Mathematics, National Central University, Chung-Li 320,

Taiwan
E-mail address: hlgau@math.ncu.edu.tw

Department of Mathematics, College of William & Mary, Williamsburg,

VA 23185
E-mail address: ckli@math.wm.edu

Department of Mathematics, Iowa State University, Ames, IA 50051

E-mail address: ytpoon@iastate.edu

Department of Applied Mathematics, The Hong Kong Polytechnic Univer-

sity, Hung Hom, Hong Kong

E-mail address: raymond.sze@inet.polyu.edu.hk


