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Abstract
Let R be a proper subset of the complex plane, and let SR be the set of n × n complex

matrices A such that the numerical range W (A) satisfies W (A) ⊆ R. Linear maps φ on

matrices satisfying φ(SR) = SR are characterized. Denote by S̃R the set of n × n complex

matrices A such that the numerical radius r(A) satisfies r(A) ⊆ R for a proper subset R

of nonnegative real numbers. Linear maps φ on matrices satisfying φ(S̃R) = S̃R are also
characterized. Analogous results on Hermitian matrices are obtained.
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1 Introduction

Let Mn be the algebra of n × n complex matrices. Define the numerical range of A ∈ Mn

by
W (A) = {x∗Ax : x ∈ Cn, x∗x = 1},

and the numerical radius of A by

r(A) = {|µ| : µ ∈ W (A)}.

The numerical range and numerical radius are useful concepts in studying matrices; see [4,

Chapter 1].
Let R be a proper subset of the complex plane, and let SR be the subset of Mn consisting

of matrices A such that W (A) ⊆ R, i.e.

SR = {A ∈ Mn : W (A) ⊆ R}.

There has been considerable interest in studying inclusion regions for numerical ranges. It
is in fact very useful in knowing inclusion regions for W (A). For example, it is well known

(see [4, Chapter 1]) that W (A) ⊆ IR if and only if A = A∗; W (A) ⊆ [0,∞) if and only if A is

positive semidefinite; and W (A) ⊆ (0,∞) if and only if A is positive definite. Moreover, Ando

[1] (see also [2]) showed that W (A) is contained in the unit disk if and only if A = X∗CX

with a 2m × n matrix X such that X∗X = In and C =

(
0m 2Im

0m 0m

)
for some integer m;

Mirman [6] showed that W (A) is contained in a triangle with vertices a, b, c if and only if
A = X∗CX with X∗X = In and C ∈ Mm a normal matrix with eigenvalues a, b, c for some
integer m; see [3] for further results along this direction.
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Let Vn be Mn or the real linear space Hn of n × n Hermitian matrices, and let IF = C
or IR according to Vn = Mn or Hn. In this paper, we study linear preservers of SR, i.e.,
IF-linear operators φ : Vn → Vn satisfying φ(SR) = SR.

Denote by Pn,P
+
n ,Un,GLn, the sets of positive semidefinite matrices, positive definite

matrices, unitary matrices, and invertible matrices in Mn, respectively. Then S[0,∞) = Pn is

the set of positive semidefinite matrices; S(0,∞) = P+
n is the set of positive definite matrices;

for R = {z ∈ C : |z| ≤ 1} the set SR consists of matrices A satisfying r(A) ≤ 1. We have
the following results on linear preservers of inclusion regions for numerical ranges.

Theorem 1.1 [8] Let Vn = Mn or Hn, and let IF = C or IR accordingly. Suppose φ : Vn →
Vn is an IF-linear operator. Then the following are equivalent.

(a) φ(Pn) = Pn.

(b) φ(P+
n ) = P+

n .

(c) φ has the form A 7→ T ∗AT or A 7→ T ∗AtT for some T ∈ GLn.

Theorem 1.2 [5] Let Vn = Mn or Hn, and let IF = C or IR accordingly. Suppose φ : Vn →
Vn is an IF-linear operator. Then the following are equivalent.

(a) r(φ(A)) = r(A) for all A ∈ Vn.

(b) φ(SR) = SR for R = {µ ∈ IF : |µ| ≤ 1}.

(c) there exists µ ∈ IF with |µ| = 1 such that φ has the form A 7→ µU∗AU or A 7→ µU∗AtU
for some U ∈ Un.

Let IF = IR or C according to Vn = Hn or Mn. In Sections 3 and 4, we shall solve the
slightly more general problem, namely, characterization of linear operators φ : Vn → Vn

such that φ(SR1) = SR2 for two given subsets R1, R2 ⊆ IF, after proving some preliminary

results in Section 2. Denote by S̃R the set of matrices A such that r(A) ∈ R for a given

proper subset R of [0,∞). In section 5, we characterize linear operators φ : Vn → Vn such

that φ(S̃R1) = φ(S̃R2) for two subsets R1, R2 ⊆ [0,∞).

Related to our investigation, one may also consider φ such that φ(SR) ⊆ SR. But it is

difficult. For example, if R = [0,∞), then φ(SR) ⊆ SR if and only if φ is a positive linear

map. The structure of such maps are known to be very complicated, see [7, Chapter 3]. In
connection to this, we have the following result.

Theorem 1.3 Let Vn = Hn or Mn, and let IF = C or IR accordingly. An IF-linear map
φ : Vn → Vn satisfies W (φ(A)) ⊆ W (A) for all A ∈ Vn if and only if φ is a unital positive

linear map. Consequently, if φ : Vn → Vn is a unital positive linear map, then φ(SR) ⊆ SR

for any subset R of C.
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Proof. (⇒) If A is positive semidefinite, then W (φ(A)) ⊆ W (A) ⊆ [0,∞). Thus, φ(A) is

positive semidefinite. Also, W (φ(In)) ⊆ W (In) = {1}. Hence, φ(In) = In.

(⇐) Suppose φ is a unital positive linear map. Then φ maps Hermitian matrices to

Hermitian matrices in case Vn = Mn. Furthermore, if λI − (µA + (µA)∗) ∈ Pn, then

λI − (µφ(A) + (µφ(A))∗) ∈ Pn for any λ ∈ IR and µ ∈ IF. Since λI − (µB + (µB)∗) ∈ Pn if
and only if

W (B) ⊆ {z ∈ IF : λ ≥ (µz) + (µz)∗},

we see that each half space of IF containing W (A) will also contain W (φ(A)). It follows that

W (φ(A)) ⊆ W (A). �

2 Preliminary Results

Lemma 2.1 Let Vn = Hn or Mn, and let IF = IR or C according to Vn = Hn or Mn.
If R ⊆ IF contains a nondegenerate line segment, then SR ⊆ Vn is a spanning set of Vn.
Consequently, if φ : Vn → Vn is a linear operator such that φ(SR1) = SR for some R1 ⊆ IF,
then SR1 is a spanning set of Vn and φ is invertible.

Proof. We prove the result for Mn. The proof for Hn is similar.
Recall that a matrix A ∈ Mn has numerical range lying on a line segment L if and only

if A is normal with eigenvalues contained in L. Thus, if R contains a line segment L, then
SR contains all normal matrices with eigenvalues in L. There exists some A ∈ SR with
eigenvalues in L and nonzero trace. By the main result in [9], {U∗AU : U ∈ Un} ⊆ SR is a
spanning set of Mn.

Now, suppose φ : Mn → Mn is a linear operator such that φ(SR1) = SR for some R1 ⊆ C.

Since φ(SR1) contains a spanning set of Mn the last assertion follows. �

The following lemma can be verified readily.

Lemma 2.2 Let Vn = Hn or Mn, and let IF = IR or C according to Vn = Hn or Mn.
Suppose φ : Vn → Vn is a linear operator satisfying φ(SR1) = SR2. Then for any nonzero
µ ∈ IF

φ(SµR1) = SµR2 .

For R ⊆ IF and µ ∈ IF, let

R + µ = {z + µ ∈ IF : z ∈ R}.

We have the following observation.

Lemma 2.3 Let Vn = Hn or Mn, and let IF = IR or C according to Vn = Hn or Mn.
Suppose φ : Vn → Vn is a linear operator satisfying φ(In) = µIn for some µ ∈ IF and

φ(SR1) = SR2. Then µR1 = R2, and for any nonzero ν ∈ IF

φ(SR1+ν) = SR2+µν .
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Proof. Note that z ∈ R1 if and only if zI ∈ SR1 . Hence, µzI ∈ SR2 , or equivalently, µz ∈ R2.
Thus, µR1 = R2.

Let A ∈ Vn and µ ∈ IF. Then W (A) ⊆ R if and only if W (A + νIn) ⊆ R + ν. Hence,

SR+ν = {A + νIn : A ∈ SR}. Since φ is linear and φ(In) = µIn, the result follows. �

Lemma 2.4 Let Vn = Hn or Mn, and let R1, R2 ⊆ IF, where IF = IR or C according
to Vn = Hn or Mn. Suppose φ : Vn → Vn is linear and satisfies φ(SR1) = SR2. If C1

is a connected component of R1, then there is a connected component C2 of R2 such that
φ(SC1) ⊆ SC2. The set inclusion becomes a set equality if φ is invertible.

Proof. Let C1 be a connected component of R1 and let A ∈ SC1 . For any B ∈ SC1 we

show that there is a continuous path γ : [0, 1] → SC1 such that γ(0) = A and γ(1) = B as

follows. First, by [4, Theorem 1.3.4], there is U ∈ Un such that A = U∗(aIn + A0)U , where

a = (tr A)/n and A0 has zero diagonal entries. The path γ1(t) = U∗(aIn + (1 − t)A0)U ,

t ∈ [0, 1], connects A and aIn. Moreover, since a ∈ W (A), we see that

W (γ1(t)) = W ((1− t)A + taIn) ⊆ (1− t)W (A) + tW (aIn) ⊆ W (A) ⊆ C1.

So, γ1 is a path in SC1 . Similarly, there is a path γ2 joining B and bIn, where b = (tr B)/n

in SC1 . Finally, if a ∈ W (A) ⊆ C1 and b ∈ W (B) ⊆ C1, there is a continuous path γ3 in C1

joining a and b. Then γ̃3 defined by γ̃3(t) = γ3(t)In is a continuous path in SC1 connecting

aIn and bIn. Combining γ1, γ̃3 and γ2, we get a continuous path γ(t) in SC1 connecting A
and B.

Now, W (γ(t)) ⊆ SR2 . We see that the set
⋃

t∈[0,1] W (γ(t)) is a connected subset of

R2 containing both W (φ(A)) and W (φ(B)). Hence, they must lie in the same connected

component C2 of R2. Thus for every B ∈ SC1 , we have φ(B) ∈ SC2 . Thus φ(SC1) ⊆ SC2 .

Suppose φ is invertible. Then φ−1(SR2) = SR1 . It follows that φ−1(SC2) ⊆ SC1 . Hence
the last assertion follows. �

The next two lemmas characterize linear operators φ satisfying φ(SR1) = SR2 for some
special R1.

Lemma 2.5 Let Vn = Hn or Mn, and IF = IR or C according to Vn = Hn or Mn. Suppose
R1, R2 ⊆ IF are non-empty such that R1 does not contain any line segment, and Ri 6= {0}
for i = 1, 2. A linear operator φ : Vn → Vn satisfies φ(SR1) = SR2 if and only if φ(I) = µI
for some µ ∈ IF satisfying µR1 = R2.

Proof. Since R1 does not contain any line segment, then W (A) is a singleton for every

A ∈ SR1 . Hence, SR1 = {νIn : ν ∈ R1} and the linear span of SR1 = IF · I, is the 1-

dimensional space of scalar matrices in Vn. The (⇐) of the assertion is clear. To prove

the implication (⇒), suppose ν0 ∈ R1 and B = φ(ν0In). Then for any ν ∈ R1, φ(νIn) =

(ν/ν0)B. If B is not a scalar matrix, then W (B) ⊆ R2 contains some line segment L. By

Lemma 2.1, the set T = {X ∈ Vn : W (X) ⊆ L} is a spanning set of Vn. It follows that

φ(IF · I) = φ(spanSR1) = spanSR2 = Vn, which is a contradiction. �
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Lemma 2.6 Let Vn = Hn or Mn, and IF = IR or C according to Vn = Hn or Mn. Suppose
R1 = IF and R2 ⊆ IF is non-empty and not equal to {0}. A linear operator φ : Vn → Vn

satisfies φ(SR1) = SR2 if and only if φ is invertible and R2 = IF.

Proof. To prove the implication (⇒), take any nonzero element ν ∈ IF and A ∈ Vn = SR1

such that φ(A) = νIn ∈ SR2 . Then for any µ ∈ IF, we have µA ∈ SR1 and φ(µA) = µνIn ∈
SR2 . Thus, µν ∈ R2. It follows that R2 = IF. By Lemma 2.1, φ is invertible. The converse
is clear. �

3 Results on Hermitian matrices

In this section, we characterize linear maps φ on Hn satisfying φ(SR1) = SR2 for two given
subsets R1, R2 ⊆ IR. To avoid trivial consideration, we assume that R1 and R2 are non-
empty. Furthermore, if R2 = {0} then φ can be any linear map such that φ(A) = 0 for all

A ∈ SR1 ; one cannot say much about the structure of φ. If R1 = {0}, then we must have

R2 = {0} and φ can be any linear map. So, we also exclude these cases in our consideration.

Theorem 3.1 Let R1, R2 be non-empty subsets of IR such that Rj 6= {0} for j = 1, 2. There

is a linear operator φ : Hn → Hn satisfying φ(SR1) = SR2 if and only if there is a nonzero
µ ∈ IR such that µR1 = R2 and one of the following conditions holds.

1. The set R1 does not contain any line segment and φ(In) = µIn.

2. The set R1 = IR and φ is invertible.

3. The set R1 equals (0,∞), [0,∞), (−∞, 0], (−∞, 0] or IR \ {0}, and φ has the form

A 7→ µT ∗AT or A 7→ µT ∗AtT for some T ∈ GLn.

4. The set R1 is not of any of the above forms, and φ has the form A 7→ µU∗AU or

A 7→ µU∗AtU for some U ∈ Un.

Proof. The implication (⇐) can be readily verified. We consider the converse. The first
two cases follow from Lemmas 2.5 and 2.6. In the other cases, R1 contains a connected
component L1 which is neither IR nor a singleton set. By Lemma 2.4, we have φ(SL1) ⊆ SL2

for a connected component L2 of R2. Note that L2 is not a singleton. Otherwise, SL2 = {µIn}
for some µ ∈ IR. Since SL1 is a spanning set of Hn, φ(Hn) = {µIn}. It follows that µ = 0,
which is a contradiction. So, L2 is a nontrivial interval, φ is invertible by Lemma 2.1, and
φ(SL1) = SL2 .

Here we consider the following different types of proper intervals L in IR.

(a) L = [0,∞) or (−∞, 0];

(b) L = (0,∞) or (−∞, 0);

(c) There exists (−a, a) ⊆ L for some a > 0 but L 6= IR;
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(d) L = [0, a), (0, a), [0, a], (0, a], (−a, 0], (−a, 0), [−a, 0] or [−a, 0) for some a > 0;

(e) L = (a,∞), [a,∞), (−∞,−a) or (−∞,−a] for some a > 0;

(f) L = (a, b), (a, b], [a, b) or [a, b] for some a, b ∈ IR with either 0 < a < b or a < b < 0.

In order that φ(SL1) = SL2 , L1 and L2 must be of the same type by the following character
of intervals, which are invariant under an invertible linear map.

(a) SL = ±Pn and for every A ∈ SL, kA ∈ SL for all k ≥ 0;

(b) SL = ±P+
n and for every A ∈ SL, kA ∈ SL for all k > 0;

(c) SL 6= Hn and there exists A ∈ SL such that −A ∈ SL;

(d) For every nonzero A ∈ SL, −A /∈ SL. Moreover, there exist k1 and k2 with 0 < k1 < k2

such that kA ∈ SL for all k ≤ k1 while kA /∈ SL for all k ≥ k2;

(e) For every A ∈ SL, −A /∈ SL. Also there exist k1 and k2 with 0 < k1 < k2 such that

kA /∈ SL for all k ≤ k1 while kA ∈ SL for all k ≥ k2;

(f) SL does not satisfy any of above properties.

Now, we are ready to characterize φ according to the different types of L1. We have the
following two cases.

(i) If L1 is of the type (a) or (b), then φ has the form A 7→ µT ∗AT or A 7→ µT ∗AtT for

some T ∈ GLn and µ ∈ {1,−1} such that µR1 = R2.

(ii) In the other cases, φ has the form A 7→ µU∗AU or A 7→ µU∗AtU for some U ∈ Un

and µ ∈ {1,−1} such that µR1 = R2.

For type (a), note that SL1 and SL2 are either Pn or −Pn. Hence, φ(Pn) = Pn or

φ(Pn) = −Pn. Replacing φ by −φ if necessary and using Theorem 1.1, we get the result.

For type (b), note that SL1 and SL2 are either P+
n or −P+

n . The result again follows from
Theorem 1.1.

For type (c), let ki = sup{k > 0 : (−k, k) ⊆ Li} for i = 1, 2. Then both k1 and k2 are

positive. Replacing (φ, L1, L2) by (k1

k2
φ, 1

k1
L1,

1
k2

L2), we may assume k1 = k2 = 1. By the

definition of k1, we must have [−k, k] ⊆ L1 for all k < 1; otherwise there is a k < k′ < 1

such that (−k′, k′) 6⊆ L1.

For any A ∈ Hn and k ∈ (−1, 1), W ( k
r(A)

A) ⊆ [−k, k] ⊆ L1. Then W (φ( k
r(A)

A)) ⊆ L2.

We claim that W (φ( 1
r(A)

A)) ⊆ [−1, 1]. Otherwise, there is z ∈ W (φ( 1
r(A)

A)) such that

|z| > 1. Since kz ∈ W (φ( k
r(A)

A)) ⊆ L2 and k can be any value in (−1, 1), it follows that

(−|z|, |z|) ⊆ L2. It is impossible since |z| > 1 = k2. Hence, we have W (φ( 1
r(A)

A)) ⊆ [−1, 1],

it follows that r(φ(A)) ≤ r(A). By considering φ−1, we have r(φ−1(A)) ≤ r(A). Hence, φ
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is a numerical radius preserver on Hn. By Theorem 1.2, φ has the asserted form, and the
result follows.

For type (d), we may assume that L1 = L2 = L is one of the following intervals:

[0, 1], [0, 1), (0, 1], (0, 1).

Otherwise, replace (φ, L1, L2) by ( b
a
φ, aL1, bL2) for some suitable nonzero a, b ∈ IR. Then

A ∈ Hn satisfies r(A) < 1 (r(A) ≤ 1) if and only if A = A1 − A2 with A1, A2 ∈ SL. Since

φ(SL) = SL, it follows that r(φ(A)) < 1 (r(φ(A)) ≤ 1) whenever r(A) < 1 (r(A) ≤ 1).

Applying the argument to φ−1, we see that r(A) < 1 (r(A) ≤ 1) whenever r(φ(A)) < 1

(r(φ(A)) ≤ 1). Consequently, φ preserves the numerical radius. The result follows from
Theorem 1.2.

For type (e), we may assume that L1 = L2 = L is the interval [1,∞) or (1,∞). Otherwise,

replace (φ, L1, L2) by ( b
a
φ, aL1, bL2) for some suitable nonzero a, b ∈ IR. Then

{kA : W (A) ⊆ Li and k > 0} = P+
n , i = 1, 2.

Since φ is linear, we see that φ(P+
n ) = P+

n . By Theorem 1.1, φ has the form A 7→ T ∗A+T

for some T ∈ GLn, where A+ denotes A or At.

Suppose T ∗T has an eigenvalue γ < 1. Then A = 2−1(1 + 1/γ)In ∈ SL1 , but φ(A) =

2−1(1 + 1/γ)T ∗T has an eigenvalue 2−1(γ + 1) < 1. Thus, W (φ(A)) 6⊆ L2, which is a
contradiction. Thus, all eigenvalues of T ∗T are larger than or equal to 1, i.e., all singular

values of T are larger than or equal to 1. Applying the argument to φ−1(A) = (T ∗)−1A+T−1,

we see that the singular values of T−1 are larger than or equal to 1. As a result, all singular
values of T equal 1, i.e., T is unitary.

For type (f), we may replace φ by −φ if necessary, and assume that L1, L2 ⊆ (0,∞). Let
r1, r2, s1 and s2 denote inf L1, inf L2, sup L1 and sup L2, respectively. Then all of them are
positive. Suppose W (φ(In)) = [a1, b1]. Then as z ∈ L1 if and only if [za1, zb1] ⊆ L2, we have

0 < r2 ≤ a1r1 ≤ b1s1 ≤ s2.

Similarly, if W (φ−1(In)) = [a2, b2], then

0 < r1 ≤ a2r2 ≤ b2s2 ≤ s1.

We can conclude that 1 ≤ a1a2 ≤ b1b2 ≤ 1, and that a1a2 = b1b2. As 0 < a1 ≤ b1 and
0 < a2 ≤ b2, we have a1 = b1 and a2 = b2. Thus, φ(In) = µIn for some µ ∈ IR. By lemma

2.3 with some suitable ν ∈ IR, φ(SL1−ν) = SL2−µν , where L1 − ν is of type (c).

It is easy to check that there is a nonzero µ ∈ IR such that µR1 = R2 in each case. �

4 Results on Complex Matrices

In this section, we characterize linear maps φ on Mn satisfying φ(SR1) = SR2 for two given
subsets R1, R2 ⊆ C. Similar to section 3, we assume that R1 and R2 are non-empty. Also
we exclude the cases that R1 or R2 equal to the set {0} in our consideration.

Identify U1 with the unit circle in C, we have the following result.
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Theorem 4.1 Let R1, R2 be non-empty subsets of C such that Rj 6= {0} for j = 1, 2. There

is a linear map φ : Mn → Mn satisfying φ(SR1) = SR2 if and only if there is a nonzero
µ ∈ C such that µR1 = R2 and one of the following conditions holds.

1. The set R1 does not contain any nondegenerate line segment and φ(In) = µIn.

2. The set R1 has no interior point and is the union of a collection of straight lines such
that each of them passes through the origin; φ(Hn) = µHn.

3. The set R1 has no interior point and equals R2∪R3, where R2 is a non-empty collection
of straight lines and R3 does not contain any line segment so that either R2 contains a
line not passing the origin or R3 \ {0} is non-empty; φ(Hn) = µHn and φ(In) = µIn.

4. The set R1 = C and φ is invertible.

5. The set R1 6= C has interior points and is a union of sets of the forms: w(0,∞)

or w[0,∞) with w ∈ U1; φ has the form A 7→ µT ∗AT or A 7→ µT ∗AtT for some
T ∈ GLn.

6. The set R1 does not satisfy any of the conditions in (1)–(5), and φ has the form

A 7→ µU∗AU or A 7→ µU∗AtU for some U ∈ Un.

Proof. The implication (⇐) can be readily verified except for Case (3). Note that in such

case, if A ∈ SR1 , then W (A) has no interior point and is a subset of a+bIR for some a, b ∈ C.

Thus, A = aI + bH for some H ∈ Hn. So, φ(A) = µ(aI + bK) for some K ∈ Hn, and thus

W (φ(A)) ⊆ µ(a + bIR) ⊆ µR1 = R2.

For the converse, Case (1) and Case (4) follow from Lemmas 2.5 and 2.6. We focus on
the other cases.

Note that R2 must contain some nondegenerate line segment. Otherwise, by lemma 2.4,
there is a connected component C1 in R1 containing a nondegenerate line segment, and a
singleton component C2 in R2 such that φ(SC1) = SC2 . Clearly, SC2 = {µIn} for some

µ ∈ R2. Since SC1 is a spanning set of Mn, φ(Mn) = {µIn}. It follows that µ = 0, which is
a contradiction. So, R2 must contain some nondegenerate line segment, and φ is invertible
by Lemma 2.1.

In the following, we establish a series of assertions leading to the conclusion that φ(Hn) =

wHn for some w ∈ U1 (Assertion 5).
For i = 1, 2, let Ji be the subset of Ri containing all elements z such that rz ∈ Ri for

all r ∈ (0, 1]. Also, let J̃i be the subset of Ri containing all elements z which rz ∈ S for all

r ∈ [1,∞). Also, for any α, β ∈ C, let [α, β] = {λα + (1 − λ)β : λ ∈ [0, 1]}. We have the
following assertions.

Assertion 1 If J1 is nonempty, then φ(SJ1) = SJ2. Similarly, φ(SJ̃1
) = SJ̃2

if J̃1 is

nonempty.
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Proof. We shall prove the first implication, that of the second is similar. Let A ∈ SJ1 .

Then W (A) ⊆ J1 ⊆ R1, and W (φ(A)) ⊆ R2. By the definition of J1, W (rA) ⊆ J1 for all

r ∈ (0, 1]. Hence, for every z ∈ W (φ(A)) ⊆ R2, rz ∈ R2 for all r ∈ (0, 1]. We have z ∈ J2

and φ(A) ∈ SJ2 . Therefore, φ(SJ1) ⊆ SJ2 . By considering φ−1, we can deduce with a similar

argument that φ−1(SJ2) ⊆ SJ1 . The result follows.

Assertion 2 If J1 has nonzero elements, then there exists w ∈ U1 such that φ(Hn) = wHn.

Proof. If J1 has some nonzero elements, then so does J2. Otherwise, φ(SJ1) = {0}. Also,

R2 6= C as that is R1. Otherwise, φ(SJ1) = Mn which implies SJ1 = Mn.

For J = J1 or J2, one of the following holds.

(a) 0 ∈ J and it is an interior point;

(b) 0 ∈ J and it is not an interior point;

(c) 0 /∈ J and there is r > 0 such that z ∈ J for all 0 < |z| < r;

(d) 0 /∈ J and no such r > 0 mentioned in (c) exists.

In order to have φ(SJ1) = SJ2 , J1 and J2 must be of the same type by the following character
of regions, which are invariant under an invertible linear map.

(a) The zero matrix is in SJ and there exists some nonzero A ∈ SJ such that wA ∈ SJ for
all w ∈ U1.

(b) The zero matrix is in SJ and there does not exist any nonzero A ∈ SJ such that
wA ∈ SJ for all w ∈ U1.

(c) The zero matrix is not in SJ and there exists some nonzero A ∈ SJ such that wA ∈ SJ

for all w ∈ U1.

(d) The zero matrix is not in SJ and there does not exist any nonzero A ∈ SJ such that
wA ∈ SJ for all w ∈ U1.

Next, we prove that there is w ∈ U1 such that φ(Hn) = wHn according to the different
types of J1.

For type (a), let ki = sup{k > 0 : B(0; k) ⊆ Ji} for i = 1, 2 where B(a; k) is the open ball
with center at a and radius k. Since the origin is an interior point and Ji is a proper subset

of C, ki is a positive number for each i = 1, 2. Replacing (φ, J1, J2) by (k1

k2
φ, 1

k1
J1,

1
k2

J2), we

may assume φ(SJ1) = SJ2 and k1 = k2 = 1.

By the definition of J1, we must have the closed ball B(0; k) ⊆ J1 for all k < 1; otherwise

there is a k < k′ < 1 such that B(0; k′) 6⊆ J1.
We shall prove that φ is a numerical radius preserver on Mn. For any A ∈ Mn and

k ∈ B(0; 1), we have W ( k
r(A)

A) ⊆ B(0; k) ⊆ J1. Thus W (φ( k
r(A)

A)) ⊆ J2. We claim that
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W (φ( 1
r(A)

A)) ⊆ B(0; 1). Otherwise, there is z ∈ W (φ( 1
r(A)

A)) such that |z| > 1. Since

kz ∈ W (φ( k
r(A)

A)) ⊆ J2 and k can be any value in B(0; 1), it follows that B(0; |z|) ⊆ J2.

But this is impossible since |z| > 1 = k2. Hence, we have W (φ( 1
r(A)

A)) ⊆ B(0; 1). It

follows that r(φ(A)) ≤ r(A). By considering φ−1, we have r(φ−1(A)) ≤ r(A). Hence, φ
is a numerical radius preserver on Mn. By Theorem 1.2, φ has the form A 7→ µUAU∗ or

A 7→ µUAtU∗ for some U ∈ Un. The result follows.

For any subset C ⊆ C and k > 0, let U1(C) = {w ∈ U1 : wr ∈ C for some r > 0} and

U1(C, k) = {w ∈ U1 : wk ∈ C}. Clearly, U1(C, k) ⊆ U1(C) ⊆ U1. For any w1, w2 ∈ U1, let

[w1 : w2] be the arc joining w1 and w2 in the unit circle in the anticlockwise direction. Also,

let d(w1 : w2) be the length of the arc, i.e.

d(w1 : w2) =

{
arg(w1)− arg(w2) if arg(w1) ≥ arg(w2),

2π + arg(w1)− arg(w2) if arg(w1) < arg(w2).

For type (b), let P ∈ Pn. Suppose φ(P ) /∈ wHn for any w ∈ U1. Then U1(W (φ(P )))

must contain some nondegenerate arc, say [w1 : w2]. Suppose w1r1, w2r2 ∈ W (φ(P )) for

some r1, r2 > 0. Note that there exists w′ ∈ U1 and ε > 0 such that W (w′εP ) ⊆ J1.

Thus, W (w′εφ(P )) ⊆ J2. By the definition of J2, we have [w′w1 : w′w2] ⊆ U1(J2, k), where

k = ε min{r1, r2}. Let w0 ∈ U1(φ
−1(In)). Then w0r0 ∈ W (φ−1(In)) for some r0 > 0.

Since W (wk′In) ⊆ J2 for all w ∈ [w′w1 : w′w2], we have W (wk′φ−1(In)) ⊆ J1. Hence,

[w′w1w0 : w′w2w0] ⊆ U1(J1, k1), where k1 = kr0. So, U1(J1, k1) contains a nondegenerate
arc. We now show that it is impossible.

For simplicity, let

[w′w1w0 : w′w2w0] = [µ1 : ν1], and d(µ1 : ν1) = d1.

Since W
(

wk1

r(P )
P

)
⊆ J1 for w ∈ [µ1 : ν1], we have W

(
wk1

r(P )
φ(P )

)
⊆ J2 by Assertion 1.

This implies that [ww1, ww2] ⊆ U1(J2, k
′
1), where k′1 = k1

r(P )
(min{r1, r2}). As w varies in

[µ1 : ν1], we see that [µ1w1, ν1w2] ⊆ U1(J2, k
′
1). Since W (wk′1In) ⊆ J2 for w ∈ [µ1w1, ν1w2],

we have W (wk′1φ
−1(In)) ⊆ J1, and hence wk′1w0r0 ∈ J1. It follows that [µ1w1w0, ν1w2w0] ⊆

U1(J1, k2), where k2 = k′1r0. If we call µ2 = µ1w1w0 and ν2 = ν1w2w0, then d(µ2 : ν2) =

d1 + d, where d = d(w1, w2) > 0. Inductively, we have [µn : νn] ⊆ U1(J1, kn), and d(µn :

νn) = d1 + (n − 1)d for all n ∈ IN if d1 + (n − 1)d ≤ 2π. Take the largest n such that

d1+(n−1)d ≤ 2π. By the same argument above, we see that U1(J1, kn+1) = U1(J2, k
′
n) = U1.

That is, wkn+1 ∈ J1 for all w ∈ U1. By the definition of J1, the open ball B(0; kn+1) ⊆ J1.
Hence the origin is an interior point, which is impossible. This contradiction shows that
our assumption that φ(P ) /∈ wHn for any w ∈ U1 cannot hold. So, φ(P ) ∈ wHn for some
w ∈ U1.

Next, we show that φ(Pn) ⊆ wHn for some w ∈ U1. Suppose there is a P ∈ Pn such

that φ(P ) ∈ w1Hn while φ(In) ∈ w2Hn for w1 6= w2. Clearly, λP + (1 − λ)In ∈ Pn for all
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λ ∈ [0, 1]. We claim that there exists x ∈ Cn with ‖x‖ = 1 such that both α = x∗φ(P )x

and β = x∗φ(In)x are nonzero. Otherwise, we can find x1, x2 ∈ Cn with ‖x1‖ = ‖x2‖ = 1

such that x∗1φ(P )x1 and x∗2φ(In)x2 are nonzero while x∗1φ(In)x1 = x∗2φ(P )x2 = 0. Then both

x∗1φ(P )x1 and x∗2φ(In)x2 lie in W (φ(P + In)). But x∗1φ(P )x1 ∈ w1IR while x∗2φ(In)x2 ∈ w2IR,

which contradicts φ(P + In) ∈ wHn for some w ∈ U1.

Let W =
⋃

λ∈[0,1] W (λP + (1− λ)In) and Wφ =
⋃

λ∈[0,1] W (λφ(P ) + (1− λ)φ(In)). Since

λα + (1 − λ)β ∈ W (λφ(P ) + (1 − λ)φ(In)) for all λ ∈ [0, 1], we conclude that [α, β] ⊆ Wφ.

As α
|α| = w1 6= w2 = β

|β| , U1(Wφ, l) contains a nondegenerate arc for l = min{|α|, |β|}.
Clearly, W ⊆ [0,∞). It is easy to see that for any µ ∈ C, if µW ⊆ J1, then µWφ ⊆ J2.

By considering the set W instead of W (P ), we can show that U1(J1, k) does not contain any
nondegenerate arc for all k > 0. However, by the definition of J1, there exists µ ∈ C such
that µW ∈ J1. Hence, µWφ ⊆ J2. It follows that U1(J2, k

′) contains some nondegenerate

arc for some k′ > 0, and thus U1(J1, k) contains some nondegenerate arc for some k > 0.
This is impossible, hence w1 equals w2.

Since P is arbitrary in Pn, it follows that φ(Pn) ⊆ wHn for some w ∈ U1. It can be

further deduced that φ(Hn) ⊆ wHn. By considering φ−1, we conclude that φ(Hn) = wHn.

For type (c), we can easily deduce that

{kA : A ∈ SJi
and k > 0} = SC\{0} i = 1, 2.

As φ is linear and φ(SJ1) = SJ2 , φ(SC\{0}) = SC\{0}. It suffices to assume J1 = J2 = C\{0}.
Then φ satisfies 0 ∈ W (A) if and only if 0 ∈ W (φ(A)). Note that 0 /∈ W (φ(In)). Let

H ∈ Hn. Then 0 ∈ W (H − λIn) if and only if λ ∈ W (H). For any x ∈ Cn with ‖x‖ = 1, we

have 0 ∈ W
(
φ(H)− x∗φ(H)x

x∗φ(In)x
φ(In)

)
, and thus 0 ∈ W

(
H − x∗φ(H)x

x∗φ(In)x
In

)
. Hence, we have

x∗φ(H)x

x∗φ(In)x
∈ W (H) ⊆ IR for every ‖x‖ = 1. (1)

Since W (φ(In)) is convex and 0 /∈ W (φ(In)), we may replace φ with some suitable µφ and

assume that W (φ(In)) is on the upper half plane and U1(W (φ(In))) = [1 : ν] for some

ν ∈ U1 with 0 ≤ arg(ν) < π. As a result, if x∗φ(H)x 6= 0, then either

x∗φ(H)x

|x∗φ(H)x|
=

x∗φ(In)x

|x∗φ(In)x|
∈ U1(φ(In)) or − x∗φ(H)x

|x∗φ(H)x|
=

x∗φ(In)x

|x∗φ(In)x|
∈ U1(φ(In)).

Hence, U1(φ(H)) ⊆ [1 : ν] ∪ [−1 : −ν]. We see that W (φ(H)) must lie in
⋃

w∈[1:ν]∪[−1:ν] wIR.

Now suppose H ∈ Hn is such that W (H) = [α, β] for α < 0 < β, we shall show that

W (φ(H)) ⊆ wIR for some w ∈ U1. As 0 ∈ W (H − λIn) for λ = α, β, there exist x1, x2 ∈ Cn

with ‖x1‖ = ‖x2‖ = 1 such that

x∗1φ(H)x1 = αx∗1φ(In)x1 and x∗2φ(H)x2 = βx∗2φ(In)x2.
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Then, we have
x∗1φ(H)x1

|x∗1φ(H)x1| ∈ [−1 : −ν] and
x∗2φ(H)x2

|x∗2φ(H)x2| ∈ [1 : ν]. By the convexity of the numerical

range, W (φ(H)) can only be a line segment passing through the origin, say, W (φ(H)) ⊆ wIR
for some w ∈ U1.

Next, we claim that W (φ(In)) ⊆ (0,∞). Suppose ν 6= 1. Then there exist x1, x2 such
that

x∗1φ(In)x1

|x∗1φ(In)x1|
= 1 and

x∗2φ(In)x2

|x∗2φ(In)x2|
= ν.

We may assume that x∗1φ(H)x1, x
∗
2φ(H)x2 ∈ W (φ(H)) are nonzero. Otherwise, replacing

H by H + εIn for some small ε, and using (1), we have both
x∗1φ(H)x1

x∗1φ(In)x1
and

x∗2φ(H)x2

x∗2φ(In)x2
lie in

IR. Hence, x∗1φ(In)x1, x
∗
2φ(In)x2 ∈ wIR for some w ∈ U1 as W (φ(H)) ⊆ wIR. But this

contradicts ν 6= 1. Therefore, U1(W (φ(In))) = {1}, and W (φ(In)) ⊆ (0,∞).

Take an arbitrary P ∈ P+
n . From (1), we have

x∗φ(P )x

x∗φ(In)x
∈ W (P ) ⊆ (0,∞) for every ‖x‖ = 1.

Then W (φ(P )) ⊆ (0,∞) since W (φ(In)) does. This means φ(P+
n ) ⊆ P+

n . Since φ is invert-

ible, and φ−1(SC\{0}) = SC\{0}, we have φ−1(P+
n ) ⊆ P+

n . Hence, φ(P+
n ) = P+

n . By Theorem

1.1, the result follows.

The proof of type (d) is similar to that of case (b); one just have to replace Pn by P+
n in

the proof.

Assertion 3 If J̃1 contains some nonzero elements while J1 does not, then there exists
w ∈ U1 such that φ(Hn) = wHn.

Proof. We may assume that 0 /∈ J̃1. Otherwise, because of Lemma 2.4, either {0} is a

connected singleton component which we may ignored, or there exists w(0,∞) ⊆ J̃1 for

some w ∈ U1 which means J1 contains nonzero elements. It follows that 0 /∈ J̃2 as φ is
invertible, and has kernel {0}.

To prove that there is w ∈ U1 such that φ(Hn) = wHn, we consider the following two

types of sets J̃ in C.

(a) There is r > 0 such that z ∈ J̃ for all |z| > r.

(b) There is no positive real number r satisfying condition (a).

Note that J̃ satisfies (a) if and only if there exists some A ∈ SJ̃ such that wA ∈ SJ̃ for all

w ∈ U1. Thus, J̃1 satisfies (a) if and only if J̃2 = φ(J̃1) does. So, J̃1 and J̃2 must be of the
same type.
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If (a) holds, then

{kA : W (A) ⊆ J̃ and k > 0} = {A : W (A) ⊆ C\{0}} = SC\{0}.

Since φ is linear, φ(SC\{0}) = SC\{0}. The proof is already done in type (c) of Assertion 2.

For situation (b), the proof is similar to type (b) of Assertion 2.

Assertion 4 If both J1 and J̃1 do not contain any nonzero elements, then φ(In) = µIn for
some µ ∈ C such that µR1 = R2.

Proof. Suppose φ(In) is not a scalar matrix. Then φ−1(In) is neither a scalar matrix. There

exist nondegenerate line segments [α1, β1] ⊆ W (φ(In)) and [α2, β2] ⊆ W (φ−1(In)).

By lemma 2.2, we may assume that W (In) ⊆ R1. Then [α1, β1] ⊆ W (φ(In)) ⊆ R2.

For every γ ∈ [α1, β1], W (γIn) ⊆ R2 and hence [γα2, γβ2] ⊆ W (γφ−1(In)) ⊆ R1. As γ

varies in [α2, β2], the set

{γ1γ2 : γ1 ∈ [α1, β1] and γ2 ∈ [α2, β2]} = conv{α1α2, α1β2, β1α2, β1β2}

lies in R1. It follows that [α1α2, β1β2] ⊆ R1.

Similarly, as W (γIn) ⊆ R1 for all γ ∈ [α1β2, β1β2], [α2
1α2, β

2
1β2] ⊆ R2. Inductively, we

can show that

[(α1α2)
n, (β1β2)

n] ⊆ R1 and [αn+1
1 αn

2 , βn+1
1 βn

2 ] ⊆ R2 for all n ∈ IN.

We may choose αi and βi such that arg(α1α2) and arg(β1β2) are rational multiples of π.

Therefore, there exists m ∈ IN such that both m arg(α1α2) and m arg(β1β2) are multiples of

2π. Then, α = (α1α2)
m and β = (β1β2)

m are real numbers. Hence, [αk, βk] lies in R1 ∩ IR
for any k ∈ IN.

If 0 ≤ α < 1, then there exists K ∈ IN such that

β >

(
α

β

)K

>

(
α

β

)k

for all k ∈ IN with k ≥ K. (2)

For any c ∈ (0, βK ], there exists k ≥ K such that αk+1 ≤ c ≤ αk. With (2), αk+1 ≤ c ≤
αk < βk+1. Then c ∈ [αk+1, βk+1] ⊆ R1. Therefore, (0, βK ] ⊆ R1. This means that J1 has
some nonzero elements, which is a contradiction.

Similarly, we can prove that [αK ,∞) ⊆ R1 for some K if 1 ≤ α < β, i.e., J̃1 has some

nonzero elements. This contradicts the assumption. Therefore, φ(In) = µIn for some µ ∈ C.
By Lemma 2.3, we have µR1 = R2.

Assertion 5 There exists w ∈ U1 such that φ(Hn) = wHn.
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Proof. The result is clear if R1 satisfies Assertion 2 or 3. Otherwise, φ(In) = µIn for some
µ ∈ C by Assertion 4. Take any ν in a nondegenerate line segment of R1. By Lemma 2.3,
φ(SR1−ν) = SR2−µν . Then we can replace R1 and R2 by R1−ν and R2−µν so that Assertion

2 holds after the replacement, and the result follows.

We are now ready to prove Conditions (2), (3), (5), (6). First, we consider the case when
R1 has no interior point.

Suppose R1 satisfies condition (2). Then for any ν ∈ U1(R1), we have ±νHn ⊆ SR1 .

Thus, ±νφ(Hn) = ±νwHn ⊆ SR2 . Hence, wR1 ⊆ R2. Applying the argument to φ−1, we

see that w−1R2 ⊆ R1. Hence, wR1 = R2 and φ(Hn) = wHn, i.e., condition (2) holds with
µ = w.

Suppose R1 does not satisfy (1) and (2). Then there exists ν ∈ U1 such that K1 = IR∩νR1

contains no line segment and K1 \ {0} is non-empty. Then for K2 = IR ∩ w−1νR2, we have

φ(SK1) = SwK2 . So, the mapping Φ defined by A 7→ w−1φ(A) satisfies Φ(Hn) = Hn and

Φ(SK1) = SK2 . By Theorem 3.1 (1), we see that Φ(In) = aIn for some a ∈ IR. It follows

that φ(In) = awIn. Let µ = aw. Then µR1 = R2 by Lemma 2.3, and φ(Hn) = wHn = µHn.
If a nondegenerate line segment lying in R1 always implies that the entire line containing

such line segment also lies in R1, then condition (3) holds. Otherwise, R1 will contain a
nondegenerate line segment such that the line containing such line segment is not a subset
of R1. We take any point ν from such a nondegenerate line segment. By Lemma 2.3,
φ(SR1−ν) = SR2−µν , where R1 − ν satisfies Assertion 2. Therefore, we can replace R1 and

R2 by R1 − ν and R2 − µν. Furthermore, after the replacement, there is η ∈ U1 such
that L1 = IR ∩ ηR1 does not satisfy Conditions (1) – (3) in Theorem 3.1. Since Φ(SL1) =

w−1φ(SL1) = SL2 , where L2 = IR ∩ w−1ηR2, we see that Φ satisfies Theorem 3.1 (4), and

hence φ satisfies condition (6).

Now, assume that R1 contains some interior points. Suppose R1 satisfies Condition
(5). Note that if η ∈ U1(R1), then η(0,∞) ⊆ R1. Since φ(Hn) = wHn, it follows that

wη(0,∞) ⊆ R2. Thus wR1 ⊆ R2. Applying the argument to φ−1, we see that w−1R2 ⊆ R1.
Thus wR1 = R2.

If there exists ν ∈ U1 such that IR ∩ νR1 = (0,∞), [0,∞) or IR \ {0}, then for K2 =

IR∩w−1νR2, we have φ(SK1) = SwK2 . So, the mapping Φ defined by A 7→ w−1φ(A) satisfies

Φ(SK1) = SK1 . By Theorem 3.1 (3), the result follows.

For the remaining cases in Condition (5), suppose R1 6= C is a union of wIR with w ∈ U1

and has interior points. Since φ(Hn) = wHn, we see that ν ∈ U1(R1) if and only if

wν ∈ U1(R2). Thus, wR1 = R2. Let Φ be the map A 7→ w−1φ(A). Then Φ(Hn) = Hn and

Φ(R1) = R1. Since R1 has interior points, there exists a nondegenerate arc in U1(R1), say

[w1 : w2] ⊆ U1(R1).

For any P ∈ Pn, there exists a sufficiently large k > 0 such that W (w1(iP + kIn)) ⊆ R1.

Then, W (w1Φ(iP + kIn)) ⊆ R1. Suppose the Hermitian matrix Φ(P ) is indefinite, i.e.,

W (Φ(P )) = [a, b], for a < 0 < b. We have U1(W (Φ(iP + kIn))) = [ν1 : ν2], where ν1 and

ν2 lie on the lower and upper half plane respectively. In fact, d(ν1 : ν2) > d(ν1 : 1). One
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can deduce that [w1ν1 : w1ν2] ⊆ U1(R1). We can further deduce that [w1ν1 : w2] ⊆ [w1ν1 :

w1ν2] ∪ [w1 : w2] ⊆ U1(R1). Hence,

d(w1ν1 : w2) = d(w1ν1 : w1) + d(w1 : w2) = d(w1 : w2) + d(ν1 : 1)

if d(w1 : w2) + d(ν1 : 1) ≤ 2π. Inductively, we can show that [w1ν
n
1 : w2] ⊆ R1, and that

d(w1ν
n
1 : w2) = d(w1 : w2)+nd(ν1 : 1) for all n ∈ IN if d(w1 : w2)+nd(ν1 : 1) ≤ 2π. Take the

largest n satisfying this inequality, and apply the argument one more time. We deduce that
U1 ⊆ U1(R1). But as R1 is the union of wIR, R1 = C, which is impossible. Hence, either

a ≤ b ≤ 0 or 0 ≤ a ≤ b. This means that Φ(P ) lies either in Pn or in −Pn. Equivalently,

Φ(Pn) ⊆ Pn ∪ −Pn. It is easy to show that either Φ(Pn) ⊆ Pn or Φ(Pn) ⊆ −Pn. By

considering Φ−1 and replacing Φ by −Φ if necessary, we have Φ(Pn) = Pn. The result
follows from Theorem 1.1.

Finally, suppose R1 has interior points, but (4)–(5) do not hold. Then there is η ∈ U1

such that L1 = IR ∩ ηR1 does not satisfy Conditions (1) – (3) in Theorem 3.1. Since

Φ(SL1) = w−1φ(SL1) = SL2 , where L2 = IR ∩ w−1ηR2, we see that Φ satisfies Theorem 3.1

(4), and thus φ satisfies condition (6). �

5 Results on Numerical Radius

Let Vn = Hn or Mn, and let IF = IR or C according to Vn = Hn or Mn. For any

subset R of [0,∞), let S̃ be the set of n × n matrices on Vn such that r(A) ∈ R. In

this section, we characterize linear maps φ on Vn satisfying φ(S̃R1) = S̃R2 for two given

subsets R1, R2 ⊆ [0,∞). Again, to avoid trivial consideration, we assume that R1 and R2

are non-empty. Furthermore, we exclude the cases that R1 or R2 equal to the set {0} in our
consideration.

Theorem 5.1 Let R1, R2 be non-empty subsets of [0,∞) such that Rj 6= {0} for j = 1, 2. Let

Vn = Hn or Mn, and let IF = IR or C according to Vn = Hn or Mn. Suppose φ : Vn → Vn

is an IF-linear operator satisfying φ(S̃R1) = S̃R2. Then one of the following conditions holds.

1. R1 = R2 = (0,∞) or R1 = R2 = [0,∞), and φ is invertible.

2. The set R1 is neither (0,∞) nor [0,∞), and φ has the form A 7→ µU∗AU or A 7→
µU∗AtU for some U ∈ Un and µ ∈ IF such that |µ|R1 = R2.

Proof. The (⇐) part of the result can be verified readily. We establish two assertions to
prove the converse.

Assertion 1 The set S̃R2 is a spanning set of Vn, and φ is invertible.

Proof. Take a nonzero k ∈ R2, then {kU∗E11U : U ∈ Un} ⊆ S̃R2 is a spanning set of Vn by

the main result in [9]. Since φ(S̃R1) = S̃R2 contains a spanning set, we conclude that φ is
invertible.
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Assertion 2 If C1 is a connected component of R1, then φ(S̃C1) = S̃C2, for a connected
component C2 of R2.

Proof. Suppose a ∈ W (A) and b ∈ W (B) such that |a| = r(A) and |b| = r(B) belong to C1.

If r(φ(A)) = c and r(φ(B)) = d, we shall show that [c, d] ⊆ R2.

First, we may assume that a = |a|; otherwise, replace A by µA for a suitable µ ∈ IF

with |µ| = 1. Similarly, we may assume that b = |b|. There is a unitary U such that

A = U∗(D + A0)U , for D = diag(a, 0, . . . , 0) and the (1, 1) entry of A0 is zero. Then

γ1(t) = U∗(D + (1− t)A0)U , t ∈ [0, 1], is a path in S̃C1 connecting A and U∗DU .

Let U = eiH where H is Hermitian. Then the path γ2(t) = e−itHDeitH , t ∈ [0, 1], is a

path in S̃C1 connecting U∗DU and D. Similarly, one can construct a path in S̃C1 connecting

B and diag(b, 0, . . . , 0). Finally, one can construct a path in S̃C1 connecting diag(a, 0, . . . , 0)

and diag(b, 0, . . . , 0). So, we have a path in S̃C1 connecting A and B. It follows that there is a

path in S̃R2 connecting φ(A) and φ(B). So, φ(A) and φ(B) belong to the S̃C2 for a connected

component C2 of R2. Since φ is invertible by Assertion 1, we have φ−1(S̃C2) ⊆ S̃C1 , and hence

φ−1(S̃C2) = S̃C1 .

Now, we are ready to present the proof of Conditions (1) and (2). By Assertion 1, φ is

invertible. If R1 equals (0,∞) or [0,∞), then nothing else can be said about φ. Suppose R1

does not satisfy Condition (1). By Assertion 2, we may assume that R1 and R2 are connected

intervals. For any nonzero A ∈ Vn, r(A) and r(φ(A)) are nonzero as φ is invertible by

Assertion 1. Let kA = r(φ(A))
r(A)

. Then

a ∈ R1 ⇔ r

(
a

r(A)
A

)
∈ R1 ⇔ r

(
φ

(
a

r(A)
A

))
∈ R2 ⇔ kAa ∈ R2.

Hence, kAR1 = R2. Since R1 is neither (0,∞) nor [0,∞), we have sup R1 exists or inf R1 is
nonzero. In both cases, we can deduce that kA is a constant, say k, for all nonzero A ∈ Vn.

Let Φ be the map A 7→ k−1φ(A) on Vn. Then

r(Φ(A))

r(A)
=

k−1r(φ(A))

r(A)
= 1 for all A ∈ Vn \ {0}

Hence, Φ is a numerical radius preserver on Vn. By Theorem 1.2, the result follows. �
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