INCLUSION REGIONS FOR NUMERICAL RANGES AND LINEAR PRESERVERS
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Abstract

Let R be a proper subset of the complex plane, and let S be the set of n x n complex
matrices A such that the numerical range W (A) satisfies W(A) C R. Linear maps ¢ on
matrices satisfying ¢(Sg) = Sg are characterized. Denote by Sk the set of n x n complex
matrices A such that the numerical radius r(A) satisfies 7(A) C R for a proper subset R

of nonnegative real numbers. Linear maps ¢ on matrices satisfying ¢(S~R) = Sp are also
characterized. Analogous results on Hermitian matrices are obtained.
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1 Introduction

Let M,, be the algebra of n x n complex matrices. Define the numerical range of A € M,,
by
W(A) ={2"Ax: 2z € C", 2’z = 1},

and the numerical radius of A by
r(A) ={lpl - p e W(A)}.

The numerical range and numerical radius are useful concepts in studying matrices; see [4,
Chapter 1].

Let R be a proper subset of the complex plane, and let Sg be the subset of M, consisting
of matrices A such that W (A) C R, i.e.

Sp={A € M,: W(A) C R}

There has been considerable interest in studying inclusion regions for numerical ranges. It
is in fact very useful in knowing inclusion regions for W (A). For example, it is well known
(see [4, Chapter 1]) that W(A) C R if and only if A = A*; W(A) C [0, 00) if and only if A is
positive semidefinite; and W (A) C (0, 00) if and only if A is positive definite. Moreover, Ando
[1] (see also [2]) showed that W (A) is contained in the unit disk if and only if A = X*CX
O 21,
Om O
Mirman [6] showed that W (A) is contained in a triangle with vertices a, b, ¢ if and only if
A= X*CX with X*X = I, and C € M,, a normal matrix with eigenvalues a, b, ¢ for some
integer m; see [3] for further results along this direction.

with a 2m x n matrix X such that X*X = [, and C = ( ) for some integer m;
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Let V,, be M,, or the real linear space H,, of n x n Hermitian matrices, and let IF = C
or R according to V,, = M,, or H,,. In this paper, we study linear preservers of Sg, i.e.,
IF-linear operators ¢ : V,, — V,, satisfying ¢(Sg) = Sk.

Denote by P,, P U,, GL,, the sets of positive semidefinite matrices, positive definite
matrices, unitary matrices, and invertible matrices in M,,, respectively. Then Sjg o) = P, is
the set of positive semidefinite matrices; S(g,00) = P! is the set of positive definite matrices;

for R = {z € C: |z| < 1} the set Sg consists of matrices A satisfying r(A) < 1. We have
the following results on linear preservers of inclusion regions for numerical ranges.

Theorem 1.1 [8] Let V,, = M,, or H,, and let IF = C or IR accordingly. Suppose ¢ : V,, —
V.. is an IF-linear operator. Then the following are equivalent.

(a) ¢(Pn) =Py,
(b) o(Py) =Py

n

(c) ¢ has the form A — T*AT or A T*A'T for some T € GL,,.

Theorem 1.2 [5] Let V,, = M,, or H,,, and let IF = C or IR accordingly. Suppose ¢ : V,, —
V.. is an IF-linear operator. Then the following are equivalent.

(a) r(p(A)) =1r(A) for all A€ V,.
(b) ¢(Sr) =Sk for R={peF:|u <1}.

(c) there exists p € IF with || = 1 such that ¢ has the form A — pU* AU or A — pU* AU
for some U € U,,.

Let IF = IR or C according to V,, = H,, or M,,. In Sections 3 and 4, we shall solve the
slightly more general problem, namely, characterization of linear operators ¢ : V,, — V,,
such that ¢(Sg,) = Sg, for two given subsets Ry, Ry C IF, after proving some preliminary
results in Section 2. Denote by Sg the set of matrices A such that r(A) € R for a given
proper subset R of [0,00). In section 5, we characterize linear operators ¢ : V,, — V,, such
that ¢(Sg,) = ¢(Sg,) for two subsets Ry, Ry C [0, 00).

Related to our investigation, one may also consider ¢ such that ¢(Sg) C Sg. But it is
difficult. For example, if R = [0,00), then ¢(Sg) C Sg if and only if ¢ is a positive linear
map. The structure of such maps are known to be very complicated, see [7, Chapter 3]. In
connection to this, we have the following result.

Theorem 1.3 Let V,, = H, or M,,, and let IF = C or IR accordingly. An IF-linear map
¢V, — V,, satisfies W(p(A)) CW(A) for all A € V,, if and only if ¢ is a unital positive
linear map. Consequently, if ¢ : V,, — V,, is a unital positive linear map, then ¢(Sr) C Sg
for any subset R of C.



Proof. (=) If A is positive semidefinite, then W(¢p(A)) C W(A) C [0,00). Thus, ¢(A) is
positive semidefinite. Also, W(¢(I,)) € W(I,) = {1}. Hence, ¢(1,,) = I,.

(<) Suppose ¢ is a unital positive linear map. Then ¢ maps Hermitian matrices to
Hermitian matrices in case V,, = M,,. Furthermore, if A\ — (uA + (nA)*) € P, then
M — (up(A) + (up(A))*) € P, for any A € R and p € IF. Since A\l — (uB + (uB)*) € P,, if
and only if

W(B) C{z € : A= (uz) + (u2)"},

we see that each half space of IF' containing W (A) will also contain W (¢(A)). It follows that
W(g(A)) € W(A). O

2 Preliminary Results

Lemma 2.1 Let V,, = H,, or M,,, and let F = IR or C according to V,, = H,, or M,,.
If R C IF contains a nondegenerate line segment, then Sg C V,, is a spanning set of V,,.
Consequently, if ¢ : V,, — V,, is a linear operator such that ¢(Sg,) = Sg for some Ry CIF,
then Sg, is a spanning set of V,, and ¢ is invertible.

Proof. We prove the result for M,,. The proof for H,, is similar.

Recall that a matrix A € M,, has numerical range lying on a line segment L if and only
if A is normal with eigenvalues contained in L. Thus, if R contains a line segment L, then
Sk contains all normal matrices with eigenvalues in L. There exists some A € Sk with
eigenvalues in L and nonzero trace. By the main result in [9], {U*AU : U € U,} C Sg is a
spanning set of M,,.

Now, suppose ¢ : M,, — M, is a linear operator such that ¢(Sg,) = Sg for some R; C C.
Since ¢(Sg,) contains a spanning set of M, the last assertion follows. O

The following lemma can be verified readily.

Lemma 2.2 Let V,, = H,, or M,,, and let F = IR or C according to V,, = H,, or M,,.
Suppose ¢ : V,, — V,, is a linear operator satisfying ¢(Sg,) = Sgr,. Then for any nonzero
pelr

gb(SMRl) - SMR2'

For RC IF and p € IF, let
R+p={z+pelF:zc R}
We have the following observation.

Lemma 2.3 Let V,, = H,, or M,,, and let IF = IR or C according to V,, = H,, or M,,.
Suppose ¢ : V,, — V,, is a linear operator satisfying ¢(I,) = ul, for some u € IF and
¢(Sr,) = Sr,.- Then uRy = Rs, and for any nonzero v € IF

¢<SR1 +l/) = SR2 +pv-



Proof. Note that z € R; if and only if 2] € Sg,. Hence, puzl € Sg,, or equivalently, uz € Rs.
Thus, uR; = Rs.

Let A€V, and p € IF. Then W(A) C R if and only if W(A + vI,) C R+ v. Hence,
Sriv ={A+vl,: A€ Sg}. Since ¢ is linear and ¢(1,,) = pul,, the result follows. d

Lemma 2.4 Let V,, = H,, or M,,, and let Ry, Ry C IF, where IF = IR or C according
to V,, = H,, or M,,. Suppose ¢ : V,, — V,, is linear and satisfies ¢(Sg,) = Sr,. If C1
1s a connected component of Ry, then there is a connected component Cy of Ry such that
&(Se,) € Se,. The set inclusion becomes a set equality if ¢ is invertible.

Proof. Let C) be a connected component of Ry and let A € S¢,. For any B € S¢, we
show that there is a continuous path v : [0, 1] — S¢, such that v(0) = A and (1) = B as
follows. First, by [4, Theorem 1.3.4], there is U € U, such that A = U*(al, + Aop)U, where
a = (tr A)/n and Ay has zero diagonal entries. The path v, (t) = U*(al, + (1 — t)Ao)U,
t € [0, 1], connects A and al,,. Moreover, since a € W(A), we see that

W(n(t) = W((1 —t)A +tal,) C (1 — )W (A) + W (al,) C W(A) C C,.

So, 71 is a path in S¢,. Similarly, there is a path 75 joining B and bl,, where b = (tr B)/n
in S¢,. Finally, if a € W(A) C Cy and b € W(B) C (4, there is a continuous path ~3 in C;
joining @ and b. Then 43 defined by 43(t) = 73(t)I, is a continuous path in S¢, connecting
al, and bI,. Combining ;1,73 and v, we get a continuous path () in S¢, connecting A
and B.

Now, W(v(t)) € Sg,. We see that the set [, W(7(£)) is a connected subset of
Ry containing both W(¢(A)) and W(¢(B)). Hence, they must lie in the same connected
component Cy of Ry. Thus for every B € S¢,, we have ¢(B) € S¢,. Thus ¢(S¢,) C Se,.

Suppose ¢ is invertible. Then ¢~ *(Sg,) = Sg,. It follows that ¢~ (S¢,) C S¢,. Hence
the last assertion follows. O

The next two lemmas characterize linear operators ¢ satisfying ¢(Sg,) = Sg, for some
special R;.

Lemma 2.5 Let V, =H, orM,,, and IF = IR or C according to V,, = H,, or M,,. Suppose
Ry, Ry C IF are non-empty such that Ry does not contain any line segment, and R; # {0}

fori=1,2. A linear operator ¢ : V,, — V,, satisfies ¢(Sr,) = Sr, if and only if ¢(I) = ul
for some p € IF satisfying pRy = Rs.

Proof. Since R; does not contain any line segment, then W (A) is a singleton for every
A € Sg,. Hence, Sg, = {vl, : v € Ry} and the linear span of Sg, = IF - I, is the 1-
dimensional space of scalar matrices in V,,. The (<) of the assertion is clear. To prove
the implication (=), suppose vy € Ry and B = ¢(vpl,). Then for any v € Ry, ¢(vl,) =
(v/vy)B. If B is not a scalar matrix, then W (B) C R, contains some line segment L. By
Lemma 2.1, the set 7' = {X € V,, : W(X) C L} is a spanning set of V,,. It follows that
¢(IF - I) = ¢(span Sg,) = span Sk, = V,,, which is a contradiction. O



Lemma 2.6 Let V, =H, orM,,, and IF = IR or C according to V,, = H,, or M,,. Suppose
Ry = TF and Ry C TF is non-empty and not equal to {0}. A linear operator ¢ : V,, — V,,
satisfies ¢(Sgr,) = Sr, if and only if ¢ is invertible and Ry = IF.

Proof. To prove the implication (=), take any nonzero element v € IF and A € V,, = Sg,
such that ¢(A) = v1, € Sg,. Then for any p € IF, we have A € Sg, and ¢p(pA) = uvi, €
Sg,. Thus, uv € Ry. It follows that Ry = IF. By Lemma 2.1, ¢ is invertible. The converse
is clear. 0

3 Results on Hermitian matrices

In this section, we characterize linear maps ¢ on H,, satisfying ¢(Sg,) = Sg, for two given
subsets R1, R, C IR. To avoid trivial consideration, we assume that R; and Ry are non-
empty. Furthermore, if Ry = {0} then ¢ can be any linear map such that ¢(A) = 0 for all
A € Sg,; one cannot say much about the structure of ¢. If Ry = {0}, then we must have
Ry = {0} and ¢ can be any linear map. So, we also exclude these cases in our consideration.

Theorem 3.1 Let Ry, Ry be non-empty subsets of IR such that R; # {0} for j =1,2. There
is a linear operator ¢ : H,, — H,, satisfying ¢(Sgr,) = Sg, if and only if there is a nonzero
w € IR such that uRy = Ry and one of the following conditions holds.

1. The set Ry does not contain any line segment and ¢(1,,) = ul,.
2. The set Ry = IR and ¢ is invertible.

3. The set Ry equals (0,00),0,00), (—00,0],(—00,0] or R \ {0}, and ¢ has the form
A uT*AT or A — uT*A'T for some T € GL,,.

4. The set Ry is not of any of the above forms, and ¢ has the form A — pU*AU or
A pU* AU for some U € U,,.

Proof. The implication (<) can be readily verified. We consider the converse. The first
two cases follow from Lemmas 2.5 and 2.6. In the other cases, R; contains a connected
component L; which is neither IR nor a singleton set. By Lemma 2.4, we have ¢(Sg,) C S,
for a connected component Ly of Ry. Note that Lo is not a singleton. Otherwise, Sy, = {ul,,}

for some p € IR. Since Sy, is a spanning set of H,, ¢(H,,) = {ul,}. It follows that u = 0,
which is a contradiction. So, Ly is a nontrivial interval, ¢ is invertible by Lemma 2.1, and

¢(SL1) = SLQ .

Here we consider the following different types of proper intervals L in IR.
(a) L =1]0,00) or (—o0,0];
(b) L= (Oa OO) or (-O0,0);

(c) There exists (—a,a) C L for some a > 0 but L # IR;
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(d) L=1[0,a),(0,a),]0,al,(0,al,(—a,0], (—a,0),[—a,0] or [—a,0) for some a > 0;
(e) L =(a,0),la,o0),(—o0,—a) or (—oo,—al for some a > 0;
(f) L = (a,b),(a,bl,[a,b) or |a,b] for some a,b € IR with either 0 <a <bora<b<0.

In order that ¢(Sr,) = Si,, L1 and Ly must be of the same type by the following character
of intervals, which are invariant under an invertible linear map.

(a) Sp = +P,, and for every A € S, kA € §p, for all k > 0;
(b) 8¢ = £P; and for every A € Sp, kA € St for all k > 0;
(¢) Sp # H,, and there exists A € Sy, such that —A € Sp;
(

d) For every nonzero A € Sp,, —A ¢ S. Moreover, there exist k; and ko with 0 < ky < ko
such that kA € Sy, for all k < ky while kA ¢ Sy, for all k > ky;

(e) For every A € S, —A ¢ Sp. Also there exist ky and ky with 0 < k; < ko such that
kA ¢ Sy for all k < ki while kA € Sy, for all k > ks;

(f) Sp does not satisfy any of above properties.

Now, we are ready to characterize ¢ according to the different types of L;. We have the
following two cases.

(i) If Ly is of the type (a) or (b), then ¢ has the form A — pT*AT or A — uT*A'T for
some T € GL, and p € {1, —1} such that uR; = R,.

(ii) In the other cases, ¢ has the form A — pU*AU or A — pU*A'U for some U € U,
and p € {1, —1} such that uR; = Rs.

For type (a), note that Sy, and Sy, are either P, or —P,,. Hence, ¢(P,) = P, or
»(P,) = —P,. Replacing ¢ by —¢ if necessary and using Theorem 1.1, we get the result.

For type (b), note that Sy, and Si, are either P} or —P;f. The result again follows from
Theorem 1.1.

For type (c), let k; = sup{k > 0 : (=k, k) C L;} for i = 1,2. Then both k; and ks are
positive. Replacing (¢, L1, L) by (%¢7 kllLl, éLQ), we may assume k; = ky = 1. By the
definition of k;, we must have [—k, k] C Ly for all k < 1; otherwise there is a k < k' < 1
such that (=&, k") Z L.

For any A € H, and k € (=1,1), W(;%54) C [~k k] C L. Then W(o(;554)) C Lo.

We claim that W(¢(%A)A)) C [-1,1]. Otherwise, there is z € W(qﬁ(ﬁA)) such that

|z| > 1. Since kz € W(qb(%/l)) C Ly and k can be any value in (—1,1), it follows that

(—|z], |z]) € Ls. It is impossible since |z| > 1 = ky. Hence, we have W(gb(r(lA)A)) C [-1,1],

it follows that r(¢(A)) < r(A). By considering ¢!, we have r(¢~1(A)) < r(A). Hence, ¢
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is a numerical radius preserver on H,,. By Theorem 1.2, ¢ has the asserted form, and the
result follows.
For type (d), we may assume that L; = Ly = L is one of the following intervals:

0,1], [0,1), (0,1], (0,1).

Otherwise, replace (¢, L1, Ly) by (%(b,aLl,bLg) for some suitable nonzero a,b € IR. Then
A € H,, satisfies r(A) < 1 (r(4) < 1) if and only if A = A; — Ay with Ay, Ay € ;. Since
o(Sp) = Si, it follows that r(p(A)) < 1 (r(¢(A)) < 1) whenever r(A) < 1 (r(A) < 1).
Applying the argument to ¢!, we see that r(A) < 1 (r(4) < 1) whenever r(¢(A)) < 1
(r(p(A)) < 1). Consequently, ¢ preserves the numerical radius. The result follows from

Theorem 1.2.
For type (e), we may assume that L1 = Ly = L is the interval [1, 00) or (1, 00). Otherwise,

replace (¢, Ly, Ly) by (ggb, aly,bLy) for some suitable nonzero a,b € IR. Then
{kA:W(A)CL,and k >0} =P}, i=1,2.

Since ¢ is linear, we see that ¢(P;) = P;'. By Theorem 1.1, ¢ has the form A — T*A*T
for some T' € GL,,, where AT denotes A or A'.

Suppose T*T has an eigenvalue v < 1. Then A = 2741 + 1/4)I,, € S,, but ¢(A4) =
2711 4 1/9)T*T has an eigenvalue 27'(y + 1) < 1. Thus, W(¢(A)) € L, which is a
contradiction. Thus, all eigenvalues of T*T" are larger than or equal to 1, i.e., all singular
values of T are larger than or equal to 1. Applying the argument to ¢~1(A) = (T*)1ATT 1,

we see that the singular values of ! are larger than or equal to 1. As a result, all singular
values of T equal 1, i.e., T" is unitary.

For type (f), we may replace ¢ by —¢ if necessary, and assume that Ly, Ly C (0,00). Let
r1,72,81 and sy denote inf Ly, inf Ly, sup Ly and sup Lo, respectively. Then all of them are
positive. Suppose W (¢(1,,)) = [a1,b1]. Then as z € Ly if and only if [zay, 2b1] C Lo, we have

0<ry <airy <bisp < so.
Similarly, if W(¢~(I,)) = [ag, by], then
0 <1 < agrg < bysy < s,

We can conclude that 1 < ajas < biby < 1, and that ajas = biby. As 0 < a1 < b; and
0 < ay < by, we have a; = by and ay = by. Thus, ¢([,) = pul, for some p € R. By lemma
2.3 with some suitable v € R, ¢(Sr,—v) = Si,—yw, Where Ly — v is of type (c).

It is easy to check that there is a nonzero y € IR such that yR; = R5 in each case. [J

4 Results on Complex Matrices

In this section, we characterize linear maps ¢ on M,, satisfying ¢(Sg,) = Sg, for two given
subsets Ry, R, C C. Similar to section 3, we assume that R; and R, are non-empty. Also
we exclude the cases that Ry or Ry equal to the set {0} in our consideration.

Identify U; with the unit circle in C, we have the following result.
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Theorem 4.1 Let Ry, Ry be non-empty subsets of C such that R; # {0} for j =1,2. There

is a linear map ¢ : M,, — M,, satisfying ¢(Sgr,) = Sr, if and only if there is a nonzero
i€ C such that pRy = Ry and one of the following conditions holds.

1. The set Ry does not contain any nondegenerate line segment and ¢(I,) = pul,.

2. The set Ry has no interior point and is the union of a collection of straight lines such
that each of them passes through the origin; ¢(H,) = uH,,.

3. The set Ry has no interior point and equals RoU R3, where Ry 1s a non-empty collection
of straight lines and R3 does not contain any line segment so that either Ry contains a
line not passing the origin or Ry \ {0} is non-empty; ¢(H,)) = pH,, and ¢(I,) = pl,.

4. The set Ry = C and ¢ s invertible.

5. The set Ry # C has interior points and is a union of sets of the forms: w(0,00)
or w(0,00) with w € Uy; ¢ has the form A — pT*AT or A — uT*A'T for some
T € GL,,.

6. The set Ry does not satisfy any of the conditions in (1)-(5), and ¢ has the form
A pU*AU or A — pU*A'U for some U € U,,.

Proof. The implication (<) can be readily verified except for Case (3). Note that in such
case, if A € Sg,, then W (A) has no interior point and is a subset of a+bIR for some a,b € C.
Thus, A = al + bH for some H € H,,. So, ¢(A) = u(al + bK) for some K € H,,, and thus
W(o(A)) € pla+bR) € pRy = Ry.

For the converse, Case (1) and Case (4) follow from Lemmas 2.5 and 2.6. We focus on
the other cases.

Note that R, must contain some nondegenerate line segment. Otherwise, by lemma 2.4,
there is a connected component C'; in R; containing a nondegenerate line segment, and a
singleton component Cy in Ry such that ¢(S¢,) = S¢,. Clearly, S¢, = {ul,} for some
i € Ry. Since S¢, is a spanning set of M,,, ¢(M,,) = {ul,}. It follows that u = 0, which is
a contradiction. So, R» must contain some nondegenerate line segment, and ¢ is invertible
by Lemma 2.1.

In the following, we establish a series of assertions leading to the conclusion that ¢(H,,) =
wH,, for some w € Uy (Assertion 5).

For i = 1,2, let J; be the subset of R; containing all elements z such that rz € R; for
all 7 € (0,1]. Also, let J; be the subset of R; containing all elements z which rz € S for all

€ [1,00). Also, for any a, 3 € C, let [, 5] = {da+ (1 = N)F : XA € [0,1]}. We have the

following assertions.

Assertion 1 If Jy is nonempty, then ¢(Sy) = Syz. Similarly, ¢(S;) = Sy, if Jy is
nonempty.



Proof. We shall prove the first implication, that of the second is similar. Let A € §y,.
Then W(A) C J; C Ry, and W(¢(A)) C Ry. By the definition of J;, W(rA) C J; for all
r € (0,1]. Hence, for every z € W(¢(A)) C Ry, 7z € Ry for all » € (0,1]. We have z € J,
and ¢(A) € Sy,. Therefore, ¢(S;,) C Sy,. By considering ¢!, we can deduce with a similar
argument that ¢~1(S;,) C S;,. The result follows.

Assertion 2 If J; has nonzero elements, then there exists w € Uy such that ¢(H,,) = wH,,.

Proof. 1f J; has some nonzero elements, then so does Jy. Otherwise, ¢(S;,) = {0}. Also,
Ry # C as that is Ry. Otherwise, ¢(S,,) = M,, which implies S;, = M,,.

For J = J; or J5, one of the following holds.

a) 0 € J and it is an interior point;

(
(b

) 0 € J and it is not an interior point;
(¢) 0 ¢ J and there is r > 0 such that z € J for all 0 < |z| < 7;
(d) 0 ¢ J and no such r > 0 mentioned in (c) exists.

In order to have ¢(Sy,) = Sy, J1 and Jo must be of the same type by the following character
of regions, which are invariant under an invertible linear map.

(a) The zero matrix is in S; and there exists some nonzero A € S; such that wA € S; for
all w € Uy.

(b) The zero matrix is in S; and there does not exist any nonzero A € S; such that
wA € Sy for all w € U;.

(¢) The zero matrix is not in S; and there exists some nonzero A € S; such that wA € S,
for all w € Uj.

(d) The zero matrix is not in S; and there does not exist any nonzero A € S; such that
wA € Sy for all w € Uy.

Next, we prove that there is w € U; such that ¢(H,,) = wH,, according to the different
types of Jj.

For type (a), let k; = sup{k > 0: B(0;k) C J;} for i = 1,2 where B(a; k) is the open ball
with center at a and radius k. Since the origin is an interior point and J; is a proper subset
of C, k; is a positive number for each i = 1,2. Replacing (¢, J1, J;) by (%¢, kilJl, éJQL we
may assume ¢(Sy,) =Sy, and ky = ko = 1.

By the definition of .J;, we must have the closed ball B(0; k) C J; for all k < 1; otherwise

there is a k < k' < 1 such that B(0;k") £ J;.
We shall prove that ¢ is a numerical radius preserver on M,,. For any A € M,, and

k € B(0;1), we have W(ﬁA) C B(0;k) C J;. Thus W(gb(%A)) C J;. We claim that
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W((ﬁ(ﬁ/l)) C B(0;1). Otherwise, there is z € W((b(ﬁA)) such that |z| > 1. Since

kz € W(¢(%A)A)) C Jy and k can be any value in B(0;1), it follows that B(0;|z|) C Js.

But this is impossible since |z| > 1 = k;. Hence, we have W(¢(ﬁA)) C B(0;1). It

follows that 7(¢(A)) < r(A). By considering ¢!, we have r(¢~1(A)) < r(A). Hence, ¢
is a numerical radius preserver on M,,. By Theorem 1.2, ¢ has the form A — puUAU* or
A — pUA'U* for some U € U,,. The result follows.

For any subset C' C C and k > 0, let U;(C) = {w € Uy : wr € C for some r > 0} and
U, (C, k) = {w € Uy : wk € C}. Clearly, Uy(C, k) C Uy (C) C Uy. For any wy,wy € Uy, let
[wy : ws] be the arc joining w; and wy in the unit circle in the anticlockwise direction. Also,
let d(w; : wq) be the length of the arc, i.e.

d(wy : ws) = {arg(wl) el if arg(wn) > arg(ws),
27 + arg(wy) — arg(wg) if arg(w;) < arg(wy).

For type (b), let P € P,. Suppose ¢(P) ¢ wH,, for any w € Uy. Then U, (W (4(P)))
must contain some nondegenerate arc, say [w; : ws]. Suppose wiry, wery € W(gp(P)) for
some 71,75 > 0. Note that there exists w’ € U; and € > 0 such that W(w'eP) C J.
Thus, W (w'ep(P)) C Jo. By the definition of Jy, we have [w'w; : w'wy] C Uy(Jo, k), where
k = emin{r;,ro}. Let wy € Uy(¢~(,)). Then worq € W(¢p~(I,)) for some ry > 0.
Since W(wk'I,) C Jy for all w € [w'w; : w'wy|, we have W(wk'¢p~'(1,,)) C J;. Hence,
[w'wiwy : w'wewo] C Uy(Jy, k1), where ky = krg. So, Uy(Jy, k1) contains a nondegenerate
arc. We now show that it is impossible.

For simplicity, let

[w'wiwy : wwwg] = [y : 1], and d(py : 1) = d;.
Since W <:f(’f§)P> C Jp for w € [y : 11], we have W (;%l;;)gb(P)) C Jy by Assertion 1.
This implies that [wwy, wws] C Uy(J2, k), where k] = %(min{rl,m}). As w varies in

[p1 = 14], we see that [pw, viwy] C Uq(Ja, k). Since W(wki1,) C Jy for w € [pwy, vyws),
we have W (wkj¢~'(I,,)) C Ji, and hence wkjwory € Ji. It follows that [pyw;wy, viwewy] C
U (Jh, k2), where ky = Kiro. If we call oy = pywiwg and vy = vywaowy, then d(pg @ vo) =
dy + d, where d = d(wy,we) > 0. Inductively, we have [u, : v,] C Uy(J1,ky), and d(u, :
vp) = di + (n—1)d for all n € IN if dy + (n — 1)d < 2m. Take the largest n such that
di+(n—1)d < 2m. By the same argument above, we see that Uy (J1, kyy1) = Uy (Jo, k) = U;.
That is, wk,y, € J; for all w € U;. By the definition of J;, the open ball B(0; k,.1) C J;.
Hence the origin is an interior point, which is impossible. This contradiction shows that
our assumption that ¢(P) ¢ wH,, for any w € U; cannot hold. So, ¢(P) € wH,, for some
w € Uj.

Next, we show that ¢(P,) C wH,, for some w € U;. Suppose there is a P € P,, such
that ¢(P) € wiH, while ¢(I,,) € wH,, for wy # wy. Clearly, AP + (1 — \)1,, € P, for all
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A € [0,1]. We claim that there exists z € C" with ||z|| = 1 such that both a = 2*¢(P)x
and 3 = x*¢(I,)x are nonzero. Otherwise, we can find x1, 29 € C" with ||x1]| = ||z2| = 1
such that x¢(P)x, and x5¢(1,)xs are nonzero while xj¢(1,)r1 = 25¢(P)xy = 0. Then both
xid(P)xy and z3¢(1,)xy lie in W(p(P+1,,)). But zi¢(P)z1 € wiIR while z5¢(1,)z2 € wqlR,
which contradicts ¢(P + I,,) € wH,, for some w € Uj.

Let W= Uycjoy WAP + (1 = M) 1) and Wy = U, o) W(AG(P) + (1 — A)é(1,)). Since
Ao+ (1 =X)G € W(Ap(P) + (1 — N)o(L,)) for all A € [0,1], we conclude that [, 5] C Wi.
As i = w1 # wy = %, U; (W, 1) contains a nondegenerate arc for [ = min{|«|, |5}

Clearly, W C [0,00). It is easy to see that for any p € C, if pWW C Jy, then pW, C J.
By considering the set W instead of W (P), we can show that U;(.J;, k) does not contain any
nondegenerate arc for all £ > 0. However, by the definition of .J;, there exists ¢ € C such
that WV € J;. Hence, pW, C J,. It follows that Uy(Js, k') contains some nondegenerate

arc for some k' > 0, and thus U;(Jy, k) contains some nondegenerate arc for some &k > 0.
This is impossible, hence w; equals ws.
Since P is arbitrary in P,,, it follows that ¢(P,) C wH,, for some w € U;. It can be

further deduced that ¢(H, ) C wH,,. By considering ¢!, we conclude that ¢(H,) = wH,,.

For type (c), we can easily deduce that

{kA: A€ Sy and k> 0} = S, oy i=1,2.

As ¢ is linear and ¢(Sy,) = 81,5 A(Sqy () = S\ gy It suffices to assume Jy = Jo = C\{0}.

Then ¢ satisfies 0 € W(A) if and only if 0 € W(¢(A)). Note that 0 ¢ W(p(l,)). Let
H e H,. Then 0 € W(H — \l,,) if and only if A € W(H). For any x € C" with ||z| = 1, we

have 0 € W <¢(H) — zo(H)e ¢(In)), and thus 0 € W (H — Z(Hz [n>. Hence, we have

x*Pp(In)x x*¢(In)x
*o(H
% e W(H)CIR for every ||z| = 1. (1)

Since W (¢(1,,)) is convex and 0 ¢ W(¢(1,,)), we may replace ¢ with some suitable u¢ and
assume that W (¢(I,)) is on the upper half plane and Uy (W (¢4(1,))) = [1 : v] for some
v € Uy with 0 < arg(v) < w. As a result, if 2*¢(H )z # 0, then either

v¢(H)r  x'¢(l,)x B vo(H)r  a*¢(l,)x

[z p(H)x| |z o (Ln)z| [z (H)x|  [a*p(ln)x]
Hence, Ui (¢(H)) C [1: v]U[-1: —v]. We see that W (¢(H)) must lie in U,ep.,000 1. WR-
Now suppose H € H,, is such that W(H) = [«, ] for @« < 0 < 3, we shall show that

W(p(H)) C wlR for some w € Uy. As 0 € W(H — AI,,) for A = «, 3, there exist x1, x2 € C"
with ||z1|| = ||z2]| = 1 such that

e Ui(o(l,)) or

€ Ui (o(1n))-

vi¢(H)ry = axi¢(l)rr and  w3¢(H)ws = Basd(ly)ws.
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Then, we have % €[-1:—v]and % [1: v]. By the convexity of the numerical

range, W(¢(H)) can only be a line segment passing through the origin, say, W(¢(H)) C wlR
for some w € Uj.
Next, we claim that W (¢(I,)) C (0,00). Suppose v # 1. Then there exist z1, xs such

that
J’71¢( ) 1 nd $2¢( )
wo@ym] Y oLl

We may assume that zi¢(H )z, z5¢(H)xe € W(4(H)) are nonzero. Otherwise, replacing

z ¢ )xl xzd’( $2
toe 20 s,

IR. Hence, xi¢(1,)x1, 25¢(1,)z2 € wlR for some w € Uy as W(qb(H)) C wlR. But this
contradicts v # 1. Therefore, Uy (W (¢(1,))) = {1}, and W(é(1,,)) C (0, c0).
Take an arbitrary P € P;'. From (1), we have

= V.

H by H + el,, for some small ¢, and using (1), we have both - lie in

*o(P)x
x*o(1,)x

Then W(¢p(P)) C (0,00) since W(¢p(1,,)) does. This means ¢(P;") C P;. Since ¢ is invert-
ible, and ¢~ (Sqy (o)) = S@ g0y We have ¢~ (P}) C Pt Hence, ¢(P;) = P By Theorem
1.1, the result follows.

€ W(P) C (0,00) for every ||z|| = 1.

The proof of type (d) is similar to that of case (b); one just have to replace P,, by P in
the proof.

Assertion 3 If j1 contains some nonzero elements while J, does not, then there exists
w € Uy such that p(H,)) = wH,,.

Proof. We may assume that 0 ¢ .J,. Otherwise, because of Lemma 2.4, either {0} is a
connected singleton component which we may ignored, or there exists w(0,00) C Jy for

some w € U;j which means J; contains nonzero elements. It follows that 0 ¢ jg as ¢ is
invertible, and has kernel {0}.

To prove that there is w € U; such that ¢(H,,) = wH,,, we consider the following two
types of sets J in C.

(a) There is 7 > 0 such that z € J for all |z| > 7.
(b) There is no positive real number r satisfying condition (a).

Note that J satisfies (a) if and only if there exists some A € Sj such that wA € Sy for all

w € U;. Thus, J; satisfies (a) if and only if Jo = ¢(j1) does. So, J; and J, must be of the
same type.

12



If (a) holds, then
{kA:W(A) C Jand k> 0} = {A: W(A) C C\{0}} =S¢ (q-
Since ¢ is linear, gb(S@\{O}) = S(D\{o}' The proof is already done in type (c) of Assertion 2.

For situation (b), the proof is similar to type (b) of Assertion 2.

Assertion 4 If both J, and J; do not contain any nonzero elements, then o(I,) = pl, for
some p € C such that pRy = Rs.

Proof. Suppose ¢(I,,) is not a scalar matrix. Then ¢~!(1,,) is neither a scalar matrix. There
exist nondegenerate line segments [y, 31] C W(¢(1,,)) and [ag, Bo] € W (e~ (1,,)).

By lemma 2.2, we may assume that W (I,) € Ry. Then [y, 51] € W(¢(1,,)) C Ro.

For every v € [au, 1], W(v1,) € Ry and hence [yag, 73] € W(v¢~' (1)) € Ri. As~y
varies in [ag, Os], the set

{72 17 € [ar, B1] and 72 € [, Bo]} = conv{ai s, a1 52, Brave, G162}

lies in R;. It follows that [ayae, 5102] C R;.

Similarly, as W (vyI,) € Ry for all v € [a1 32, 513s], [@3as, 232] € Ry. Inductively, we
can show that

[(a102)™, (B132)"] € Ry and [afal, BpT1BY] € Ry for all n € IN.

We may choose «; and [3; such that arg(ajas) and arg(f;02) are rational multiples of .
Therefore, there exists m € IN such that both m arg(ayas) and marg(5;32) are multiples of
27, Then, a = (a1a2)™ and 3 = (B,52)™ are real numbers. Hence, [, 8¥] lies in By N IR
for any k € IN.

If 0 < a < 1, then there exists K € IN such that

K k
B> (%) > (%) for all k € N with k > K. 2)
For any ¢ € (0, 3%], there exists k > K such that o < ¢ < of. With (2), off! < ¢ <

af < g1 Then ¢ € [of*! B8] C R;. Therefore, (0,3%] C R;. This means that J; has
some nonzero elements, which is a contradiction.

Similarly, we can prove that [, 00) C Ry for some K if 1 < a < 3, i.e., Ji has some

nonzero elements. This contradicts the assumption. Therefore, ¢(1,,) = pl,, for some pu € C.
By Lemma 2.3, we have uR; = Ra.

Assertion 5 There exists w € Uy such that o(H,) = wH,,.
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Proof. The result is clear if Ry satisfies Assertion 2 or 3. Otherwise, ¢([,) = ul, for some
i € C by Assertion 4. Take any v in a nondegenerate line segment of R;. By Lemma 2.3,
&(SRry—v) = Spy—w- Then we can replace R and Ry by Ry —v and Ry — pv so that Assertion
2 holds after the replacement, and the result follows.

We are now ready to prove Conditions (2), (3), (5), (6). First, we consider the case when
Ry has no interior point.

Suppose R; satisfies condition (2). Then for any v € U;(R;), we have +vH,, C Sg,.
Thus, +v¢(H,) = +vwH,, C Sg,. Hence, wR; C Ry. Applying the argument to ¢!, we
see that w™' Ry C R;. Hence, wR; = Ry and ¢(H,,) = wH,,, i.e., condition (2) holds with
= w.

Suppose R; does not satisfy (1) and (2). Then there exists v € U such that K1 = RNv R,
contains no line segment and K; \ {0} is non-empty. Then for K; = IR N w™'vR,, we have
#(Sk,) = Suwr,- So, the mapping ® defined by A — w'¢(A) satisfies ®(H,,) = H,, and
®(Sk,) = Sk,. By Theorem 3.1 (1), we see that ®(1,,) = al, for some a € RR. It follows
that ¢(I,) = awl,. Let u = aw. Then uR; = Ry by Lemma 2.3, and ¢(H,)) = wH,, = yH,,.

If a nondegenerate line segment lying in R; always implies that the entire line containing
such line segment also lies in Rj, then condition (3) holds. Otherwise, R; will contain a
nondegenerate line segment such that the line containing such line segment is not a subset
of Ry. We take any point v from such a nondegenerate line segment. By Lemma 2.3,
&(Sry—v) = Sky—uw, Where Ry — v satisfies Assertion 2. Therefore, we can replace Ry and

Ry by Ry — v and Ry — pv. Furthermore, after the replacement, there is n € U; such
that L1 = R NnR; does not satisfy Conditions (1) — (3) in Theorem 3.1. Since ®(Sy,) =

w¢(Sr,) = Sr,, where Ly = RN w™nR,, we see that ® satisfies Theorem 3.1 (4), and
hence ¢ satisfies condition (6).

Now, assume that R; contains some interior points. Suppose R; satisfies Condition
(5). Note that if n € U;(R;), then n(0,00) C R;. Since ¢(H,) = wH,, it follows that
wn(0,00) € Ry. Thus wR; C Ry. Applying the argument to ¢!, we see that w™'Ry C Ry.
Thus wR; = R,.

If there exists ¥ € Uy such that RN vR; = (0,00), [0,00) or IR\ {0}, then for Ky =
IR Nw™'v Ry, we have ¢(Sk,) = Swr,. So, the mapping ® defined by A — w™'¢(A) satisfies
®(Sk,) = Sk,. By Theorem 3.1 (3), the result follows.

For the remaining cases in Condition (5), suppose R; # C is a union of wlR with w € U,
and has interior points. Since ¢(H,) = wH,, we see that v € U;(R;) if and only if
wr € Uy(Ry). Thus, wR; = Ry. Let ® be the map A — w™'¢(A). Then ®(H,,) = H,, and
®(R;) = R;. Since R; has interior points, there exists a nondegenerate arc in U;(Ry), say
[wy : we] C Uy(Ry).

For any P € P, there exists a sufficiently large & > 0 such that W(w,(iP + kI,)) C R;.
Then, W(w,®(iP + klI,)) € R;. Suppose the Hermitian matrix ®(P) is indefinite, i.e.,
W(®(P)) = [a,b], for a < 0 < b. We have Uy(W(®(iP + kl,))) = [v1 : 1»], where v; and
v lie on the lower and upper half plane respectively. In fact, d(vy : 15) > d(vy : 1). One
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can deduce that [wivy @ wive] C Ui(R;). We can further deduce that [wiv; : wo] C [wivy :
wiva] U [wy @ we] € Uy(R;). Hence,

d(wvy = we) = d(wyvy :wy) + d(wy 2 wy) = d(wy - wy) + d(vy @ 1)

if d(wy : we) +d(vy : 1) < 2. Inductively, we can show that [wiv] : wy] C Ry, and that
d(w v} s wy) = d(wy : wy) +nd(vy : 1) for all n € IN if d(wq : wq) +nd(vy : 1) < 27, Take the
largest n satisfying this inequality, and apply the argument one more time. We deduce that
U; C Uy(R;). But as Ry is the union of wIR, R; = C, which is impossible. Hence, either
a<b<0or0<a<b This means that ®(P) lies either in P, or in —P,. Equivalently,
oP,) € P,U—-P,. It is easy to show that either ®(P,) C P, or ®(P,) C —P,. By
considering ®~! and replacing ® by —® if necessary, we have ®(P,) = P,. The result
follows from Theorem 1.1.

Finally, suppose R; has interior points, but (4)—(5) do not hold. Then there is n € U,

such that Ly = IR N nR; does not satisfy Conditions (1) — (3) in Theorem 3.1. Since
O(Sr,) = wte(Sy,) = Si,, where Ly = R Nw™'nRy, we see that @ satisfies Theorem 3.1
(4), and thus ¢ satisfies condition (6). O

5 Results on Numerical Radius

Let V,, = H, or M,,, and let [F = IR or C according to V,, = H,, or M,,. For any
subset R of [0,00), let S be the set of n x n matrices on V, such that r(4) € R. In

this section, we characterize linear maps ¢ on V,, satisfying qﬁ(SRl) = SRQ for two given
subsets Ry, Ry C [0,00). Again, to avoid trivial consideration, we assume that R, and Ry

are non-empty. Furthermore, we exclude the cases that Ry or Ry equal to the set {0} in our
consideration.

Theorem 5.1 Let Ry, Ry be non-empty subsets of [0, 00) such that R; # {0} for j =1,2. Let
V,.=H, orM,, and let IF = IR or C according to V,, = H,, or M,,. Suppose ¢ : V,, =V,
is an IF-linear operator satisfying ¢(Sg,) = Sr,. Then one of the following conditions holds.

1. Ry = Ry =(0,00) or Ry = Ry = [0,00), and ¢ is invertible.

2. The set Ry is neither (0,00) nor [0,00), and ¢ has the form A — pU*AU or A —
pU* AU for some U € U, and pu € TF such that |u|Ry = Rs.

Proof. The (<) part of the result can be verified readily. We establish two assertions to
prove the converse.

Assertion 1 The set SRQ s a spanning set of V,,, and ¢ is invertible.

Proof. Take a nonzero k € Ry, then {kU*E\,U : U € U, } C 3~R2 is a spanning set of V,, by

the main result in [9]. Since ¢(Sk,) = Sk, contains a spanning set, we conclude that ¢ is
invertible.
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Assertion 2 If Cy is a connected component of Ry, then ¢(Sc,) = Sc,, for a connected
component Cy of Rs.

Proof. Suppose a € W(A) and b € W(B) such that |a| = r(A) and |b| = r(B) belong to C4.
If r(¢(A)) = c and r(¢(B)) = d, we shall show that [c,d] C Rs.

First, we may assume that a = |a|; otherwise, replace A by uA for a suitable u € IF
with |u| = 1. Similarly, we may assume that b = |b|. There is a unitary U such that
A = U*(D + Ap)U, for D = diag(a,0,...,0) and the (1,1) entry of Ay is zero. Then
Y1 (t) = U*(D + (1 —t)Ag)U, t € [0,1], is a path in S¢, connecting A and U*DU.

Let U = ¢l where H is Hermitian. Then the path v,(t) = e DeH t € [0,1], is a
path in Scl connecting U*DU and D. Similarly, one can construct a path in 501 connecting
B and diag(b, 0, ...,0). Finally, one can construct a path in Scl connecting diag(a, 0, ... ,0)
and diag(b,0,...,0). So, we have a path in S¢, connecting A and B. It follows that there is a
path in Sk, connecting ¢(A) and ¢(B). So, $(A) and ¢(B) belong to the S¢, for a connected
component Cy of Ry. Since ¢ is invertible by Assertion 1, we have gb’l(gcz) C Scl, and hence

¢71(‘§C2) = S~Cl‘

Now, we are ready to present the proof of Conditions (1) and (2). By Assertion 1, ¢ is
invertible. If R; equals (0, 00) or [0, 00), then nothing else can be said about ¢. Suppose R;
does not satisfy Condition (1). By Assertion 2, we may assume that Ry and Ry are connected
intervals. For any nonzero A € V,,, r(A) and r(¢(A)) are nonzero as ¢ is invertible by

Assertion 1. Let k4 = %. Then

aeRM:w( A)€R1<:>r<¢(LA)>GR2(:>k:AaER2.

a

r(A) r(A)

Hence, k4 Ry = Ry. Since R; is neither (0, 00) nor [0, 00), we have sup R exists or inf Ry is

nonzero. In both cases, we can deduce that k4 is a constant, say k, for all nonzero A € V,,.
Let ® be the map A — k™'¢(A) on V,,. Then

P@(A) _E(OA)
DS =L forall A€ Vi (o)

Hence, ® is a numerical radius preserver on V,,. By Theorem 1.2, the result follows. 0
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