Inclusion regions for numerical ranges and Linear Preservers

Chi-Kwong $L^{1}{ }^{1}$ and Nung-Sing Sze ${ }^{2}$

Abstract

Let R be a proper subset of the complex plane, and let \mathcal{S}_{R} be the set of $n \times n$ complex matrices A such that the numerical range $W(A)$ satisfies $W(A) \subseteq R$. Linear maps ϕ on matrices satisfying $\phi\left(\mathcal{S}_{R}\right)=\mathcal{S}_{R}$ are characterized. Denote by $\tilde{\mathcal{S}}_{R}$ the set of $n \times n$ complex matrices A such that the numerical radius $r(A)$ satisfies $r(A) \subseteq R$ for a proper subset R of nonnegative real numbers. Linear maps ϕ on matrices satisfying $\phi\left(\tilde{\mathcal{S}}_{R}\right)=\tilde{\mathcal{S}}_{R}$ are also characterized. Analogous results on Hermitian matrices are obtained.

Keywords. Numerical range (radius), Hermitian matrices, linear maps.
AMS Subject Classification. 15A60,15A04.

1 Introduction

Let \mathbf{M}_{n} be the algebra of $n \times n$ complex matrices. Define the numerical range of $A \in \mathbf{M}_{n}$ by

$$
W(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

and the numerical radius of A by

$$
r(A)=\{|\mu|: \mu \in W(A)\} .
$$

The numerical range and numerical radius are useful concepts in studying matrices; see [4, Chapter 1].

Let R be a proper subset of the complex plane, and let \mathcal{S}_{R} be the subset of \mathbf{M}_{n} consisting of matrices A such that $W(A) \subseteq R$, i.e.

$$
\mathcal{S}_{R}=\left\{A \in M_{n}: W(A) \subseteq R\right\}
$$

There has been considerable interest in studying inclusion regions for numerical ranges. It is in fact very useful in knowing inclusion regions for $W(A)$. For example, it is well known (see [4, Chapter 1]) that $W(A) \subseteq \mathbb{R}$ if and only if $A=A^{*} ; W(A) \subseteq[0, \infty)$ if and only if A is positive semidefinite; and $W(A) \subseteq(0, \infty)$ if and only if A is positive definite. Moreover, Ando [1] (see also [2]) showed that $W(A)$ is contained in the unit disk if and only if $A=X^{*} C X$ with a $2 m \times n$ matrix X such that $X^{*} X=I_{n}$ and $C=\left(\begin{array}{cc}0_{m} & 2 I_{m} \\ 0_{m} & 0_{m}\end{array}\right)$ for some integer m; Mirman [6] showed that $W(A)$ is contained in a triangle with vertices a, b, c if and only if $A=X^{*} C X$ with $X^{*} X=I_{n}$ and $C \in M_{m}$ a normal matrix with eigenvalues a, b, c for some integer m; see [3] for further results along this direction.

[^0]Let \mathbf{V}_{n} be \mathbf{M}_{n} or the real linear space \mathbf{H}_{n} of $n \times n$ Hermitian matrices, and let $\mathbb{F}=\mathbb{C}$ or \mathbb{R} according to $\mathbf{V}_{n}=\mathbf{M}_{n}$ or \mathbf{H}_{n}. In this paper, we study linear preservers of \mathcal{S}_{R}, i.e., IF-linear operators $\phi: \mathbf{V}_{n} \rightarrow \mathbf{V}_{n}$ satisfying $\phi\left(\mathcal{S}_{R}\right)=\mathcal{S}_{R}$.

Denote by $\mathbf{P}_{n}, \mathbf{P}_{n}^{+}, \mathbf{U}_{n}, \mathbf{G} \mathbf{L}_{n}$, the sets of positive semidefinite matrices, positive definite matrices, unitary matrices, and invertible matrices in \mathbf{M}_{n}, respectively. Then $\mathcal{S}_{[0, \infty)}=\mathbf{P}_{n}$ is the set of positive semidefinite matrices; $\mathcal{S}_{(0, \infty)}=\mathbf{P}_{n}^{+}$is the set of positive definite matrices; for $R=\{z \in \mathbb{C}:|z| \leq 1\}$ the set \mathcal{S}_{R} consists of matrices A satisfying $r(A) \leq 1$. We have the following results on linear preservers of inclusion regions for numerical ranges.

Theorem 1.1 [8] Let $\mathbf{V}_{n}=\mathbf{M}_{n}$ or \mathbf{H}_{n}, and let $\mathbb{F}=\mathbb{C}$ or \mathbb{R} accordingly. Suppose $\phi: \mathbf{V}_{n} \rightarrow$ \mathbf{V}_{n} is an \mathbb{F}-linear operator. Then the following are equivalent.
(a) $\phi\left(\mathbf{P}_{n}\right)=\mathbf{P}_{n}$.
(b) $\phi\left(\mathbf{P}_{n}^{+}\right)=\mathbf{P}_{n}^{+}$.
(c) ϕ has the form $A \mapsto T^{*} A T$ or $A \mapsto T^{*} A^{t} T$ for some $T \in \mathbf{G L}_{n}$.

Theorem 1.2 [5] Let $\mathbf{V}_{n}=\mathbf{M}_{n}$ or \mathbf{H}_{n}, and let $\mathbb{F}=\mathbb{C}$ or \mathbb{R} accordingly. Suppose $\phi: \mathbf{V}_{n} \rightarrow$ \mathbf{V}_{n} is an \mathbb{F}-linear operator. Then the following are equivalent.
(a) $r(\phi(A))=r(A)$ for all $A \in \mathbf{V}_{n}$.
(b) $\phi\left(\mathcal{S}_{R}\right)=\mathcal{S}_{R}$ for $R=\{\mu \in \mathbb{F}:|\mu| \leq 1\}$.
(c) there exists $\mu \in \mathbb{F}$ with $|\mu|=1$ such that ϕ has the form $A \mapsto \mu U^{*} A U$ or $A \mapsto \mu U^{*} A^{t} U$ for some $U \in \mathbf{U}_{n}$.

Let $\mathbb{F}=\mathbb{R}$ or \mathbb{C} according to $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}. In Sections 3 and 4 , we shall solve the slightly more general problem, namely, characterization of linear operators $\phi: \mathbf{V}_{n} \rightarrow \mathbf{V}_{n}$ such that $\phi\left(\mathcal{S}_{R_{1}}\right)=\mathcal{S}_{R_{2}}$ for two given subsets $R_{1}, R_{2} \subseteq \mathbb{F}$, after proving some preliminary results in Section 2. Denote by $\tilde{\mathcal{S}}_{R}$ the set of matrices A such that $r(A) \in R$ for a given proper subset R of $[0, \infty)$. In section 5 , we characterize linear operators $\phi: \mathbf{V}_{n} \rightarrow \mathbf{V}_{n}$ such that $\phi\left(\tilde{\mathcal{S}}_{R_{1}}\right)=\phi\left(\tilde{\mathcal{S}}_{R_{2}}\right)$ for two subsets $R_{1}, R_{2} \subseteq[0, \infty)$.

Related to our investigation, one may also consider ϕ such that $\phi\left(\mathcal{S}_{R}\right) \subseteq \mathcal{S}_{R}$. But it is difficult. For example, if $R=[0, \infty)$, then $\phi\left(\mathcal{S}_{R}\right) \subseteq \mathcal{S}_{R}$ if and only if ϕ is a positive linear map. The structure of such maps are known to be very complicated, see [7, Chapter 3]. In connection to this, we have the following result.

Theorem 1.3 Let $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}, and let $\mathbb{F}=\mathbb{C}$ or \mathbb{R} accordingly. An \mathbb{F}-linear map $\phi: \mathbf{V}_{n} \rightarrow \mathbf{V}_{n}$ satisfies $W(\phi(A)) \subseteq W(A)$ for all $A \in \mathbf{V}_{n}$ if and only if ϕ is a unital positive linear map. Consequently, if $\phi: \mathbf{V}_{n} \rightarrow \mathbf{V}_{n}$ is a unital positive linear map, then $\phi\left(\mathcal{S}_{R}\right) \subseteq \mathcal{S}_{R}$ for any subset R of \mathbb{C}.

Proof. (\Rightarrow) If A is positive semidefinite, then $W(\phi(A)) \subseteq W(A) \subseteq[0, \infty)$. Thus, $\phi(A)$ is positive semidefinite. Also, $W\left(\phi\left(I_{n}\right)\right) \subseteq W\left(I_{n}\right)=\{1\}$. Hence, $\phi\left(I_{n}\right)=I_{n}$.
(\Leftarrow) Suppose ϕ is a unital positive linear map. Then ϕ maps Hermitian matrices to Hermitian matrices in case $\mathbf{V}_{n}=\mathbf{M}_{n}$. Furthermore, if $\lambda I-\left(\mu A+(\mu A)^{*}\right) \in \mathbf{P}_{n}$, then $\lambda I-\left(\mu \phi(A)+(\mu \phi(A))^{*}\right) \in \mathbf{P}_{n}$ for any $\lambda \in \mathbb{R}$ and $\mu \in \mathbb{F}$. Since $\lambda I-\left(\mu B+(\mu B)^{*}\right) \in \mathbf{P}_{n}$ if and only if

$$
W(B) \subseteq\left\{z \in \mathbb{F}: \lambda \geq(\mu z)+(\mu z)^{*}\right\}
$$

we see that each half space of \mathbb{F} containing $W(A)$ will also contain $W(\phi(A))$. It follows that $W(\phi(A)) \subseteq W(A)$.

2 Preliminary Results

Lemma 2.1 Let $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}, and let $\mathbb{F}=\mathbb{R}$ or \mathbb{C} according to $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}. If $R \subseteq \mathbb{F}$ contains a nondegenerate line segment, then $\mathcal{S}_{R} \subseteq \mathbf{V}_{n}$ is a spanning set of \mathbf{V}_{n}. Consequently, if $\phi: \mathbf{V}_{n} \rightarrow \mathbf{V}_{n}$ is a linear operator such that $\phi\left(\mathcal{S}_{R_{1}}\right)=\mathcal{S}_{R}$ for some $R_{1} \subseteq \mathbb{F}$, then $\mathcal{S}_{R_{1}}$ is a spanning set of \mathbf{V}_{n} and ϕ is invertible.

Proof. We prove the result for \mathbf{M}_{n}. The proof for \mathbf{H}_{n} is similar.
Recall that a matrix $A \in \mathbf{M}_{n}$ has numerical range lying on a line segment L if and only if A is normal with eigenvalues contained in L. Thus, if R contains a line segment L, then \mathcal{S}_{R} contains all normal matrices with eigenvalues in L. There exists some $A \in \mathcal{S}_{R}$ with eigenvalues in L and nonzero trace. By the main result in [9], $\left\{U^{*} A U: U \in \mathbf{U}_{n}\right\} \subseteq \mathcal{S}_{R}$ is a spanning set of \mathbf{M}_{n}.

Now, suppose $\phi: \mathbf{M}_{n} \rightarrow \mathbf{M}_{n}$ is a linear operator such that $\phi\left(\mathcal{S}_{R_{1}}\right)=\mathcal{S}_{R}$ for some $R_{1} \subseteq \mathbb{C}$. Since $\phi\left(\mathcal{S}_{R_{1}}\right)$ contains a spanning set of \mathbf{M}_{n} the last assertion follows.

The following lemma can be verified readily.
Lemma 2.2 Let $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}, and let $\mathbb{F}=\mathbb{R}$ or \mathbb{C} according to $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}. Suppose $\phi: \mathbf{V}_{n} \rightarrow \mathbf{V}_{n}$ is a linear operator satisfying $\phi\left(\mathcal{S}_{R_{1}}\right)=\mathcal{S}_{R_{2}}$. Then for any nonzero $\mu \in \mathbb{F}$

$$
\phi\left(\mathcal{S}_{\mu R_{1}}\right)=\mathcal{S}_{\mu R_{2}} .
$$

For $R \subseteq \mathbb{F}$ and $\mu \in \mathbb{F}$, let

$$
R+\mu=\{z+\mu \in \mathbb{F}: z \in R\} .
$$

We have the following observation.
Lemma 2.3 Let $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}, and let $\mathbb{F}=\mathbb{R}$ or \mathbb{C} according to $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}. Suppose $\phi: \mathbf{V}_{n} \rightarrow \mathbf{V}_{n}$ is a linear operator satisfying $\phi\left(I_{n}\right)=\mu I_{n}$ for some $\mu \in \mathbb{F}$ and $\phi\left(\mathcal{S}_{R_{1}}\right)=\mathcal{S}_{R_{2}}$. Then $\mu R_{1}=R_{2}$, and for any nonzero $\nu \in \mathbb{F}$

$$
\phi\left(\mathcal{S}_{R_{1}+\nu}\right)=\mathcal{S}_{R_{2}+\mu \nu} .
$$

Proof. Note that $z \in R_{1}$ if and only if $z I \in \mathcal{S}_{R_{1}}$. Hence, $\mu z I \in \mathcal{S}_{R_{2}}$, or equivalently, $\mu z \in R_{2}$. Thus, $\mu R_{1}=R_{2}$.

Let $A \in \mathbf{V}_{n}$ and $\mu \in \mathbb{F}$. Then $W(A) \subseteq R$ if and only if $W\left(A+\nu I_{n}\right) \subseteq R+\nu$. Hence, $\mathcal{S}_{R+\nu}=\left\{A+\nu I_{n}: A \in \mathcal{S}_{R}\right\}$. Since ϕ is linear and $\phi\left(I_{n}\right)=\mu I_{n}$, the result follows.

Lemma 2.4 Let $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}, and let $R_{1}, R_{2} \subseteq \mathbb{F}$, where $\mathbb{F}=\mathbb{R}$ or \mathbb{C} according to $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}. Suppose $\phi: \mathbf{V}_{n} \rightarrow \mathbf{V}_{n}$ is linear and satisfies $\phi\left(\mathcal{S}_{R_{1}}\right)=\mathcal{S}_{R_{2}}$. If C_{1} is a connected component of R_{1}, then there is a connected component C_{2} of R_{2} such that $\phi\left(\mathcal{S}_{C_{1}}\right) \subseteq \mathcal{S}_{C_{2}}$. The set inclusion becomes a set equality if ϕ is invertible.

Proof. Let C_{1} be a connected component of R_{1} and let $A \in \mathcal{S}_{C_{1}}$. For any $B \in \mathcal{S}_{C_{1}}$ we show that there is a continuous path $\gamma:[0,1] \rightarrow \mathcal{S}_{C_{1}}$ such that $\gamma(0)=A$ and $\gamma(1)=B$ as follows. First, by [4, Theorem 1.3.4], there is $U \in \mathbf{U}_{n}$ such that $A=U^{*}\left(a I_{n}+A_{0}\right) U$, where $a=(\operatorname{tr} A) / n$ and A_{0} has zero diagonal entries. The path $\gamma_{1}(t)=U^{*}\left(a I_{n}+(1-t) A_{0}\right) U$, $t \in[0,1]$, connects A and $a I_{n}$. Moreover, since $a \in W(A)$, we see that

$$
W\left(\gamma_{1}(t)\right)=W\left((1-t) A+t a I_{n}\right) \subseteq(1-t) W(A)+t W\left(a I_{n}\right) \subseteq W(A) \subseteq C_{1}
$$

So, γ_{1} is a path in $\mathcal{S}_{C_{1}}$. Similarly, there is a path γ_{2} joining B and $b I_{n}$, where $b=(\operatorname{tr} B) / n$ in $\mathcal{S}_{C_{1}}$. Finally, if $a \in W(A) \subseteq C_{1}$ and $b \in W(B) \subseteq C_{1}$, there is a continuous path γ_{3} in C_{1} joining a and b. Then $\tilde{\gamma}_{3}$ defined by $\tilde{\gamma}_{3}(t)=\gamma_{3}(t) I_{n}$ is a continuous path in $\mathcal{S}_{C_{1}}$ connecting $a I_{n}$ and $b I_{n}$. Combining $\gamma_{1}, \tilde{\gamma}_{3}$ and γ_{2}, we get a continuous path $\gamma(t)$ in $\mathcal{S}_{C_{1}}$ connecting A and B.

Now, $W(\gamma(t)) \subseteq \mathcal{S}_{R_{2}}$. We see that the set $\bigcup_{t \in[0,1]} W(\gamma(t))$ is a connected subset of R_{2} containing both $W(\phi(A))$ and $W(\phi(B))$. Hence, they must lie in the same connected component C_{2} of R_{2}. Thus for every $B \in \mathcal{S}_{C_{1}}$, we have $\phi(B) \in \mathcal{S}_{C_{2}}$. Thus $\phi\left(\mathcal{S}_{C_{1}}\right) \subseteq \mathcal{S}_{C_{2}}$.

Suppose ϕ is invertible. Then $\phi^{-1}\left(\mathcal{S}_{R_{2}}\right)=\mathcal{S}_{R_{1}}$. It follows that $\phi^{-1}\left(\mathcal{S}_{C_{2}}\right) \subseteq \mathcal{S}_{C_{1}}$. Hence the last assertion follows.

The next two lemmas characterize linear operators ϕ satisfying $\phi\left(\mathcal{S}_{R_{1}}\right)=\mathcal{S}_{R_{2}}$ for some special R_{1}.

Lemma 2.5 Let $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}, and $\mathbb{F}=\mathbb{R}$ or \mathbb{C} according to $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}. Suppose $R_{1}, R_{2} \subseteq \mathbb{F}$ are non-empty such that R_{1} does not contain any line segment, and $R_{i} \neq\{0\}$ for $i=1,2$. A linear operator $\phi: \mathbf{V}_{n} \rightarrow \mathbf{V}_{n}$ satisfies $\phi\left(\mathcal{S}_{R_{1}}\right)=\mathcal{S}_{R_{2}}$ if and only if $\phi(I)=\mu I$ for some $\mu \in \mathbb{F}$ satisfying $\mu R_{1}=R_{2}$.

Proof. Since R_{1} does not contain any line segment, then $W(A)$ is a singleton for every $A \in \mathcal{S}_{R_{1}}$. Hence, $\mathcal{S}_{R_{1}}=\left\{\nu I_{n}: \nu \in R_{1}\right\}$ and the linear span of $\mathcal{S}_{R_{1}}=\mathbb{F} \cdot I$, is the 1dimensional space of scalar matrices in \mathbf{V}_{n}. The (\Leftarrow) of the assertion is clear. To prove the implication (\Rightarrow), suppose $\nu_{0} \in R_{1}$ and $B=\phi\left(\nu_{0} I_{n}\right)$. Then for any $\nu \in R_{1}, \phi\left(\nu I_{n}\right)=$ $\left(\nu / \nu_{0}\right) B$. If B is not a scalar matrix, then $W(B) \subseteq R_{2}$ contains some line segment L. By Lemma 2.1, the set $T=\left\{X \in \mathbf{V}_{n}: W(X) \subseteq L\right\}$ is a spanning set of \mathbf{V}_{n}. It follows that $\phi(\mathbb{F} \cdot I)=\phi\left(\operatorname{span} \mathcal{S}_{R_{1}}\right)=\operatorname{span} \mathcal{S}_{R_{2}}=\mathbf{V}_{n}$, which is a contradiction.

Lemma 2.6 Let $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}, and $\mathbb{F}=\mathbb{R}$ or \mathbb{C} according to $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}. Suppose $R_{1}=\mathbb{F}$ and $R_{2} \subseteq \mathbb{F}$ is non-empty and not equal to $\{0\}$. A linear operator $\phi: \mathbf{V}_{n} \rightarrow \mathbf{V}_{n}$ satisfies $\phi\left(\mathcal{S}_{R_{1}}\right)=\mathcal{S}_{R_{2}}$ if and only if ϕ is invertible and $R_{2}=\mathbb{F}$.

Proof. To prove the implication (\Rightarrow), take any nonzero element $\nu \in \mathbb{F}$ and $A \in \mathbf{V}_{n}=\mathcal{S}_{R_{1}}$ such that $\phi(A)=\nu I_{n} \in \mathcal{S}_{R_{2}}$. Then for any $\mu \in \mathbb{F}$, we have $\mu A \in \mathcal{S}_{R_{1}}$ and $\phi(\mu A)=\mu \nu I_{n} \in$ $\mathcal{S}_{R_{2}}$. Thus, $\mu \nu \in R_{2}$. It follows that $R_{2}=\mathbb{F}$. By Lemma 2.1, ϕ is invertible. The converse is clear.

3 Results on Hermitian matrices

In this section, we characterize linear maps ϕ on \mathbf{H}_{n} satisfying $\phi\left(\mathcal{S}_{R_{1}}\right)=\mathcal{S}_{R_{2}}$ for two given subsets $R_{1}, R_{2} \subseteq \mathbb{R}$. To avoid trivial consideration, we assume that R_{1} and R_{2} are nonempty. Furthermore, if $R_{2}=\{0\}$ then ϕ can be any linear map such that $\phi(A)=0$ for all $A \in \mathcal{S}_{R_{1}}$; one cannot say much about the structure of ϕ. If $R_{1}=\{0\}$, then we must have $R_{2}=\{0\}$ and ϕ can be any linear map. So, we also exclude these cases in our consideration.

Theorem 3.1 Let R_{1}, R_{2} be non-empty subsets of \mathbb{R} such that $R_{j} \neq\{0\}$ for $j=1,2$. There is a linear operator $\phi: \mathbf{H}_{n} \rightarrow \mathbf{H}_{n}$ satisfying $\phi\left(\mathcal{S}_{R_{1}}\right)=\mathcal{S}_{R_{2}}$ if and only if there is a nonzero $\mu \in \mathbb{R}$ such that $\mu R_{1}=R_{2}$ and one of the following conditions holds.

1. The set R_{1} does not contain any line segment and $\phi\left(I_{n}\right)=\mu I_{n}$.
2. The set $R_{1}=\mathbb{R}$ and ϕ is invertible.
3. The set R_{1} equals $(0, \infty),[0, \infty),(-\infty, 0],(-\infty, 0]$ or $\mathbb{R} \backslash\{0\}$, and ϕ has the form $A \mapsto \mu T^{*} A T$ or $A \mapsto \mu T^{*} A^{t} T$ for some $T \in \mathbf{G L}_{n}$.
4. The set R_{1} is not of any of the above forms, and ϕ has the form $A \mapsto \mu U^{*} A U$ or $A \mapsto \mu U^{*} A^{t} U$ for some $U \in \mathbf{U}_{n}$.

Proof. The implication (\Leftarrow) can be readily verified. We consider the converse. The first two cases follow from Lemmas 2.5 and 2.6. In the other cases, R_{1} contains a connected component L_{1} which is neither \mathbb{R} nor a singleton set. By Lemma 2.4, we have $\phi\left(\mathcal{S}_{L_{1}}\right) \subseteq \mathcal{S}_{L_{2}}$ for a connected component L_{2} of R_{2}. Note that L_{2} is not a singleton. Otherwise, $\mathcal{S}_{L_{2}}=\left\{\mu I_{n}\right\}$ for some $\mu \in \mathbb{R}$. Since $\mathcal{S}_{L_{1}}$ is a spanning set of $\mathbf{H}_{n}, \phi\left(\mathbf{H}_{n}\right)=\left\{\mu I_{n}\right\}$. It follows that $\mu=0$, which is a contradiction. So, L_{2} is a nontrivial interval, ϕ is invertible by Lemma 2.1, and $\phi\left(\mathcal{S}_{L_{1}}\right)=\mathcal{S}_{L_{2}}$.

Here we consider the following different types of proper intervals L in \mathbb{R}.
(a) $L=[0, \infty)$ or $(-\infty, 0]$;
(b) $L=(0, \infty)$ or $(-\infty, 0)$;
(c) There exists $(-a, a) \subseteq L$ for some $a>0$ but $L \neq \mathbb{R}$;
(d) $L=[0, a),(0, a),[0, a],(0, a],(-a, 0],(-a, 0),[-a, 0]$ or $[-a, 0)$ for some $a>0$;
(e) $L=(a, \infty),[a, \infty),(-\infty,-a)$ or $(-\infty,-a]$ for some $a>0$;
(f) $L=(a, b),(a, b],[a, b)$ or $[a, b]$ for some $a, b \in \mathbb{R}$ with either $0<a<b$ or $a<b<0$.

In order that $\phi\left(\mathcal{S}_{L_{1}}\right)=\mathcal{S}_{L_{2}}, L_{1}$ and L_{2} must be of the same type by the following character of intervals, which are invariant under an invertible linear map.
(a) $\mathcal{S}_{L}= \pm \mathbf{P}_{n}$ and for every $A \in \mathcal{S}_{L}, k A \in \mathcal{S}_{L}$ for all $k \geq 0$;
(b) $\mathcal{S}_{L}= \pm \mathbf{P}_{n}^{+}$and for every $A \in \mathcal{S}_{L}, k A \in \mathcal{S}_{L}$ for all $k>0$;
(c) $\mathcal{S}_{L} \neq \mathbf{H}_{n}$ and there exists $A \in \mathcal{S}_{L}$ such that $-A \in \mathcal{S}_{L}$;
(d) For every nonzero $A \in \mathcal{S}_{L},-A \notin \mathcal{S}_{L}$. Moreover, there exist k_{1} and k_{2} with $0<k_{1}<k_{2}$ such that $k A \in \mathcal{S}_{L}$ for all $k \leq k_{1}$ while $k A \notin \mathcal{S}_{L}$ for all $k \geq k_{2}$;
(e) For every $A \in \mathcal{S}_{L},-A \notin \mathcal{S}_{L}$. Also there exist k_{1} and k_{2} with $0<k_{1}<k_{2}$ such that $k A \notin \mathcal{S}_{L}$ for all $k \leq k_{1}$ while $k A \in \mathcal{S}_{L}$ for all $k \geq k_{2}$;
(f) \mathcal{S}_{L} does not satisfy any of above properties.

Now, we are ready to characterize ϕ according to the different types of L_{1}. We have the following two cases.
(i) If L_{1} is of the type (a) or (b), then ϕ has the form $A \mapsto \mu T^{*} A T$ or $A \mapsto \mu T^{*} A^{t} T$ for some $T \in \mathbf{G L}_{n}$ and $\mu \in\{1,-1\}$ such that $\mu R_{1}=R_{2}$.
(ii) In the other cases, ϕ has the form $A \mapsto \mu U^{*} A U$ or $A \mapsto \mu U^{*} A^{t} U$ for some $U \in \mathbf{U}_{n}$ and $\mu \in\{1,-1\}$ such that $\mu R_{1}=R_{2}$.

For type (a), note that $\mathcal{S}_{L_{1}}$ and $\mathcal{S}_{L_{2}}$ are either \mathbf{P}_{n} or $-\mathbf{P}_{n}$. Hence, $\phi\left(\mathbf{P}_{n}\right)=\mathbf{P}_{n}$ or $\phi\left(\mathbf{P}_{n}\right)=-\mathbf{P}_{n}$. Replacing ϕ by $-\phi$ if necessary and using Theorem 1.1, we get the result.

For type (b), note that $\mathcal{S}_{L_{1}}$ and $\mathcal{S}_{L_{2}}$ are either \mathbf{P}_{n}^{+}or $-\mathbf{P}_{n}^{+}$. The result again follows from Theorem 1.1.

For type (c), let $k_{i}=\sup \left\{k>0:(-k, k) \subseteq L_{i}\right\}$ for $i=1,2$. Then both k_{1} and k_{2} are positive. Replacing $\left(\phi, L_{1}, L_{2}\right)$ by $\left(\frac{k_{1}}{k_{2}} \phi, \frac{1}{k_{1}} L_{1}, \frac{1}{k_{2}} L_{2}\right)$, we may assume $k_{1}=k_{2}=1$. By the definition of k_{1}, we must have $[-k, k] \subseteq L_{1}$ for all $k<1$; otherwise there is a $k<k^{\prime}<1$ such that $\left(-k^{\prime}, k^{\prime}\right) \nsubseteq L_{1}$.

For any $A \in \mathbf{H}_{n}$ and $k \in(-1,1), W\left(\frac{k}{r(A)} A\right) \subseteq[-k, k] \subseteq L_{1}$. Then $W\left(\phi\left(\frac{k}{r(A)} A\right)\right) \subseteq L_{2}$. We claim that $W\left(\phi\left(\frac{1}{r(A)} A\right)\right) \subseteq[-1,1]$. Otherwise, there is $z \in W\left(\phi\left(\frac{1}{r(A)} A\right)\right)$ such that $|z|>1$. Since $k z \in W\left(\phi\left(\frac{k}{r(A)} A\right)\right) \subseteq L_{2}$ and k can be any value in $(-1,1)$, it follows that $(-|z|,|z|) \subseteq L_{2}$. It is impossible since $|z|>1=k_{2}$. Hence, we have $W\left(\phi\left(\frac{1}{r(A)} A\right)\right) \subseteq[-1,1]$, it follows that $r(\phi(A)) \leq r(A)$. By considering ϕ^{-1}, we have $r\left(\phi^{-1}(A)\right) \leq r(A)$. Hence, ϕ
is a numerical radius preserver on \mathbf{H}_{n}. By Theorem $1.2, \phi$ has the asserted form, and the result follows.

For type (d), we may assume that $L_{1}=L_{2}=L$ is one of the following intervals:

$$
[0,1], \quad[0,1), \quad(0,1], \quad(0,1)
$$

Otherwise, replace $\left(\phi, L_{1}, L_{2}\right)$ by $\left(\frac{b}{a} \phi, a L_{1}, b L_{2}\right)$ for some suitable nonzero $a, b \in \mathbb{R}$. Then $A \in \mathbf{H}_{n}$ satisfies $r(A)<1(r(A) \leq 1)$ if and only if $A=A_{1}-A_{2}$ with $A_{1}, A_{2} \in \mathcal{S}_{L}$. Since $\phi\left(\mathcal{S}_{L}\right)=\mathcal{S}_{L}$, it follows that $r(\phi(A))<1(r(\phi(A)) \leq 1)$ whenever $r(A)<1(r(A) \leq 1)$. Applying the argument to ϕ^{-1}, we see that $r(A)<1(r(A) \leq 1)$ whenever $r(\phi(A))<1$ $(r(\phi(A)) \leq 1)$. Consequently, ϕ preserves the numerical radius. The result follows from Theorem 1.2.

For type (e), we may assume that $L_{1}=L_{2}=L$ is the interval $[1, \infty)$ or $(1, \infty)$. Otherwise, replace $\left(\phi, L_{1}, L_{2}\right)$ by $\left(\frac{b}{a} \phi, a L_{1}, b L_{2}\right)$ for some suitable nonzero $a, b \in \mathbb{R}$. Then

$$
\left\{k A: W(A) \subseteq L_{i} \text { and } k>0\right\}=\mathbf{P}_{n}^{+}, \quad i=1,2
$$

Since ϕ is linear, we see that $\phi\left(\mathbf{P}_{n}^{+}\right)=\mathbf{P}_{n}^{+}$. By Theorem 1.1, ϕ has the form $A \mapsto T^{*} A^{+} T$ for some $T \in \mathbf{G L}_{n}$, where A^{+}denotes A or A^{t}.

Suppose $T^{*} T$ has an eigenvalue $\gamma<1$. Then $A=2^{-1}(1+1 / \gamma) I_{n} \in \mathcal{S}_{L_{1}}$, but $\phi(A)=$ $2^{-1}(1+1 / \gamma) T^{*} T$ has an eigenvalue $2^{-1}(\gamma+1)<1$. Thus, $W(\phi(A)) \nsubseteq L_{2}$, which is a contradiction. Thus, all eigenvalues of $T^{*} T$ are larger than or equal to 1, i.e., all singular values of T are larger than or equal to 1. Applying the argument to $\phi^{-1}(A)=\left(T^{*}\right)^{-1} A^{+} T^{-1}$, we see that the singular values of T^{-1} are larger than or equal to 1 . As a result, all singular values of T equal 1, i.e., T is unitary.

For type (f), we may replace ϕ by $-\phi$ if necessary, and assume that $L_{1}, L_{2} \subseteq(0, \infty)$. Let r_{1}, r_{2}, s_{1} and s_{2} denote $\inf L_{1}, \inf L_{2}, \sup L_{1}$ and $\sup L_{2}$, respectively. Then all of them are positive. Suppose $W\left(\phi\left(I_{n}\right)\right)=\left[a_{1}, b_{1}\right]$. Then as $z \in L_{1}$ if and only if $\left[z a_{1}, z b_{1}\right] \subseteq L_{2}$, we have

$$
0<r_{2} \leq a_{1} r_{1} \leq b_{1} s_{1} \leq s_{2}
$$

Similarly, if $W\left(\phi^{-1}\left(I_{n}\right)\right)=\left[a_{2}, b_{2}\right]$, then

$$
0<r_{1} \leq a_{2} r_{2} \leq b_{2} s_{2} \leq s_{1}
$$

We can conclude that $1 \leq a_{1} a_{2} \leq b_{1} b_{2} \leq 1$, and that $a_{1} a_{2}=b_{1} b_{2}$. As $0<a_{1} \leq b_{1}$ and $0<a_{2} \leq b_{2}$, we have $a_{1}=b_{1}$ and $a_{2}=b_{2}$. Thus, $\phi\left(I_{n}\right)=\mu I_{n}$ for some $\mu \in \mathbb{R}$. By lemma 2.3 with some suitable $\nu \in \mathbb{R}, \phi\left(\mathcal{S}_{L_{1}-\nu}\right)=\mathcal{S}_{L_{2}-\mu \nu}$, where $L_{1}-\nu$ is of type (c).

It is easy to check that there is a nonzero $\mu \in \mathbb{R}$ such that $\mu R_{1}=R_{2}$ in each case.

4 Results on Complex Matrices

In this section, we characterize linear maps ϕ on \mathbf{M}_{n} satisfying $\phi\left(\mathcal{S}_{R_{1}}\right)=\mathcal{S}_{R_{2}}$ for two given subsets $R_{1}, R_{2} \subseteq \mathbb{C}$. Similar to section 3, we assume that R_{1} and R_{2} are non-empty. Also we exclude the cases that R_{1} or R_{2} equal to the set $\{0\}$ in our consideration.

Identify \mathbf{U}_{1} with the unit circle in \mathbb{C}, we have the following result.

Theorem 4.1 Let R_{1}, R_{2} be non-empty subsets of \mathbb{C} such that $R_{j} \neq\{0\}$ for $j=1,2$. There is a linear map $\phi: \mathbf{M}_{n} \rightarrow \mathbf{M}_{n}$ satisfying $\phi\left(\mathcal{S}_{R_{1}}\right)=\mathcal{S}_{R_{2}}$ if and only if there is a nonzero $\mu \in \mathbb{C}$ such that $\mu R_{1}=R_{2}$ and one of the following conditions holds.

1. The set R_{1} does not contain any nondegenerate line segment and $\phi\left(I_{n}\right)=\mu I_{n}$.
2. The set R_{1} has no interior point and is the union of a collection of straight lines such that each of them passes through the origin; $\phi\left(\mathbf{H}_{n}\right)=\mu \mathbf{H}_{n}$.
3. The set R_{1} has no interior point and equals $R_{2} \cup R_{3}$, where R_{2} is a non-empty collection of straight lines and R_{3} does not contain any line segment so that either R_{2} contains a line not passing the origin or $R_{3} \backslash\{0\}$ is non-empty; $\phi\left(\mathbf{H}_{n}\right)=\mu \mathbf{H}_{n}$ and $\phi\left(I_{n}\right)=\mu I_{n}$.
4. The set $R_{1}=\mathbb{C}$ and ϕ is invertible.
5. The set $R_{1} \neq \mathbb{C}$ has interior points and is a union of sets of the forms: $w(0, \infty)$ or $w[0, \infty)$ with $w \in \mathbf{U}_{1}$; ϕ has the form $A \mapsto \mu T^{*} A T$ or $A \mapsto \mu T^{*} A^{t} T$ for some $T \in \mathbf{G L}_{n}$.
6. The set R_{1} does not satisfy any of the conditions in (1)-(5), and ϕ has the form $A \mapsto \mu U^{*} A U$ or $A \mapsto \mu U^{*} A^{t} U$ for some $U \in \mathbf{U}_{n}$.

Proof. The implication (\Leftarrow) can be readily verified except for Case (3). Note that in such case, if $A \in \mathcal{S}_{R_{1}}$, then $W(A)$ has no interior point and is a subset of $a+b \mathbb{R}$ for some $a, b \in \mathbb{C}$. Thus, $A=a I+b H$ for some $H \in \mathbf{H}_{n}$. So, $\phi(A)=\mu(a I+b K)$ for some $K \in \mathbf{H}_{n}$, and thus $W(\phi(A)) \subseteq \mu(a+b \mathbb{R}) \subseteq \mu R_{1}=R_{2}$.

For the converse, Case (1) and Case (4) follow from Lemmas 2.5 and 2.6. We focus on the other cases.

Note that R_{2} must contain some nondegenerate line segment. Otherwise, by lemma 2.4, there is a connected component C_{1} in R_{1} containing a nondegenerate line segment, and a singleton component C_{2} in R_{2} such that $\phi\left(\mathcal{S}_{C_{1}}\right)=\mathcal{S}_{C_{2}}$. Clearly, $\mathcal{S}_{C_{2}}=\left\{\mu I_{n}\right\}$ for some $\mu \in R_{2}$. Since $\mathcal{S}_{C_{1}}$ is a spanning set of $\mathbf{M}_{n}, \phi\left(\mathbf{M}_{n}\right)=\left\{\mu I_{n}\right\}$. It follows that $\mu=0$, which is a contradiction. So, R_{2} must contain some nondegenerate line segment, and ϕ is invertible by Lemma 2.1.

In the following, we establish a series of assertions leading to the conclusion that $\phi\left(\mathbf{H}_{n}\right)=$ $w \mathbf{H}_{n}$ for some $w \in \mathbf{U}_{1}$ (Assertion 5).

For $i=1,2$, let J_{i} be the subset of R_{i} containing all elements z such that $r z \in R_{i}$ for all $r \in(0,1]$. Also, let \tilde{J}_{i} be the subset of R_{i} containing all elements z which $r z \in S$ for all $r \in[1, \infty)$. Also, for any $\alpha, \beta \in \mathbb{C}$, let $[\alpha, \beta]=\{\lambda \alpha+(1-\lambda) \beta: \lambda \in[0,1]\}$. We have the following assertions.

Assertion 1 If J_{1} is nonempty, then $\phi\left(\mathcal{S}_{J_{1}}\right)=\mathcal{S}_{J_{2}}$. Similarly, $\phi\left(\mathcal{S}_{\tilde{J}_{1}}\right)=\mathcal{S}_{\tilde{J}_{2}}$ if \tilde{J}_{1} is nonempty.

Proof. We shall prove the first implication, that of the second is similar. Let $A \in \mathcal{S}_{J_{1}}$. Then $W(A) \subseteq J_{1} \subseteq R_{1}$, and $W(\phi(A)) \subseteq R_{2}$. By the definition of $J_{1}, W(r A) \subseteq J_{1}$ for all $r \in(0,1]$. Hence, for every $z \in W(\phi(A)) \subseteq R_{2}, r z \in R_{2}$ for all $r \in(0,1]$. We have $z \in J_{2}$ and $\phi(A) \in \mathcal{S}_{J_{2}}$. Therefore, $\phi\left(\mathcal{S}_{J_{1}}\right) \subseteq \mathcal{S}_{J_{2}}$. By considering ϕ^{-1}, we can deduce with a similar argument that $\phi^{-1}\left(\mathcal{S}_{J_{2}}\right) \subseteq \mathcal{S}_{J_{1}}$. The result follows.

Assertion 2 If J_{1} has nonzero elements, then there exists $w \in \mathbf{U}_{1}$ such that $\phi\left(\mathbf{H}_{n}\right)=w \mathbf{H}_{n}$.
Proof. If J_{1} has some nonzero elements, then so does J_{2}. Otherwise, $\phi\left(\mathcal{S}_{J_{1}}\right)=\{0\}$. Also, $R_{2} \neq \mathbb{C}$ as that is R_{1}. Otherwise, $\phi\left(\mathcal{S}_{J_{1}}\right)=\mathbf{M}_{n}$ which implies $\mathcal{S}_{J_{1}}=\mathbf{M}_{n}$.

For $J=J_{1}$ or J_{2}, one of the following holds.
(a) $0 \in J$ and it is an interior point;
(b) $0 \in J$ and it is not an interior point;
(c) $0 \notin J$ and there is $r>0$ such that $z \in J$ for all $0<|z|<r$;
(d) $0 \notin J$ and no such $r>0$ mentioned in (c) exists.

In order to have $\phi\left(\mathcal{S}_{J_{1}}\right)=\mathcal{S}_{J_{2}}, J_{1}$ and J_{2} must be of the same type by the following character of regions, which are invariant under an invertible linear map.
(a) The zero matrix is in \mathcal{S}_{J} and there exists some nonzero $A \in \mathcal{S}_{J}$ such that $w A \in \mathcal{S}_{J}$ for all $w \in \mathbf{U}_{1}$.
(b) The zero matrix is in \mathcal{S}_{J} and there does not exist any nonzero $A \in \mathcal{S}_{J}$ such that $w A \in \mathcal{S}_{J}$ for all $w \in \mathbf{U}_{1}$.
(c) The zero matrix is not in \mathcal{S}_{J} and there exists some nonzero $A \in \mathcal{S}_{J}$ such that $w A \in \mathcal{S}_{J}$ for all $w \in \mathbf{U}_{1}$.
(d) The zero matrix is not in \mathcal{S}_{J} and there does not exist any nonzero $A \in \mathcal{S}_{J}$ such that $w A \in \mathcal{S}_{J}$ for all $w \in \mathbf{U}_{1}$.

Next, we prove that there is $w \in \mathbf{U}_{1}$ such that $\phi\left(\mathbf{H}_{n}\right)=w \mathbf{H}_{n}$ according to the different types of J_{1}.

For type (a), let $k_{i}=\sup \left\{k>0: B(0 ; k) \subseteq J_{i}\right\}$ for $i=1,2$ where $B(a ; k)$ is the open ball with center at a and radius k. Since the origin is an interior point and J_{i} is a proper subset of \mathbb{C}, k_{i} is a positive number for each $i=1,2$. Replacing $\left(\phi, J_{1}, J_{2}\right)$ by $\left(\frac{k_{1}}{k_{2}} \phi, \frac{1}{k_{1}} J_{1}, \frac{1}{k_{2}} J_{2}\right)$, we may assume $\phi\left(\mathcal{S}_{J_{1}}\right)=\mathcal{S}_{J_{2}}$ and $k_{1}=k_{2}=1$.

By the definition of J_{1}, we must have the closed ball $\bar{B}(0 ; k) \subseteq J_{1}$ for all $k<1$; otherwise there is a $k<k^{\prime}<1$ such that $B\left(0 ; k^{\prime}\right) \nsubseteq J_{1}$.

We shall prove that ϕ is a numerical radius preserver on \mathbf{M}_{n}. For any $A \in \mathbf{M}_{n}$ and $k \in B(0 ; 1)$, we have $W\left(\frac{k}{r(A)} A\right) \subseteq \bar{B}(0 ; k) \subseteq J_{1}$. Thus $W\left(\phi\left(\frac{k}{r(A)} A\right)\right) \subseteq J_{2}$. We claim that
$W\left(\phi\left(\frac{1}{r(A)} A\right)\right) \subseteq \bar{B}(0 ; 1)$. Otherwise, there is $z \in W\left(\phi\left(\frac{1}{r(A)} A\right)\right)$ such that $|z|>1$. Since $k z \in W\left(\phi\left(\frac{k}{r(A)} A\right)\right) \subseteq J_{2}$ and k can be any value in $B(0 ; 1)$, it follows that $B(0 ;|z|) \subseteq J_{2}$. But this is impossible since $|z|>1=k_{2}$. Hence, we have $W\left(\phi\left(\frac{1}{r(A)} A\right)\right) \subseteq \bar{B}(0 ; 1)$. It follows that $r(\phi(A)) \leq r(A)$. By considering ϕ^{-1}, we have $r\left(\phi^{-1}(A)\right) \leq r(A)$. Hence, ϕ is a numerical radius preserver on \mathbf{M}_{n}. By Theorem $1.2, \phi$ has the form $A \mapsto \mu U A U^{*}$ or $A \mapsto \mu U A^{t} U^{*}$ for some $U \in \mathbf{U}_{n}$. The result follows.

For any subset $C \subseteq \mathbb{C}$ and $k>0$, let $\mathbf{U}_{1}(C)=\left\{w \in \mathbf{U}_{1}: w r \in C\right.$ for some $\left.r>0\right\}$ and $\mathbf{U}_{1}(C, k)=\left\{w \in \mathbf{U}_{1}: w k \in C\right\}$. Clearly, $\mathbf{U}_{1}(C, k) \subseteq \mathbf{U}_{1}(C) \subseteq \mathbf{U}_{1}$. For any $w_{1}, w_{2} \in \mathbf{U}_{1}$, let [$w_{1}: w_{2}$] be the arc joining w_{1} and w_{2} in the unit circle in the anticlockwise direction. Also, let $d\left(w_{1}: w_{2}\right)$ be the length of the arc, i.e.

$$
d\left(w_{1}: w_{2}\right)= \begin{cases}\arg \left(w_{1}\right)-\arg \left(w_{2}\right) & \text { if } \arg \left(w_{1}\right) \geq \arg \left(w_{2}\right) \\ 2 \pi+\arg \left(w_{1}\right)-\arg \left(w_{2}\right) & \text { if } \arg \left(w_{1}\right)<\arg \left(w_{2}\right)\end{cases}
$$

For type (b), let $P \in \mathbf{P}_{n}$. Suppose $\phi(P) \notin w \mathbf{H}_{n}$ for any $w \in \mathbf{U}_{1}$. Then $\mathbf{U}_{1}(W(\phi(P)))$ must contain some nondegenerate arc, say $\left[w_{1}: w_{2}\right]$. Suppose $w_{1} r_{1}, w_{2} r_{2} \in W(\phi(P))$ for some $r_{1}, r_{2}>0$. Note that there exists $w^{\prime} \in \mathbf{U}_{1}$ and $\epsilon>0$ such that $W\left(w^{\prime} \epsilon P\right) \subseteq J_{1}$. Thus, $W\left(w^{\prime} \epsilon \phi(P)\right) \subseteq J_{2}$. By the definition of J_{2}, we have $\left[w^{\prime} w_{1}: w^{\prime} w_{2}\right] \subseteq \mathbf{U}_{1}\left(J_{2}, k\right)$, where $k=\epsilon \min \left\{r_{1}, r_{2}\right\}$. Let $w_{0} \in \mathbf{U}_{1}\left(\phi^{-1}\left(I_{n}\right)\right)$. Then $w_{0} r_{0} \in W\left(\phi^{-1}\left(I_{n}\right)\right)$ for some $r_{0}>0$. Since $W\left(w k^{\prime} I_{n}\right) \subseteq J_{2}$ for all $w \in\left[w^{\prime} w_{1}: w^{\prime} w_{2}\right]$, we have $W\left(w k^{\prime} \phi^{-1}\left(I_{n}\right)\right) \subseteq J_{1}$. Hence, $\left[w^{\prime} w_{1} w_{0}: w^{\prime} w_{2} w_{0}\right] \subseteq \mathbf{U}_{1}\left(J_{1}, k_{1}\right)$, where $k_{1}=k r_{0}$. So, $\mathbf{U}_{1}\left(J_{1}, k_{1}\right)$ contains a nondegenerate arc. We now show that it is impossible.

For simplicity, let

$$
\left[w^{\prime} w_{1} w_{0}: w^{\prime} w_{2} w_{0}\right]=\left[\mu_{1}: \nu_{1}\right] \text {, and } d\left(\mu_{1}: \nu_{1}\right)=d_{1} .
$$

Since $W\left(\frac{w k_{1}}{r(P)} P\right) \subseteq J_{1}$ for $w \in\left[\mu_{1}: \nu_{1}\right]$, we have $W\left(\frac{w k_{1}}{r(P)} \phi(P)\right) \subseteq J_{2}$ by Assertion 1 . This implies that $\left[w w_{1}, w w_{2}\right] \subseteq \mathbf{U}_{1}\left(J_{2}, k_{1}^{\prime}\right)$, where $k_{1}^{\prime}=\frac{k_{1}}{r(P)}\left(\min \left\{r_{1}, r_{2}\right\}\right)$. As w varies in [$\mu_{1}: \nu_{1}$], we see that $\left[\mu_{1} w_{1}, \nu_{1} w_{2}\right] \subseteq \mathbf{U}_{1}\left(J_{2}, k_{1}^{\prime}\right)$. Since $W\left(w k_{1}^{\prime} I_{n}\right) \subseteq J_{2}$ for $w \in\left[\mu_{1} w_{1}, \nu_{1} w_{2}\right]$, we have $W\left(w k_{1}^{\prime} \phi^{-1}\left(I_{n}\right)\right) \subseteq J_{1}$, and hence $w k_{1}^{\prime} w_{0} r_{0} \in J_{1}$. It follows that [$\left.\mu_{1} w_{1} w_{0}, \nu_{1} w_{2} w_{0}\right] \subseteq$ $\mathbf{U}_{1}\left(J_{1}, k_{2}\right)$, where $k_{2}=k_{1}^{\prime} r_{0}$. If we call $\mu_{2}=\mu_{1} w_{1} w_{0}$ and $\nu_{2}=\nu_{1} w_{2} w_{0}$, then $d\left(\mu_{2}: \nu_{2}\right)=$ $d_{1}+d$, where $d=d\left(w_{1}, w_{2}\right)>0$. Inductively, we have $\left[\mu_{n}: \nu_{n}\right] \subseteq \mathbf{U}_{1}\left(J_{1}, k_{n}\right)$, and $d\left(\mu_{n}:\right.$ $\left.\nu_{n}\right)=d_{1}+(n-1) d$ for all $n \in \mathbb{N}$ if $d_{1}+(n-1) d \leq 2 \pi$. Take the largest n such that $d_{1}+(n-1) d \leq 2 \pi$. By the same argument above, we see that $\mathbf{U}_{1}\left(J_{1}, k_{n+1}\right)=\mathbf{U}_{1}\left(J_{2}, k_{n}^{\prime}\right)=\mathbf{U}_{1}$. That is, $w k_{n+1} \in J_{1}$ for all $w \in \mathbf{U}_{1}$. By the definition of J_{1}, the open ball $B\left(0 ; k_{n+1}\right) \subseteq J_{1}$. Hence the origin is an interior point, which is impossible. This contradiction shows that our assumption that $\phi(P) \notin w \mathbf{H}_{n}$ for any $w \in \mathbf{U}_{1}$ cannot hold. So, $\phi(P) \in w \mathbf{H}_{n}$ for some $w \in \mathbf{U}_{1}$.

Next, we show that $\phi\left(\mathbf{P}_{n}\right) \subseteq w \mathbf{H}_{n}$ for some $w \in \mathbf{U}_{1}$. Suppose there is a $P \in \mathbf{P}_{n}$ such that $\phi(P) \in w_{1} \mathbf{H}_{n}$ while $\phi\left(I_{n}\right) \in w_{2} \mathbf{H}_{n}$ for $w_{1} \neq w_{2}$. Clearly, $\lambda P+(1-\lambda) I_{n} \in \mathbf{P}_{n}$ for all
$\lambda \in[0,1]$. We claim that there exists $x \in \mathbb{C}^{n}$ with $\|x\|=1$ such that both $\alpha=x^{*} \phi(P) x$ and $\beta=x^{*} \phi\left(I_{n}\right) x$ are nonzero. Otherwise, we can find $x_{1}, x_{2} \in \mathbb{C}^{n}$ with $\left\|x_{1}\right\|=\left\|x_{2}\right\|=1$ such that $x_{1}^{*} \phi(P) x_{1}$ and $x_{2}^{*} \phi\left(I_{n}\right) x_{2}$ are nonzero while $x_{1}^{*} \phi\left(I_{n}\right) x_{1}=x_{2}^{*} \phi(P) x_{2}=0$. Then both $x_{1}^{*} \phi(P) x_{1}$ and $x_{2}^{*} \phi\left(I_{n}\right) x_{2}$ lie in $W\left(\phi\left(P+I_{n}\right)\right)$. But $x_{1}^{*} \phi(P) x_{1} \in w_{1} \mathbb{R}$ while $x_{2}^{*} \phi\left(I_{n}\right) x_{2} \in w_{2} \mathbb{R}$, which contradicts $\phi\left(P+I_{n}\right) \in w \mathbf{H}_{n}$ for some $w \in \mathbf{U}_{1}$.

Let $\mathcal{W}=\bigcup_{\lambda \in[0,1]} W\left(\lambda P+(1-\lambda) I_{n}\right)$ and $\mathcal{W}_{\phi}=\bigcup_{\lambda \in[0,1]} W\left(\lambda \phi(P)+(1-\lambda) \phi\left(I_{n}\right)\right)$. Since $\lambda \alpha+(1-\lambda) \beta \in W\left(\lambda \phi(P)+(1-\lambda) \phi\left(I_{n}\right)\right)$ for all $\lambda \in[0,1]$, we conclude that $[\alpha, \beta] \subseteq \mathcal{W}_{\phi}$. As $\frac{\alpha}{|\alpha|}=w_{1} \neq w_{2}=\frac{\beta}{|\beta|}, \mathbf{U}_{1}\left(\mathcal{W}_{\phi}, l\right)$ contains a nondegenerate arc for $l=\min \{|\alpha|,|\beta|\}$.

Clearly, $\mathcal{W} \subseteq[0, \infty)$. It is easy to see that for any $\mu \in \mathbb{C}$, if $\mu \mathcal{W} \subseteq J_{1}$, then $\mu \mathcal{W}_{\phi} \subseteq J_{2}$. By considering the set \mathcal{W} instead of $W(P)$, we can show that $\mathbf{U}_{1}\left(J_{1}, k\right)$ does not contain any nondegenerate arc for all $k>0$. However, by the definition of J_{1}, there exists $\mu \in \mathbb{C}$ such that $\mu \mathcal{W} \in J_{1}$. Hence, $\mu \mathcal{W}_{\phi} \subseteq J_{2}$. It follows that $\mathbf{U}_{1}\left(J_{2}, k^{\prime}\right)$ contains some nondegenerate arc for some $k^{\prime}>0$, and thus $\mathbf{U}_{1}\left(J_{1}, k\right)$ contains some nondegenerate arc for some $k>0$. This is impossible, hence w_{1} equals w_{2}.

Since P is arbitrary in \mathbf{P}_{n}, it follows that $\phi\left(\mathbf{P}_{n}\right) \subseteq w \mathbf{H}_{n}$ for some $w \in \mathbf{U}_{1}$. It can be further deduced that $\phi\left(\mathbf{H}_{n}\right) \subseteq w \mathbf{H}_{n}$. By considering ϕ^{-1}, we conclude that $\phi\left(\mathbf{H}_{n}\right)=w \mathbf{H}_{n}$.

For type (c), we can easily deduce that

$$
\left\{k A: A \in S_{J_{i}} \text { and } k>0\right\}=\mathcal{S}_{\mathbb{C} \backslash\{0\}} \quad i=1,2
$$

As ϕ is linear and $\phi\left(\mathcal{S}_{J_{1}}\right)=\mathcal{S}_{J_{2}}, \phi\left(\mathcal{S}_{\mathbb{C} \backslash\{0\}}\right)=\mathcal{S}_{\mathbb{C} \backslash\{0\}}$. It suffices to assume $J_{1}=J_{2}=\mathbb{C} \backslash\{0\}$. Then ϕ satisfies $0 \in W(A)$ if and only if $0 \in W(\phi(A))$. Note that $0 \notin W\left(\phi\left(I_{n}\right)\right)$. Let $H \in \mathbf{H}_{n}$. Then $0 \in W\left(H-\lambda I_{n}\right)$ if and only if $\lambda \in W(H)$. For any $x \in \mathbb{C}^{n}$ with $\|x\|=1$, we have $0 \in W\left(\phi(H)-\frac{x^{*} \phi(H) x}{x^{*} \phi\left(I_{n}\right) x} \phi\left(I_{n}\right)\right)$, and thus $0 \in W\left(H-\frac{x^{*} \phi(H) x}{x^{*} \phi\left(I_{n}\right) x} I_{n}\right)$. Hence, we have

$$
\begin{equation*}
\frac{x^{*} \phi(H) x}{x^{*} \phi\left(I_{n}\right) x} \in W(H) \subseteq \mathbb{R} \quad \text { for every }\|x\|=1 \tag{1}
\end{equation*}
$$

Since $W\left(\phi\left(I_{n}\right)\right)$ is convex and $0 \notin W\left(\phi\left(I_{n}\right)\right)$, we may replace ϕ with some suitable $\mu \phi$ and assume that $W\left(\phi\left(I_{n}\right)\right)$ is on the upper half plane and $\mathbf{U}_{1}\left(W\left(\phi\left(I_{n}\right)\right)\right)=[1: \nu]$ for some $\nu \in \mathbf{U}_{1}$ with $0 \leq \arg (\nu)<\pi$. As a result, if $x^{*} \phi(H) x \neq 0$, then either

$$
\frac{x^{*} \phi(H) x}{\left|x^{*} \phi(H) x\right|}=\frac{x^{*} \phi\left(I_{n}\right) x}{\left|x^{*} \phi\left(I_{n}\right) x\right|} \in \mathbf{U}_{1}\left(\phi\left(I_{n}\right)\right) \quad \text { or } \quad-\frac{x^{*} \phi(H) x}{\left|x^{*} \phi(H) x\right|}=\frac{x^{*} \phi\left(I_{n}\right) x}{\left|x^{*} \phi\left(I_{n}\right) x\right|} \in \mathbf{U}_{1}\left(\phi\left(I_{n}\right)\right) .
$$

Hence, $\mathbf{U}_{1}(\phi(H)) \subseteq[1: \nu] \cup[-1:-\nu]$. We see that $W(\phi(H))$ must lie in $\bigcup_{w \in[1: \nu] \cup[-1: \nu]} w \mathbb{R}$.
Now suppose $H \in \mathbf{H}_{n}$ is such that $W(H)=[\alpha, \beta]$ for $\alpha<0<\beta$, we shall show that $W(\phi(H)) \subseteq w \mathbb{R}$ for some $w \in \mathbf{U}_{1}$. As $0 \in W\left(H-\lambda I_{n}\right)$ for $\lambda=\alpha, \beta$, there exist $x_{1}, x_{2} \in \mathbb{C}^{n}$ with $\left\|x_{1}\right\|=\left\|x_{2}\right\|=1$ such that

$$
x_{1}^{*} \phi(H) x_{1}=\alpha x_{1}^{*} \phi\left(I_{n}\right) x_{1} \quad \text { and } \quad x_{2}^{*} \phi(H) x_{2}=\beta x_{2}^{*} \phi\left(I_{n}\right) x_{2} .
$$

Then, we have $\frac{x_{1}^{*} \phi(H) x_{1}}{\left|x_{1}^{*} \phi(H) x_{1}\right|} \in[-1:-\nu]$ and $\frac{x_{2}^{*} \phi(H) x_{2}}{\left|x_{2}^{*} \phi(H) x_{2}\right|} \in[1: \nu]$. By the convexity of the numerical range, $W(\phi(H))$ can only be a line segment passing through the origin, say, $W(\phi(H)) \subseteq w \mathbb{R}$ for some $w \in \mathbf{U}_{1}$.

Next, we claim that $W\left(\phi\left(I_{n}\right)\right) \subseteq(0, \infty)$. Suppose $\nu \neq 1$. Then there exist x_{1}, x_{2} such that

$$
\frac{x_{1}^{*} \phi\left(I_{n}\right) x_{1}}{\left|x_{1}^{*} \phi\left(I_{n}\right) x_{1}\right|}=1 \quad \text { and } \quad \frac{x_{2}^{*} \phi\left(I_{n}\right) x_{2}}{\left|x_{2}^{*} \phi\left(I_{n}\right) x_{2}\right|}=\nu
$$

We may assume that $x_{1}^{*} \phi(H) x_{1}, x_{2}^{*} \phi(H) x_{2} \in W(\phi(H))$ are nonzero. Otherwise, replacing H by $H+\epsilon I_{n}$ for some small ϵ, and using (1), we have both $\frac{x_{1}^{*} \phi(H) x_{1}}{x_{1}^{*} \phi\left(I_{n}\right) x_{1}}$ and $\frac{x_{2}^{*} \phi(H) x_{2}}{x_{2}^{*} \phi\left(I_{n}\right) x_{2}}$ lie in \mathbb{R}. Hence, $x_{1}^{*} \phi\left(I_{n}\right) x_{1}, x_{2}^{*} \phi\left(I_{n}\right) x_{2} \in w \mathbb{R}$ for some $w \in \mathbf{U}_{1}$ as $W(\phi(H)) \subseteq w \mathbb{R}$. But this contradicts $\nu \neq 1$. Therefore, $\mathbf{U}_{1}\left(W\left(\phi\left(I_{n}\right)\right)\right)=\{1\}$, and $W\left(\phi\left(I_{n}\right)\right) \subseteq(0, \infty)$.

Take an arbitrary $P \in \mathbf{P}_{n}^{+}$. From (1), we have

$$
\frac{x^{*} \phi(P) x}{x^{*} \phi\left(I_{n}\right) x} \in W(P) \subseteq(0, \infty) \quad \text { for every }\|x\|=1
$$

Then $W(\phi(P)) \subseteq(0, \infty)$ since $W\left(\phi\left(I_{n}\right)\right)$ does. This means $\phi\left(\mathbf{P}_{n}^{+}\right) \subseteq \mathbf{P}_{n}^{+}$. Since ϕ is invertible, and $\phi^{-1}\left(\mathcal{S}_{\mathbb{C} \backslash\{0\}}\right)=\mathcal{S}_{\mathbb{C} \backslash\{0\}}$, we have $\phi^{-1}\left(\mathbf{P}_{n}^{+}\right) \subseteq \mathbf{P}_{n}^{+}$. Hence, $\phi\left(\mathbf{P}_{n}^{+}\right)=\mathbf{P}_{n}^{+}$. By Theorem 1.1, the result follows.

The proof of type (d) is similar to that of case (b); one just have to replace \mathbf{P}_{n} by \mathbf{P}_{n}^{+}in the proof.

Assertion 3 If \tilde{J}_{1} contains some nonzero elements while J_{1} does not, then there exists $w \in \mathbf{U}_{1}$ such that $\phi\left(\mathbf{H}_{n}\right)=w \mathbf{H}_{n}$.

Proof. We may assume that $0 \notin \tilde{J}_{1}$. Otherwise, because of Lemma 2.4, either $\{0\}$ is a connected singleton component which we may ignored, or there exists $w(0, \infty) \subseteq \tilde{J}_{1}$ for some $w \in \mathbf{U}_{1}$ which means J_{1} contains nonzero elements. It follows that $0 \notin \tilde{J}_{2}$ as ϕ is invertible, and has kernel $\{0\}$.

To prove that there is $w \in \mathbf{U}_{1}$ such that $\phi\left(\mathbf{H}_{n}\right)=w \mathbf{H}_{n}$, we consider the following two types of sets \tilde{J} in \mathbb{C}.
(a) There is $r>0$ such that $z \in \tilde{J}$ for all $|z|>r$.
(b) There is no positive real number r satisfying condition (a).

Note that \tilde{J} satisfies (a) if and only if there exists some $A \in \mathcal{S}_{\tilde{J}}$ such that $w A \in \mathcal{S}_{\tilde{J}}$ for all $w \in \mathbf{U}_{1}$. Thus, \tilde{J}_{1} satisfies (a) if and only if $\tilde{J}_{2}=\phi\left(\tilde{J}_{1}\right)$ does. So, \tilde{J}_{1} and \tilde{J}_{2} must be of the same type.

If (a) holds, then

$$
\{k A: W(A) \subseteq \tilde{J} \text { and } k>0\}=\{A: W(A) \subseteq \mathbb{C} \backslash\{0\}\}=\mathcal{S}_{\mathbb{C} \backslash\{0\}}
$$

Since ϕ is linear, $\phi\left(\mathcal{S}_{\mathbb{C} \backslash\{0\}}\right)=\mathcal{S}_{\mathbb{C} \backslash\{0\}}$. The proof is already done in type (c) of Assertion 2.
For situation (b), the proof is similar to type (b) of Assertion 2.
Assertion 4 If both J_{1} and \tilde{J}_{1} do not contain any nonzero elements, then $\phi\left(I_{n}\right)=\mu I_{n}$ for some $\mu \in \mathbb{C}$ such that $\mu R_{1}=R_{2}$.

Proof. Suppose $\phi\left(I_{n}\right)$ is not a scalar matrix. Then $\phi^{-1}\left(I_{n}\right)$ is neither a scalar matrix. There exist nondegenerate line segments $\left[\alpha_{1}, \beta_{1}\right] \subseteq W\left(\phi\left(I_{n}\right)\right)$ and $\left[\alpha_{2}, \beta_{2}\right] \subseteq W\left(\phi^{-1}\left(I_{n}\right)\right)$.

By lemma 2.2, we may assume that $W\left(I_{n}\right) \subseteq R_{1}$. Then $\left[\alpha_{1}, \beta_{1}\right] \subseteq W\left(\phi\left(I_{n}\right)\right) \subseteq R_{2}$.
For every $\gamma \in\left[\alpha_{1}, \beta_{1}\right]$, $W\left(\gamma I_{n}\right) \subseteq R_{2}$ and hence $\left[\gamma \alpha_{2}, \gamma \beta_{2}\right] \subseteq W\left(\gamma \phi^{-1}\left(I_{n}\right)\right) \subseteq R_{1}$. As γ varies in $\left[\alpha_{2}, \beta_{2}\right]$, the set

$$
\left\{\gamma_{1} \gamma_{2}: \gamma_{1} \in\left[\alpha_{1}, \beta_{1}\right] \text { and } \gamma_{2} \in\left[\alpha_{2}, \beta_{2}\right]\right\}=\operatorname{conv}\left\{\alpha_{1} \alpha_{2}, \alpha_{1} \beta_{2}, \beta_{1} \alpha_{2}, \beta_{1} \beta_{2}\right\}
$$

lies in R_{1}. It follows that $\left[\alpha_{1} \alpha_{2}, \beta_{1} \beta_{2}\right] \subseteq R_{1}$.
Similarly, as $W\left(\gamma I_{n}\right) \subseteq R_{1}$ for all $\gamma \in\left[\alpha_{1} \beta_{2}, \beta_{1} \beta_{2}\right],\left[\alpha_{1}^{2} \alpha_{2}, \beta_{1}^{2} \beta_{2}\right] \subseteq R_{2}$. Inductively, we can show that

$$
\left[\left(\alpha_{1} \alpha_{2}\right)^{n},\left(\beta_{1} \beta_{2}\right)^{n}\right] \subseteq R_{1} \quad \text { and } \quad\left[\alpha_{1}^{n+1} \alpha_{2}^{n}, \beta_{1}^{n+1} \beta_{2}^{n}\right] \subseteq R_{2} \quad \text { for all } n \in \mathbb{N}
$$

We may choose α_{i} and β_{i} such that $\arg \left(\alpha_{1} \alpha_{2}\right)$ and $\arg \left(\beta_{1} \beta_{2}\right)$ are rational multiples of π. Therefore, there exists $m \in \mathbb{N}$ such that both $m \arg \left(\alpha_{1} \alpha_{2}\right)$ and $m \arg \left(\beta_{1} \beta_{2}\right)$ are multiples of 2π. Then, $\alpha=\left(\alpha_{1} \alpha_{2}\right)^{m}$ and $\beta=\left(\beta_{1} \beta_{2}\right)^{m}$ are real numbers. Hence, $\left[\alpha^{k}, \beta^{k}\right]$ lies in $R_{1} \cap \mathbb{R}$ for any $k \in \mathbb{N}$.

If $0 \leq \alpha<1$, then there exists $K \in \mathbb{N}$ such that

$$
\begin{equation*}
\beta>\left(\frac{\alpha}{\beta}\right)^{K}>\left(\frac{\alpha}{\beta}\right)^{k} \quad \text { for all } k \in \mathbb{N} \text { with } k \geq K \tag{2}
\end{equation*}
$$

For any $c \in\left(0, \beta^{K}\right]$, there exists $k \geq K$ such that $\alpha^{k+1} \leq c \leq \alpha^{k}$. With (2), $\alpha^{k+1} \leq c \leq$ $\alpha^{k}<\beta^{k+1}$. Then $c \in\left[\alpha^{k+1}, \beta^{k+1}\right] \subseteq R_{1}$. Therefore, $\left(0, \beta^{K}\right] \subseteq R_{1}$. This means that J_{1} has some nonzero elements, which is a contradiction.

Similarly, we can prove that $\left[\alpha^{K}, \infty\right) \subseteq R_{1}$ for some K if $1 \leq \alpha<\beta$, i.e., \tilde{J}_{1} has some nonzero elements. This contradicts the assumption. Therefore, $\phi\left(I_{n}\right)=\mu I_{n}$ for some $\mu \in \mathbb{C}$. By Lemma 2.3, we have $\mu R_{1}=R_{2}$.

Assertion 5 There exists $w \in \mathbf{U}_{1}$ such that $\phi\left(\mathbf{H}_{n}\right)=w \mathbf{H}_{n}$.

Proof. The result is clear if R_{1} satisfies Assertion 2 or 3. Otherwise, $\phi\left(I_{n}\right)=\mu I_{n}$ for some $\mu \in \mathbb{C}$ by Assertion 4. Take any ν in a nondegenerate line segment of R_{1}. By Lemma 2.3, $\phi\left(\mathcal{S}_{R_{1}-\nu}\right)=\mathcal{S}_{R_{2}-\mu \nu}$. Then we can replace R_{1} and R_{2} by $R_{1}-\nu$ and $R_{2}-\mu \nu$ so that Assertion 2 holds after the replacement, and the result follows.

We are now ready to prove Conditions (2), (3), (5), (6). First, we consider the case when R_{1} has no interior point.

Suppose R_{1} satisfies condition (2). Then for any $\nu \in \mathbf{U}_{1}\left(R_{1}\right)$, we have $\pm \nu \mathbf{H}_{n} \subseteq \mathcal{S}_{R_{1}}$. Thus, $\pm \nu \phi\left(\mathbf{H}_{n}\right)= \pm \nu w \mathbf{H}_{n} \subseteq \mathcal{S}_{R_{2}}$. Hence, $w R_{1} \subseteq R_{2}$. Applying the argument to ϕ^{-1}, we see that $w^{-1} R_{2} \subseteq R_{1}$. Hence, $w R_{1}=R_{2}$ and $\phi\left(\mathbf{H}_{n}\right)=w \mathbf{H}_{n}$, i.e., condition (2) holds with $\mu=w$.

Suppose R_{1} does not satisfy (1) and (2). Then there exists $\nu \in \mathbf{U}_{1}$ such that $K_{1}=\mathbb{R} \cap \nu R_{1}$ contains no line segment and $K_{1} \backslash\{0\}$ is non-empty. Then for $K_{2}=\mathbb{R} \cap w^{-1} \nu R_{2}$, we have $\phi\left(\mathcal{S}_{K_{1}}\right)=\mathcal{S}_{w K_{2}}$. So, the mapping Φ defined by $A \mapsto w^{-1} \phi(A)$ satisfies $\Phi\left(\mathbf{H}_{n}\right)=\mathbf{H}_{n}$ and $\Phi\left(\mathcal{S}_{K_{1}}\right)=\mathcal{S}_{K_{2}}$. By Theorem 3.1 (1), we see that $\Phi\left(I_{n}\right)=a I_{n}$ for some $a \in \mathbb{R}$. It follows that $\phi\left(I_{n}\right)=a w I_{n}$. Let $\mu=a w$. Then $\mu R_{1}=R_{2}$ by Lemma 2.3, and $\phi\left(\mathbf{H}_{n}\right)=w \mathbf{H}_{n}=\mu \mathbf{H}_{n}$.

If a nondegenerate line segment lying in R_{1} always implies that the entire line containing such line segment also lies in R_{1}, then condition (3) holds. Otherwise, R_{1} will contain a nondegenerate line segment such that the line containing such line segment is not a subset of R_{1}. We take any point ν from such a nondegenerate line segment. By Lemma 2.3, $\phi\left(\mathcal{S}_{R_{1}-\nu}\right)=\mathcal{S}_{R_{2}-\mu \nu}$, where $R_{1}-\nu$ satisfies Assertion 2. Therefore, we can replace R_{1} and R_{2} by $R_{1}-\nu$ and $R_{2}-\mu \nu$. Furthermore, after the replacement, there is $\eta \in \mathbf{U}_{1}$ such that $L_{1}=\mathbb{R} \cap \eta R_{1}$ does not satisfy Conditions (1)-(3) in Theorem 3.1. Since $\Phi\left(\mathcal{S}_{L_{1}}\right)=$ $w^{-1} \phi\left(\mathcal{S}_{L_{1}}\right)=\mathcal{S}_{L_{2}}$, where $L_{2}=\mathbb{R} \cap w^{-1} \eta R_{2}$, we see that Φ satisfies Theorem 3.1 (4), and hence ϕ satisfies condition (6).

Now, assume that R_{1} contains some interior points. Suppose R_{1} satisfies Condition (5). Note that if $\eta \in \mathbf{U}_{1}\left(R_{1}\right)$, then $\eta(0, \infty) \subseteq R_{1}$. Since $\phi\left(\mathbf{H}_{n}\right)=w \mathbf{H}_{n}$, it follows that $w \eta(0, \infty) \subseteq R_{2}$. Thus $w R_{1} \subseteq R_{2}$. Applying the argument to ϕ^{-1}, we see that $w^{-1} R_{2} \subseteq R_{1}$. Thus $w R_{1}=R_{2}$.

If there exists $\nu \in \mathbf{U}_{1}$ such that $\mathbb{R} \cap \nu R_{1}=(0, \infty),[0, \infty)$ or $\mathbb{R} \backslash\{0\}$, then for $K_{2}=$ $\mathbb{R} \cap w^{-1} \nu R_{2}$, we have $\phi\left(\mathcal{S}_{K_{1}}\right)=\mathcal{S}_{w K_{2}}$. So, the mapping Φ defined by $A \mapsto w^{-1} \phi(A)$ satisfies $\Phi\left(\mathcal{S}_{K_{1}}\right)=\mathcal{S}_{K_{1}}$. By Theorem 3.1 (3), the result follows.

For the remaining cases in Condition (5), suppose $R_{1} \neq \mathbb{C}$ is a union of $w \mathbb{R}$ with $w \in \mathbf{U}_{1}$ and has interior points. Since $\phi\left(\mathbf{H}_{n}\right)=w \mathbf{H}_{n}$, we see that $\nu \in \mathbf{U}_{1}\left(R_{1}\right)$ if and only if $w \nu \in \mathbf{U}_{1}\left(R_{2}\right)$. Thus, $w R_{1}=R_{2}$. Let Φ be the map $A \mapsto w^{-1} \phi(A)$. Then $\Phi\left(\mathbf{H}_{n}\right)=\mathbf{H}_{n}$ and $\Phi\left(R_{1}\right)=R_{1}$. Since R_{1} has interior points, there exists a nondegenerate arc in $\mathbf{U}_{1}\left(R_{1}\right)$, say $\left[w_{1}: w_{2}\right] \subseteq \mathbf{U}_{1}\left(R_{1}\right)$.

For any $P \in \mathbf{P}_{n}$, there exists a sufficiently large $k>0$ such that $W\left(w_{1}\left(i P+k I_{n}\right)\right) \subseteq R_{1}$. Then, $W\left(w_{1} \Phi\left(i P+k I_{n}\right)\right) \subseteq R_{1}$. Suppose the Hermitian matrix $\Phi(P)$ is indefinite, i.e., $W(\Phi(P))=[a, b]$, for $a<0<b$. We have $\mathbf{U}_{1}\left(W\left(\Phi\left(i P+k I_{n}\right)\right)\right)=\left[\nu_{1}: \nu_{2}\right]$, where ν_{1} and ν_{2} lie on the lower and upper half plane respectively. In fact, $d\left(\nu_{1}: \nu_{2}\right)>d\left(\nu_{1}: 1\right)$. One
can deduce that $\left[w_{1} \nu_{1}: w_{1} \nu_{2}\right] \subseteq \mathbf{U}_{1}\left(R_{1}\right)$. We can further deduce that $\left[w_{1} \nu_{1}: w_{2}\right] \subseteq\left[w_{1} \nu_{1}\right.$: $\left.w_{1} \nu_{2}\right] \cup\left[w_{1}: w_{2}\right] \subseteq \mathbf{U}_{1}\left(R_{1}\right)$. Hence,

$$
d\left(w_{1} \nu_{1}: w_{2}\right)=d\left(w_{1} \nu_{1}: w_{1}\right)+d\left(w_{1}: w_{2}\right)=d\left(w_{1}: w_{2}\right)+d\left(\nu_{1}: 1\right)
$$

if $d\left(w_{1}: w_{2}\right)+d\left(\nu_{1}: 1\right) \leq 2 \pi$. Inductively, we can show that $\left[w_{1} \nu_{1}^{n}: w_{2}\right] \subseteq R_{1}$, and that $d\left(w_{1} \nu_{1}^{n}: w_{2}\right)=d\left(w_{1}: w_{2}\right)+n d\left(\nu_{1}: 1\right)$ for all $n \in \mathbb{N}$ if $d\left(w_{1}: w_{2}\right)+n d\left(\nu_{1}: 1\right) \leq 2 \pi$. Take the largest n satisfying this inequality, and apply the argument one more time. We deduce that $\mathbf{U}_{1} \subseteq \mathbf{U}_{1}\left(R_{1}\right)$. But as R_{1} is the union of $w \mathbb{R}, R_{1}=\mathbb{C}$, which is impossible. Hence, either $a \leq b \leq 0$ or $0 \leq a \leq b$. This means that $\Phi(P)$ lies either in \mathbf{P}_{n} or in $-\mathbf{P}_{n}$. Equivalently, $\Phi\left(\mathbf{P}_{n}\right) \subseteq \mathbf{P}_{n} \cup-\mathbf{P}_{n}$. It is easy to show that either $\Phi\left(\mathbf{P}_{n}\right) \subseteq \mathbf{P}_{n}$ or $\Phi\left(\mathbf{P}_{n}\right) \subseteq-\mathbf{P}_{n}$. By considering Φ^{-1} and replacing Φ by $-\Phi$ if necessary, we have $\Phi\left(\mathbf{P}_{n}\right)=\mathbf{P}_{n}$. The result follows from Theorem 1.1.

Finally, suppose R_{1} has interior points, but (4)-(5) do not hold. Then there is $\eta \in \mathbf{U}_{1}$ such that $L_{1}=\mathbb{R} \cap \eta R_{1}$ does not satisfy Conditions (1) - (3) in Theorem 3.1. Since $\Phi\left(\mathcal{S}_{L_{1}}\right)=w^{-1} \phi\left(\mathcal{S}_{L_{1}}\right)=\mathcal{S}_{L_{2}}$, where $L_{2}=\mathbb{R} \cap w^{-1} \eta R_{2}$, we see that Φ satisfies Theorem 3.1 (4), and thus ϕ satisfies condition (6).

5 Results on Numerical Radius

Let $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}, and let $\mathbb{F}=\mathbb{R}$ or \mathbb{C} according to $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}. For any subset R of $[0, \infty)$, let $\tilde{\mathcal{S}}$ be the set of $n \times n$ matrices on \mathbf{V}_{n} such that $r(A) \in R$. In this section, we characterize linear maps ϕ on \mathbf{V}_{n} satisfying $\phi\left(\tilde{\mathcal{S}}_{R_{1}}\right)=\tilde{\mathcal{S}}_{R_{2}}$ for two given subsets $R_{1}, R_{2} \subseteq[0, \infty)$. Again, to avoid trivial consideration, we assume that R_{1} and R_{2} are non-empty. Furthermore, we exclude the cases that R_{1} or R_{2} equal to the set $\{0\}$ in our consideration.

Theorem 5.1 Let R_{1}, R_{2} be non-empty subsets of $[0, \infty)$ such that $R_{j} \neq\{0\}$ for $j=1$, 2. Let $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}, and let $\mathbb{F}=\mathbb{R}$ or \mathbb{C} according to $\mathbf{V}_{n}=\mathbf{H}_{n}$ or \mathbf{M}_{n}. Suppose $\phi: \mathbf{V}_{n} \rightarrow \mathbf{V}_{n}$ is an \mathbb{F}-linear operator satisfying $\phi\left(\tilde{\mathcal{S}}_{R_{1}}\right)=\tilde{\mathcal{S}}_{R_{2}}$. Then one of the following conditions holds.

1. $R_{1}=R_{2}=(0, \infty)$ or $R_{1}=R_{2}=[0, \infty)$, and ϕ is invertible.
2. The set R_{1} is neither $(0, \infty)$ nor $[0, \infty)$, and ϕ has the form $A \mapsto \mu U^{*} A U$ or $A \mapsto$ $\mu U^{*} A^{t} U$ for some $U \in \mathbf{U}_{n}$ and $\mu \in \mathbb{F}$ such that $|\mu| R_{1}=R_{2}$.

Proof. The (\Leftarrow) part of the result can be verified readily. We establish two assertions to prove the converse.

Assertion 1 The set $\tilde{\mathcal{S}}_{R_{2}}$ is a spanning set of \mathbf{V}_{n}, and ϕ is invertible.
Proof. Take a nonzero $k \in R_{2}$, then $\left\{k U^{*} E_{11} U: U \in \mathbf{U}_{n}\right\} \subseteq \tilde{\mathcal{S}}_{R_{2}}$ is a spanning set of \mathbf{V}_{n} by the main result in [9]. Since $\phi\left(\tilde{\mathcal{S}}_{R_{1}}\right)=\tilde{\mathcal{S}}_{R_{2}}$ contains a spanning set, we conclude that ϕ is invertible.

Assertion 2 If C_{1} is a connected component of R_{1}, then $\phi\left(\tilde{\mathcal{S}}_{C_{1}}\right)=\tilde{\mathcal{S}}_{C_{2}}$, for a connected component C_{2} of R_{2}.

Proof. Suppose $a \in W(A)$ and $b \in W(B)$ such that $|a|=r(A)$ and $|b|=r(B)$ belong to C_{1}. If $r(\phi(A))=c$ and $r(\phi(B))=d$, we shall show that $[c, d] \subseteq R_{2}$.

First, we may assume that $a=|a|$; otherwise, replace A by μA for a suitable $\mu \in \mathbb{F}$ with $|\mu|=1$. Similarly, we may assume that $b=|b|$. There is a unitary U such that $A=U^{*}\left(D+A_{0}\right) U$, for $D=\operatorname{diag}(a, 0, \ldots, 0)$ and the $(1,1)$ entry of A_{0} is zero. Then $\gamma_{1}(t)=U^{*}\left(D+(1-t) A_{0}\right) U, t \in[0,1]$, is a path in $\tilde{\mathcal{S}}_{C_{1}}$ connecting A and $U^{*} D U$.

Let $U=e^{i H}$ where H is Hermitian. Then the path $\gamma_{2}(t)=e^{-i t H} D e^{i t H}, t \in[0,1]$, is a path in $\tilde{\mathcal{S}}_{C_{1}}$ connecting $U^{*} D U$ and D. Similarly, one can construct a path in $\tilde{\mathcal{S}}_{C_{1}}$ connecting B and $\operatorname{diag}(b, 0, \ldots, 0)$. Finally, one can construct a path in $\tilde{\mathcal{S}}_{C_{1}}$ connecting $\operatorname{diag}(a, 0, \ldots, 0)$ and $\operatorname{diag}(b, 0, \ldots, 0)$. So, we have a path in $\tilde{\mathcal{S}}_{C_{1}}$ connecting A and B. It follows that there is a path in $\tilde{\mathcal{S}}_{R_{2}}$ connecting $\phi(A)$ and $\phi(B)$. So, $\phi(A)$ and $\phi(B)$ belong to the $\tilde{\mathcal{S}}_{C_{2}}$ for a connected component C_{2} of R_{2}. Since ϕ is invertible by Assertion 1, we have $\phi^{-1}\left(\tilde{\mathcal{S}}_{C_{2}}\right) \subseteq \tilde{\mathcal{S}}_{C_{1}}$, and hence $\phi^{-1}\left(\tilde{\mathcal{S}}_{C_{2}}\right)=\tilde{\mathcal{S}}_{C_{1}}$.

Now, we are ready to present the proof of Conditions (1) and (2). By Assertion 1, ϕ is invertible. If R_{1} equals $(0, \infty)$ or $[0, \infty)$, then nothing else can be said about ϕ. Suppose R_{1} does not satisfy Condition (1). By Assertion 2, we may assume that R_{1} and R_{2} are connected intervals. For any nonzero $A \in \mathbf{V}_{n}, r(A)$ and $r(\phi(A))$ are nonzero as ϕ is invertible by Assertion 1. Let $k_{A}=\frac{r(\phi(A))}{r(A)}$. Then

$$
a \in R_{1} \Leftrightarrow r\left(\frac{a}{r(A)} A\right) \in R_{1} \Leftrightarrow r\left(\phi\left(\frac{a}{r(A)} A\right)\right) \in R_{2} \Leftrightarrow k_{A} a \in R_{2} .
$$

Hence, $k_{A} R_{1}=R_{2}$. Since R_{1} is neither $(0, \infty)$ nor $[0, \infty)$, we have $\sup R_{1}$ exists or $\inf R_{1}$ is nonzero. In both cases, we can deduce that k_{A} is a constant, say k, for all nonzero $A \in \mathbf{V}_{n}$.

Let Φ be the map $A \mapsto k^{-1} \phi(A)$ on \mathbf{V}_{n}. Then

$$
\frac{r(\Phi(A))}{r(A)}=\frac{k^{-1} r(\phi(A))}{r(A)}=1 \quad \text { for all } A \in \mathbf{V}_{n} \backslash\{0\}
$$

Hence, Φ is a numerical radius preserver on \mathbf{V}_{n}. By Theorem 1.2, the result follows.

References

[1] T. Ando, Structure of operators with numerical radius one, Acta Sci. Math. (Szeged) 34 (1973), 11-15.
[2] W.B. Arveson, Subalgebras of C^{*}-algebras II, Acta Math. 128 (1972), 271-308.
[3] M.D. Choi and C.K. Li, Numerical ranges and dilations, Linear and Multilinear Algebra 47 (2000), 35-48.
[4] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[5] C.K. Li, Linear operators preserving the numerical radius of matrices, Proc. of Amer. Math. Soc. 99 (1987), 601-608.
[6] B.A. Mirman, Numerical range and norm of a linear operator, Voronež. Gos. Univ. Trudy Sem. Funkcional Anal., 10 (1968), 51-55.
[7] Pierce et. al., A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992), 1-130.
[8] H. Schneider, Positive Operators and an Inertia Theorem, Numerische Mathematik 7 (1965), 11-17.
[9] B.S. Tam, A Simple Proof of the Goldberg-Straus Theorem on Numerical Radii, Glasgow Math. J. 28 (1986), 139-141.

[^0]: ${ }^{1}$ Department of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795, USA. (ckli@math.wm.edu) Research partially supported by NSF.
 ${ }^{2}$ Department of Mathematics, University of Hong Kong, Hong Kong. (math2000@graduate.hku.hk) Thanks are due to Dr. Jor-Ting Chan for his guidance and encouragement

