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Abstract

Let A and B be n × n complex Hermitian (or real symmetric) matrices with eigen-

values a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn. All possible inertia values, ranks, and multiple

eigenvalues of A + B are determined. Extension of the results to the sum of k ma-

trices with k > 2, and connections of the results to other subjects such as algebraic

combinatorics are also discussed.
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1 Introduction

Let Hn be the real linear space of n×n complex Hermitian (or real symmetric) matrices.

For a real vector a = (a1, . . . , an) with a1 ≥ · · · ≥ an, let

Hn(a) = {A ∈ Hn : A has eigenvalues a1, . . . , an}.

Motivated by problems in pure and applied subjects, there has been a lot of research

on the relation between the eigenvalues of A,B ∈ Hn and those of A + B; [3, 4, 5, 8,

7, 9, 11, 12]. In particular, for given real vectors a = (a1, . . . , an), b = (b1, . . . , bn) and

c = (c1, . . . , cn) with entries arranged in descending order, a necessary and sufficient

condition for the existence of (A,B) ∈ Hn(a) × Hn(b) such that A + B ∈ Hn(c), or

equivalently,

Hn(c) ⊆ Hn(a) + Hn(b) (1.1)

can be completely described in terms of the equality

n
∑

j=1

(aj + bj − cj) = 0 (1.2)
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and a collection of inequalities in the form

∑

r∈R

ar +
∑

s∈S

bs ≥
∑

t∈T

ct (1.3)

for certain m element subsets R,S, T ⊆ {1, . . . , n} with 1 ≤ m < n determined by the

Littlewood-Richardson rules; see [5, 7] for details. Using (1.2) and (1.3), we can also

deduce the following inequalities

∑

r∈Rc

ar +
∑

s∈Sc

bs ≤
∑

t∈T c

ct , (1.4)

where Rc denotes the complement of R in {1, 2, . . . , n}. The study has connections to

many different areas such as representation theory, algebraic geometry, and algebraic

combinatorics, etc.

The set of inequalities in (1.3) grows exponentially with n. Therefore, in spite of

the existence of a complete description of the eigenvalues of A + B in terms of those of

A and B in Hn, it is sometimes difficult to answer some basic questions related to the

eigenvalues of the matrices A, B and A + B. For example, as pointed out by Fulton [7,

p.215], given a proper subset K of {1, 2, . . . , n} and real numbers {γk : k ∈ K}, it is not

easy to use the inequalities in (1.3) to determine if there exists c with ck = γk for all

k ∈ K such that (1.1) holds. In particular, the inequalities in (1.3) with T ⊆ K together

with those in (1.4) with T c ⊆ K are necessary but not sufficient for (1.1) in general.

If K = {k} is a singleton, then inequalities in (1.3) and (1.4) reduce to the Weyl’s

inequalities [13] implying that ck ∈ [Lk, Rk], where

Lk = max{ai + bj : i + j = n + k} and Rk = min{ai + bj : i + j = k + 1}. (1.5)

Conversely, one can check that for every c ∈ [Lk, Rk], there exists (A,B) ∈ Hn(a) ×
Hn(b) satisfying A + B ∈ Hn(c) with ck = c. So, in this case, the inequalities in (1.3)

with T ⊆ K and ck = γk for k ∈ K are also sufficient.

In this paper, we show that if µ ∈ [Lk, Lk−1) ∩ (Rk′+1, Rk′ ]. Then there exists

(A,B) ∈ Hn(a) ×Hn(b) such that C = A + B has a vector of eigenvalues c with

ck−1 < µ = ck = ck+1 = · · · = ck′ < ck′+1 .

This will follow from a consequence (Corollary 5.7) of the solution of the following

problem.

Problem 1.1 Suppose (A,B) ∈ Hn(a) × Hn(b). Can a given µ ∈ R be an eigenvalue

of A+ B with a specific multiplicity? Equivalently, can A+ B−µI have a specific rank?

We will study the following harder problem.
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Problem 1.2 Suppose (A,B) ∈ Hn(a)×Hn(b). Can a given µ ∈ R be an eigenvalue of

A + B so that p other eigenvalues are larger than µ, and q other eigenvalues are smaller

than µ? Equivalently, can A + B − µI have inertia (p, q, n − p − q), i.e., p positive

eigenvalues, q negative eigenvalues, and n − p − q zero eigenvalues?

Clearly, one can replace (A,B) by (A − µI,B) and replace a = (a1, . . . , an) by

(a1 − µ, . . . , an − µ) so as to focus on the case for µ = 0 in the study.

For two nonnegative integers p and q with p + q ≤ n, let

Hn(p, q) = {X ∈ Hn : X has p positive eigenvalues and q negative eigenvalues}.

In Section 2, we determine a necessary and sufficient condition on (p, q) for the existence

of (A,B) ∈ Hn(a) × Hn(b) so that A + B ∈ Hn(p, q). In addition, we give a global

description of the set of integer pairs (p, q) satisfying these conditions in Section 3.

Moreover, we determine those integer pairs (p, q) for the existence of diagonal matrices

A ∈ Hn(a) and B ∈ Hn(b) such that A + B ∈ Hn(p, q) in Section 4. Then the results

are used to determine all the possible ranks of matrices of the form A+B with (A,B) ∈
Hn(a) ×Hn(b) in Section 5. We also determine the function f : R → Z such that f(µ)

is the minimum rank of a matrix of the form A + B − µI with (A,B) ∈ Hn(a)×Hn(b).

Additional remarks and problems are mentioned in Section 6.

Alternatively, one can describe the results as follows. For (A,B) ∈ Hn(a)×Hn(b), we

determine the condition on (p, q) such that U∗AU + V ∗BV ∈ Hn(p, q) for some unitary

matrices U and V , and use the result to determine all possible ranks and multiplicities

of eigenvalues of all matrices of the form U∗AU + V ∗BV .

It turns out that it is more convenient to state and prove the results for A − B. We

will do this in our discussion and focus on the set

In(a,b) = {(p, q) ∈ Z × Z : ∃ (A,B) ∈ Hn(a) ×Hn(b) such that A − B ∈ Hn(p, q)}.

We always assume that a = (a1, . . . , an),b = (b1, . . . , bn) and c = (c1, . . . , cn) are real

vectors with entries arranged in descending order unless specified otherwise.

2 Characterization of elements in In(a,b)

First, we obtain an easy to check necessary and sufficient condition for (p, q) ∈ In(a,b).

Theorem 2.1 Let a = (a1, . . . , an) and b = (b1, . . . , bn) be real vectors with entries

arranged in descending order. Suppose p and q are nonnegative integers satisfying p+q ≤
n. Then (p, q) ∈ In(a,b) if and only if

(1) (a1, . . . , an−q) − (bq+1, . . . , bn) is a nonnegative vector with at least p positive

entries, and
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(2) (b1, . . . , bn−p) − (ap+1, . . . , an) is a nonnegative vector with at least q positive

entries.

Moreover, if (1) and (2) hold, then there exist block diagonal matrices A = A1 ⊕ · · · ⊕
Ap+q ∈ Hn(a) and B = B1 ⊕ · · · ⊕ Bp+q ∈ Hn(b) with the same block sizes such that

Aj − Bj is rank one positive definite for j = 1, . . . , p and Aj − Bj is rank one negative

semi-definite for j = p + 1, . . . , p + q.

Remark 2.2 For fixed p, q ≥ 0 with p+ q ≤ n, let K = {p+1, . . . , n− q}. The necessity

of condition (1) and (2) in the above theorem can be deduced from the inequalities in

(1.3) with T ⊆ K and ck = 0 for k ∈ K. We will give a direct proof of this result for

completeness.

It is convenient to use the following notation in our discussion. Suppose u =

(u1, . . . , um) and v = (v1, . . . , vm) are real vectors with entries arranged in descend-

ing order. Write u ≥k v (respectively, u >k v) if u − v is a nonnegative vector with at

least (respectively, exactly) k positive entries. We will use u ≥ v and u > v for u ≥0 v

and u >n v, respectively. For a = (a1, . . . , an) and 1 ≤ m ≤ n, let am = (a1, . . . , am)

and am = (an−m+1, . . . , an). One can use these notations to restate conditions (1) and

(2) in Theorem 2.1 as

an−q ≥p bn−q and bn−p ≥q an−p.

The following lemmas are needed to prove Theorem 2.1. The first one was proved in

[6].

Lemma 2.3 Let ã = (ã1, . . . , ãm) and a = (a1, . . . , an) be real vectors with entries

arranged in descending order, where 1 ≤ m < n. Then there is (A, Ã) ∈ Hn(a)×Hm(ã)

with Ã as the leading principal submatrix of A if and only if aj ≥ ãj ≥ an−m+j for

j = 1, . . . ,m.

Lemma 2.4 Let (A,B) ∈ Hn(a) × Hn(b). If A − B is a rank k positive semi-definite

matrix, then a ≥k b.

Proof. Applying a suitable unitary similarity to A−B, we may assume that A−B =

diag (d1, . . . , dk, 0, . . . , 0) with d1 ≥ · · · ≥ dk > 0. Let C = B + dkIk ⊕ 0n−k have

eigenvalues c1 ≥ · · · ≥ cn. Then using the positive semi-definite ordering, we have

A ≥ C and B + dkI ≥ C ≥ B.

By Weyl’s inequalities (see [13]), we have

aj ≥ cj and bj + dk ≥ cj ≥ bj , j = 1, . . . , n.
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Since

kdk = tr (C − B) =

n
∑

j=1

(cj − bj),

and each of the summands on the right side is bounded by dk, we see that at least k

of the summands are positive. It follows that there are at least k indices j such that

aj > bj.

Lemma 2.5 Let a and b be real vectors. Suppose {a1, a2, . . . , an} and {b1, b2, . . . , bn}
can be partitioned as

{a1, a2, . . . , an} =

r
⋃

j=1

{aj,1, . . . , aj,nj
} and {b1, b2, . . . , bn} =

r
⋃

j=1

{bj,1, . . . bj,nj
}

such that for each 1 ≤ j ≤ r,

aj,1 ≥ bj,1 ≥ aj,2 ≥ bj,2 ≥ · · · ≥ aj,nj
≥ bj,nj

with aj,i > bj,i for at least kj i’s and
∑r

j=1 kj ≥ m. Then there exist block diagonal

matrices A = A1 ⊕ · · · ⊕ Am ∈ Hn(a) and B = B1 ⊕ · · · ⊕ Bm ∈ Hn(b) with the same

block sizes such that Aj−Bj is rank one positive definite for j = 1, . . . ,m. Consequently,

(m, 0) ∈ In(a,b).

Proof. Suppose r = 1. We prove the statement by induction on m. When m = 1 we

have

a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · ≥ an ≥ bn (2.1)

and ai > bi for at least one i. If bn ≥ 0, then by Lemma 2.4 there is Ã ∈ Hn+1 with

eigenvalues a1 ≥ · · · ≥ an ≥ an+1 = 0 such that the leading n × n submatrix has

eigenvalues b1 ≥ · · · ≥ bn. Since Ã is singular, there is R ∈ Mn and v ∈ Cn such that

Ã = [R|v]∗[R|v]. Note that B = RR∗ and R∗R have the same eigenvalues b1 ≥ · · · ≥ bn,

and the eigenvalues of A = [R|v][R|v]∗ = RR∗ + vv∗ are the same as the n largest of

Ã and equal to a1 ≥ · · · ≥ an. Thus, there exists unitary A − B = vv∗ is rank one

positive semi-definite. If bn < 0, apply the argument to A − bnI and B − bnI to get the

conclusion.

Suppose the result holds for some m ≥ 1 and (2.1) holds with ai > bi for at least m+1

i’s. Let s = min{i : ai > bi}. Then by induction assumption, there exist A1, B1 ∈ Hs

with eigenvalues a1, . . . , as and b1, . . . , bs and block diagonal matrices A2⊕· · ·⊕Am+1 and

B2⊕· · ·⊕Bm+1 ∈ Hn−s with eigenvalues as+1, . . . , an and bs+1, . . . , bn such that Aj −Bj

is rank one positive definite for j = 1, . . . ,m+1. Thus, A = A1⊕A2⊕· · ·⊕Am+1 ∈ Hn(a)

and B = B1 ⊕ B2 ⊕ · · · ⊕ Bm+1 ∈ Hn(b) satisfy the requirement.

Now, suppose r > 1. Choose non-negative numbers ℓj with min{1, kj} ≤ ℓj ≤ kj for

1 ≤ j ≤ m such that ℓ1 + · · · + ℓm = m. By the result when r = 1, there exist block
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diagonal matrices Aj and Bj ∈ Hnj
with eigenvalues aj,1, . . . , aj,nj

and bj,1, . . . bj,nj
such

that Aj − Bj is positive semi-definite with rank ℓj . Thus, for A = A1 ⊕ · · · ⊕ Am and

B = B1 ⊕ · · · ⊕ Bm, A − B is positive semi-definite with rank m.

We are now ready to present the following.

Proof of Theorem 2.1. Suppose (A,B) ∈ Hn(a) ×Hn(b) satisfies A − B ∈ Hn(p, q).

Applying a unitary similarity to A − B, we may assume that A − B = diag (c1, . . . , cn)

such that c1 ≥ · · · ≥ cp > 0 = cp+1 = · · · = cn−q = 0 > cn−q+1 ≥ · · · ≥ cn. Let

A =

(

A11 A12

A21 A22

)

and B =

(

B11 B12

B21 B22

)

with A11, B11 ∈ Hn−q. Then A11 − B11 is positive semi-definite with p positive eigen-

values. Suppose A11 and B11 have eigenvalues α1 ≥ · · · ≥ αn−q and β1 ≥ · · · ≥ βn−q,

respectively. By Lemmas 2.3 and 2.4, we have

(a1, . . . , an−q) ≥ (α1, . . . , αn−q) ≥p (β1, . . . , βn−q) ≥ (bq+1, . . . , bn)

This proves (1). Similarly, we can prove condition (2).

To prove the converse, given real vectors a and b, we first show that for every n, the

result holds if pq = 0 or p + q = n. If (p, q) = (0, 0), then we have a = b and the result

follows.

Suppose p > 0 and q = 0. Let n = rp + s, with r ≥ 0 and 1 ≤ s ≤ p (not 0 ≤ s < p

as given by the Euclidean algorithm). Then (1) and (2) imply that

ai ≥ bi ≥ ap+i ≥ · · · ≥ arp+i ≥ brp+i for 1 ≤ i ≤ s

aj ≥ bj ≥ ap+j ≥ · · · ≥ a(r−1)p+j ≥ b(r−1)p+j for s + 1 ≤ j ≤ p

with ai > bi for at least p i’s. Therefore the result follows from Lemma 2.5.

Similarly, the result holds for p = 0 and q > 0. Hence, the result holds if pq = 0.

For p + q = n, Let A = diag (a1, . . . , an) and B = diag (bq+1, . . . , bn, b1, . . . , bn−p).

Then it follows from (1) and (2) that A − B ∈ Hn(p, q).

We complete the proof of the converse by induction on n. The result is clear for

n ≤ 2.

Assume that the result is valid for all real vectors of lengths less than n. Suppose

(p, q) ≥ (1, 1), p + q < n, and the inequalities in (1) and (2) hold. Then we have

ai ≥ bq+i for 1 ≤ i ≤ n − q (2.2)

and

bi ≥ ap+i for 1 ≤ i ≤ n − p (2.3)
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with at least p strict inequalities hold in (2.2) and at least q strict inequalities hold in

(2.3).

If ai = bq+i for some 1 ≤ i ≤ n − q, then letting a′ = (a1, . . . , ai−1, ai+1, · · · , an) and

b′ = (b1, . . . , bq+i−1, bq+i+1, · · · , bn), we have

1 ≤ j < i ⇒ a′j = aj ≥ bq+j = b′q+j

i ≤ j ≤ n − 1 − q ⇒ a′j = aj+1 ≥ bq+j+1 = b′q+j

(2.4)

1 ≤ j < i − p ⇒ b′j = bj ≥ ap+j = a′p+j

i − p ≤ j < i + q ⇒ b′j = bj ≥ ap+j ≥ ap+j+1 = a′p+j

i + q ≤ j ≤ n − 1 − p ⇒ b′j = bj+1 ≥ ap+j+1 = a′p+j

(2.5)

with at least p strict inequalities hold in (2.4) and at least q strict inequalities hold in

(2.5). By induction hypothesis, there exist A′, B′ ∈ Hn−1 with eigenvalues a1, . . . , ai−1, ai+1, · · · , an

and b1, . . . , bq+i−1, bq+i+1, · · · , bn such that A′−B′ ∈ Hn−1(p, q). Hence, [ai]⊕A′−[bq+i]⊕
B′ ∈ Hn(p, q).

Similarly, the result holds if bi = ap+i for some 1 ≤ i ≤ n − p.

So, we may assume that all inequalities are strict in (2.2) and (2.3). By symmetry,

we may assume that q ≤ p. Since n > p + q, let n = r(p + q) + s, where r > 0 and

1 ≤ s ≤ p + q. We will arrange a1, . . . , an and b1, . . . , bn in p + q chains of inequalities so

that Lemma 2.5 can be applied. To this end, define m = min{s, q, p + q − s},

i1 = max{1, s − q + 1}, i2 = min{s, p}, j1 = max{1, s − p + 1}, and j2 = min{s, q}.

We have

1 ≤ s ≤ q q < s ≤ p p < s ≤ p + q

i1 = max{1, s − q + 1} 1 s − q + 1 s − q + 1

i2 = min{s, p} s s p

j1 = max{1, s − p + 1} 1 1 s − p + 1

j2 = min{s, q} s q q

m = min{s, q, p + q − s} s q p + q − s

Then i2 − i1 = j2 − j1 = m − 1. By conditions (1) and (2), we can list all the entries of

a and b in the following p + q chains of interlacing inequalities:

a1 > bq+1 > ap+q+1 > · · · > b(r−1)(p+q)+q+1 > ar(p+q)+1 > br(p+q)+q+1

... >
... >

... >
... >

... >
... >

...

ai1−1 > bq+i1−1 > ap+q+i1−1 > · · · > b(r−1)(p+q)+q+i1−1 > ar(p+q)+i1−1 > br(p+q)+q+i1−1

ai1 > bq+i1 > ap+q+i1 > · · · > b(r−1)(p+q)+q+i1
> ar(p+q)+i1

... >
... >

... >
... >

... >
...

ai2 > bq+i2 > ap+q+i2 > · · · > b(r−1)(p+q)+q+i2
> ar(p+q)+i2

ai2+1 > bq+i2+1 > ap+q+i2+1 > · · · > b(r−1)(p+q)+q+i2+1

... >
... >

... >
... >

...

ap > bq+p > ap+q+p > · · · > br(p+q),
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and

b1 > ap+1 > bp+q+1 > · · · > a(r−1)(p+q)+p+1 > br(p+q)+1 > ar(p+q)+p+1

... >
... >

... >
... >

... >
... >

...

bj1−1 > ap+j1−1 > bp+q+j1−1 > · · · > a(r−1)(p+q)+p+j1−1 > br(p+q)+j1−1 > ar(p+q)+p+j1−1

bj1 > ap+j1 > bp+q+j1 > · · · > a(r−1)(p+q)+p+j1
> br(p+q)+j1

... >
... >

... >
... >

... >
...

bj2 > ap+j2 > bp+q+j2 > · · · > a(r−1)(p+q)+p+j2
> br(p+q)+j2

bj2+1 > ap+j2+1 > bp+q+j2+1 > · · · > a(r−1)(p+q)+p+j2+1

... >
... >

... >
... >

...

bq > ap+q > bp+q+q > · · · > ar(p+q),

where ai and bi would not appear if i < 0 or i > n.

In fact, it is easy to construct the p chains of inequalities in the first list and q chains

of inequalities in the second list as follows. Put the first p entries of a vertically in the

first column of the first list, the next q entries of a vertically in the second column of

the second list, then the next p entries of a in the third column of first list, and so forth.

Similarly, put the first q entries of b in the first column of the second list, the next p

entries of b in the second column of the first list, then the next q entries of b in the third

column of the second list, and so forth.

For the application of Lemma 2.5, the chains of inequalities with starting terms ai for

i1 ≤ i ≤ i2 are not acceptable because the first and last terms are entries of a. Similarly,

the chains of inequalities with starting terms bj for j1 ≤ j ≤ j2 are not acceptable.

Since i2 − i1 = j2 − j1, we can amend the situations as follows. For i1 ≤ i ≤ i2, let

i′ = j1 + i − i1. Then j1 ≤ i′ ≤ j2 and we can replace the pair of interlacing inequalities

ai > bq+i > ap+q+i > · · · > b(r−1)(p+q)+q+i > ar(p+q)+i,

bi′ > ap+i′ > bp+q+i′ > · · · > a(r−1)(p+q)+p+i′ > br(p+q)+i′ ,

by one of the following pairs:

ai > bq+i > ap+q+i > · · · > b(r−1)(p+q)+q+i > ar(p+q)+i > br(p+q)+i′ ,

bi′ > ap+i′ > bp+q+i′ > · · · > a(r−1)(p+q)+p+i′,

if ar(p+q)+i > br(p+q)+i′ , or

ai > bq+i > ap+q+i > · · · > b(r−1)(p+q)+q+i,

bi′ > ap+i′ > bp+q+i′ > · · · > a(r−1)(p+q)+p+i′ > br(p+q)+i′ ≥ ar(p+q)+i,

if ar(p+q)+i ≤ br(p+q)+i′ . After the above modification, we can apply Lemma 2.5 to the

eigenvalues in the interlacing inequalities with starting terms ai to get a rank p positive

semi-definite matrix, and then apply Lemma 2.5 to the eigenvalues in the interlacing

inequalities with starting terms bj to get a rank q semi-definite matrix. The result

follows.

Following our proof, one can construct the matrices A and B in block diagonal forms

as asserted in the last statement of the theorem.
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It is easy to use Theorem 2.1 to test whether a given pair of integers (p, q) belongs

to In(a,b). Here is an example.

Example 2.6 Let a = (6, 6, 4, 3, 3, 2, 1) and b = (5, 4, 3, 3, 1, 1, 1). Then the following

hold.

(a) (1, 1) /∈ In(a,b) as (b1, . . . , b7−1)−(a1+1, . . . , a7) = (5, 4, 3, 3, 1, 1)−(6, 4, 3, 3, 2, 1)

has a negative entry.

(b) (2, 0) ∈ In(a,b) as (a1, . . . , a7−0)−(b1+0, . . . , b7) = (6, 6, 4, 3, 3, 2, 1)−(5, 4, 3, 3, 1, 1, 1) =

(1, 2, 1, 0, 2, 1, 0) and (b1, . . . , b7−2)−(a2+1, . . . , a7) = (5, 4, 3, 3, 1)−(4, 3, 3, 2, 1) = (1, 1, 0, 1, 0).

In fact, if A = diag (6, 4, 6, 2, 3, 3, 1) and B = B1 ⊕ B2 with

B1 =

(

7/2
√

15/2√
15/2 5/2

)

and B2 =

(

7/2
√

5/2√
5/2 3/2

)

⊕ diag (3, 3, 1),

then (A,B) ∈ H7(a) ×H7(b) such that

A − B =

(

5/2 −
√

15/2
−
√

15/2 3/2

)

⊕
[(

5/2 −
√

5/2
−
√

5/2 1/2

)

⊕ diag (0, 0, 0)

]

∈ H7(2, 0).

We can also test every (p, q) pair of nonnegative integers with p + q ≤ 7 and depict the

set In(a,b) as points in R2 as follows.

1 2 3 4 5 6 7
p

1
2
3
4
5
6
7

q

Corollary 2.7 Suppose (p1, q1), (p2, q2) ∈ In(a,b). Let p = min{p1, p2} and q =

min{q1, q2}. Then (p, q) ∈ In(a,b).

Proof. Suppose p = pi and q = qj. Since (p1, q1), (p2, q2) ∈ In(a,b), we have

an−qj ≥pj
bn−qj

⇒ an−q ≥p bn−q and
bn−pi ≥qi

an−pi
⇒ bn−p ≥q an−p.

Hence, by Theorem 2.1, (p, q) ∈ In(a,b).
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3 A global description of In(a,b)

While Theorem 2.1 allows us to test if a pair of nonnegative integers lies in In(a,b), it

would be nice to have a global description of the region for all integer pairs in In(a,b).

The objective of this section is to obtain such a description.

Note that if a and b has a common entry with multiplicities n1 and n2 in the two

vectors such that n1 + n2 > n, then for any (A,B) ∈ Hn(a) × Hn(b), the null space of

A − B has dimension at least n1 + n2 − m, and a reduction of the vectors a and b is

possible in the problem of describing In(a,b) as shown in the following proposition.

Proposition 3.1 Let a = (a1, . . . , an) and b = (b1, . . . , bn), be two real vectors with

entries arranged in descending order. Suppose ai = ai+1 = · · · = ai+n1−1 = bj = bj+1 =

· · · bj+n2−1, for some i, j, n1, n2 ≥ 1 such that n1 + n2 > n. Let s = n1 + n2 − n and a′,

b′ be obtained by deleting s ai from each of a and b. Then (p, q) ∈ In(a,b) if and only

if (p, q) ∈ In(a′,b′).

Proof. Suppose A and B have eigenvalues a1, . . . , an and b1, . . . , bn. Then the inter-

section of the eigenspaces of A and B associated with ai has dimension ≥ s. So there

exists a unitary U such that U∗AU = A′ ⊕ aiIs and U∗BU = B′ ⊕ aiIs. Therefore,

(p, q) ∈ In(a,b) if and only if (p, q) ∈ In(a′,b′).

By the above lemma, to describe In(a,b), we can focus on the (a,b) pair such that

a and b do not have a common entry whose multiplicities in the two vectors have sum

exceeding n. To describe the main result in this section, we need the following definition.

Definition 3.2 Suppose a = (a1, . . . , an) and b = (b1, . . . , bn) are real vectors with

entries arranged in descending order. Let

p0 =

{

n if b1 < an,
min{t : 0 ≤ t < n, bn−t ≥ an−t} otherwise;

(3.1)

q0 =

{

n if a1 < bn,
min{t : 0 ≤ t < n, an−t ≥ bn−t} otherwise.

(3.2)

Suppose

(a1, . . . , an, b1, . . . , bn) has no entry with multiplicity larger than n. (3.3)

Let

k =

{

n − p0 if b1 ≤ an,
min{t : 0 ≤ t < n − p0, bn−p0−t > an−p0−t} otherwise;

(3.4)

ℓ =

{

n − q0 if a1 ≤ bn,
min{t : 0 ≤ t < n − q0, an−q0−t > bn−q0−t} otherwise.

(3.5)
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Furthermore, for 0 ≤ i ≤ n − (p0 + q0 + ℓ) and 0 ≤ j ≤ n − (p0 + q0 + k), let

Qi be the number of positive entries in bn−pi − an−pi
with pi = p0 + i, (3.6)

Pj be the number of positive entries in an−qj − bn−qj
with qj = q0 + j. (3.7)

In Example 2.6, we have (k, ℓ) = (1, 1),

(p0, q0) = (2, 0), (p0, Q0) = (2, 3), (P0, q0) = (5, 0),

(p1, Q1) = (3, 4) = (P4, q4), (p2, Q2) = (4, 3) = (P3, q3),

(p3, Q3) = (5, 2) = (P2, q2), (p4, Q4) = (6, 1) = (P1, q1).

In general, we will show in Lemma 3.11 that pk ≤ Pℓ and pi + Qi = n = Pj + qj for all

k ≤ i ≤ n − (p0 + q0 + ℓ) and ℓ ≤ j ≤ n − (p0 + q0 + k). Therefore, the points in

{(pi, Qi) : k ≤ i ≤ n − (p0 + q0 + ℓ)} ∪ {(Pj , qj) : ℓ ≤ j ≤ n − (p0 + q0 + k)}

lie on the line segment joining (pk, Qk) and (Pℓ, qℓ).

Theorem 3.3 Let a and b be real vectors satisfying condition (3.3). Use the notation

in Definition 3.2. The following conditions hold.

(1) The polygon P obtained by joining the points

(p0, q0), (p0, Q0), (p1, Q1), . . . , (pk, Qk), (Pℓ, qℓ), (Pℓ−1, qℓ−1), . . . , (P0, q0), (p0, q0)

is convex.

(2) In(a,b) consists of all the integer pairs (p, q) in P.

In Example 2.6, P is obtained by joining (2, 0), (2, 3), (3, 4), (6, 1), (5, 0), (2, 0). Before

presenting the proof of the theorem, we illustrate how to use the theorem in the following

corollaries.

Corollary 3.4 Suppose a and b be real vectors with no common entries. Using the

notation in (3.1) and (3.2), we have

In(a,b) = {(p, q) : p ≥ p0, q ≥ q0, p + q ≤ n}.

Proof. Since a and b have no common entries, we see that for each i ∈ {1, . . . , k},
the vector bn−pi − an−pi

is positive, and hence pi + Qi = n. Similarly, Pj + qj = n for

each j ∈ {1, . . . , ℓ}. By Theorem 3.3, the result follows.
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Corollary 3.5 Suppose there are µ > ν and 0 ≤ u, v ≤ n such that

µ = a1 = · · · = au = b1 = · · · = bv and ν = au+1 = · · · = an = bv+1 = · · · = bn,

then

In(a,b) = {(u − w, v − w) : max{0, u + v − n} ≤ w ≤ min{u, v}}.

Proof. Without loss of generality, we may assume that u ≥ v, µ = 1 and ν = 0.

Furthermore, by Proposition 3.1, we may assume that u + v = n. Then (p0, q0) =

(u − v, 0). Moreover, (pi, Qi) = (p0 + i, i) = (Pi, qi) for i = 1, . . . , v. By Theorem 3.3,

the result follows.

We establish some lemmas to prove Theorem 3.3. The first three lemmas give addi-

tional properties of p0, q0, Pi, Qj , and confirm that (p0, q0), (pi, Qi), (Pj , qj) ∈ In(a,b).

Lemma 3.6 Suppose a,b are two real vectors, and p0, q0 are defined by (3.1) and (3.2).

Then the following conditions hold.

(1) p0 = min{p : (p, q) ∈ In(a,b) for some q ≥ 0}, and ap0 − bp0 is a positive vector

if p0 > 0.

(2) q0 = min{q : (p, q) ∈ In(a,b) for some p ≥ 0}, and bq0 − aq0 is a positive vector

if q0 > 0.

(3) (p0, q0) ∈ In(a,b).

Proof. (1) Suppose p0 is given by (3.1). If p0 = n, then b1 < an and In(a,b) =

{(n, 0)}. If p0 < n, then we have bj ≥ ap0+j for all 1 ≤ j ≤ n − p0. Let A =

diag (a1, . . . , an) and B = diag (bn−p0+1, . . . , bn, b1, . . . , bn−p0). Then A−B has at most

p0 positive eigenvalues. Therefore,

p0 ≥ min{p : (p, q) ∈ In(a,b) for some q ≥ 0}.

On the other hand, suppose (p, q) ∈ In(a,b) for some q ≥ 0. Then there exists (A,B) ∈
Hn(a) × Hn(b) such that A − B ∈ Hn(p, q). By Theorem 2.1, we have bn−p ≥ an−p.

Therefore, p ≥ p0. Hence,

p0 ≤ min{p : (p, q) ∈ In(a,b) for some q ≥ 0}.

If p0 > 0, then there exists 1 ≤ i ≤ n − (p0 − 1) such that ap0−1+i > bi. So, for all

1 ≤ j ≤ p0, we have

aj ≥ ap0−1+i > bi ≥ bn−p0+j

i.e., ap0 − bp0 is positive. This proves (1). The proof of (2) is similar.

(3) By the results in (1) and (2), we can choose p ≥ p0 and q ≥ q0 such that (p, q0)

and (p0, q) ∈ In(a,b). Hence, by Corollary 2.7, (p0, q0) ∈ In(a,b).

Note that assumption (3.3) is not needed in Lemma 3.6.
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Lemma 3.7 Suppose a and b are real vectors satisfying condition (3.3). Let s ∈
{0, . . . , n − 1} be such that bn−s − an−s has a non-positive entry. Then as+1 − bs+1

is positive.

Proof. Suppose the conclusion is not true. Then as+1 − bs+1 is not positive. Hence

there is i ∈ {1, . . . , s + 1} such that ai ≤ bn−s−1+i. Since the vector bn−s − an−s has a

non-positive entry, bj ≤ as+j for some j ∈ {1, . . . , n − s}. Hence

bj ≤ as+j ≤ as+j−1 ≤ · · · ≤ ai ≤ bn−s−1+i ≤ · · · ≤ bj .

Consequently, all the inequalities become equalities, and the multiplicity of ai = bj in the

vector (a1, . . . , an, b1, . . . , bn) equals (s+ j− i+1)+(n− s+ i− j) = n+1, contradicting

assumption (3.3).

By Lemma 3.7 and the definition of ℓ and k, we see that (n− q0 − ℓ, q0 + ℓ), (n− p0 −
k, p0 + k) ∈ In(a,b) if a,b satisfy (3.3).

Lemma 3.8 Let a and b be real vectors satisfying (3.3). Use the notation in Definition

3.2. For 0 ≤ i ≤ n − (p0 + q0 + ℓ) and 0 ≤ j ≤ n − (p0 + q0 + k), we have

(1) ap0+i > bp0+i and bq0+j > aq0+j.

(2) (pi, Qi), (Pj , qj) ∈ In(a,b).

(3) Qi = max{q : (p0 + i, q) ∈ In(a,b)} and Pj = max{p : (p, q0 + j) ∈ In(a,b)}.

(4) p0 + q0 + k + ℓ ≤ n.

Proof. If p0 or q0 = n, then k = ℓ = 0, and the results follow. Therefore, in the rest

of the proof, we assume that p0, q0 < n.

(1) It follows from the definition of ℓ and k that an−q0−ℓ > bn−q0−ℓ and bn−p0−k >

an−p0−k. For 0 ≤ i ≤ n − (p0 + q0 + ℓ), we have p0 + i ≤ n − q0 − ℓ. Therefore,

ap0+i > bp0+i. Similarly, bq0+j > aq0+j for 0 ≤ j ≤ n − (p0 + q0 + k).

(2) Since, diag (a1, . . . , an) − diag (bn−pi+1, . . . , bn, b1, . . . , bn−pi
) ∈ Hn(pi, Qi), we have

(pi, Qi) ∈ In(a,b). Similarly, (Pj , qj) ∈ In(a,b).

(3) Suppose (pi, q) ∈ In(a,b). Then bn−pi ≥q an−pi
. So, q ≤ Qi. Hence,

Qi = max{q : (p0 + i, q) ∈ In(a,b)}.

Similarly, we have

Pj = max{p : (p, q0 + j) ∈ In(a,b)}.

(4) Since (n− q0 − ℓ, q0 + ℓ) ∈ In(a,b), we have n− q0− ℓ ≥ p0 by Lemma 3.6. From the

definition of k and an−q0−ℓ > bn−q0−ℓ, we have n−q0−ℓ ≥ p0+k. Thus, p0+q0+k+ℓ ≤ n.
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Clearly, Pj is equal to n − qj minus the number of zero entries in an−qj − bn−qj
.

Therefore, in order to study the relationship between Pj and Pj+1, we need to keep

track of the zero entries in the vector an−qj −bn−qj
and investigate how they are related

to the entries of an−qj−1−bn−qj−1. For this reason, we introduce the following definition.

Definition 3.9 For 1 ≤ i ≤ j ≤ m ≤ n, we say that [i, j] = {t : i ≤ t ≤ j} is a maximal

interval of (am,bm) if

ai−1 > ai = ai+1 = · · · = aj

= bn−m+i = bn−m+i+1 = · · · = bn−m+j > bn−m+j+1.

The length of a maximal interval [i, j] is given by j − i + 1. The set of all maximal

interval of (am,bm) will be denoted by S(am,bm). Let T = T (am,bm) be the maximum

length of a maximal interval of (am,bm). For 1 ≤ t ≤ T , let st be the number of

maximal intervals of (am,bm) with length t. The sequence (s1, s2, . . . , sT ) will be denoted

by s(am,bm).

Lemma 3.10 Suppose am ≥ bm for some 1 ≤ m ≤ n. Then the following conditions

hold.

(1) am >q bm where q = m − ∑T
t=1 t st.

(2) [i, j] ∈ S(am−1,bm−1) if and only if [i, j + 1] ∈ S(am,bm).

(3) am−1 >q1 bm−1, where q1 = q − 1 +
∑T

t=1 st.

(4) If am−2 >q2 bm−2, then q2 − q1 ≤ q1 − q.

Here, we assume that m > 1 for (2) – (3) and m > 2 for (4).

Proof. Condition (1) holds because
∑T

t=1 t st is the number of zero entries in am−bm.

To prove (2), suppose [i, j] ∈ S(am−1,bm−1). Then we have

ai−1 > ai = ai+1 = · · · = aj

= bn−(m−1)+i = bn−(m−1)+i+1 = · · · = bn−(m−1)+j > bn−(m−1)+j+1.

(3.8)

Since ai−1 > ai ≥ bn−m+i ≥ bn−m+i+1 = ai and aj ≥ aj+1 ≥ bn−m+j+1 = aj >

bn−(m−1)+j+1, we have ai = bn−m+i = bn−m+i+1 and aj = aj+1 = bn−m+j+1. This gives

ai−1 > ai = ai+1 = · · · = aj+1

= bn−m+i = bn−m+i+1 = · · · = bn−m+j+1 > bn−m+j+2.
(3.9)

Thus, [i, j + 1] ∈ S(am,bm). Conversely, if [i, j + 1] ∈ S(am,bm) for some j ≥ i, then

(3.9) holds. Thus (3.8) follows and [i, j] ∈ S(am−1,bm−1).
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To prove (3), let s(am,bm) = (s1, s2, . . . , sT ). Then it follows from (2) that s(am−1,bm−1) =

(s2, s3, . . . , sT ). Hence,

q1 = m − 1 −
T

∑

t=2

(t − 1) st = m − 1 −
T

∑

t=1

t st +

T
∑

t=1

st = q − 1 +

T
∑

t=1

st.

From (3), we have q2 − q1 =
∑T

t=2 st − 1 ≤ ∑T
t=1 st − 1 = q1 − q. This proves (4).

Applying Lemma 3.10 to the quantities in Definition 3.2, we readily deduce the

following.

Lemma 3.11 Use the notation in Definition 3.2 and 3.9. The following conditions hold.

(1) k = T (bn−p0,an−p0), ℓ = T (an−q0,bn−q0).

(2) Suppose s (bn−p0,an−p0) = (s1, s2, . . . , sk) and s (an−q0,bn−q0) = (s′1, s
′

2, . . . , s
′

ℓ).

Then

Qi+1 = Qi − 1 +
∑k

t=i+1 st for 0 ≤ i < k,

Pj+1 = Pj − 1 +
∑k

t=j+1 s′t for 0 ≤ j < ℓ.

(3) For k ≤ i < n − (p0 + q0 + ℓ) and ℓ ≤ j < n − (p0 + q0 + k), we have

Qi+1 = Qi − 1 and Pj+1 = Pj − 1.

Moreover, for k ≤ i ≤ n − (p0 + q0 + ℓ) and ℓ ≤ j ≤ n − (p0 + q0 + k), we have

pi + Qi = n = Pj + qj . (3.10)

(4) For 0 < i < n − (p0 + q0 + ℓ) and ℓ < j < n − (p0 + q0 + k), we have

Qi − Qi−1 ≥ Qi+1 − Qi and Pj − Pj−1 ≥ Pj+1 ≥ Pj+1 − Pj

Proof of Theorem 3.3 (1) From (p0, q0) to (p0, Q0), we have a vertical straight line

segment. Note that the slope of the line segment from (pi−1, Qi−1) to (pi, Qi) equals

Qi − Qi−1, and the slope of the line segment from (pi, Qi) to (pi+1, Qi+1) is Qi+1 − Qi.

By Lemma 3.11 (4), we see that Qi − Qi−1 ≥ Qi+1 − Qi. Thus, the polygonal curve

joining the points (p0, Q0), (p1, Q1), . . . , (pk, Qk) is convex. The line segment joining

(pk, Qk) and (Pℓ, qℓ) is a line segment with negative slope. Finally, the polygonal curve

joining the points (p0, q0), (P0, q0), . . . , (Pℓ, qℓ) is concave by Lemma 3.11 (4). Thus P is

a convex subset contained in the set

{(p, q) : p0 ≤ p ≤ n − qℓ, q0 ≤ q ≤ n − pk, and p + q ≤ n}.

(2) Suppose (p, q) ∈ P. Let p = pi and q = qj for some 0 ≤ i ≤ n− (p0 + q0 + ℓ) and

0 ≤ j ≤ n−(p0+q0+k). Then pi ≤ Pj and qj ≤ Qi. Since (pi, Qi) and (Pj , qj) ∈ In(a,b).

By Corollary 2.7, (pi, qj) ∈ In(a,b).
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Conversely, suppose (p, q) ∈ In(a,b). By Theorem 3.6, we have p ≥ p0, q ≥ q0 and

p + q ≤ n. Let p = pi and q = qj for some i, j ≥ 0. If i > n− (p0 + q0 + ℓ), then we have

qj ≤ n − pi < q0 + ℓ ⇒ pi ≤ Pj ≤ n − qℓ ⇒ i ≤ n − (p0 + q0 + ℓ) ,

a contradiction. Therefore, 0 ≤ i ≤ n − (p0 + q0 + ℓ). Similarly, we have 0 ≤ j ≤
n− (p0 + q0 +k). Since (pi, qj) ∈ In(a,b), we have pi ≤ Pj and qj ≤ Qi by Lemma 3.8. If

either pi = Pj or qj = Qi, then (p, q) ∈ P. So we may assume that pi < Pj and qj < Qi.

Consider the positive numbers

t1 = j(Pj − pi), t2 = i(Qi − qj) and t3 = (Pj − pi)(Qi − qj).

Then, by direct computation, we have

t1(pi, Qi) + t2(Pj , qj) + t3(p0, q0)

t1 + t2 + t3
=

(t1pi + t2Pj + t3p0, t1Qi + t2qj + t3q0)

t1 + t2 + t3
= (pi, qj).

Thus, (p, q) lies in P.

4 Elements in In(a,b) attainable by diagonal matrices

In this section, we determine those elements in In(a,b) that are attainable by diagonal

matrices. Clearly, if A and B are diagonal matrices with eigenvalues so that the eigen-

values of A and those of B are mutually distinct, then A − B is invertible. If A and B

have m common eigenvalues (counting multiplicities), then A − B has at most m zero

eigenvalues. It turns out that this is the only additional restriction on (p, q) ∈ In(a,b)

to be attainable by diagonal matrices.

Theorem 4.1 Suppose a and b have m common entries counting multiplicities. Then

there are diagonal matrices A ∈ Hn(a) and B ∈ Hn(b) such that A − B ∈ Hn(p, q) if

and only if (p, q) ∈ In(a,b) and p + q ≥ n − m.

To prove Theorem 4.1 we need the following.

Lemma 4.2 Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Rn with a1 ≥ a2 ≥ · · · ≥
an and b1 ≥ b2 ≥ · · · ≥ bn. Given 1 ≤ j1 ≤ i1 ≤ n, let â and b̂ be obtained from a and b

by deleting ai1 and bj1 from a and b respectively. Suppose a >p b for some 0 ≤ p ≤ n.

We have

(1) â ≥ b̂.

(2) If 1 ≤ p ≤ n, then â ≥p−1 b̂.

(3) If ai = bi for some j1 ≤ i ≤ i1, then â ≥p b̂.
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Proof. Since

âi =

{

ai if 1 ≤ i < i1,
ai+1 if i1 ≤ i ≤ n − 1,

and b̂j =

{

bj if 1 ≤ j < j1,
bj+1 if j1 ≤ j ≤ n − 1,

we have

1 ≤ i < j1 ⇒ âi = ai ≥ bi = b̂i

j1 ≤ i < i1 ⇒ âi = ai ≥ bi ≥ bi+1 = b̂i

i1 ≤ i < n ⇒ âi = ai+1 ≥ bi+1 = b̂i

(4.1)

and (1) holds.

Note that every strict inequality ai > bi for 1 ≤ i < i1 (or i1 < i ≤ n) gives a strict

inequality âi > b̂i (or âi−1 > b̂i−1). This proves (2) and the case when i = i1 or j1 in (3).

For (3), we may assume that ai1 > bi1 and i1 > j1. Note that

(â1, â2, . . . , âj1−1) = (a1, a2, . . . , aj1−1)
(

b̂1, b̂2, . . . , âj1−1

)

= (b1, b2, . . . , bj1−1)

(âj1 , âj1+1, . . . , âi1−1) = (aj1 , aj1+1, . . . , ai1−1)
(

b̂j1 , b̂j1+1, . . . , b̂i1−1

)

= (bj1+1, bj1+2, . . . , bi1)

(âi1 , âi1+1, . . . , ân−1) = (ai1+1, ai1+2, . . . , an)
(

b̂i1 , b̂i1+1, . . . , b̂n−1

)

= (bi1+1, bi1+2, . . . , an) .

Apply Lemma 3.10 (3) to (aj1, aj1+1, . . . , ai1) and (bj1 , bj1+2, . . . , bi1); by the fact that

at least one sk is positive, we can conclude that the number of strict inequalities in

(âj1 , âj1+1, . . . , âi1−1)−
(

b̂j1, b̂j1+1, . . . , b̂i1−1

)

is no less than that of (aj1 , aj1+1, . . . , ai1)−

(bj1 , bj1+2, . . . , bi1). Therefore, the number of entries in â− b̂ is no less than that of a−b.

Proof of Theorem 4.1. Suppose A and B are diagonal matrices with eigenvalues

a1, . . . , an and b1, . . . , bn such that A − B ∈ Hn(p, q). So, (p, q) ∈ In(a,b). Also, the

number of zero diagonal entries is at most m. Therefore, m ≥ n − p − q. Hence,

p + q ≥ n − m.

We prove the converse by induction on m. Let (p, q) ∈ In(a,b) and p + q ≥ n − m.

If p + q = n then the result follows from Theorem 2.1. So the result holds for m = 0 and

we may assume that n > p + q.

Let m > 0. Assume the result holds whenever a and b have m−1 entries in common.

Suppose a and b have m common entries and (p, q) ∈ In(a,b), with p + q ≥ n − m.

By Theorem 2.1, we have an−q ≥p bn−q and bn−p ≥q an−p. We may assume that

n > p+q ≥ n−m. We are going to show that we can delete a common entries from a and

b to obtain vectors â and b̂ ∈ Rn−1 so that ân−1−q ≥p b̂n−1−q and b̂n−1−p ≥q ân−1−p.

Since â and b̂ have only m − 1 entries in common and p + q ≥ (n − 1) − (m − 1), the

result will follow.
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Consider the following cases:

Case 1: an−q ≥p+1 bn−q and bn−p ≥q+1 an−p.

Since m > 0, we can choose i1 = min{i : ai = bj for some j} and j1 = min{j : bj =

ai1}. Let â and b̂ be obtained from a and b by deleting ai1 and bj1 respectively.

If i1 > n − q, then ân−1−q = an−1−q. Therefore, ân−1−q ≥p b̂n−1−q.

If i1 ≤ n − q, then bj1−1 > bj1 = ai1 ≥ bq+i1 and we have q + i1 ≥ j1. By Lemma 4.2

(2), ân−1−q ≥p b̂n−1−q.

Similarly, we have b̂n−1−p ≥q ân−1−p.

Case 2: an−q >p bn−q.

Since n − q > p, let i1 = min{t : 1 ≤ t ≤ n − q and at = bq+t} ≤ p + 1. Let â and

b̂ be obtained from a and b by deleting ai1 and bq+i1 respectively. Then â and b̂ have

m−1 entries in common. By Lemma 4.2 (3), ân−1−q ≥p b̂n−1−q. Consider the following

cases:

Subcase 2a: If bn−p ≥q+1 an−p, then it follow from Lemma 4.2 (2) that b̂n−1−p ≥q

ân−1−p.

Subcase 2b: If bn−p >q an−p, then

min{s : 1 ≤ s ≤ n − p and bs = ap+s} ≤ q + 1 ≤ q + i1 .

It follow from Lemma 4.2 (3) that b̂n−1−p ≥q ân−1−p.

5 Ranks and multiple eigenvalues

By Theorem 3.3, we can determine the set R(a,b) of all possible ranks a matrix of the

form A − B with (A,B) ∈ Hn(a) ×Hn(b). Evidently, we have

R(a,b) = {p + q : (p, q) ∈ In(a,b)}.

Nevertheless, it is interesting that the result can be put in the following simple form.

Theorem 5.1 Let a,b be real vectors, and define p0 and q0 as in (3.1) and (3.2). Let m

be the largest multiplicity of an entry in (a1, . . . , an, b1, . . . , bn) and r = min{2n−m,n}.
Suppose R(a,b) is the set of rank values of matrices of the form A−B, where (A,B) ∈
Hn(a) ×Hn(b). Then one of the following holds.

(1) There exist real numbers µ > ν and 0 ≤ u, v ≤ n such that

µ = a1 = · · · = au = b1 = · · · = bv, ν = au+1 = . . . = an = bv+1 = · · · = bn,

and

R(a,b) = {u + v − 2j : max{0, u + v − n} ≤ j ≤ min{u, v}}.
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(2) Condition (1) does not hold, a = b, and

R(a,b) = {0} ∪ {2, . . . , r}.

(3) Conditions (1) and (2) do not hold, and

R(a,b) = {p0 + q0, . . . , r}.

Moreover, if t ∈ R(a,b) then there are block diagonal matrices A = A1⊕· · ·⊕At ∈ Hn(a)

and B = B1 ⊕ · · · ⊕ Bt in Hn(b) with the same block sizes such that Aj − Bj has rank

one for j = 1, . . . , t.

Note that in the theorem, we include the case when (a1, . . . , an, b1, . . . , bn) has an

entry with multiplicity larger than n .

Proof. (1) Suppose a,b satisfy the condition in (1). The result follows from Corollary

3.5.

(2) Suppose condition (1) does not hold and a = b. If A = B = diag (a1, . . . , an),

then A − B ∈ Hn(0, 0). Since A and B have the same trace, we see that A − B cannot

have rank 1.

Without loss of generality, we may assume that r = n. We prove the following claim

by induction on n:

There are matrices A,B ∈ Hn(a) such that A−B ∈ Hn(p, q) whenever 2 ≤ p+ q ≤ n

with p = q or p = q + 1.

The claim is clear if n = 3, 4. Suppose n ≥ 5 and 2 ≤ p + q ≤ n with p = q or

p = q + 1. Since a has at least three distinct entries, each entry has multiplicity at most

n/2. Suppose ar > as, where ar, as have the two largest multiplicities in the vector a.

For 2 ≤ p + q ≤ 3, choose aw /∈ {au, av} and let A1 = diag (au, av, aw). Then there

exists a diagonal matrix B1 with the same eigenvalues as A1 and A1 − B1 ∈ H3(p, q).

Remove au, av , aw from a to get a′. Then A1 ⊕ diag (a′) − B1 ⊕ diag (a′) ∈ Hn(p, q).

For 4 ≤ p + q ≤ n, we have p, q ≥ 1. Therefore, 2 ≤ (p − 1) + (q − 1) ≤ n − 2 and

p − 1 = q − 1 or p − 1 = (q − 1) + 1. Let A1 = diag (au, av) and B1 = diag (av, au),

we have A1 − B2 ∈ In(1, 1). Remove ar, as from a to get a′. Since n ≥ 5, there are

at least three distinct entries in a′ and each has multiplicity at most (n − 2)/2. By

induction assumption, there are A2, B2 both with vector of eigenvalues a′ such that

A2 − B2 ∈ Hn−2(p − 1, q − 1). Thus, A1 ⊕ A2 − B1 ⊕ B2 ∈ Hn(p, q).

(3) Suppose conditions (1) and (2) do not hold. Using the notation in Theorem 3.3,

we see that (p, q) ∈ In(a,b) for

(p, q) ∈ {(pj , q0) : 0 ≤ j ≤ k} ∪ {(pk, qj) : 1 ≤ j ≤ Qk}.

Thus, we have the desired rank values.
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By Theorem 2.1, we can construct matrices A and B with the asserted block struc-

ture.

It is clear that X,Y ∈ Hn have the same eigenvalues if and only if X−µI and Y −µI

have the same inertia (or rank) for all eigenvalues µ of Y . Thus, we can describe the

eigenvalues of A − B in terms of the inertia of A − B − µI for different real numbers

µ. In particular, we have the following necessary condition for c1 ≥ . . . ≥ cn to be the

eigenvalues of A − B with (A,B) ∈ Hn(a) ×Hn(b).

Proposition 5.2 Let a = (a1, . . . , an),b = (b1, . . . , bn), c = (c1, . . . , cn) be real vectors

with entries arranged in descending order. Suppose c has distinct entries c1 > · · · > ct

with multiplicities m1, . . . ,mt, respectively, and suppose there exists (A,B) ∈ Hn(a) ×
Hn(b) such that A − B ∈ Hn(c). Set u0 = 0, uj = m1 + · · · + mj−1 for j ∈ {1, . . . , t},
vj = mj+1 + · · · + mt for j ∈ {1, . . . , t − 1} and vt = 0. Then for j ∈ {1, . . . , t},
(i) (a1−cj, . . . , an−vj

−cj)−(bvj+1, . . . , bn) is nonnegative with at least uj positive entries.

(ii) (b1, . . . , bn−uj
) − (auj+1 − cj , . . . , an − cj) is nonnegative with at least vj positive

entries.

Remark 5.3 Let a = (a1, . . . , an) and b = (b1, . . . , bn) with entries arranged in de-

scending order. Then there exist A,B ∈ Hn with vector of eigenvalues a and b such

that A−B has an eigenvalue µ with multiplicity t if and only if there is a matrix of the

form Ã − B has rank n − t, where Ã + µI ∈ Hn(a) and B ∈ Hn(b). Hence, we can use

Theorem 5.1 to determine whether there is (A,B) ∈ Hn(a) × Hn(b) such that A − B

has an eigenvalue µ with multiplicity t. In Corollaries 5.6 and 5.7, we will apply The-

orem 2.1 to give a more precise location of the multiple eigenvalue µ. As a byproduct,

we determine the function f(µ) defined as the minimum rank of a matrix of the form

A − B − µI with (A,B) ∈ Hn(a) ×Hn(b) for given real vectors a and b.

The following notation will be used for the rest of this section.

Notation 5.4 Let a = (a1, . . . , an),b = (b1, . . . , bn) be real vectors with entries arranged

in descending order. For 0 ≤ t ≤ n − 1, let

αt = max{aj+t − bj : 1 ≤ j ≤ n − t} and βt = min{aj − bj+t : 1 ≤ j ≤ n − t}.

For µ ∈ R, let p0(µ) and q0(µ) be defined as in (3.1) – (3.2), with aj replaced by aj − µ.

Note that p0(µ)+q0(µ) will be the minimum rank of a matrix of the form A−B−µI

with (A,B) ∈ Hn(a) ×Hn(b).

Proposition 5.5 Let a and b be real vectors with entries arranged in descending order.

We have

αn−1 ≤ αn−2 ≤ · · · ≤ α0 and β0 ≤ β1 ≤ · · · ≤ βn−1.

Moreover, the following conditions hold for the function p0(µ), q0(µ) and p0(µ) + q0(µ).
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(a) p0(µ) is a decreasing step function in µ ∈ R such that p0(µ) = n for µ < αn−1,

p0(µ) = 0 for µ ≥ α0, and p0(µ) = t if µ in the interval [αt, αt−1) for 1 ≤ t ≤ n−1;

(b) q0(µ) is an increasing step function in µ ∈ R such that q0(µ) = 0 for µ ≤ β0,

q0(µ) = n for µ > βn−1, and q0(µ) = t if µ in the interval (βt−1, βt] for 1 ≤ t ≤
n − 1.

(c) If αs = βt for some 0 ≤ s, t ≤ n−1, then there exists δ > 0 such that p0(µ)+q0(µ) >

p0(αs) + q0(αs) for all 0 < |µ − αs| < δ.

(d) If µ 6= αt, βt for all 0 ≤ t ≤ n − 1, then p0(·) + q0(·) is locally constant at µ.

Proof. For 1 ≤ t ≤ n − 1 and 1 ≤ j ≤ n − t we have aj+t − bj ≤ aj+(t−1) − bj .

Therefore, αt ≤ αt−1. Similarly, βt ≥ βt−1.

By (3.1) and (3.2), we have

p0(µ) =

{

n if µ < an − b1,
min{t : µ ≥ αt} otherwise,

q0(µ) =

{

n if a1 − bn < µ,
min{t : µ ≤ βt} otherwise,

which implies (a) and (b).

For (c), suppose αs = βt for some 0 ≤ s, t ≤ n − 1. By taking αn = αn−1 − 1,

α−1 = α0 + 1, β−1 = β0 − 1 and βn = βn−1 + 1, we may assume that αs+1 < αs =

cs−1 = · · · = αs′ < αs′−1 and βt−1 < βt = βt+1 = · · · = βt′ < βt′+1. Let δ = min{αs −
αs+1, αs′−1 −αs′ , βt −βt−1, βt′+1 −βt′} > 0. We have p0(µ)+ q0(µ) = s+ t+1 > s′ + t =

p0 (αs′)+q0 (βt) = p0 (αs)+q0 (αs) if 0 < αs−µ < δ and p0(µ)+q0(µ) = s′+t′+1 > s′+t

if 0 < µ − αs < δ.

p0(µ) + q0(µ) =

{

s + t + 1 if 0 < αs − µ < δ
s′ + t′ + 1 if 0 < µ − αs < δ

> s′ + t = p0 (αs′) + q0 (βt) = p0 (αs) + q0 (αs)

(d) follows from (a) and (b).

Note that the function g(µ) defined as the maximum rank of a matrix of the form

A − B − µI with (A,B) ∈ Hn(a) × Hn(b) is easy to determine, namely, it is equal to

g(µ) = min{n, 2n − m(µ)} with m(µ) equal to the maximum multiplicity of an entry in

the vector (a1 − µ, . . . , an − µ, b1, . . . , bn).

Similarly, one can consider Pℓ(µ) and Qk(µ) defined as the maximum number of

positive and negative eigenvalues of a matrix of the form A − B − µI with (A,B) ∈
Hn(a) ×H(b). We omit their discussion.
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The following corollary concerns the possible multiplicities for µ ∈ R to be an eigen-

value of A − B with (A,B) ∈ Hn(a) ×Hn(b).

Corollary 5.6 Let a and b be real vectors with entries arranged in descending order.

Suppose an − b1 ≤ µ ≤ a1 − bn. Then there exist s, t ∈ {0, . . . , n − 1} such that µ ∈
[αs, αs−1) ∩ (βt−1, βt], where we take α−1 > βn−1 and β−1 < αn−1.

(1) Suppose (A,B) ∈ Hn(a) × Hn(b) and µ is an eigenvalue of A − B. Then the

multiplicity of µ is at most n− s− t. Furthermore, A−B has at least s eigenvalue

greater than µ and at least t eigenvalues less than µ.

(2) There exists (A,B) ∈ Hn(a) × Hn(b) such that A − B has an eigenvalue µ with

multiplicity n − s − t, s eigenvalues greater than µ and t eigenvalues less than µ.

To facilitate the comparison of our results and those in the literature, we present the

next corollary in terms of A + B with (A,B) ∈ Hn(a) × Hn(b). We use the following

notation. Let a = (a1, . . . , an), b = (b1, . . . , bn) and c = (c1, . . . , cn) with entries arranged

in descending order. For each 1 ≤ k ≤ n, let Lk = max{ai + bj : i + j = n + k} and

Rk = min{ai + bj : i + j = k + 1}. Suppose A, B ∈ Hn and C = A + B have eigenvalues

a, b and c. Then it follows from Weyl’s inequalities [13] that Lk ≤ ck ≤ Rk. Conversely,

for every 1 ≤ k ≤ n and c ∈ [Lk, Rk], there exist A, B ∈ Hn and C = A + B with

eigenvalues a, b and c such that ck = c. However, for two distinct 1 ≤ k < k′ ≤ n

and c ∈ [Lk, Rk], c ∈ [Lk′ , Rk′ ], there may not exist A, B ∈ Hn and C = A + B with

eigenvalues a, b and c such that ck = c and ck′ = c′; see the example in [7, p.215].

Nevertheless, by replacing bj with −bn+1−j and putting s = k − 1 and t = n − k′, the

second part of Corollary 5.6 can be rephrased in the following form.

Corollary 5.7 Let a = (a1, . . . , an) and b = (b1, . . . , bn) with entries arranged in de-

scending order and µ ∈ [Lk, Lk−1) ∩ (Rk′+1, Rk′ ]. Then there exists (A,B) ∈ Hn(a,b)

such that C = A + B has a vector of eigenvalues c with ck−1 < µ = ck = ck+1 = · · · =

ck′ < ck′+1.

We remark that Corollary 5.7 can also be deduced from the results in [1].

6 Additional results and remarks

Proposition 6.1 Let a,b be given. There are 1 × n vectors a′ and b′ with integral

entries arranged in descending order such that In(a,b) = In(a′,b′). Moreover, for each

(p, q) ∈ In(a,b) there is A ∈ Hn(a′) and B ∈ Hn(b′) such that A − B ∈ In(a′,b′) has

integer eigenvalues.
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Proof. We can construct a′ and b′ as follows. Use the entries of a and b to form a

vector γ = (γ1, . . . , γ2n) with entries in descending order. We always put the entries of a

first if an entry appears in both vectors. Suppose γ has m distinct entries µ1 > · · · > µm.

Then replace the entries µi in a and b by the integer i for each i ∈ {1, . . . ,m} to

get the vectors a′ and b′. By Theorem 2.1 and the construction of a′ and b′, we see

that (p, q) ∈ In(a,b) if and only if (p, q) ∈ In(a′,b′). Moreover, by Theorem 2.1, for

each (p, q) ∈ In(a′,b′) we can construct A = A1 ⊕ · · · ⊕ Ap+q ∈ Hn(a′) and B =

B1 ⊕ · · · ⊕ Bp+q ∈ Hn(b′) such that Ai − Bi is a rank one positive semi-definite for

i = 1, . . . , p, and Ai − Bi is a rank one negative semi-definite for i = p + 1, . . . , p + q.

Since Ai and Bi has integral eigenvalues, the only nonzero eigenvalue of Ai − Bi equals

tr (Ai − Bi) is again an integer. So, the last assertion holds.

Suppose a,b, c have nonnegative integral entries. It is known that there exist (A,B) ∈
Hn(a)×Hn(b) such that A−B ∈ Hn(c) if and only if one can obtain the Young diagram

associated with (a1, . . . , an) from the Young diagrams associated with (b1, . . . , bn) and

(c1, . . . , cn) according to the Little-Richardson rules; see [7]. Thus, we have the following

result.

Proposition 6.2 Let a = (a1, . . . , an) and b = (b1, . . . , bn) have positive integral entries

arranged in descending order. Then there is a vector c = (c1, . . . , cn) with positive integral

entries arranged in descending order and cp+1 = · · · = cn−q+1 = µ for a given integer µ

such that one can obtain the Young diagram associated with a from the Young diagrams

associated with b and c according to the Little-Richardson rules if and only if

(a1 − µ, . . . , an−q − µ) ≥p (bq+1, . . . , bn)

and

(b1, . . . , bn−p) ≥q (ap+1 − µ, . . . , an − µ).

In connection to our discussion, it would be interesting to solve the following.

Problem 6.3 Deduce and extend Proposition 6.2 using the theory of algebraic combi-

natorics. In particular, for given real vectors a and b with integral entries, determine

the conditions for the existence of an integral vectors c with certain prescribed entries

such that the Young diagram corresponding to a can be obtained from those of b and c

according to the Littlewood-Richardson rules.

Problem 6.4 Extend our results to the sum of k Hermitian matrices for k > 2. In other

words, determine all possible inertia values and ranks of matrices in Hn(a1)+· · ·+Hn(ak)

for given 1 × n real vectors a1, . . . ,ak with entries arranged in descending order.
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Note that the problem of finding the relation between the eigenvalues of A1, . . . , Ak

and that of A0 = A1 + · · · + Ak can be reformulated as the problem of finding the

necessary and sufficient conditions for the existence of Hermitian matrices A0, A1, . . . , Ak

with prescribed eigenvalues such that A0 −
∑k

j=1 Aj has rank 0. Thus, it can be viewed

as a special case of Problem 6.4. To determine whether there are A1, . . . , Ak ∈ Hn with

prescribed eigenvalues such that A1 + · · ·+Ak has rank one, one may reduce the problem

to the study of the existence of A1, . . . , Ak ∈ Hn with prescribed eigenvalues such that

A1 + · · ·+ Ak has eigenvalue µ, 0, . . . , 0 with µ = tr (A1 + · · ·+ Ak). Then the results in

[7] can be used to solve the problem. In general, it seems difficult to determine if there

exist A1, . . . , Ak with prescribed eigenvalues such that A1 + · · · + Ak has rank r with

r ∈ {2, . . . , n}.

Note added in proof.

We thank Professor Wing Suet Li for some helpful dicussion about the connection of

the interesting preprint [1] and our work. In [1, Proposition 5.1], the authors determined

the conditions on 1 × n vectors a0,a1, . . . ak, with some of the their entries specified so

that one can fill in the missing entries to get vectors ã0, . . . , ãk with entries arranged

in descending order and Hermitian matrices Aj ∈ Hn(ãj) for j = 0, 1, . . . , k satisfying

A0 = A1 + · · · + Ak. Evidently, there exists A0 ∈ H(a1) + · · · + H(ak) with inertia

(p, q, n− p− q) for given 1×n real vectors a1, . . . ,ak if and only if there exist ε > 0 and

A0 ∈ H(a1) + · · · + H(ak) with eigenvalues µ1 ≥ · · · ≥ µn such that (µp, . . . , µn−q+1) =

(ε, 0, . . . , 0,−ε). Using the result in [1], one can determine whether the desired positive

number ε exists by checking whether a polytope defined a large number of inequalities

in terms of entries of a1, . . . ,ak has non-empty interior; see also Buch [2]. For k = 2, our

Theorem 2.1 shows that the very involved conditions can be reduced to (1) and (2).
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