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Abstract

Characterizations are given for automorphisms of semigroups of nonnegative matrices
including doubly stochastic matrices, row (column) stochastic matrices, positive matrices,
and nonnegative monomial matrices. The proofs utilize the structure of the automorphisms
of the symmetric group (realized as the group of permutation matrices) and alternating

group . Furthermore, for each of the above (semi)groups of matrices, a larger (semi)group
of matrices is obtained by relaxing the nonnegativity assumption. Characterizations are
also obtained for the automorphisms on the larger (semi)groups and their subgroups (sub-

semigroups) as well.
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1 Introduction

There has been considerable interest in studying linear and multiplicative maps that leave
invariant some subsets, groups, and semigroups of matrices; see [14, Chapter 4] and also

[2, 3, 7, 9, 10, 11, 12, 13, 15, 16]. Of course, if G is a (semi)group of matrices, and φ : G→ G

is a multiplicative map, then φ is just a (semi)group homomorphism. While there are nice

structural theorems for (semi)group homomorphisms for classical (semi)groups such as the
group of invertible matrices, and for semigroups of matrices with ranks not exceeding a given
positive integer (see [1, 6, 8]), there does not seem to be many known results for semigroups
of nonnegative matrices.

In this paper, we characterize automorphisms for semigroups of nonnegative matrices
including doubly stochastic matrices, row (column) stochastic matrices, positive matrices,
and nonnegative monomial matrices. Our proofs utilize the structure of the automorphisms
of the symmetric group and alternating group (realized as permutation matrices). Further-
more, for each of the above groups and semigroups, we relax the nonnegativity assumption
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to get a larger (semi)group of matrices, and characterize the automorphisms on the larger

(semi)group and their subgroups (sub-semigroups) as well.
Our key interest is to establish results and proof techniques to study automorphisms of

semigroups of matrices. The results on group automorphisms can be viewed as auxiliary
results of independent interest, and we have not pursued many interesting related questions.
Also, our proofs employ linear algebraic and geometric arguments. It would be interesting
to use (semi)group theory to obtain our results. Our paper is organized as follows.

In Section 2, we describe some basic techniques and results used in our study.
In Section 3, we consider generalized (even) permutation matrices, i.e., matrices obtained

from (even) permutation matrices by changing the signs of some of the nonzero entries.
In Section 4, we show that the automorphisms of nonnegative monomial matrices have

the form
A = (aij) 7→ ρ(| detA|)T (σ(aij))T

−1

for some nonnegative monomial matrix T , multiplicative map ρ on (0,∞) and bijective

multiplicative map σ on [0,∞) such that the map α 7→ ρ(|α|)nσ(α) is bijective on (0,∞).
We also treat the larger group of monomial matrices without the nonnegativity assumption.

Sections 5 and 6 concern the characterizations of the semigroup automorphisms of n× n
doubly stochastic, row stochastic, and column stochastic matrices, and their generalizations
obtained by removing the nonnegativity assumption on the entries of the matrices. We first
characterize the semigroup automorphisms for the generalized (row, column, and doubly)

stochastic matrices in Section 5. The results are then used to treat the problems for (row,

column, and doubly) stochastic matrices in Section 6. In particular, we show that except for
the case of 2× 2 doubly stochastic matrices, the automorphisms must have the form

A 7→ PAP−1

for some permutation matrix P . The exceptional cases are also treated.
In Section 7, we determine the automorphisms for n × n positive matrices. The auto-

morphisms have the form

A 7→ TAT−1

for some nonnegative monomial matrix T .
It is somewhat interesting that the natural results on stochastic matrices, monomial

matrices and positive matrices, etc., are not available in the literature. Our proofs of these
results are rather long. It would be interesting to have short direct proofs.

2 Preliminaries

2.1 Some basic proof techniques

We will use and develop a variety of techniques in our proofs. Very often, it is relatively easy
to show that a certain mapping is a group automorphism. The non-trivial part is to show
that a group automorphism has a certain special form. In our proofs, we frequently use the
following elementary facts concerning a group automorphism φ of a group G.

2



1. The order of g ∈ G is the same as the order of φ(g).

2. If g is in the center of G, i.e., gx = xg for all x ∈ G, then so is φ(g).

3. For g ∈ G, let C(g) = {x ∈ G : gx = xg}. Then φ(C(g)) = C(φ(g)).

4. For g ∈ G, let Sg = {s−1gs : s ∈ G}. Then φ(Sg) = Sφ(g).

5. If H is a generating set of G, and there is s ∈ G such that φ(x) = s−1xs for all x ∈ H,

then φ(x) = s−1xs for all x ∈ G.

Additional proof techniques include:

6. Replace the automorphism φ by a mapping such as

x 7→ s−1φ(x)s for some s ∈ G,

and show that the resulting map has some nice structures or properties, say, mapping a
certain subset of G onto itself. For example, in our study of the automorphisms for the
semigroup of n×n generalized column stochastic matrices, we use this technique to show
that the modified map will send the semigroup of n × n generalized doubly stochastic
matrices onto itself.

7. Reduce the problem to a simpler problem. For example, in our study of the automorphisms
for the semigroup of n×n generalized doubly stochastic matrices, we reduce the problem
to the study of automorphisms for the semigroup of (n− 1)× (n− 1) real matrices.

8. Extend the semigroup automorphism φ : G→ G to a semigroup automorphism φ1 : G1 →
G1 for a certain overgroup G1 of G. For example, in our study of the automorphisms
for the semigroup of n × n doubly stochastic matrices, we extend the automorphism to
an automorphism of the semigroup of n × n generalized stochastic matrices. The same
technique is used to study the automorphisms for the semigroup of positive matrices.

2.2 Symmetric Group and Alternating Group

Denote by Pn the symmetric group of degree n and An the the alternating group in Pn. We
identify Pn with the group of n×n permutation matrices. If a permutation σ ∈ Pn is given
in cycle product notation, we denote by Pσ the permutation matrix corresponding to σ. For
example, if σ is the transposition (1, 2), then P(1,2) is the permutation matrix obtained from

the identity matrix In by interchanging the first and second rows. For notational convenience,
we sometimes write the cycle (i1, . . . , ik) as (i1 · · · ik). We use Aut (G) to denote the group
of automorphisms of a group G.

The characterizations of Aut (Pn) and Aut (An) are useful for later discussion. The proofs

of these results can be found in [4, Theorem 8.2A, Exercises 8.2.2 - 8.2.5]; see also [7, 15]. An
elementary proof of Theorem 2.1 obtained during our REU project in the summer of 2003
is presented in the appendix (Section 8) of this paper.

Theorem 2.1 A map φ : Pn → Pn is a group automorphism if and only if one of the
following holds.
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(a) φ is an inner automorphism.

(b) n = 6, and φ is a composition of an inner automorphism and the unique automorphism
Φ : P6 → P6 determined by

Φ(P(12)) = P(12)(34)(56), Φ(P(13)) = P(13)(25)(46), Φ(P(14)) = P(14)(35)(26),

Φ(P(15)) = P(15)(24)(36), Φ(P(16)) = P(16)(45)(23).

Consequently, Aut (P2) is the trivial group; if n ≥ 3 and n 6= 6 then Aut (Pn) is isomorphic

to Pn; if n = 6 then [Aut (P6) : P6] = 2.

Theorem 2.2 A map φ : An → An is a group automorphism if and only if one of the
following holds.

(a) There is P ∈ Pn such that

φ(A) = PAP t for all A ∈ An.

(b) n = 6 and there is P ∈ Pn such that

φ(A) = Φ(PAP t) for all A ∈ An,

where Φ is the mapping defined in Theorem 2.1 restricted to An.

3 Generalized Permutation Matrices

Denote by Σn the group of signature matrices, that is, the diagonal matrices D with diagonal
entries in {1,−1}. Let GPn (respectively, GAn) be the group of all generalized (even)
permutation matrices, that is, the set of all n×n matrices of the form DP with D ∈ Σn and
P ∈ Pn(P ∈ An). Evidently, every matrix A in GPn can be written as A = D1P = PD2

for a unique choice of P ∈ Pn and D1, D2 ∈ Σn.
In this section, we characterize the group automorphisms of GPn and GAn. It turns out

that we can use a unified proof to treat GPn and GAn, together with three other subgroups
of GPn. The definitions and structures of the three subgroups depend heavily on the number
of negative entries of the matrices. To emphasize this point and to facilitate our discussion
in this and the next section, we let δ(A) be the number of negative entries of a matrix A in
GPn. Consider the normal subgroup

GA+
n = {A = DP ∈ GPn : D ∈ Σn, P ∈ An and det(A) = 1}

of GPn. One easily sees that GPn is a disjoint union of the four cosets GA+
n , where the

three cosets other than GA+
n are

GA−
n = {A = DP ∈ GPn : D ∈ Σn, P ∈ An and det(A) = −1},

GA
+

n = {A = DP ∈ GPn : D ∈ Σn, P /∈ An and det(A) = 1},

GA
−
n = {A = DP ∈ GPn : D ∈ Σn, P /∈ An and det(A) = −1}.
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Note that GAn = GA+
n ∪GA−

n . Define

GP+
n = GA+

n ∪GA
+

n = {A ∈ GPn : det(A) = 1},

and

GPe
n = GA+

n ∪GA
−
n = {DP ∈ GPn : D ∈ Σn, P ∈ Pn and det(D) = 1}.

Then GP+
n and GPe

n are also subgroups in GPn. Evidently, A ∈ GPe
n if and only if δ(A)

is even, i.e., (−1)δ(A) = 1. We have the following characterizations of the automorphisms of
the above groups.

Theorem 3.1 Let P = GA+
n ,GP+

n ,GPe
n,GAn, or GPn. Suppose

M =
1√
2

(−1 1
1 1

)
and N =

1

2


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 .

A map φ : P → P is an automorphism if and only if there exists P ∈ GPn such that one of
the following holds.

(a) φ has the form A 7→ PAP t.

(b) P = GPn and φ has the form A 7→ (−1)δ(A)(detA)PAP t.

(c) n is even, P ∈ {GPe
n,GAn,GPn} and φ has the form A 7→ (detA)PAP t.

(d) n is even, P ∈ {GP+
n ,GPn} and φ has the form A 7→ (−1)δ(A)PAP t.

(e) P ∈ {GA2,GPe
2} and φ can be any bijective map with φ(I2) = I2.

(f) P = GP2 and φ has the form A 7→ PMAM tP t.

(g) P ∈ {GA+
4 ,GPe

4} and φ has the form A 7→ PNAN tP t.

(h) P = GPe
4 and φ has the form A 7→ (detA)PNAN tP t.

One can organize the results in terms of the five groups as follows.

(1) The automorphisms of GA+
n have the form (a), (g).

(2) The automorphisms of GP+
n have the form (a), (d).

(3) The automorphisms of GPe
n have the form (a), (c), (e), (g), (h).

(4) The automorphisms of GAn have the form (a), (c), (e).

(5) The automorphisms of GPn have the form (a), (b), (c), (d), (f).
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In the following, let Di be the matrix obtained from In by replacing the i-th diagonal
entry with −1. Also for any 1 ≤ k ≤ n, we define Di1...ik as Di1 · · ·Dik for any distinct

1 ≤ i1, . . . , ik ≤ n. Furthermore, let Dk be the set containing all such Di1...ik .

When n = 2, the theorem follows readily from standard results in elementary group

theory if one observes that GA+
2 ,GP+

2 ,GPe
2,GA2,GP2 are isomorphic to the additive

groups ZZ2,ZZ4,ZZ2×ZZ2,ZZ2×ZZ2,ZZ4×ZZ2, respectively. We include short alternative proofs
below for the sake of completeness.

Proof of the sufficiency part. Firstly, it is clear that the map φ described in (a) is an
automorphism on P .

Now suppose φ has the form described in (b), (c) or (d). Clearly, φ is multiplicative and

φ(A) ∈ P whenever A ∈ P . It remains to show that φ is bijective. We may assume that

P = In; otherwise we replace φ by A 7→ P tφ(A)P .
We have the following observations.

Suppose A belongs to GA+
n GA−

n GA
+

n GA
−
n .

Then (detA)A equals A −A A −A ;

(−1)δ(A)A equals A −A −A A ;

(−1)δ(A)(detA)A equals A A −A −A .

Note that det(−A) = (−1)n det(A).

Suppose A belongs to GA+
n GA−

n GA
+

n GA
−
n .

If n is even, then −A belongs to GA+
n GA−

n GA
+

n GA
−
n ;

if n is odd, then −A belongs to GA−
n GA+

n GA
−
n GA

+

n .

Thus, if n is even and φ has form (b)-(d), then

(
φ(GA+

n ), φ(GA−
n ), φ(GA

+

n ), φ(GA
−
n )
)

=
(
GA+

n ,GA−
n ,GA

+

n ,GA
−
n

)
;

if n is odd and φ has the form (b), then

(
φ(GA+

n ), φ(GA−
n ), φ(GA

+

n ), φ(GA
−
n )
)

=
(
GA+

n ,GA−
n ,GA

−
n ,GA

+

n

)
.

Therefore, φ is surjective and hence φ is bijective on the corresponding P .
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For case (e), note that GA2 = {±I2,±D1} and GPe
2 = {±I2,±P(12)}. Then for P ∈

{GA2,GPe
2}, A2 = I2 for all A ∈ P . Furthermore, all elements in P commute. Thus, we

can directly verify that every bijective map φ on P with φ(I2) = I2 is multiplicative.

For case (f), it is sufficient to show that the map ψ : GP2 → GP2 defined by ψ(A) =

MAM t is an automorphism. First we show that ψ is well defined. Note that ψ(P(12)) = D1

and ψ(D1) = P(12). Since {P(12), D1} generates GP2, ψ(GP2) ⊆ GP2 and hence ψ is well

defined. Finally, it is clear that ψ is injective and multiplicative. Hence ψ(GP2) = GP2,
and ψ is an automorphism.

For case (g) and (h), it is sufficient to show that the map Ψ(A) = NAN t is an automor-
phism on P . First, we have,

Ψ(P12) = D34P(34), Ψ(P(13)) = D23P(23), Ψ(P(14)) = D24P(24),

Ψ(D12) = −P(12)(34), Ψ(P(123)) = D34P(234), Ψ(P(124)) = D34P(243).

Since T1 = {P(12), P(13), P(14), D12} generates GPe
4, Ψ(T1) ⊆ GPe

4. Then Ψ is well defined

when P = GPe
4. Similarly, as T2 = {P(123), P(124), D12} generates GA+

4 and Ψ(T2) ⊆ GA+
4 ,

Ψ is well defined when P = GA+
4 . Finally, it is clear that Ψ is multiplicative and injective,

and hence also surjective, as P is a finite set. Hence, Ψ is an automorphism on P . 2

Proof of necessity part for n = 2. Since φ is a group automorphism, φ(I2) = I2. When

P ∈ {GA2,GPe
2}, we are done. Also it is clear for the case when P = GA+

2 = {I2,−I2}.
For P = GP+

2 = {±I2,±D1P(12)}, observe that −I2 is the only order 2 element in the

center of GP+
2 . Thus φ(−I2) = −I2, and φ({D1P(12),−D1P(12)}) = {D1P(12),−D1P(12)}.

Hence, φ is either the identity map or the map A 7→ D1AD
t
1.

Now, suppose P = GP2 = {±I2,±D1,±P(12),±D1P(12)}. Note that φ(I2) = I2 and

φ(−I2) = −I2 as −I2 is the only order 2 element in GP2 which commute with all elements.

Also as D2
1 = I2, we see that either

φ({D1,−D1}) = {D1,−D1} or φ({D1,−D1}) = {P(12),−P(12)}.

Suppose the first case holds. Then φ({P(12),−P(12)}) = {P(12),−P(12)}. So, φ has the form

described in (a). If the second case holds, then the map ψ(A) = M tφ(A)M maps {D1,−D1}
onto itself. So, ψ must be of the form (a) and hence φ has the form described in (f). 2

To prove the necessity part when n ≥ 3, we establish a sequence of assertions. In the rest
of the proof, we always assume that n ≥ 3 and φ : P → P is an automorphism. It is easy to
verify that the center of P is a subset of {In,−In}. If −In ∈ P , we must have φ(−In) = −In
as −In is the only order 2 element in the center of P .

Assertion 1 Suppose n ≥ 3. Then there is P ∈ GPn such that one of the following holds.

(a) φ(E) = PEP t for all E ∈ D2.
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(b) P ∈ {GA+
4 ,GPe

4} and φ(E) = PNEN tP t for all E ∈ D2, where N is the 4×4 matrix
defined in Theorem 3.1.

Proof. We first claim that either

(i) φ(D2) = D2, or

(ii) P ∈ {GA+
4 ,GPe

4} and φ(D2) equals to one of the following sets:

{N tEN : E ∈ D2} or {Dt
1N

tEND1 : E ∈ D2}.

To prove our claim, for a given A ∈ P let SA be the set of elements in P of the form TAT t

with T ∈ P . Clearly, SD12 contains all Dij only, i.e., SD12 = D2. (One easily verifies the

equality when n = 3, and extend the argument for larger n.) So SD12 has
(
n
2

)
elements.

On the other hand, since φ(D12)
2 = φ(In) = In, φ(D12) is permutationally similar to

[
Ip ⊗

(
0 1
1 0

)]
⊕
[
Iq ⊗

(
0 −1
−1 0

)]
⊕−Ir ⊕ In−2(p+q)−r

for some p, q, r ≥ 0. Now for any A ∈ P , A ∈ Sφ(D12) if and only if A is permutationally

similar to the matrix of the form[
Ip′ ⊗

(
0 1
1 0

)]
⊕
[
Iq′ ⊗

(
0 −1
−1 0

)]
⊕−Ir ⊕ In−2(p′+q′)−r

for some p′ and q′ such that p′ + q′ = p + q. Furthermore, if P ∈ {GA+
n ,GPe

n} for even

n with (p + q, r) = (n/2, 0), p − p′ must be an even number. Since φ is bijective, we have

φ(SA) = Sφ(A) for any A ∈ P . Hence, φ(D2) = φ(SD12) = Sφ(D12), and

(
n
2

)
=


n!

2((n/2)!)
if P ∈ {GA+

n ,GPe
n} for even n with (p+ q, r) = (n/2, 0),

n!
(p+q)!(n−2(p+q)−r)!r!

otherwise.

Examining the above equation in the two cases, we see that the equality holds
(1) for an arbitrary n with (p+ q, r) ∈ {(0, 2), (0, n− 2)}, or

(2) for P ∈ {GA+
4 ,GPe

4} with (p+ q, r) = (2, 0).

Suppose p + q = 0. Then φ(D12) is permutationally similar to −Ir ⊕ In−r ∈ Dr. When

r = 2, φ(D2) = Sφ(D12) = D2. Then condition (i) in the claim holds. If r = n− 2, then

φ(D2) = Sφ(D12) = Dn−2 = −D2.

Then φ(D12) = −Dij and φ(D13) = −Dkl for some i, j, k, l with {i, j} 6= {k, l}. Since

D12D13 = D23 ∈ D2,
DijDkl = φ(D12)φ(D13) = φ(D23) ∈ Dn−2.
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If the index i, j, k, l are all distinct, then Dijkl = DijDkl ∈ Dn−2 implies that n− 2 = 4,

i.e., n = 6. However, when n = 6, there are 8 distinct elements E in D2 such that D12E ∈ D2

while there are only 6 distinct elements F in D4 such that φ(D12)F (= −DijF ) ∈ D4. This

contradicts the fact that φ is an automorphism.
Next, if {i, j} ∩ {k, l} 6= ∅, we must have DijDkl ∈ D2. Thus, D2 ∩ Dn−2 is nonempty.

And this holds if and only if n = 4. In this case, φ(D2) = Dn−2 = D2, and so (i) holds.

Finally, suppose P ∈ {GA+
4 ,GPe

4} with (p + q, r) = (2, 0). Then φ(D12) is permuta-

tionally similar to either P(12)(34) ((p, q) = (2, 0)), D34P(12)(34) ((p, q) = (1, 1)) or −P(12)(34)

((p, q) = (0, 2)). It follows that

Sφ(D12) =
{ T1 if (p, q) ∈ {(2, 0), (0, 2)},
T2 if (p, q) = (1, 1),

where
T1 = {±P(12)(34),±P(13)(24),±P(14)(23)} = {N tEN : E ∈ D2}

and

T2 = {±D12P(12)(34),±D13P(13)(24) ±D14P(14)(23)} = {Dt
1N

tEND1 : E ∈ D2}.

Therefore, condition (ii) in the claim holds.

Now, suppose condition (i) holds. Then T := {D12, D13, . . . , D1n} ⊆ D2 and any product

of two elements in T lies in D2. Since φ(D2) = D2, the set φ(T ) has the same properties,

and hence φ(T ) = {Di1i2 , . . . , Di1in} with {i1, . . . , in} = {1, . . . , n}. Define σ(k) = ik for

k = 1, . . . , n. Then φ(D1k) = PσD1kP
t
σ for all k ≥ 2. Since T generates D2, we have

φ(E) = PσEP
t
σ for all E ∈ D2. So, condition (a) holds.

Suppose condition (ii) holds. Then either the map

A 7→ Nφ(A)N t or A 7→ ND1φ(A)Dt
1N

t

maps D2 onto itself. Using a similar argument as in the last paragraph, we see that there is

P ∈ P4 such that either φ(E) = NPEP tN t for all E ∈ D2, or φ(E) = D1NPEP
tN tDt

1 for

all E ∈ D2. In either case, there is Q ∈ GP4 such that QN = NP . So, φ must satisfy (b).
2

Assertion 2 Suppose n ≥ 3 and φ(E) = E for all E ∈ D2. Then there is S ∈ Σn such that

φ(A) = SASt for all A ∈ GA+
n .

Proof. Let P(ijk) ∈ GA+
n . We claim that

φ(P(ijk)) ∈ {P(ijk), DiP(ijk)Di, DjP(ijk)Dj, DkP(ijk)Dk}.

To see this, observe that for any X ∈ GPn, DstX = XDst for all Dst ∈ D2 if and only if

X ∈ Σn. Consequently, for any A ∈ GPn, AP t
(ijk)(∈ GPn) commutes with all matrices in D2
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if and only if A = DP(ijk) for someD ∈ Σn. Now, for anyDst ∈ D2, since P t
(ijk)DstP(ijk) ∈ D2,

we have

φ(P(ijk))
tDstφ(P(ijk)) = φ(P t

(ijk))φ(Dst)φ(P(ijk)) = φ(P t
(ijk)DstP(ijk)) = P t

(ijk)DstP(ijk).

Thus, φ(P(ijk)) = DP(ijk) for some D ∈ Σn.

Let D = diag (d1, . . . , dn). Since (DP(ijk))
3 = φ(P(ijk))

3 = In, didjdk = 1 and dl = 1 for

all l 6= i, j, k. Therefore, D ∈ {In, Dij, Djk, Dik}. Note that

DijP(ijk) = DiP(ijk)Di, DjkP(ijk) = DjP(ijk)Dj, DikP(ijk) = DkP(ijk)Dk.

Thus our claim holds.
Now replacing φ by A 7→ Etφ(A)E with E = D1, D2 or D3, if necessary, we can further

assume that φ(P(123)) = P(123). For any k ≥ 4, P(123)P(12k)P(123) = P(1k2). Suppose φ(P(12k)) =

D12P(12k). Then

φ(P(1k2)) = φ(P(123)P(12k)P(123)) = P(123)D12P(12k)P(123) = D23P(1k2).

But then φ(P(1k2))
3 6= In, which is impossible. Similarly, we see that φ(P(12k)) 6= D2kP(12k).

Let s1 = s2 = s3 = 1 and for k ≥ 4,

sk =

{
1 if φ(P(12k)) = P(12k),
−1 if φ(P(12k)) = D1kP(12k).

Write S = diag (s1, . . . , sn). We see that φ(P(12k)) = SP(12k)S
t for all k ≥ 3. Also, we

have φ(E) = E = SESt for all E ∈ D2. Since {P(123), . . . , P(12n)} ∪ D2 generates GA+
n ,

φ(P ) = SPSt for all P ∈ GA+
n . 2

Assertion 3 Suppose n ≥ 3 and φ(A) = A for all A ∈ GA+
n . If D1 ⊆ P, then either

(a) φ(E) = E for all E ∈ D1, or

(b) n is even with φ(E) = −E for all E ∈ D1.

Proof. If D1 ⊆ P, then P = GAn or GPn. In both cases, −In ∈ P. For n = 3, observe
that D2 = −D1 and φ(−I3) = −I3. It follows that φ(E) = E for all E ∈ D1.

Now suppose n ≥ 4. Note that for any A ∈ P , A commutes with all matrices of the form

[1]⊕B in GA+
n if and only if A ∈ {In,−In, D1,−D1}. Since φ(A) = A for all GA+

n ,

φ(D1)([1]⊕B) = φ(D1)φ([1]⊕B) = φ([1]⊕B)φ(D1) = ([1]⊕B)φ(D1)

for all [1]⊕B ∈ GA+
n . As φ({In,−In}) = {In,−In}, φ(D1) ∈ {D1,−D1}.

Suppose φ(D1) = D1. For each Di ∈ D1, Di = PD1P
t for some P ∈ An ⊆ GA+

n . Then

φ(Di) = φ(P )φ(D1)φ(P t) = PD1P
t = Di.

10



Thus, condition (a) holds.

Now suppose φ(D1) = −D1. Using a similar argument as in the last paragraph, we have

φ(Di) = −Di for all Di ∈ D1. Also observe that

φ(−In) = φ(D1) · · ·φ(Dn) = (−D1) · · · (−Dn) = (−1)n(−In).

Then n must be even. 2

Assertion 4 Suppose n ≥ 3 and φ(A) = A for all A ∈ GA+
n . If X ∈ {P(12), D1P(12)} ∩ P,

then φ(X) ∈ {X,−X}.

Proof. Note that for any X ∈ GPn, we have DstX = XDst for all Dst ∈ D2 if and
only if X ∈ Σn. Consequently, for any A ∈ Pn, AP(12) ∈ GPn commutes with all matrices

in D2 if and only if A = RP(12) for some R ∈ Σn. Since φ fixes every matrix in D2, if

X ∈ {P(12), D1P(12)} ∩ P , then φ(X) = RP(12) for some R ∈ Σn.

Suppose X = P(12). Then for any t = 3, . . . , n, P(1t) = P(12)P(1t2) ∈ P and

φ(P(1t)) = φ(P(12)P(1t2)) = φ(P(12))φ(P(1t2)) = RP(12)P(1t2) = RP(1t).

Since φ(P(1t))
2 = In for all t > 1, one can conclude that R = ±In.

Similarly, when X = D1P(12), we have

φ(D1P(1t)) = φ(D1P(12)P(1t2)) = φ(D1P(12))φ(P(1t2)) = RP(12)P(1t2) = RP(1t)

for t = 3, . . . , n. Since φ(D1P(1t))
2 = D1t for all t > 1, we can conclude that R = ±D1. In

both cases, we see that φ(X) ∈ {X,−X}. 2

Proof of the necessity part for n ≥ 3. By Assertion 1 and replacing φ by A 7→ P tφ(A)P

or A 7→ N tP tφ(A)PN for some P ∈ GPn when P ∈ {GA+
4 ,GPe

4}, we may assume that

φ(E) = E for all E ∈ D2. Then by Assertion 2, there is S ∈ Σn such that φ(A) = SASt for

all GA+
n . Thus, the result follows for P = GA+

n .

For the other group P , we may further assume that φ(A) = A for all GA+
n by replacing

φ by A 7→ Stφ(A)S.

For P = GPe
n or GP+

n , let X = P(12) or D1P(12) according to P = GPe
n or GP+

n . Then

X ∈ P . By Assertion 4, φ(X) = X or −X. Since det(−X) = (−1)n detX, φ(X) = −X only

when n is even. In such case, we replace φ by A 7→ (detA)A, or A 7→ (−1)δ(A)A, according

to P = GPe
n or GP+

n , We then have φ(X) = X. Since {X} ∪GA+
n generates P , it follows

that φ(A) = A for all A ∈ P . Then the result follows.

Now for the case when P = GAn. Clearly, D1 ⊆ GAn. By Assertion 3, either φ(E) = E

for all E ∈ D1, or n is even and φ(E) = −E for all E ∈ D1. For the second case, we

can replace φ by the map A 7→ (detA)A. We then have φ(E) = E for all E ∈ D1. Since

D1 ∪GA+
n generates GAn, we see that φ(A) = A for all A ∈ GAn.

11



Finally, for P = GPn, by Assertion 2 and 4 and replacing φ by the maps A 7→ (−1)δ(A)A

and/or A 7→ (detA)A, we may assume that φ(P(12)) = P(12) and φ(E) = E for all E ∈ D1.

Since {P(12)} ∪ D1 ∪GA+
n generates GPn, we have φ(A) = A for all A ∈ GPn. The proof

is completed. 2

4 Monomial Matrices

A matrix A ∈Mn(IR) with the property that each row and column has exactly one nonzero
entry is said to be a monomial matrix. In other words, A is a product of some generalized
permutation matrix P with some diagonal matrix D with positive diagonal entries. It is
a nonnegative monomial matrix if all entries of A are nonnegative. This is equivalent to
saying that P is a permutation matrix. Denote by MNn and NMNn be the set of all n× n
monomial matrices and nonnegative monomial matrices respectively. We characterize the
automorphisms of the groups MNn and NMNn in the following theorem. We continue to
use δ(A) to denote the number of negative entries of A.

Theorem 4.1 Let M = MNn or NMNn and R = IR or [0,∞) according to M = MNn

or NMNn. Then φ : M→M is a group automorphism if and only if there exist T ∈M, a
multiplicative map ρ on (0,∞) and a bijective multiplicative map σ on R such that the map

α 7→ ρ(|α|)nσ(α) is bijective on R\{0} and one of the following holds.

(a) φ has the form

A = (aij) 7→ ρ(| detA|) T (σ(aij))T
−1,

(b) M = MNn and φ has the form

A = (aij) 7→
(−1)δ(A)(detA)

| detA|
ρ(| detA|) T (σ(aij))T

−1,

(c) M = MNn, n is even, and φ has the form

A = (aij) 7→ (−1)δ(A) ρ(| detA|) T (σ(aij))T
−1

or

A = (aij) 7→
(detA)

| detA|
ρ(| detA|) T (σ(aij))T

−1.

Proof. For the sufficiency part, one readily checks that φ defined in (a), (b) and (c) are
well defined and multiplicative. It remains to show that φ is bijective.

Suppose φ has the form (a). Suppose φ(A) = φ(B) with A = (aij) and B = (bij) in M.

Then
ρ(| detA|)(σ(aij)) = ρ(| detB|)(σ(bij)).

12



Note that | detA| =
∣∣∣∏aij 6=0 aij

∣∣∣ for all A ∈M. Then

ρ(| detA|)nσ(| detA|) =

∣∣∣∣∣∣
∏

aij 6=0

ρ(| detA|)σ(aij)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∏

bij 6=0

ρ(| detB|)σ(bij)

∣∣∣∣∣∣ = ρ(| detB|)nσ(| detB|).

Since α 7→ ρ(|α|)nσ(α) is bijective, we have | detA| = | detB|. Thus, (σ(aij)) = (σ(bij)). As

σ is bijective, aij = bij for all i, j, i.e., A = B. Hence, φ is injective.

For any B ∈ M, let C = (cij) = T−1BT . Then there exists α ∈ R\{0} such that

ρ(|α|)nσ(α) =
∏

cij 6=0 cij. Furthermore, for any 1 ≤ i, j ≤ n, there exists aij ∈ R such that

σ(aij) = ρ(|α|)−1cij, i.e., ρ(|α|)σ(aij) = cij. Let A = (aij) ∈M. Then

σ

 ∏
aij 6=0

aij

 =
∏

aij 6=0

σ(aij) =
∏

cij 6=0

cij
ρ(|α|)

=
1

ρ(|α|)n

∏
cij 6=0

cij = σ(α).

Hence,
∏

aij 6=0 aij = α and so | detA| = |α|. Thus,

φ(A) = ρ(| detA|)T (σ(aij))T
−1 = ρ(|α|)T (σ(aij))T

−1 = T (cij)T
−1 = TCT−1 = B.

So φ is surjective and φ is an automorphism.
Now we can write the map φ in (b) in the following form

A 7→ (−1)δ(A)(detA)

| detA|
ψ(A),

where ψ is an automorphism of the form (a). Notice that ψ(−A) = −ψ(A) for all A ∈ M
as σ(−α) = −σ(α) for all α. It follows that φ(−A) = −φ(A) for all A ∈ M. For any

A,B ∈ M, suppose φ(A) = φ(B). Then either ψ(A) = ψ(B) or ψ(A) = −ψ(B) = ψ(−B).
As ψ is injective, either A = B or A = −B. But the latter case cannot hold, otherwise

φ(A) = φ(B) = −φ(−B) = −φ(A).

Hence, φ is injective. On the other hand, for any B ∈ M, there is A ∈ M such that
ψ(A) = B. Then φ({A,−A}) = {B,−B}. So φ is surjective. The proof for (c) is similar.

Next we turn to the necessary part. Denote by PDn the set of all diagonal matrices
with positive diagonal entries. Let P = GPn or Pn according to M = MNn or NMNn

respectively. Then PDn is a normal subgroup of M and the quotient group M/PDn is
isomorphic to P . In Assertion 1, we show that every automorphism φ of M will induce an
automorphism φ1 of P . We then use the results on Pn and GPn in the previous sections to
help finish our proof by establishing four additional assertions.
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Every matrix A in M is a product of a matrix in PDn and a matrix in P . For any
P ∈ P , let

P(P ) = {DP : D ∈ PDn}.

Then A ∈ P(P ) if and only if the sign pattern of A and P are the same. Furthermore, distinct

P(P ) are disjoint and the union of all P(P ) equals to M. For each P ∈ P, φ(P ) ∈ P(Q)

for some Q ∈ P . Define φ1 : P → P by φ1(P ) = Q.

Assertion 1 The map φ1 : P → P is an automorphism.

Proof. Clearly, φ1 is a multiplicative map. To show that φ1 is injective, suppose φ1(P1) =

φ1(P2) for some P1, P2 ∈ P . Then φ(P1) = S1Q and φ(P2) = S2Q for some S1, S2 ∈ PDn

and Q ∈ P . Since P1P
−1
2 ∈ P , there exists some positive integer k such that (P1P

−1
2 )k = In.

Then
In = φ(In) = φ((P1P

−1
2 )k) = [(S1Q)(S2Q)−1]k = [S1S

−1
2 ]k.

Since S1S
−1
2 is a nonnegative invertible diagonal matrix, it must be the identity matrix, i.e.,

S1 = S2. Then φ(P1) = φ(P2), and hence P1 = P2 as φ is injective. So, φ1 is injective. Since
P is finite, φ1 is bijective. 2

Assertion 2 Replacing φ by one of the maps

(i) A 7→ Qtφ(A)Q, Q ∈ P , (ii) A 7→ (−1)−δ(A)φ(A), (iii) A 7→ | detA|
(−1)δ(A) detA

φ(A),

or their compositions, we may assume that φ1(P ) = P for every P ∈ P.

Proof. By Theorems 2.1 or 3.1, there exists Q ∈ P such that one of the following holds.

(I) φ1 has the form P 7→ QPQt.

(II) P = GPn and φ1 has the form P 7→ (−1)δ(P )(detP )QPQt.

(III) P = GPn with even n and φ1 has the form P 7→ (−1)δ(P )QPQt or P 7→ (detP )QPQt.

The assertion follows. 2

From now on, we will assume that φ1(P ) = P for every P ∈ P .

Assertion 3 Replacing φ by A 7→ D−1φ(A)D for some D ∈ PDn, we may further assume

that φ(P ) = P for every P ∈ P.

Proof. Let τ be the permutation (1, 2, . . . , n) and Pτ be the corresponding permutation
matrix. Then

Pτ =


0 · · · 0 1

1
. . . . . . 0

...
. . . . . .

...
0 · · · 1 0

 and φ(Pτ ) = LPτ =


0 · · · 0 l1

l2
. . . . . . 0

...
. . . . . .

...
0 · · · ln 0
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for some L = diag (l1, . . . , ln) ∈ PDn. Note that P n
τ = In and φ(Pτ )

n = (l1 · · · ln)In. Thus,
l1 · · · ln = 1.

Set dk = l1 · · · lk and D = diag (d1, . . . , dn) ∈ PDn. Then

φ(Pτ )D =


0 · · · 0 l1

l1l2
. . . . . . 0

...
. . . . . .

...
0 · · · l1 · · · ln 0

 = DPτ .

Replacing φ by A 7→ D−1φ(A)D, we may assume φ(Pτ ) = Pτ .

Let P(1,2) be the permutation matrix corresponding to the transposition (1, 2). Then

φ(P(1,2)) = KP(1,2) for some K = diag (k1, . . . , kn) ∈ PDn. Observe that

diag (k1k2, k1k2, k
2
3, . . . , k

2
n) = (KP(1,2))

2 = φ(P(1,2))
2 = φ(In) = In.

Then k1k2 = 1 and kj = 1 for j > 2. On the other hand, we know that the permutation

(1, 2)(1, 2, . . . , n) has order n − 1 and fixes 1. Then the (1, 1)-th entry of (KP(1,2)Pτ )
n−1 is

kn−1
1 . Since (KP(1,2)Pτ )

n−1 = φ(P(1,2)Pτ )
n−1 = In, k1 = k2 = 1. Hence, φ(P(1,2)) = P(1,2).

When M = MNn, since D1 = diag (−1, 1 . . . , 1) ∈ P , we see that φ(D1) = TD1 for

some T ∈ PDn. Moreover, we have T = In as D2
1 = In. So, φ(D1) = D1. Since the sets

{P(1,2), Pτ} and {P(1,2), Pτ , D1} generate Pn and GPn respectively, we have φ(P ) = P for all

P ∈ P . 2

In the rest of the proof, we assume that φ(P ) = P for every P ∈ P .

Assertion 4 There exist multiplicative maps ρ and σ on (0,∞) such that

φ(D) = ρ(d1 · · · dn)diag (σ(d1), . . . , σ(dn)) for all D = diag (d1, . . . , dn) ∈ PDn.

Proof. For any α ∈ (0,∞), let Rα = diag (α, 1, . . . , 1). Note that Rα commutes with

all matrices of the form [1]⊕ P in P , it follows that φ(Rα) = diag (βα, γα, . . . , γα) for some
nonzero βα and γα. As

diag (βα, γα, . . . , γα) = φ(Rα) = φ(R√
α)2 = diag (β2√

α, γ
2√

α, . . . , γ
2√

α),

βα and γα must be positive.

Define ρ, σ : (0,∞) → (0,∞) by ρ(α) = γα and σ(α) = βαγ
−1
α respectively. Clearly, both

ρ and σ are multiplicative and

φ(diag (α, 1 . . . , 1)) = ρ(α)diag (σ(α), 1, . . . , 1).

Since φ(P ) = P for all P ∈ P ,

φ(diag (1, . . . , 1, α︸︷︷︸
i−th

, 1 . . . , 1)) = ρ(α)diag (1, . . . , 1, σ(α)︸ ︷︷ ︸
i−th

, 1 . . . , 1).

Then the result follows. 2
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Assertion 5 The conclusion of Theorem 4.1 holds.

Proof. When M = NMNn, we extend σ in Assertion 4 to σ1 : [0,∞) → [0,∞) by

σ1(α) = σ(α) for α > 0 and σ1(0) = 0. When M = MNn, we can extend σ to σ1 : IR → IR
by

σ1(α) =


σ(α) if α > 0,
0 if α = 0,
−σ(−α) if α < 0.

One can readily verify that σ1 is multiplicative and extends σ. Rename σ1 by σ. For
each A ∈M, A = DP for some D ∈ PDn and P ∈ P . Also, detD = | detD| = | detA|. By
Assertions 3 and 4, we conclude that

φ(A) = ρ(| detA|)(σ(aij)) for all A = (aij) ∈M.

It remains to show that σ and ρ satisfy the conditions of the theorem. Notice that

σ(1) = 1 = ρ(1) and σ(α−1) = σ(α)−1 for all nonzero α. We first show that σ is injective.

Suppose not, then exist two distinct nonzero α, β ∈ IR such that σ(α) = σ(β). Let A =

diag (α, α−1, 1, . . . , 1) and B = diag (β, β−1, 1, . . . , 1). Then

φ(A) = diag (σ(α), σ(α)−1, 1, . . . , 1) = φ(B),

which contradicts that φ is injective.
On the other hand, for any nonzero β, there exists a diagonal matrixD = diag (d1, . . . , dn)

in M such that φ(D) = diag (β, 1, . . . , 1). Then we have

ρ(| detD|)σ(d1) = β and ρ(| detD|)σ(d2) = 1.

Thus, σ(d1/d2) = β. Hence, σ is surjective.

Define π(α) = ρ(|α|)nσ(α) on R\{0}. Note that A ∈ M is a nonzero scalar matrix if

and only if A commutes with all matrices in P . Since φ(P ) = P for all P ∈ P , φ(A) is a

nonzero scalar matrix if and only if A is. As φ(αIn) = ρ(|α|n)σ(α)In = π(α)In, π must be
bijective as φ is. 2

5 Generalized Stochastic Matrices

A matrix A ∈ Mn(IR) with the properties that all entries of A are nonnegative and the

sum of each row (column) equals to 1 is said to be a row (column) stochastic matrix. Set

1 = (1, . . . , 1)t ∈ IRn. Then a matrix A with nonnegative entries is row (column) stochastic

if and only if A1 = 1 (At1 = 1 ). If A ∈Mn(IR) is both row and column stochastic, then A
is a doubly stochastic matrix. Denote by RSn,CSn, and DSn the set of n×n row stochastic,
column stochastic, and doubly stochastic matrices. One readily checks that they are semi-
groups. If the nonnegativity assumption is removed from the matrices in these semigroups,
we get the semigroups of generalized row stochastic matrices, generalized column stochastic
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matrices, and generalized doubly stochastic matrices, respectively. We use GRSn,GCSn

and GDSn to denote these semigroups, and we will characterize their automorphisms in this
section. The result will be used to characterize the semigroup automorphisms of RSn,CSn

and DSn in the next section.

Let Jn be the n× n matrix with 1
n

as each of its entries, and for any matrices A and F ,

set
AF = FAF t.

The main theorem of this section is the following.

Theorem 5.1 Let G = GDSn, GRSn or GCSn. Then φ : G → G is an automorphism if
and only if one of the following holds.

(a) There exists an invertible T ∈ G such that

φ(A) = TAT−1 for all A ∈ G.

When G = GDSn, one can assume that T ∈ DSn.

(b) G = GDS2 and there exists a bijective multiplicative map σ on IR such that

φ(A) = σ(detA)(I2 − J2) + J2 for all A ∈ GDS2.

The proof depends heavily on the following proposition.

Proposition 5.2 Let F be an orthogonal matrix with 1 /
√
n as the first column. Then

(a) A ∈ GDSn if and only if A =
(

1 0
0 A1

)
F

for some A1 ∈Mn−1(IR).

(b) B ∈ GRSn if and only if B =
(

1 bt

0 B1

)
F

for some b ∈ IRn−1 and B1 ∈Mn−1(IR).

(c) C ∈ GCSn if and only if C =
(

1 0
c C1

)
F

for some c ∈ IRn−1 and C1 ∈Mn−1(IR).

Proof. Note that 1 is the right (left) eigenvector of all row (column) stochastic matrices

corresponding to the eigenvalue 1. Then (b) and (c) follow directly. Since a doubly stochastic

matrix is both row and column stochastic, (a) also holds. 2

By the above proposition, the semigroups GDSn and Mn−1(IR) are isomorphic. We will

use the known characterization of the automorphism on Mn−1(IR) to help solve our problem.

Note that the automorphisms of M1(IR) = IR is different from that for Mk(IR) for k > 1.
This explains why the case n = 2 is special in Theorem 5.1.

Furthermore, the semigroup GCSn and the semigroup of affine maps on IRn−1 are iso-
morphic under the map (

1 0
c C1

)
F

7→ [c |C1],
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where [c |C1] represents the affine map x 7→ C1x + c. By Theorem 5.1, we see that the

automorphisms of the semigroup of affine maps on IRn−1 are given by

[c |C1] 7→ [Pc |PC1P
−1]

for some P ∈ GLn−1(IR).
We organize the proof of the theorem in several subsections.

5.1 Auxiliary lemmas

In the following, we fixed F to be some n × n orthogonal matrix with 1 /
√
n as its first

column. Also for any α ∈ IR let

J(α) = α(In − Jn) + Jn.

Note that for any α, β ∈ IR,

(i) J(α)J(β) = J(αβ),

(ii) J(α) ∈ DSn if and only if α ∈ [−1/(n− 1), 1],

(iii) J(1) = In =
(

1 0
0 In−1

)
F

, J(0) = Jn =
(

1 0
0 0

)
F

and J(α) =
(

1 0
0 αIn−1

)
F

.

Lemma 5.3 Let G = GDSn, GRSn or GCSn. Suppose A ∈ G. Then there exists ε ∈ (0, 1]

such that for any α ∈ (0, ε),

(a) AJ(α) ∈ DSn if G = GDSn,

(b) AJ(α) ∈ RSn if G = GRSn,

(c) J(α)A ∈ CSn if G = GCSn.

Proof. We just prove (c), the proofs for (a) and (b) being similar. For any A ∈ GCSn,

by Proposition 5.2, we write A =
(

1 0
c A1

)
F

for some A1 ∈ Mn−1(IR). Then there exists

ε ∈ (0, 1] such that for any α ∈ (0, ε) all entries of
(

0 0
αc αA1

)
F

have absolute values less

than 1/n. Thus

J(α)A =
(

1 0
0 αIn−1

)
F

(
1 0
c A1

)
F

=
(

1 0
αc αA1

)
F

= Jn +
(

0 0
αc αA1

)
F

has nonnegative entries only. Hence, J(α)A ∈ CSn. 2
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Lemma 5.4 For any X ∈ GRSn, X is a rank one idempotent if and only if

AX = X for all A ∈ GRSn.

Similarly, for any X ∈ GCSn, X is a rank one idempotent if and only if

XA = X for all A ∈ GCSn.

Proof. We just prove for the case for GRSn. The other case is similar. The necessary
part is clear. For the sufficiency part, let x1, . . . , xn be the column vectors of X. If AX = X,
then x1, . . . , xn are the right eigenvectors of A corresponding to the eigenvalue 1. As the
multiples of 1 are the only vectors satisfying Ax = x for all A ∈ GRSn, for each i, xi = ai1

for some ai ∈ IR. Then X = 1 at where at = (a1, . . . , an). Finally as X ∈ GRSn, 1 at1 = 1 .

Then X2 = (1 at)(1 at) = 1 at = X. 2

5.2 Proof of Theorem 5.1 for G = GDSn

The sufficiency part is clear. For necessity part, by Proposition 5.2, A ∈ GDSn if and only

if A =
(

1 0
0 A1

)
F

for some A1 ∈Mn−1(IR). Then for any A1 ∈Mn−1(IR),

φ

((
1 0
0 A1

)
F

)
=
(

1 0
0 B1

)
F

for some B1 ∈ Mn−1(IR). Define ψ : Mn−1(IR) → Mn−1(IR) by ψ(A1) = B1. Then ψ is a

semigroup automorphism on Mn−1(IR).
When n = 2, ψ is just a bijective multiplicative map on IR. Observe that for any

A ∈ GDS2,

A = (detA)(I2 − J2) + J2 =
(

1 0
0 detA

)
F

.

Then φ satisfies Theorem 5.1 (b). When n > 2, from [8](see also [1]), there exists an invertible

S ∈Mn−1(IR) such that

ψ(A1) = SA1S
−1 for all A1 ∈Mn−1(IR).

Thus,

φ(A) = TAT−1 for all A ∈ GDSn,

where T = ([1]⊕ S)F ∈ GDSn.
When G = GDSn, we can assume that the matrix T ∈ DSn for the following reason.

By Lemma 5.3, there exists J(α) ∈ DSn such that T1 = TJ(α) ∈ DSn. As J(α) commutes
with all matrices in GDSn,

T1AT
−1
1 = [TJ(α)]A[TJ(α)]−1 = TAJ(α)J(α)−1T−1 = TAT−1.

Thus, we may replace T by T1 ∈ DSn. 2
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5.3 Proof of Theorem 5.1 for G = GCSn and GRSn

In order to prove the theorem for G = GCSn, we first establish a sequence of assertions.

Assertion 1 Replacing φ by A 7→ T−1φ(A)T for some T ∈ GCSn, we may assume that

φ(Jn) = Jn and φ(GDSn) = GDSn.

Proof. Let X = φ(Jn). For any A ∈ GCSn, there exists B ∈ GCSn such that φ(B) = A.
Then

XA = φ(Jn)φ(B) = φ(JnB) = φ(Jn) = X.

By Lemma 5.4, X is a rank one idempotent, and by Proposition 5.2, X =
(

1 0
x 0n−1

)
F

for

some x ∈ IRn−1. Let T =
(

1 0
x In−1

)
F

. Then

T−1XT =
(

1 0
−x In−1

)
F

(
1 0
x 0n−1

)
F

(
1 0
x In−1

)
F

=
(

1 0
0 0n−1

)
F

= Jn.

Replacing φ by A 7→ T−1φ(A)T , we may assume that φ(Jn) = Jn. Note that for any
A ∈ GCSn, A ∈ GDSn if and only if AJn = Jn. As

φ(A)Jn = φ(A)φ(Jn) = φ(AJn),

φ(A) ∈ GDSn if and only if A ∈ GDSn. Thus, φ(GDSn) = GDSn. 2

By the result in Subsection 5.2, we know that

φ

((
1 0
0 X

)
F

)
=
(

1 0
0 ψ(X)

)
F

for all
(

1 0
0 X

)
F

∈ GDSn, (1)

where ψ is a semigroup automorphism on Mn−1(IR). In fact, ψ = σ is a bijective multiplica-

tive map on IR if n = 2 and ψ(X) = SXS−1 for some invertible S ∈ Mn−1(IR) if n > 2.
Replacing φ by

A 7→ ([1]⊕ S−1)Fφ(A)([1]⊕ S)F , (2)

if necessary, we may further assume that ψ(A) = A for all A ∈ GDSn when n > 2.

Assertion 2 There exist nonzero α, β ∈ IR such that

φ

((
1 0
1 In−1

)
F

)
=
(

1 0
α1 βIn−1

)
F

.

Replacing φ by the map A 7→ T−1φ(A)T , where T =
(

1 0
0 αIn−1

)
, we may assume that

α = 1.
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Proof. Clearly, the result holds when n = 2. When n > 2, let

φ

((
1 0
1 In−1

)
F

)
=
(

1 0
b B1

)
F

.

Observe that for any invertible R ∈ GRSn−1,(
1 0
1 In−1

)
F

=
(

1 0
R1 In−1

)
F

=
(

1 0
0 R

)
F

(
1 0
1 In−1

)
F

(
1 0
0 R−1

)
F

.

Hence,

(
1 0
b B1

)
F

= φ

((
1 0
1 In−1

)
F

)
= φ

((
1 0
0 R

)
F

)
φ

((
1 0
1 In−1

)
F

)
φ

((
1 0
0 R−1

)
F

)

=
(

1 0
0 R

)
F

(
1 0
b B1

)
F

(
1 0
0 R−1

)
F

=
(

1 0
Rb RB1R

−1

)
F

.

Thus, Rb = b and RB1R
−1 = B1 for all invertible R ∈ GRSn−1. Consequently, b = α1 and

B1 = βIn−1 for some nonzero α, β ∈ IR. 2

Assertion 3 For every
(

1 0
a A1

)
F

∈ GCSn, there exist an invertible B ∈ Mn−1(IR) such

that B1 = a. Moreover, for such a matrix B,

φ

((
1 0
a A1

)
F

)
=
(

1 0
ψ(B)1 βψ(A1)

)
F

,

where β is defined as in Assertion 2 and ψ is defined as in (1).

Proof. First, observe that for any A1 ∈Mn−1(IR),

φ

((
1 0
1 A1

)
F

)
= φ

((
1 0
1 In−1

)
F

)
φ

((
1 0
0 A1

)
F

)

=
(

1 0
1 βIn−1

)
F

(
1 0
0 ψ(A1)

)
F

=
(

1 0
1 βψ(A1)

)
F

.

Now for any nonzero a ∈ IRn−1, there is an invertible B ∈ Mn−1(IR) such that a = B1 .
Then

φ

((
1 0
a A1

)
F

)
= φ

((
1 0
0 B

)
F

)
φ

((
1 0
1 B−1A1

)
F

)

=
(

1 0
0 ψ(B)

)
F

(
1 0
1 βψ(B−1A1)

)
F

=
(

1 0
ψ(B)1 βψ(A1)

)
F

. 2
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Assertion 4 The conclusion of Theorem 5.1 holds for G = GCSn.

Proof. We continue to use the notations in Assertion 3. Suppose n > 2. Then by the
replacement in (2) we have ψ(B) = B and ψ(A1) = A1. Then ψ(B)1 = B1 = a. Since φ is

multiplicative, β must equal to 1. Hence, φ(A) = A for all A ∈ GCSn.
When n = 2, we have 1 = 1, B = a, and ψ = σ is a bijective multiplicative map on IR.

So, σ(1) = 1, and ψ(B)1 = σ(a). Since φ is multiplicative, β must be equal to 1, and

φ

((
1 0
a A1

)
F

)
=
(

1 0
σ(a) σ(A1)

)
F

for all
(

1 0
a A1

)
F

∈ GCS2.

Moreover, for any a, b ∈ IR,

(
1 0

σ(a+ b) 1

)
F

= φ

((
1 0

a+ b 1

)
F

)
= φ

((
1 0
a 1

)
F

)
φ

((
1 0
b 1

)
F

)

=
(

1 0
σ(a) 1

)
F

(
1 0

σ(b) 1

)
F

=
(

1 0
σ(a) + σ(b) 1

)
F

.

Hence, σ is also additive, i.e., σ is a field-isomorphism of IR. Therefore, σ is the identity
map and the result follows. 2

The proof for generalized row stochastic matrices is similar.

6 Stochastic Matrices

Theorem 6.1 Let S = DSn, RSn or CSn. Then φ : S → S is an automorphism if and
only if one of the following holds.

(a) There exists P ∈ Pn such that

φ(A) = PAP t for all A ∈ S.

(b) S = DS2 and there exists a positive λ such that

φ(A) = (detA)| detA|λ−1(I2 − J2) + J2 for all A ∈ DS2.

We first present some general lemmas.

Lemma 6.2 Let S = DSn, RSn or CSn. A matrix X ∈ S has its inverse in S if and only
if X ∈ Pn.

Proof. The sufficiency part is clear. For the necessary part, consider the cases when
S = DSn or RSn. Suppose there is X = (xij) ∈ S such that X /∈ Pn and X has its inverse

Y = (yij) ∈ S. Then for some column of X, there are at least two nonzero entries. Without
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loss of generality, assume the first column has more than one nonzero entry, say xa1, xb1 > 0,
for a 6= b. Since Y X = In, for i 6= 1,

n∑
k=1

yikxk1 = 0.

Since xa1, xb1 > 0, it follows that yia = 0 = yib for i = 2, . . . , n. But then, Y cannot be invert-
ible because the a-th and b-th column of Y are linear dependent, which is a contradiction.
The proof for S = CSn is similar. 2

Note that [−1, 1] is a semigroup under the usual multiplication for real number.

Lemma 6.3 If g : [−1, 1] → [−1, 1] is an automorphism, then there exists λ > 0 such that

g(x) = x|x|λ−1 for all x ∈ [−1, 1].

Proof. Since g(0)2 = g(0) and g(1)2 = g(1) and g is injective, {g(1), g(0)} = {0, 1}.
It is impossible to have g(1) = 0. Otherwise g(0) = g(0)g(1) = 0, and g is not injective.

Therefore, we have g(1) = 1 and hence g(0) = 0.
Note that for any x ≥ 0,

g(x) = g(
√
x)g(

√
x) = [g(

√
x)]2 ≥ 0.

On the other hand, for any y ∈ [−1, 0), g(y)2 = g(y2) = g(−y)2. Hence, g(y) = −g(−y) as
g is injective.

We consider the restriction map of g on (0, 1]. Note that g maps (0, 1] onto (0, 1]. Extend

g to ĝ : (0,∞) → (0,∞) by

ĝ(x) =
{
g(x) if x ∈ (0, 1],
[g(x−1)]−1 if x ∈ (1,∞).

Then ĝ is well-defined and multiplicative. Next, define h : IR → IR by h(y) = ln ĝ(ey) for
y ∈ IR. We see that h is an additive map on IR, so h : IR → IR is a linear map over Q. Since
h maps [0,∞) onto [0,∞) as ĝ maps [1,∞) onto itself, h is continuous, and therefore h is

real linear. Thus, h has the form λy for some positive λ. Then for x ∈ (0, 1],

g(x) = ĝ(x) = eh(ln x) = eλ ln x = xλ.

Finally, since g(y) = −g(−y) for all y ∈ [−1, 0), we get the conclusion. 2

Proof of Theorem 6.1. Since φ is bijective, there exists A ∈ S such that φ(A) = In. First,
we have

φ(In) = φ(In)φ(A) = φ(InA) = φ(A) = In,

i.e., φ(In) = In. Now for any P ∈ Pn, φ(P )φ(P t) = φ(In) = In, then φ(P ) is invertible, and

its inverse, φ(P t), is in S. By Lemma 6.2, φ(P ) ∈ Pn. Therefore, φ(Pn) ⊆ Pn. Since φ is

injective, we have φ(Pn) = Pn. Recall that J(α) = αIn + (1− α)Jn. Let

Ω = [−1/(n− 1), 1] and Γ = {J(α) : α ∈ Ω}.
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Then Γ ⊆ S. Because X ∈ S lies in Γ if and only if X commutes with all matrices in Pn,
we see that φ(Γ) = Γ. Note that In and Jn are the only idempotents in Γ. Since φ(In) = In,

we have φ(Jn) = Jn. Furthermore, Jn is the only singular matrix in Γ. Therefore, φ(X) is
invertible for all invertible X ∈ Γ.

Assume that S = DSn or RSn. The proof for S = CSn is similar.
Let G = GDSn or GRSn according to S = DSn or RSn. By Lemma 5.3, we know

that for any X ∈ G, there exists J(α) ∈ Γ such that XJ(α) ∈ S. We extend φ to an
automorphism φ1 on G by

φ1(X) = φ(XJ(α))φ(J(α))−1.

We first show that φ1 is well-defined. For any X ∈ G and nonzero α, β ∈ Ω. Suppose
both XJ(α) and XJ(β) are in S. Then XJ(α)J(β) = XJ(αβ) ∈ S and

φ(XJ(β))φ(J(α)) = φ(XJ(αβ)) = φ(XJ(α))φ(J(β)).

Also, we see that φ(J(α))−1 and φ(J(β))−1 exist and commute with each other. Hence, φ1

is well-defined. Evidently, φ1|S = φ.

Next we show that φ1 is multiplicative. It is trivial if G = GDSn as J(α) commutes with
all matrices in GDSn and φ is multiplicative. Suppose G = GRSn. For any X, Y ∈ GRSn,
by Lemma 5.3, there exist nonzero α, β, γ ∈ Ω such that XJ(α), Y J(β), XY J(γ) ∈ RSn.

In fact, we may assume that α = β = γ by replacing all α, β, γ by min{α, β, γ}. By

Proposition 5.2, we may write X =
(

1 xt

0 X1

)
F

and Y =
(

1 yt

0 Y1

)
F

respectively. Let

W =
(

1 γyt

0 Y1

)
F

∈ GRSn. By Lemma 5.3, there exists a nonzero ω ∈ Ω such that

(
1 ωγyt

0 ωY1

)
F

=
(

1 γyt

0 Y1

)
F

(
1 0
0 ωIn−1

)
F

= WJ(ω) ∈ RSn.

Now, we have
φ(Y J(γ)) φ(J(ω)) = φ(J(γ)) φ(WJ(ω)) (3)

and
φ(XJ(γ)) φ(WJ(ω)) = φ(XY J(γ)) φ(J(ω)), (4)

as

φ

((
1 γyt

0 γY1

)
F

)
φ

((
1 0
0 ωIn−1

)
F

)
= φ

((
1 0
0 γIn−1

)
F

)
φ

((
1 ωγyt

0 ωY1

)
F

)

and

φ

((
1 γxt

0 γX1

)
F

)
φ

((
1 ωγyt

0 ωY1

)
F

)
= φ

((
1 γ(yt + xtY1)
0 γX1Y1

)
F

)
φ

((
1 0
0 ωIn−1

)
F

)
.

As a result,

φ1(X) φ1(Y ) φ(J(ω)) = φ(XJ(γ)) φ(J(γ))−1 φ(Y J(γ)) φ(J(γ))−1 φ(J(ω))
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= φ(XJ(γ)) φ(J(γ))−1 φ(Y J(γ)) φ(J(ω)) φ(J(γ))−1

= φ(XJ(γ)) φ(WJ(ω)) φ(J(γ))−1 ( by (3) )

= φ(XY J(γ)) φ(J(ω)) φ(J(γ))−1 ( by (4) )

= φ(XY J(γ)) φ(J(γ))−1 φ(J(ω))

= φ1(XY ) φ(J(ω)).

Since φ(J(w)) is invertible, we conclude that φ1 is multiplicative.
Because φ is injective, we see that φ1 is injective. For any Y ∈ G, by Lemma 5.3, there

exists J(β) ∈ Γ such that Y J(β) ∈ S. Since φ(Γ) = Γ and φ(S) = S, there exist J(α) ∈ Γ

and A ∈ S such that φ(J(α)) = J(β) and φ(A) = Y J(β). Let X = AJ(α)−1. Then X ∈ G,

XJ(α) = A and

φ1(X) = φ(XJ(α))φ(J(α))−1 = Y J(β)J(β)−1 = Y.

Hence, φ1 is surjective. Then φ1 is an automorphism on G. By Theorem 5.1, either there

exists T ∈ G such that φ1(A) = TAT−1 for all A ∈ G, or when G = GDS2, there exists

a bijective multiplicative map σ on IR such that φ1(A) = σ(detA)(I2 − J2) + J2 for all
A ∈ GDS2.

When S = DS2 and A ∈ GDS2, we have A ∈ DS2 if and only if detA ∈ [−1, 1]. Since

φ(DS2) = DS2, σ([−1, 1]) = [−1, 1]. Then by Lemma 6.3, there exists a positive λ such that

σ(x) = x|x|λ−1 for all x ∈ [−1, 1]. Hence,

φ(A) = φ1(A) = (detA)| detA|λ−1[I2 − J2] + J2 for all A ∈ DS2.

For the remaining cases, we have

φ(A) = φ1(A) = TAT−1 for all A ∈ S.

Since φ(Pn) = Pn, by Theorem 2.1 there exists P ∈ Pn such that φ(A) = PAP t for all
A ∈ Pn. Here note that the exceptional case when n = 6 cannot happen because A and

φ(A)(= TAT−1) always have the same set of eigenvalues.

It remains to show that one may choose T from Pn. We replace φ and T by A 7→ P tφ(A)P

and P tT respectively, so that φ(A) = TAT−1 for all A ∈ S and φ(Q) = Q for all Q ∈ Pn.

Then we have TQ = QT for all Q ∈ Pn. Thus, T has the form J(α) = α(In − Jn) + Jn for
some α ∈ IR.

When S = DSn, as T commutes with all matrices in DSn, TAT−1 = ATT−1 = A.
Hence, φ(A) = A for all A ∈ DSn.

Suppose S = RSn. Note that φ and φ−1 have the form

A 7→ J(α)AJ(α)−1 and A 7→ J(α)−1AJ(α),

and both are semigroup isomorphisms of RSn. If J(α) 6= In, then J(α) or J(α)−1 has

negative entries. Thus, for A = 1 (1, 0, . . . , 0) ∈ RSn, the matrix

J(α)AJ(α)−1 = 1 (1, 0, . . . , 0)J(α)−1 or J(α)−1AJ(α) = 1 (1, 0, . . . , 0)J(α)

has negative entries, which is a contradiction. 2
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7 Positive Matrices

A matrix A is a positive (nonnegative) matrix if all entries of A are positive (nonnegative).
Let PMn and NMn be the set of all n × n positive matrices and nonnegative matrices
respectively. Automorphisms of NMn are already determined in [1]. If one removes the

positivity (nonnegativity) assumption on the entries of PMn (NMn), one gets the semigroup

of n × n real matrices Mn(IR). Using the result in [1] or [8], one easily shows that an

automorphism φ : Mn(IR) →Mn(IR) has the form

(aij) 7→ S−1(σ(aij))S

for some invertible matrix S ∈Mn(IR) and field automorphism σ on IR. In the following, we
treat the more challenging problem of characterizing all the automorphisms of PMn.

Theorem 7.1 A map φ : PMn → PMn is a semigroup automorphism if and only if there
exists T ∈ NMNn such that

φ(A) = TAT−1 for all A ∈ PMn.

We need some auxiliary lemmas to prove the main theorem of this section. The first
lemma is a well-known result about positive matrices (e.g., see [5]).

Lemma 7.2 Any positive matrix can be written as R1AR2 for some doubly stochastic matrix
A and nonnegative invertible diagonal matrices R1, R2.

By a similar proof as in Lemma 6.2, we have the following lemma about NMn.

Lemma 7.3 A matrix X ∈ NMn has its inverse in NMn if and only if X ∈ NMNn.

Lemma 7.4 For any positive matrix A, A = B1C1 = B2C2 for some positive matrices
B1, B2, C1, C2 such that B1 and C2 are invertible.

Proof. For any positive matrix A, we check that there exists a sufficient small 0 < ε < 1

such that [In − εJn]A is still positive. Let B1 = In + [ε(1 − ε)−1]Jn and C1 = [In − εJn]A.
Then both B1 and C1 are positive and B1 is invertible. Furthermore, A = B1C1. Similarly,
we show that A = B2C2 for some positive matrices B2 and C2 with C2 invertible. 2

Now we are ready to prove Theorem 7.1. Again we prove it by establishing a sequence
of assertions. Let

I = {X ∈ PMn : φ(X) is invertible in Mn(IR)}.

We have the following.

Assertion 1 The set I contains some invertible elements in Mn(IR).
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Proof. Take a matrix X ∈ I. By Lemma 7.4, X = BC for some B,C ∈ PMn with B
invertible. Since φ(B)φ(C) = φ(X) is invertible, both φ(B) and φ(C) are invertible. Hence
I contains some invertible element B. 2

The next assertion concerns the set

H = {H ∈Mn(IR) : HA,AH ∈ PMn for all A ∈ PMn}.

Assertion 2 The set H is a semigroup satisfying PMn ⊆ H ⊆ NMn. Furthermore, we can
extend φ to an automorphism φ1 : H → H by

φ1(H) = φ(X)−1φ(XH) = φ(HX)φ(X)−1

for some X ∈ I, i.e., φ is well-defined and φ1|PMn = φ.

Proof. Clearly, H is a semigroup containing PMn. Suppose H ∈ Mn(IR) has some

negative entries, say the (i, j)-th entries of H is negative. Take a matrix A = αIn + Jn with

a large positive α. Then the (i, j)-th entry of AH is still negative. Thus, H contains only
nonnegative matrices. In fact, we have

H = {H ∈ NMn : H has no zero rows or zero columns}.

Now we show that φ1 is well-defined. For any X1, X2 ∈ I, since

φ(X1)φ(HX2) = φ(X1HX2) = φ(X1H)φ(X2),

we have
φ(HX2)φ(X2)

−1 = φ(X1)
−1φ(X1H).

Thus, φ(X)−1φ(XH) = φ(HX)φ(X)−1 and φ1 is independent of the choice of X. Further-

more, for any A ∈ PMn, there is B ∈ PMn such that φ(B) = A. Clearly, HB ∈ PMn and

so φ(HB) ∈ PMn. Then

φ1(H)A = φ(X)−1φ(XH)φ(B) = φ(X)−1φ(X)φ(HB) = φ(HB) ∈ PMn.

By a similar argument, we show that Aφ1(H) ∈ PMn. Thus, φ1(H) ∈ H. Therefore, φ1 is

well-defined. Evidently, φ1|PMn = φ.
For any H1, H2 ∈ H and X ∈ I,

φ(XH1H2)φ(X) = φ(XH1H2X) = φ(XH1)φ(H2X).

So

φ1(H1H2) = φ(X)−1φ(XH1H2) = φ(X)−1φ(XH1)φ(H2X)φ(X)−1 = φ1(H1)φ1(H2).

Hence, φ1 is multiplicative. It remains to show that φ1 is bijective. Applying the previous

argument to φ−1, we extend φ−1 to a multiplicative map ψ : H → H by

ψ(K) = [φ−1(Y )]−1φ−1(Y K) = φ(KY )−1[φ−1(Y )]−1
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for some Y ∈ I−1 = {Y : φ−1(Y ) is invertible}. Take some invertible X ∈ I, which exists

by Assertion 1. Then Y = φ(X) ∈ I−1. For any H ∈ H,

ψ ◦ φ1(H) = ψ(φ(X)−1φ(XH) ) = [φ−1(Y )]−1 φ−1(Y φ(X)−1φ(XH) )

= X−1φ−1(φ(XH)) = X−1XH = H.

Similarly, we also have φ1 ◦ ψ(H) = H. Thus, ψ = φ−1
1 and hence φ is bijective. 2

The next three assertions concern the properties of φ1 : H → H defined in Assertion 2.

Assertion 3 There exist T ∈ NMNn, a multiplicative map ρ on (0,∞) and a bijective

multiplicative map σ on [0,∞) such that the map α 7→ ρ(|α|)nσ(α) is bijective on (0,∞) and

φ1(N) = ρ(| detN |)T (σ(nij))T
−1 for all N = (nij) ∈ NMNn.

Furthermore, replacing φ by A 7→ T−1φ(A)T , we may assume that T = In.

Proof. Clearly, φ1(In) = In and NMNn ⊆ H. By Lemma 7.3, we have φ1(NMNn) =
NMNn. Then by Theorem 4.1, φ1 has the asserted form. 2

Assertion 4 For any S ∈ DSn, φ1(S) = S.

Proof. By Assertion 3, we have φ1(P ) = P for all P ∈ Pn. As φ1(PMn) = PMn

and Jn is the only idempotent in PMn which commutes with all elements in Pn, we have
φ1(Jn) = Jn. Note that for any A ∈ H ⊆ NMn, A ∈ DSn if and only if AJn = Jn = JnA.

Thus, φ1(DSn) = DSn.
When n > 2, by Theorem 6.1, there exists Q ∈ Pn such that

φ1(S) = QSQt for all S ∈ DSn.

As φ1(P ) = P for all P ∈ Pn, Q = In. Hence, φ1(S) = S for all S ∈ DSn.

When n = 2, we deduce that φ1(RS2∩H) = RS2∩H. Note that all 2×2 row stochastic

matrices are in H except
(

1 0
1 0

)
and

(
0 1
0 1

)
. Using the same proof of Theorem 6.1, we

show that there is Q ∈ P2 such that

φ1(S) = QSQt for all S ∈ RS2 ∩H.

As QSQt = S for S ∈ DS2, the result follows. 2

Assertion 5 For any D ∈ PDn,

m(φ1(D))

m(D)
=

tr (φ1(D))

trD
,

where m(D) is the smallest diagonal entries of D.
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Proof. By Assertion 3, φ1(D) is a scalar matrix if D is. Therefore, the assertion holds if
D is a scalar matrix.

Now consider a nonscalar diagonal matrix D = diag (d1, . . . , dn) ∈ PDn, we claim that

for any α ≥ 0, J(α)DJn is positive if and only if

α < (trD)/(trD − n m(D)).

Note that trD − n m(D) > 0 as D is not a scalar matrix. Since

J(α)DJn = (αD + (1− α)(trD/n)In)Jn,

J(α)DJ ∈ PMn if and only if αD+(1−α)(trD/n)In has positive diagonal entries. The latter

is equivalent to saying αdi+(1−α)(trD/n) > 0 for all i, or simply, α m(D)+(1−α)(trD/n) >
0, i.e.,

α < (trD)/(trD − n m(D)).

Next, we show that if α ≥ 0 and J(α)DJn is positive, then φ1(J(α)DJn) = J(α)φ1(D)Jn. If

α ≤ 1, then J(α) ∈ DSn and

φ1(J(α)DJn) = φ1(J(α))φ1(D)φ1(Jn) = J(α)φ1(D)Jn.

If α > 1, then J(α)−1 ∈ DSn and φ1(J(α)−1)φ1(J(α)DJn) = φ1(DJn). By Assertion 4,

φ1(J(α)−1) = J(α)−1. Thus,

φ1(J(α)DJn) = J(α)φ1(DJn) = J(α)φ1(D)Jn.

Combining the above arguments, we see that φ1(J(α)DJn) = J(α)φ1(D)Jn ∈ PMn whenever

α ∈ [0, (trD)/(trD − n m(D))). Note that by Assertion 3, φ1(D) is a nonscalar diagonal

matrix. So by our claim at the beginning (with D is replaced by φ1(D)) we have

trD

trD − n m(D)
≤ tr (φ1(D))

tr (φ1(D))− n m(φ1(D))
,

which can be simplified to m(D)tr (φ1(D)) ≤ m(φ1(D))trD. Replacing φ1 and D respec-

tively by φ−1
1 and φ1(D), we obtain the reverse inequality. The assertion follows. 2

Assertion 6 Suppose σ and ρ are the mappings given in Assertion 3. Then either

(i) σ(α) = α and ρ(α) = 1 for all α > 0, or

(ii) n = 2 with σ(α) = α−1 and ρ(α) = α for all α > 0.

Proof. Because σ(α−1) = σ(α)−1 and ρ(α−1) = ρ(α)−1 for all α > 0, it is sufficient to

prove the assertion for 0 < α < 1. For any α ∈ (0, 1) and R1 = diag (α, 1, . . . , 1), we have

φ1(R1) = ρ(α)diag (σ(α), 1, . . . , 1). By Assertion 5,

min{ρ(α)σ(α), ρ(α)}
α

=
ρ(α)[σ(α) + (n− 1)]

α+ (n− 1)
,
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i.e.,

min{σ(α), 1}
α

=
σ(α) + (n− 1)

α+ (n− 1)
.

If n = 2, then either σ(α) = α or σ(α) = α−1, depending on whether σ(α) ≤ 1 or σ(α) ≥ 1.

Since this holds for each α ∈ (0, 1) and σ is a multiplicative map, it follows that either

σ(β) = β for all β, or σ(β) = β−1 for all β.

When n > 2, we consider another matrix R2 = diag (1, α, . . . , α). By Assertion 5, we
have

min{σ(α), 1}
α

=
1 + (n− 1)σ(α)

1 + (n− 1)α
.

Combining the two equations above, we see that σ(α) = α.

Now for any 0 < α < 1, take γ = 1+
√

1− α and R3 = diag (γ, 2−γ, 1, . . . , 1). We check

that JnR3Jn = Jn. If (i) σ(α) = α for all α, then

φ1(R3) = ρ(γ(2− γ))diag (γ, 2− γ, 1 . . . , 1) = ρ(α)R3.

It follows that

Jn = φ1(Jn) = φ1(Jn)φ1(R3)φ1(Jn) = Jnρ(α)R3Jn = ρ(α)Jn.

Thus, ρ(α) = 1.

If (ii) n = 2 with σ(α) = α−1 for all α, then φ1(R3) = ρ(α)diag (γ−1, (2− γ)−1). Thus,

Jn = φ1(Jn)φ1(R3)φ1(Jn) = Jnρ(α)diag (γ−1, (2− γ)−1)Jn = [ρ(α)α−1]Jn.

So ρ(α) = α. 2

Assertion 7 The conclusion of Theorem 7.1 holds.

Proof. If Assertion 6(i) holds, then we have φ1(N) = N for all N ∈ NMNn. By Lemma
7.2, every A in PMn can be written as A = R1SR2 for some R1, R2 ∈ PDn ⊆ NMNn and
S ∈ DSn. Then by Assertion 3, 4 and 6,

φ(A) = φ1(A) = φ1(R1)φ1(S)φ1(R2) = R1SR2 = A for all A ∈ PMn.

If Assertion 6(ii) holds, then n = 2 and for any D = diag (d1, d2) ∈ PD2,

φ1(D) = (d1d2)diag (d−1
1 , d−1

2 ) = diag (d2, d1) = QDQt,

where Q =
(

0 1
1 0

)
. Since φ1(R) = R = QRQt for all R ∈ DS2, we see that φ(A) = QAQt

for all A ∈ PMn. The result follows. 2
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8 Appendix

In the following, we present a proof of Theorem 2.1, which was done during the REU project
in the summer of 2003.

Proof of Theorem 2.1. First, we show that there is an automorphism Φ : P6 → P6

having the images on T = {P(1,2), . . . , P(1,6)} as described in (b). To this end, for ev-

ery P ∈ P6 we choose a representation of P as a product of elements in T . Then for
P = T1 · · ·Tk with T1, . . . , Tk ∈ T , define Φ(P ) = Φ(T1) · · ·Φ(Tk). We then check that Φ

is bijective and satisfies Φ(PQ) = Φ(P )Φ(Q) for the (6!)(6!) choices of (P,Q), say, with
the help of computer. See the Matlab program in the below, which is also available at
http://www.resnet.wm.edu/̃ cklixx/S6isom.m.txt. Evidently, an automorphism on P6 with

specified values on the generating set {P(12), · · · , P(16)} is uniquely determined.

Note that in our Matlab program, we perform simple operations on permutation matrices,
and numerical errors will not be an issue in the verification. To carry out the verification,
extra cautious readers may modify the Matlab program to use symbolic package such as
Maple to do the verification.

Now, suppose φ ∈ Aut (Pn). We show that (using the arguments in [7] and [15]) either

(i) φ(T ) is a transposition for each transposition T ∈ Pn; or

(ii) n = 6 and φ(T ) is a product of three disjoint transpositions for each transposition
T ∈ P6.

To see this, let T be a transposition, and let ST be the set of elements in Pn of the form

PTP−1 with P ∈ Pn. Then

φ(ST ) = {φ(P )φ(T )φ(P )−1 : P ∈ Pn} = Sφ(T ).

Note that for any Q ∈ Pn, Q ∈ ST if and only if Q is a transposition. So, ST has
(

n
2

)
elements. Since T has order 2 and so is φ(T ), we see that φ(T ) is a product of k disjoint

transpositions for some positive integer k, and hence Sφ(T ) has n!
2kk!(n−2k)!

elements. Because

φ(ST ) = Sφ(T ), we have (
n

2

)
=

n!

2kk!(n− 2k)!
.

The above equation holds for all n when k = 1, or for (n, k) = (6, 3).

Suppose (i) holds. If n = 2, then φ is the identity map. For n ≥ 3 consider T =

{P(1,2), . . . , P(1,n)}. Then the product of any two elements in T is a three cycle, and for

n ≥ 4 the product of any three elements in T is a four cycle. Thus, the same holds for

φ(T ) = {φ(P(1,2)), . . . , φ(P(1,n))}.

It follows that φ(P(1,k)) = P(i1,ik) for k = 2, . . . , n, where {i1, . . . , in} = {1, . . . , n}. As

a result, if σ(j) = ij for j = 1, . . . , n, then φ(P(1,k)) = PσP(1,k)P
t
σ for each k. Since

{P(1,2), . . . , P(1,n)} generates Pn, it follows that φ(A) = PσAP
t
σ for all A ∈ Pn.
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Suppose (i) does not hold. Then (n, k) = (6, 3) and there is a transposition T such that

φ(T ) is a product of three disjoint transpositions. Moreover, φ(ST ) = Sφ(T ). Note that ST is

the set of all transpositions and Sφ(T ) is the set of all products of three disjoint transpositions.

Therefore, condition (ii) holds. Now, Φ−1 ◦ φ maps transpositions to transpositions, and we

are back to (i). Hence, Φ−1 ◦ φ is an inner automorphism. 2

Here is the Matlab program we used to check the special automorphism Φ : P6 → P6

described in Section 2. It took about 4 hours for a Pentium 4 1.99 GHz machine with 256
MB of RAM to confirm the result.

function stop = S6isom()

% S6isom will generate a 6x4320 matrix storing all the 720 permutation

% matrices in P_6 side by side, and another 6x4320 matrix storing all the

% 720 matrices F(A) side by side.

% It will then check that F(A(:,i)’*A(:,j))=FA(:,i)’*FA(:,j).

% Finally, it will check that F is one-one.

e1 = [1 0 0 0 0 0]; e2 = [0 1 0 0 0 0]; e3 = [0 0 1 0 0 0];

e4 = [0 0 0 1 0 0]; e5 = [0 0 0 0 1 0]; e6 = [0 0 0 0 0 1];

% Generate all useful transpositions and their images

X12 = [e2; e1; e3; e4; e5; e6]; Y12 = [e2; e1; e4; e3; e6; e5];

X13 = [e3; e2; e1; e4; e5; e6]; Y13 = [e3; e5; e1; e6; e2; e4];

X14 = [e4; e2; e3; e1; e5; e6]; Y14 = [e4; e6; e5; e1; e3; e2];

X15 = [e5; e2; e3; e4; e1; e6]; Y15 = [e5; e4; e6; e2; e1; e3];

X16 = [e6; e2; e3; e4; e5; e1]; Y16 = [e6; e3; e2; e5; e4; e1];

X23 = X12*X13*X12; Y23 = Y12*Y13*Y12;

X24 = X12*X14*X12; Y24 = Y12*Y14*Y12;

X25 = X12*X15*X12; Y25 = Y12*Y15*Y12;

X26 = X12*X16*X12; Y26 = Y12*Y16*Y12;

X34 = X13*X14*X13; Y34 = Y13*Y14*Y13;

X35 = X13*X15*X13; Y35 = Y13*Y15*Y13;

X36 = X13*X16*X13; Y36 = Y13*Y16*Y13;

X45 = X14*X15*X14; Y45 = Y14*Y15*Y14;

X46 = X14*X16*X14; Y46 = Y14*Y16*Y14;

X56 = X15*X16*X15; Y56 = Y15*Y16*Y15;

% building P_2 and F(P_2)

A(:,1:6) = eye(6); FA(:,1:6) = eye(6);

A(:,7:12) = X12; FA(:,7:12) = Y12;

% building P_3 and F(P_3)

A(:,13:24) = X13*A(:,1:12); FA(:,13:24) = Y13*FA(:,1:12);

A(:,25:36) = X23*A(:,1:12); FA(:,25:36) = Y23*FA(:,1:12);

% building P_4 and F(P_4)

A(:,37:72) = X14*A(:,1:36); FA(:,37:72) = Y14*FA(:,1:36);

A(:,73:108) = X24*A(:,1:36); FA(:,73:108) = Y24*FA(:,1:36);

A(:,109:144) = X34*A(:,1:36); FA(:,109:144) = Y34*FA(:,1:36);

% building P_5 and F(P_5)
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A(:,145:288) = X15*A(:,1:144); FA(:,145:288) = Y15*FA(:,1:144);

A(:,289:432) = X25*A(:,1:144); FA(:,289:432) = Y25*FA(:,1:144);

A(:,433:576) = X35*A(:,1:144); FA(:,433:576) = Y35*FA(:,1:144);

A(:,577:720) = X45*A(:,1:144); FA(:,577:720) = Y45*FA(:,1:144);

% building P_6 and F(P_6)

A(:,721:1440) = X16*A(:,1:720); FA(:,721:1440) = Y16*FA(:,1:720);

A(:,1441:2160) = X26*A(:,1:720); FA(:,1441:2160) = Y26*FA(:,1:720);

A(:,2161:2880) = X36*A(:,1:720); FA(:,2161:2880) = Y36*FA(:,1:720);

A(:,2881:3600) = X46*A(:,1:720); FA(:,2881:3600) = Y46*FA(:,1:720);

A(:,3601:4320) = X56*A(:,1:720); FA(:,3601:4320) = Y56*FA(:,1:720);

% Check to see if our F is multiplicative, i.e, if A(i)*A(j)==A(m),

% then FA(i)*FA(j)==FA(m)

stop = 000;

for i=1:6:4315

for j=1:6:4315

for m=1:6:4315

if stop == 111

break

else

C=A(:,i:i+5)*A(:,j:j+5);

D=A(:,m:m+5);

if C(:)’*D(:) == 6

FC=FA(:,i:i+5)*FA(:,j:j+5);

FD=FA(:,m:m+5);

if FC(:)’*FD(:) ~= 6

stop = 111

end

end

end

end

end

end

% Here we check that F is one-one

for i=7:6:4315

if stop == 222

break

else

if FA(:,i:i+5)’*eye(6) == 6

stop = 222

end

end

end
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