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Abstract
Let 1 ≤ m ≤ n, and let χ : H → C be a degree 1 character on a subgroup H of the

symmetric group of degree m. The generalized matrix function on an m × m matrix B =
(bij) associated with χ is defined by dχ(B) =

∑
σ∈H χ(σ)

∏m
j=1 bj,σ(j), and the decomposable

numerical radius of an n× n matrix A on orthonormal tensors associated with χ is defined
by

r⊥χ (A) = max{|dχ(X∗AX)| : X is an n×m matrix such that X∗X = Im}.

We study those linear operators L on n×n complex matrices that satisfy r⊥χ (L(A)) = r⊥χ (A)

for all A ∈ Mn. In particular, it is shown that if 1 ≤ m < n, such an operator must be of
the form

A 7→ ξU∗AU or A 7→ ξU∗AtU

for some unitary matrix U and some ξ ∈ C with |ξ| = 1.

Keywords: Linear operators, decomposable numerical range (radii).
AMS Classification: 15A04, 15A60, 47B49.

1 Introduction

Let Mn be the algebra of n× n complex matrices. Suppose 1 ≤ m ≤ n and χ : H → C is a
degree 1 character on a subgroup H of the symmetric group Sm of degree m. The generalized
matrix function of B = (bij) ∈ Mm associated with χ is defined by

dχ(B) =
∑
σ∈H

χ(σ)
m∏

j=1

bj,σ(j).

For instance, dχ(B) = per (B), the permanent of B, when χ is the principal character on

H = Sm; dχ(B) = det(B), the determinant of B, when χ is the alternate character on

H = Sm.
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Define the decomposable numerical range of A ∈ Mn on orthonormal tensors associated
with χ by

W⊥
χ (A) = {dχ(X∗AX) : X is an n×m matrix such that X∗X = Im}

and the decomposable numerical radius of A by

r⊥χ (A) = max{|z| : z ∈ W⊥
χ (A)}.

When m = 1, these reduce to the classical numerical range and numerical radius of A,
denoted in the sequel by W (A) and r(A). The decomposable numerical range can be viewed

as the image of the quadratic form x∗ 7→ (K(A)x∗, x∗), defined by the induced matrix K(A)

associated with χ, on the decomposable unit tensors x∗ = x1∗· · ·∗xm such that {x1, . . . , xm}
is an orthonormal set in Cn. One may see [16, 19] for some general background.

The classical numerical range and numerical radius are useful tools for studying matrices
and operators (see e.g. [6, 7, 8, 11]). Likewise, the decomposable numerical range and radius

are useful tools for studying induced matrices acting on symmetry classes of tensors (see

[16, 19] and their references).

There has been considerable interest in studying linear preservers of W⊥
χ or r⊥χ , i.e., those

linear operators L on Mn satisfying

W⊥
χ (L(A)) = W⊥

χ (A) for all A ∈ Mn, or r⊥χ (L(A)) = r⊥χ (A) for all A ∈ Mn.

The results on W⊥
χ preservers are quite complete. We summarize them in the following.

(1) Frobenius [5] proved that when m = n and χ is the alternate character on Sn, i.e.,

W⊥
χ (A) = {det(A)}, a linear preserver of W⊥

χ on Mn must be of the form A 7→ MAN or

A 7→ MAtN for some M, N ∈ Mn with det(MN) = 1.

(2) Pellegrini [21] proved that when m = 1, a linear preserver of the numerical range on Mn

must be of the form A 7→ U∗AU or A 7→ U∗AtU for some unitary U .

(3) Marcus and Filippenko [17] proved that when χ is the alternate character on H = Sm

with m < n, a linear preserver of W⊥
χ on Mn must be of the form

A 7→ ξU∗AU or A 7→ ξU∗AtU (1.1)

for some unitary U ∈ Mn and ξ ∈ C with ξm = 1.

(4) Hu and Tam [9, 10] (see [4] for the correction of the statement in [9, Theorem 6]) proved
that when χ is the principal character on H < Sm, a linear operator L on Mn is a

preserver of W⊥
χ if and only if there exist a unitary matrix U ∈ Mn and ξ ∈ C with

ξm = 1 such that
(i) L is of the form described in (1.1), or

(ii) m = n = 2, H = S2 and L is of the form

A 7→ ξ[U∗AU + (±i− 1)(tr A)I/2] or A 7→ ξ[U∗AtU + (±i− 1)(tr A)I/2].
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(5) Very recently, these authors [15] proved that in all the remaining cases, a linear preserver

of W⊥
χ on Mn must be of the form described in (1.1).

While the structure of the linear preservers of W⊥
χ is completely determined, the linear

preserver problems on r⊥χ are not so well studied. The only known results are for the cases

when m = 1 [13] and when χ is the alternate character on H = Sm [14] (see also [24]). In

these cases, the linear preservers of r⊥χ are always unit multiples of W⊥
χ preservers. In fact,

this phenomenon always occurs in linear preserver problems involving generalized numerical
ranges and radii. Furthermore, even if the linear preservers of the generalized numerical
range are determined, it always requires different (and usually more difficult) techniques to

characterize the linear preservers of the generalized numerical radius (see e.g. [21]).

In this paper, we study the linear preservers of r⊥χ and confirm that when 1 ≤ m < n

the linear preservers of r⊥χ are indeed unit multiples of W⊥
χ preservers. We believe that the

same result is true when m = n, but we are not able to prove it at present.
Our paper is organized as follows. In Section 2, we present some preliminary results on

matrix inequalities and equalities involving r⊥χ . Furthermore, we describe some results on

unitary groups and a group theory scheme we are going to use. In Section 3, we prove that

linear preservers of r⊥χ form a group G, and we study the largest connected Lie group in

G. In Section 4, we present the characterization of the linear preservers of r⊥χ for the cases

m < n and m = n = 2, and some partial results for the remaining cases.
We use M ′

n to denote the set of matrices in Mn with zero trace. The standard basis of

Mn is denoted by {E11, E12, . . . , Enn}. We always assume that Mn×k is equipped with the

inner product 〈A, B〉 = tr (AB∗). This includes the special case Mn×1 = Cn, where the inner

product reduces to 〈x, y〉 = tr (xy∗) = y∗x.

We shall use s1(A) ≥ · · · ≥ sn(A) to denote the singular values of A ∈ Mn. When
H = Sm, we denote by ε : Sm → C the alternating character of Sm.

We always assume that n ≥ 2. Since the results on the classical numerical radius and
the classical numerical range are known, we exclude them and consider only the cases when
m ≥ 2 in this paper.

2 Preliminaries

2.1 Matrix Inequalities and Equalities

In this subsection, we collect some inequalities and equalities involving r⊥χ for future use.

Recall that we always assume that m ≥ 2.

Proposition 2.1 (see [1]) Let A ∈ Mn.

(a) When χ is the principal character, r⊥χ (A) = 0 if and only if A = 0.

(b) When χ is not the principal character, if rank (A) = 1 then r⊥χ (A) = 0.

Proposition 2.2 (see [2, Theorem 1] and [3, Theorem 1]) Suppose A, B ∈ Mn are positive
semi-definite matrices with eigenvalues a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn, respectively, such
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that bj ≥ aj for all j = 1, . . . ,m. Then r⊥χ (A) ≤ r⊥χ (B). Suppose rank(B) ≥ m. The equality

holds if and only if the m largest eigenvalues of A are the same as those of B.

Proposition 2.3 Let m ≤ n and A ∈ Mn. Then

| det(A)|m/n ≤
(

n

m

)−1

Em(s1(A), . . . , sn(A)) ≤ r⊥ε (A) ≤ r⊥χ (A).

Suppose K(A) 6= 0 and χ 6= ε (on Sm).

(a) When 2 ≤ m < n, A is a multiple of a unitary matrix if and only if | det(A)|m/n = r⊥χ (A).

(b) If m = n and A is not normal, then | det(A)| < r⊥χ (A).

Proof. The first inequality is easy. The next two inequalities are proved in [2, Lemma 6

and Theorem 5]. When K(A) 6= 0, we have r⊥χ (A) 6= 0. Thus, (a) follows from [2, Theorem

4 and Theorem 10], and (b) follows from [2, Lemma 10]. 2

Proposition 2.4 Let A ∈ Mn. Then r⊥χ (A) ≤ ‖A‖m. The equality holds if and only if A is

unitarily similar to diag (α1, . . . , αm)⊕ A2 with |α1| = · · · = |αm| = ‖A‖.

Proof. Follows from [3, Theorem 2]. 2

Proposition 2.5 (see [10]) Suppose m = n = 2, and χ is the principal character. Let
A ∈ M2 be a normal matrix with eigenvalues λ1 and λ2. Then

r⊥χ (A) =

{
max{|λ1λ2|, |λ1 + λ2|2/4} if H = {e},
max{|λ1λ2|, |λ2

1 + λ2
2|/2} if H = S2.

We prove an additional result that will be used in the future discussion.

Proposition 2.6 Let A be a rank one matrix with Frobenius norm equal to 1 and let χ be

the principal character. Then r⊥χ (A) = |H|m−m.

Proof. By hypotheses, one can write A = xy∗ for some unit vectors x, y ∈ Cn. There
exists a unitary matrix U ∈ Mn and real numbers tj such that UAU∗ = uv∗, where u∗ =

x∗U∗ = (1/
√

m, . . . , 1/
√

m, 0, . . . , 0) and v∗ = y∗U∗ = (eit1/
√

m, . . . , eitm/
√

m, 0, . . . , 0) are
unit vectors such that x∗y = u∗v. If X is obtained from U∗ by deleting its last n − m
columns, then

r⊥χ (A) = r⊥χ (UAU∗) ≥ |dχ(X∗AX)| = m−m|H|

Conversely, for any n ×m matrix X with X∗X = Im, the vectors x∗X∗ = (u1, . . . , um)

and y∗X∗ = (v1, . . . , vm) have lengths less than or equal to one. Thus,
∏m

j=1 |ujvj| ≤ (1/m)m

by elementary calculus. It follows that

dχ(X∗AX) = |dχ ((u1, . . . , um)∗(v1, . . . , vm)) | =
m∏

j=1

|ujvj||H| ≤ (1/m)m|H|.
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We get the result. 2

2.2 Group Theory Background
Let us describe a group scheme to study our problem. Suppose PSU(n) is the group of

operators on Mn of the form
A 7→ U∗AU

for some unitary U ∈ Mn. In the next section, we shall prove that the linear preservers of

r⊥χ form a group G. Clearly, every element in PSU(n) is a linear preserver of r⊥χ . Hence

PSU(n) is a subgroup of G. Let G0 be the largest connected Lie subgroup in G. Using

the results in [22] (see also [4]) and those Section 3, we show that G0 = PSU(n), and then
completely determine G. Such a scheme of studying linear preserver problems has been used
by several authors (see [4, 22] and their references).

In the following, we introduce some notations and list several group theory results that
will be used in our proof.

Let GL(n) and SL(n), U(n) and SU(n) be the general linear group, special linear group,
unitary group, and special unitary group of linear operators acting on Cn.

Suppose G1 and G2 are subgroups of GL(n). Denote by G1 ∗G2 the group of operators of

the form A 7→ UAV for some U ∈ G1 and V ∈ G2. Furthermore, let PSL(n) be the group

of invertible operators on Mn of the form A 7→ S−1AS for some S ∈ SL(n).

Next, let GL(n2), SL(n2) and SU(n2) be the general linear group, special linear group

and special unitary group of operators acting on Mn, respectively. Moreover, let SO(n2) be

the special orthogonal group with respect to the bilinear form (A, B) = tr (AB) on Mn.

Third, let GL(n2 − 1) be the subgroup of GL(n2) consisting of operators that fix the

identity and map M ′
n onto itself, and let

SL(n2 − 1) = SL(n2) ∩GL(n2 − 1),

SU(n2 − 1) = SU(n2) ∩GL(n2 − 1),

SO(n2 − 1) = SO(n2) ∩GL(n2 − 1),

T: the group of operators acting as scalar on M ′
n and span {I},

T1: the intersection of T and SL(Mn),

U1: the intersection of T1 and SU(Mn),
R1: the collection of operators in T1 with positive eigenvalues,
P: the group of operators of the form A 7→ A + (tr A)C for some C ∈ M ′

n,

Q: the group of operators of the form A 7→ A + (tr AC)I for some C ∈ M ′
n.

Next, let SU(n2 − 1, 1) be the subgroup of SU(n2) containing the operators that preserve
the non-degenerate hermitian form

tr (AB∗)− tr (A)tr (B∗),

let SO(n2 − 1, 1) be the subgroup of SL(n2) containing the operators that preserve the
non-degenerate symmetric bilinear form

tr (AB)− tr (A)tr (B),
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and let GL(n2, IR) be the subgroup of GL(n2) mapping the real linear space of Hermitian
matrices onto itself. Set

SL(n2, IR) = SL(n2) ∩GL(n2, IR),

SL(n2 − 1, IR) = SL(n2 − 1) ∩GL(n2, IR),

SO(n2, IR) = SO(n2) ∩GL(n2, IR),

SO(n2 − 1, IR) = SO(n2 − 1) ∩GL(n2, IR),

SO(n2 − 1, 1, IR) = SO(n2 − 1, 1) ∩GL(n2, IR),

P0 = P ∩GL(n2, IR),

Q0 = Q ∩GL(n2, IR).

When n = 4, we have three special subgroups in SL(M ′
4), namely,

Λ: an embedding of SL(6)/〈−1〉 in SL(42 − 1),

Λ0: an embedding of SU(6)/〈−1〉 in SU(42 − 1),

Λ1: the intersection of Λ and GL(42, IR).

Notice that Λ0 and Λ1 are subgroups of Λ. We refer the readers to [22] for a concrete
construction and some discussion of these groups.

Finally, for S ∈ SL(n) let S ⊗ S̄ denote the operator of the form X 7→ SXS∗. With all

the above notations, we are ready to state the following result [22, Theorem 2] (see also [4]).

Proposition 2.7 Let G be a proper connected Lie subgroup of SL(n2) containing PSU(n).
If G is reducible, then either G = G1R, G1PR, G1QR, where G1 is one of the following:

PSU(n), PSL(n), SO(n2 − 1, IR), SO(n2 − 1),

SU(n2 − 1), SL(n2 − 1, IR), SL(n2 − 1),

or Λ0, Λ1, Λ (n = 4),

and R is a connected Lie subgroup of T1 (which may be trivial), or G is a U1-conjugate of
one of the groups: G1P0, G1Q0, G1P0R1, G1Q0R1, where

G1 = PSU(n), SO(n2 − 1, IR), SL(n2 − 1, IR), or Λ0, Λ1 (n = 4).

If G is irreducible, then G is a T-conjugate of one of the groups:

SL(n2, IR), SU(n2), SU(n2 − 1, 1), SO(n2), SO(n2, IR), SO(n2 − 1, 1, IR)0,

{S ⊗ S̄ : S ∈ SL(n)}, or G2 ∗G3 with G2, G3 ∈ {SL(n), SU(n)}.

Denote by τ the transposition operator, i.e., τ(A) = At, on Mn. We have the following

result (see [22, Theorems 3 and 4 (ii)]).

Proposition 2.8 Let G be a subgroup of GL(n2) containing PSU(n) as the largest connected

Lie subgroup. Then G is a subgroup of the group generated by PSU(n), T and τ .
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3 The group of linear preservers of r⊥χ

We continue to assume that m ≥ 2 in the following discussion.

Proposition 3.1 The linear preservers of r⊥χ form a group G in GL(n2) containing PSU(n).

Proof. First of all, we show that linear preservers of r⊥χ are invertible. Suppose it is not

true and L is a singular linear preserver of r⊥χ on Mn. Let A ∈ Mn be nonzero such that

L(A) = 0, and let A have singular value decomposition U(
∑n

j=1 ajEjj)V , where U and V are

unitary, and a1 ≥ · · · ≥ an. Set B = UV . By Proposition 2.3

r⊥χ (A + B) ≥ | det(A + B)|m/n =


n∏

j=1

(1 + aj)


m/n

> 1.

However,

1 = r⊥χ (B) = r⊥χ (L(B)) = r⊥χ (L(A) + L(B)) = r⊥χ (L(A + B)),

which is a contradiction.
Now, all linear preservers of r⊥χ are invertible. If L preserves r⊥χ , one easily checks that

L−1 also preserves r⊥χ . It follows that the linear preservers of r⊥χ form a group G in GL(n2).

It is clear that G contains PSU(n). 2

By Proposition 3.1, we can apply the group scheme described in Section 2.2 to study

linear preservers of r⊥χ .

Let G0 be the largest connected Lie group contained in G. Then G0 must be one of the
groups listed in Proposition 2.7. We shall establish a series of lemmas to eliminate most of
the candidates on the list, and then conclude that G0 = PSU(n) if m < n. In each of the

following lemmas, we consider a certain group G̃ 6= PSU(n) in Proposition 2.7 and show

that there are some linear operators L in G̃ and A ∈ Mn such that r⊥χ (A) 6= r⊥χ (L(A)), to

conclude G̃ 6⊆ G0.

Lemma 3.2 G0 does not contain Λ0.

Proof. Assume the contrary holds. By the discussion in [22, p.151], there exists L ∈ Λ0

such that L(I) = I and L(A) = B with A = diag (1, 1,−1,−1) and B = 2E13. If χ is not

the principal character, then r⊥χ (A) = 1 6= 0 = r⊥χ (B).

If χ is the principal character and r⊥χ (A) = r⊥χ (L(A)), Proposition 2.6 implies that

1 = r⊥χ (A) = r⊥χ (B) = (2/m)m|H|.

Since |H| divides |Sm| and m ≤ n = 4, it follows that m = 2 and H = {e}. Next, note that

I + iB and I + eiθB are unitarily similar, for any real number θ. Let X be obtained from
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I ∈ M4 by deleting the last two columns. Since L(I + eiθA) = I + eiθB, it follows that

2 = 2m/2 = r⊥χ (I + iA) = r⊥χ (L(I + iA)) = r⊥χ (I + iB) = r⊥χ (I + eiθB)

= r⊥χ (L−1(I + eiθB)) = r⊥χ (I + eiθA)

≥ | det X∗(I + eiθA)X| = 2 + 2 cos θ,

for all θ ∈ IR, which is a contradiction. 2

Lemma 3.3 G0 does not contain Λ1.

Proof. By the discussion in [22, p.152], there exists L ∈ Λ1 such that L(A) = B with

A = diag (−1, 1,−1, 1) and

B =


0 1 −1 0
1 0 0 −1
−1 0 0 −1
0 −1 −1 0

 .

Since B/
√

2 and A are unitary matrices, r⊥χ (B) = 2m/2 6= 1 = r⊥χ (A), a contradiction. 2

Lemma 3.4 G0 does not contain a U1-conjugate of P0.

Proof. Suppose it does. Then there exists U ∈ U1 such that for any Hermitian matrix

C ∈ M ′
n, the operator L, defined by L(A) = A+(tr A)C, is in U−1G0U . Then ULU−1 ∈ G0.

Let us assume that U(A) = a(tr A)I/n + b(A − (tr A)I/n) for some a, b ∈ C \ {0}. Then

U−1(A) = a−1(tr A)I/n + b−1(A− (tr A)I/n) and

B = ULU−1(nE11)

= UL(a−1I + b−1(nE11 − I))

= U(a−1I + b−1(nE11 − I) + na−1C)

= I + b(a−1I + b−1(nE11 − I) + na−1C − a−1I)

= nE11 + nba−1C.

We can choose C ∈ M ′
n such that

| det(B)|m/n = | det(nE11 + nba−1C)|m/n > r⊥χ (nE11) = r⊥χ (B),

contradicting Proposition 2.3. 2

Lemma 3.5 G0 does not contain a U1-conjugate of Q0.

8



Proof. Suppose it does. Then there exists U ∈ U1 such that for any Hermitian matrix

C ∈ M ′
n, the operator L, defined by L(A) = A+(tr AC)I, is in U−1G0U . Then ULU−1 ∈ G0.

Let us assume that U(A) = a(tr A)I/n + b(A − (tr A)I/n) for some a, b ∈ C \ {0}. Then

U−1(A) = a−1(tr A)I/n + b−1(A− (tr A)I/n) and

B = ULU−1(E12)

= UL(b−1E12)

= U(b−1E12 + tr (b−1E12C)I)

= atr (b−1E12C)I + b(b−1E12 + tr (b−1E12C)I − tr (b−1E12C)I)

= ab−1tr (E12C)I + E12.

We can choose C ∈ M ′
n such that

| det(B)|m/n = | det(ab−1tr (E12C)I + E12)|m/n > r⊥χ (E12) = r⊥χ (B),

contradicting Proposition 2.3. 2

Lemma 3.6 G0 does not contain a T-conjugate of {S ⊗ S̄ : S ∈ SL(n)}.

Proof. Suppose that there does exists T ∈ T such that T (X) = a(tr X)I/n + b(X −
(tr X)I/n) and T−1G0T = {S ⊗ S̄ : S ∈ SL(n)}. We may assume that b = 1; otherwise,

replace T by T/b.

Let A = E12 + · · · + En−1,n + En,1 and let S = tIn−1 ⊕ [t1−n] for some t > 1. Then the

operator X 7→ T (ST−1(X)S∗) belongs to G0. In particular, if

B = T (S(T−1(A))S∗) = t2E12 + · · ·+ t2En−2,n−1 + t2−nEn−1,n + t2−nEn,1,

then r⊥χ (A) = r⊥χ (B). Since B is not a multiple of a unitary matrix, by Proposition 2.3,

r⊥χ (A) = 1 = | det(B)|m/n < r⊥χ (B),

a contradiction.

Lemma 3.7 G0 does not contain PSL(n).

Proof. If it does, then r⊥χ (A) = r⊥χ (S−1AS) for any A ∈ Mn and any invertible S ∈ Mn.

Thus, all matrices with the same set of n distinct eigenvalues will have the same r⊥χ . Let

w be a primitive root of the equation xn − 1 = 0 and let A = diag (1, w, . . . , wn−1). There

exists an operator L ∈ PSL(n) such that

L(A) = B = A + E12 + · · ·+ En−2,n−1 + En−1,n.

By Proposition 2.3, it follows that

r⊥χ (B) > | det(B)| = 1 = r⊥χ (A),

a contradiction.
2
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Lemma 3.8 Suppose n ≥ 3. Then G0 does not contain SO(n2 − 1, IR).

Proof. Assume the contrary holds. Let A =
√

nE12, B = E12 + · · · + En−1,n + En,1,

and C =
√

n/m(E12 + · · · + Em−1,m + Em,1) if m > 2. Then A, B and C have the same

Frobenius norm. Suppose A = A1 + iA2, B = B1 + iB2, and C = C1 + iC2 are the Hermitian
decomposition of the three matrices. One readily checks that A1, A2, B1, B2, C1, C2 are trace
zero Hermitian matrices with the same Frobenius norm and 〈A1, A2〉 = 〈B1, B2〉 = 〈C1, C2〉 =

0. Thus, there exists L ∈ SO(n2 − 1, IR) with L(A1) = B1 and L(A2) = B2. Hence, we have

L(A) = B. Similarly, there exists L̂ ∈ SO(n2 − 1, IR) with L̂(B) = C if m > 2.
Suppose χ is not the principal character. Then by Propositions 2.1 and 2.3,

r⊥χ (A) = 0 < 1 = r⊥χ (B),

which is a contradiction.
Next, suppose χ is the principal character. If n > m > 2, then by Proposition 2.3,

r⊥χ (B) = 1 < (
√

n/m)m = r⊥ε (C) ≤ r⊥χ (C),

which is a contradiction.
If m = 2, then |H| = 1 or 2. Since n ≥ 3, by Propositions 2.3 and 2.6

(
√

n)m|H|m−m = r⊥χ (A) = r⊥χ (B) = 1.

It follows that n = 4 and |H| = 1. But then there exists L̃ ∈ SO(n2 − 1, IR) such that

L̃(E11 − E22) = (E11 + E22 − E33 − E44)/
√

2. However,

r⊥χ ((E11 + E22 − E33 − E44)/
√

2) = 1/2 < 1 = r⊥χ (E11 − E22),

which is a contradiction.
Finally, if n = m > 2, then Proposition 2.6 implies that r⊥χ (A) = |H|n−n/2. On the other

hand, L(A) = B is unitary, hence r⊥χ (L(A)) = 1. Thus, it follows that |H| = nn/2. Since

H is a subgroup of Sn, we have |H| = nn/2 divides n!, which is impossible by the following
arguments. Let p be a prime number and let a ≥ 1 be an integer such that pa divides n while

pa+1 does not divide n. Then pan/2 divides nn/2. The exponent of p in the prime factorization
decomposition of n! is strictly less than

∞∑
k=1

n

pk
=

n

p− 1
.

Thus, if nn/2 divides n!, then an/2 < n/(p− 1), hence 1 ≤ a < 2/(p− 1). This can happen
only if p = 2 and a = 1. It follows that n = 2, a contradiction. 2

Lemma 3.9 Suppose n > m. Then G0 does not contain a T-conjugate of SU(n) ∗ SU(n).
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Proof. Suppose it does and T ∈ T is such that SU(n) ∗ SU(n) < T−1G0T . Let A =

E12+· · ·+En−2,n−1+En−1,1. Then A is unitarily similar to diag (0, 1, w, w2, . . . , wn−2), where

w = e2πi/(n−1). By Proposition 2.4, r⊥χ (A) = 1. Note that there exist permutation matrices

P, Q such that B = PAQ = E12 + · · ·+En−2,n−1 +En−1,n. Since Bn = 0 6= Bn−1, the matrix

B is not unitarily similar to a direct sum of matrices of smaller sizes. By Proposition 2.4,

r⊥χ (B) < ‖B‖m = 1.

However, if L is defined by L(X) = T (P (T−1(X))Q), then L ∈ G0 and L(A) = B. Since

r⊥χ (B) < 1 = r⊥χ (A), we get a contradiction. 2

Lemma 3.10 Suppose n > m. Then G ∩ T is the circle group, i.e., group of operators of
the form A 7→ aA, where a ∈ C satisfies |a| = 1.

Proof. Suppose L ∈ T is a linear preserver of r⊥χ such that

L(X) = a(tr X)I/n + b(X − (tr X)I/n), a, b ∈ C.

Since rχ(I) = rχ(L(I)), we conclude that |a| = 1. We may assume that a = 1 and hence

L(I) = I. Otherwise, replace L by a−1L.
If χ is not the principal character, we have

L(E11) = bE11 + (1− b)I/n.

By Proposition 2.1, we have

0 = r⊥χ (E11) = r⊥χ (L(E11)) ≥ |(1− b)/n|m.

Thus b = 1.
If χ is the principal character, we must have |b| = 1 since L(E12) = bE12. Let b = b1 + ib2

with b1, b2 ∈ IR. Note that

L(tI ± iE11) = [t± i(1− b)/n]I ± biE11

By [3], and for t > 0, we have

(t2 + 1)m/2 = r⊥χ (
√

t2 + 1I) ≥ r⊥χ (diag (
√

t2 + 1, t, . . . , t)) ≥ r⊥χ (tI ± iE11)

It follows that

(t2 + 1)m/2 ≥ r⊥χ (tI ± iE11) = r⊥χ (L(tI ± iE11)) ≥ |t± i(1− b)/n|m

Thus, we obtain

(t2 + 1)m ≥ (t± b2/n)2m

and, letting t tends to infinity, we see that this is possible only if b2 = 0. Thus, b = ±1.

11



Suppose that b = −1. If n is odd, say n = 2k + 1, let A = −iIk ⊕ iIk ⊕ [1]. Then

L(A) = (i + 2/n)Ik ⊕ (−i + 2/n)Ik ⊕ [−1 + 2/n]. By Proposition 2.4 we have

r⊥χ (A) = 1 < ‖L(A)‖m = r⊥χ (L(A)),

a contradiction.
Suppose that b = −1 and n is even, say n = 2k. Let

At = −iIk−1 ⊕ iIk−1 ⊕ diag (t + i
√

1− t2, t− i
√

1− t2),

where t ∈ (0, 1). Then r⊥χ (At) = 1, tr At = 2t and

L(At) =
2t

k
I − At.

If m ≤ n− 2, then it follows from Proposition 2.4 that

r⊥χ (At) = 1 < {1 + 4t2/k2}m/2 = ‖L(At)‖m = r⊥χ (L(At)),

a contradiction.
Suppose that m = n− 1. If X is obtained from I by deleting the last column, we have

r⊥χ (L(At)) ≥ | det(X∗L(At)X)|

=

(
1 +

4t2

k2

)k−1 (
1− t2 +

(
2t

k
− t

)2
)1/2

=

(
1 +

4t2

k2

)k−1 (
1− 4t2(k − 1)

k2

)1/2

Let ϕ : IR → IR be defined by

ϕ(y) =
(
1 +

y

k2

)2k−2
(

1− y(k − 1)

k2

)

Then the above inequality implies that(
r⊥χ (L(At))

)2
≥ ϕ(4t2)

and it is easy to see that

ϕ(0) = 1 and ϕ′(0) =
k − 1

k2
> 0

Therefore, if t > 0 is sufficiently small, then(
r⊥χ (L(At))

)2
≥ ϕ(4t2) > 1 = r⊥χ (At)

2,

a contradiction. 2
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4 Characterization theorems

We continue to focus on the cases when m ≥ 2.

Theorem 4.1 Let 2 ≤ m < n. A linear operator L on Mn preserves r⊥χ if and only if there

exist a unitary U ∈ Mn and ξ ∈ C with |ξ| = 1 such that L is of the form

A 7→ ξU∗AU or A 7→ ξU∗AtU.

Proof. The (⇐) part of the theorem is clear. We consider the (⇒) part. By Proposition

3.1, linear preservers of r⊥χ form a group G. By Lemmas 3.2 and 3.3, we see that the largest

connected Lie group G0 in G cannot be Λ0, Λ1, Λ. By Lemmas 3.4 and 3.5, G0 cannot contain
any overgroups of P0 and Q0. By Lemmas 3.6 and 3.7, G0 cannot contain any overgroups

of PSL(n) or {S ⊗ S̄ : S ∈ SL(n)}. By Lemma 3.8, all the overgroups of SO(n2 − 1, IR)

are ruled out. By Lemma 3.9, G0 cannot contain G2 ∗ G3 with G2, G3 ∈ {SL(n), SU(n)}.
Furthermore, by Lemma 3.10, G0 cannot contain R or R1. By Propositions 2.7 and 2.8, we

see that G is a subgroup of the group in GL(n2) generated by PSU(n), the transposition
operator τ , and a subgroup of T. Clearly, τ ∈ G and the circle group is inside G. By Lemma
3.10 again, there are no other subgroup of T lying inside G. The result follows. 2

The above theorem shows that a linear preserver of r⊥χ is a unit multiple of a linear

preserver of W⊥
χ when m < n. We believe that the same is true even for m = n. This is

known when χ = ε on Sn. Furthermore, by the result in Section 3.1 we have the following.

Proposition 4.2 Let 2 ≤ m = n and χ 6= ε (on Sm). Then the linear preservers of

r⊥χ form a group G in GL(n2). Moreover, G does not contain Λ0, Λ1, a T-conjugate of

{S ⊗ S̄ : S ∈ SL(n)}, a U1-conjugate of P0, a U1-conjugate of Q0, PSL(n), and, when

n > 2, G does not contain SO(n2 − 1, IR).

When m = n = 2, |H| = 1 or 2, and one needs only to consider the principal character
χ. We have the following result.

Proposition 4.3 Suppose m = n = 2 and χ is the principal character. A linear operator

L on M2 preserves r⊥χ if and only if there exist a unitary matrix U ∈ M2 and ξ ∈ C with

|ξ| = 1 such that one of the following holds.

(i) L is of the form A 7→ ξU∗AU or A 7→ ξU∗AtU .

(ii) H = S2 and L is of the form

A 7→ ξ[U∗AU + (±i− 1)(tr A)I/2] or A 7→ ξ[U∗AtU + (±i− 1)(tr A)I/2].

Proof. By Proposition 4.2, we know that the linear preservers of r⊥χ form a group G. Let

G0 be the largest connected Lie group contained in G. We show that G0 cannot contain the

groups SO(22, IR) or SU(2) ∗ SU(2).

13



First, consider the case H = {e}. To show that G0 does not contains SO(22, IR) or

SU(2) ∗ SU(2), let A = 2E11 + E22 and B = 2E11 − E22. Then there exists an operator

L ∈ SO(22, IR) ∩ SU(2) ∗ SU(2) such that L(A) = B. By Proposition 2.5, we have r⊥χ (A) =

9/4 > 2 = r⊥χ (B).

Next, consider the case H = S2. If G0 contains SO(22, IR), let A = 2I + i

(
0 i
−i 0

)
.

There exists L ∈ SO(22, IR) such that L(A) =
√

8E11 + i
√

2E22. By Proposition 2.5, we have

r⊥χ (A) =
√

5 < 4 = r⊥χ (L(A)), a contradiction.

Now, suppose G0 contains SU(2) ∗ SU(2). Then for any matrix A ∈ M2, we have

r⊥χ (A) = r⊥χ (s1E11 + s2E22), where s1 ≥ s2 ≥ 0 are the singular values of A. Thus, using

Proposition 2.5, we get r⊥χ (A) = (s2
1+s2

2)/2 = ‖A‖/2. It follows that G0 contains SU(22), the

group of linear preservers of ‖ · ‖. But then, SO(22, IR) ⊆ SU(22) ⊆ G, which is impossible
by the result in the last paragraph.

Finally, suppose L ∈ G∩T is such that L(X) = (a− b)(tr X)I/2+ bX with |a| = |b| = 1.

Assume that b = 1. Otherwise, replace L by L/b. If At =
(

t 1
1 t

)
, then r⊥χ (At) = r⊥χ (L(At))

for all t > 0. One easily sees that a = 1 if H = {e} and a = 1 ± i if H = S2. The result
follows. 2

Remark 4.4 By Proposition 4.2, when m = n > 2, proving that a linear preserver of r⊥χ is

a unit multiple of a linear preserver of W⊥
χ reduces to the following problems.

Problem 4.5 If m = n and χ 6= ε, show that G0 does not contain a T-conjugate of SU(n)∗
SU(n), i.e., extending Lemma 3.9.

Problem 4.6 If m = n, show that G ∩T is the circle group, i.e., extending Lemma 3.10.
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