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Abstract

Let V be the C*-algebra B(H) of bounded linear operators acting on
the Hilbert space H, or the Jordan algebra S(H) of self-adjoint operators in
B(H). For a fixed sequence (iy,...,%,) with i;,...,4, € {1,...,k}, define
a product of Ay,..., A, € Vby Ay x---x A = A;, ... A;,,. This includes
the usual product Ay % --- % A, = Ay --- A; and the Jordan triple product
Ax B = ABA as special cases. Denote the numerical range of A € V by
W(A) ={(Az,z) : x € H, (x,z) = 1}. If there is a unitary operator U and
a scalar p satisfying 4™ = 1 such that ¢ : V. — V has the form

A pU*AU  or Aw pU*A'U,
then ¢ is surjective and satisfies
W(Ap %% Ap) = W(p(Ay) % -+ % ¢(Ag)) for all Ay,..., A, € V.

It is shown that the converse is true under the assumption that one of the
terms in (iy,...,1,) is different from all other terms. In the finite dimen-
sional case, the converse can be proved without the surjective assumption
on ¢. An example is given to show that the assumption on (i, ...,4%,) is
necessary.

2000 Mathematics Subject Classification. 47A12, 47B15, 47B49,
15A60, 15A04, 15A18
Key words and phrases. Numerical range, Jordan triple product.

1 Introduction

Let H be a Hilbert space having dimension at least 2. Denote by B(H) the
C*-algebra of bounded linear operators acting on H, and S(H) the Jordan
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algebra of self-adjoint operators in B(H). If H has dimension n < oo, then
B(H) is identified with the algebra M,, of n X n complex matrices and S(H)
is identified with S,, the set of n x n complex Hermitian matrices. Define
the numerical range of A € B(H) by

W(A) ={(Az,z) :x € H, (z,z) = 1}.

Let U € B(H) be a unitary operator, and define a mapping ¢ on B(H) or
S(H) by
A—U*AU or Aw UA'U,

where A? is the transpose of A with respect to a fixed orthonormal basis.
(We will always use this interpretation of A’ in our discussion.) Then ¢ is a
bijective linear map preserving the numerical range, i.e., W (¢(A)) = W(A)
for all A.

There has been considerable interest in studying the converse of the
above statement. Pellegrini [8] obtained an interesting result on numerical
range preserving maps on general C*-algebra, which implies that a surjective
linear map ¢ : B(H) — B(H) preserving the numerical range must be of
the above form. Furthermore, by the result in [7], the same conclusion also
holds for linear maps ¢ acting on S(H). In [6], the author showed that
additive preservers of the numerical range of matrices must be linear and
has the standard form A — U*AU or A — U*A'U. In [2], it was shown
that a multiplicative map ¢ : M,, — M, satisfies W (¢(A)) = W(A) for
all A € M, if and only if ¢ has the form A — U*AU for some unitary
matrix U € M,. In [5], the authors replaced the condition that “¢ is
multiplicative and preserves the numerical range” on the surjective map
¢ : B(H) — B(H) by the condition that “W(AB) = W(¢(A)p(B)) for
all A, B”, and showed that such a map has the form A — +U*AU for
some unitary operator U € B(H). They also showed that a surjective
map ¢ : B(H) — B(H) satisfies W(ABA) = W(¢(A)p(B)¢p(A)) for all
A, B € B(H) if and only if ¢ has the form A +— pU*AU or A — puU*A'U
for some unitary operator U € B(H) and p € C with g® = 1. Similar results
for mappings on S(H) were also obtained. Recently, Gau and Li [3] obtained
a similar result for surjective maps ¢ : V.— V, where V = B(H) or S(H),
preserving the numerical range of the Jordan product, i.e., W(AB+ BA) =
W(p(A)p(B) + ¢(B)p(A)) for all A, B € V. Specifically, they showed that
such a map must be of the form A — +U*AU or A — £U*A'U for some
unitary operator U € B(H). Moreover, the surjective assumption can be
removed in the finite dimensional case.

It is interesting that all the results mentioned in the preceding paragraph
illustrate that under some mild assumptions, a numerical range preserving
map ¢ is a C*-isomorphism on B(H) or a Jordan isomorphism on S(H) up
to a scalar multiple. Following this line of study, we consider a product of
matrices involving k£ matrices with k& > 2 which includes the usual product



Ay x---x Ay = Ay ... Ag, and the Jordan triple product Ax B = ABA. We

prove the following result.

Theorem 1.1 Let (F, V) = (C,B(H)) or (R, S(H)). Fiz a positive integer
k and a finite sequence (i1, ..., im) such that {iy,...,in} ={1,...,k} and
there is an i, not equal to is for all other s. For Ay,..., Ay € V, let

Aps-oox Ay = Ay - A

A surjective map ¢ : V — V satisfies
W(p(Ay) s xp(Ag)) = W(Ay x---x Ay)  for all Ay,..., A, €V (1.1)

if and only if there exist a unitary operator U € B(H) and a scalar p € F
with ™ =1 such that one of the following holds.

(a) ¢ has the form A w— pU*AU.

(b) r=(m+1)/2, (i1, ,im) = (im,---,11), and ¢ has the form A —
uU* AU .

(C) V = SQ, (?:TJFI, ce ,im,il, R ,’l'Tfl) = (Z-Tfl, Ce ,il,im, R 77:7»+1) and
¢ has the form A w— uU*A'U.

Here A' denotes the transpose of A with respect to a certain orthonormal
basis of H. Furthermore, if the dimension of H is finite, then the surjective
assumption on ¢ can be removed.

Note that the assumption that there is i, & {i1, ..., 01,941, im}
is necessary. For example, if A« B = ABBA, then mappings ¢ satisfying
W(p(A) * ¢(B)) = W(A % B) may not have nice structure. For instance, ¢
can send all involutions, i.e., those operators X € B(H) such that X? = Iy,
to a fixed involution, and ¢(X) = X for other X.

For the usual products A; % --- % Ay = A;--- A and the Jordan triple
product Ax B = ABA, Hou and Di [5] have also obtained the result in The-
orem 1.1 with the surjective assumption. Evidently, our result is stronger
when H is finite dimensional.

It turns out that Theorem 1.1 can be deduced from the following special
case.

Theorem 1.2 Let (F, V) = (C,B(H)) or (R,S(H)). Suppose r,s and m
are nonnegative integers such that m —1 = r +s > 0. A surjective map

¢ : V — V satisfies
W(p(A) d(B)p(A)°) = W(A"BA®) forall A,B €V (1.2)

if and only if there exist a unitary operator U € B(H) and a scalar p € F
with ™ =1 such that one of the following condition holds.
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(a) ¢ has the form A — pU*AU.
(b) r=s and ¢ has the form A — pU*A'U.
(¢) V =S5 and ¢ has the form A pU*A'U.

Here A' denotes the transpose of A with respect to a certain orthonormal
basis of H. Furthermore, if the dimension of H is finite, then the surjective
assumption on ¢ can be removed.

We will present some auxiliary results in Section 2, and the proofs of
the theorems in Section 3.

2 Auxiliary results

For any =,y € H, denote by zy* the rank one operator (xy*)z = (z,y)z for
all z € H. Then for any operator A € B(H) with finite rank, A can be
written as z1y] + - - - + zy;, for some z;,y; € H. Define the trace of A by

tr(A) = (z1,91) + -+ (Th, Yr)-

If H is finite dimensional, tr (A) is equivalent to the usual matrix trace, i.e.,
the sum of all diagonal entries of the matrix A. For each positive integer
m, let

R™ ={pzx” : p € F and v € H with (z,2) =1=p"}.

Note that R! is the set of Hermitian rank one idempotents and for all m > 1,
R'CR™.

Proposition 2.1 Let V. = B(H) or S(H) and F = C or R accordingly.
Suppose m s a positive integer with m > 1, and ¢ : V. — V is a map
satisfying

tr (p(A)" *¢(B)) =tr (A™'B) forall A€ R™ and BEV. (2.1)

If H is finite dimensional, then ¢ is an invertible F-linear map. If H is
infinite dimensional and ¢(R™) = R™, then ¢ is F-linear.

Proof. Suppose H is finite dimensional. We use an argument similar to
that in the proof of Proposition 1.1 in [1]. Let V. = M, or S,,. For every
X = (z;;) € V, let Rx be the n* row vector

Rx = (T11,. -, T1n, P21, - -, T2y -+, Ty - - - 5 L)
and C'y the n? column vector
t
Cx = (x117x21"-7xn17x127'"7In2>"'axln7"'7xnn> .
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Then we deduce from (2.1) that for all A € R™ and B € V,
R¢(A)m—1 O¢(B) =tr (gb(A)m_lgb(Y)) = tr (Am_lB> = Rgm-1Cp. (2.2)

Note that we can choose A, ..., Ay in R™ such that {A7"! ... ,A;r;_l}
forms a basis for V. Let A and Ay be n? x n? matrices having rows
Rym—1, ... RAZL; and Ry(a,ym-1, ..., Ry(a _,ym-1, respectively. By (2.2),

A¢C¢(B) = ACB for all B € V.

Now take a basis {Bi,...,By2} in V and let Q and Q4 be the n? x n?
matrices having columns Cp,,...Cp , and Cyp,), ..., Cy(B,,), respectively.
Then Ay, = AQ. Note that both A and ) are invertible, so as Ay.
Therefore, for any B € V,

C¢(B) = A;IACB.
Hence, ¢ is invertible and F-linear.

Next, suppose H is infinite dimensional and ¢(R™) = R™. Take any
X,Y € V. For any z € H with (z,z) = 1, since R' C R™ = ¢(R™), there
is A € R™ such that ¢(A) = zz*. Then ¢(A)™ ! = xz* and

(X +Y)z,z) = tr(zz” (X +Y)) =tr (6(A)"o(X +Y))
tr (A" (X V) = b (A" 4 (A7)
Ecb( )" o(X () +tr (o(A)" T o(Y))

)
= (0(X)z,z) + (o(Y)z, 2).
Since this is true for all unit vector x € H, it follows that ¢(X +Y) =

o(X) + ¢(Y). Similarly, we can show that ¢(AX) = Ap(X) for all A € F
and X € V. ]

It is well known that if A € M, then W(A) is an elliptical disk with
the eigenvalues of A as foci. Moreover, if A € B(H) is unitarily similar to
Ay & Ay then W(A) is the convex hull of W(A;) UW (As). In particular, if
A has rank one, then A is unitarily similar to C' @ 0, where C' has a matrix

; hence W(A) = W(C) is an elliptical disk with 0

a b
0 0
as a focus. These facts are used in the proof of the following lemma, which
is an extension of a result in [5].

representation

Lemma 2.2 Let r and s be two nonnegative integers with r +s > 0. For
any B € B(H), B has rank one if and only if for all A € B(H), W(A" BA?)
1s an elliptical disk with zero as one of the foci.

Proof. Let B € B(H). If B is rank one, then so is A”BA®. Thus
W(A"BA?) is an elliptical disk with 0 as a focus by the discussion before
the lemma.



Conversely, suppose B has rank at least 2. Then there exist z,y € H
such that { Bz, By} is an orthonormal set. Let C' = z(Bzx)* —y(By)*. Then
BC = Bz(Bzx)* — By(By)* has numerical range [—1,1]. Suppose r = 0.
Since C has rank two, it has an operator matrix of the form C @ 0, where
Ci € My, with 2 < k < 4, with respect to an orthonormal basis of H. Let
D have operator matrix diag (1,...,k) @ 0 with respect to the same basis.
Then C'+ v D has operator matrix (Cy +vD;) @ 0. Except for finitely many
v € R, C7 + vD; has distinct eigenvalues so that there is A, satisfying
A3 = C+vD, and W(BA;) = W(BC +vBD). By [4, Problem 220], the
mapping v — Closure(W(BC + vBD)) is continuous. Since W(BC) =
[—1,1], there is a sufficiently small v > 0 such that W(BA?) is not an
elliptical disk with 0 as a focus. If s = 0, we can fix an orthonormal basis
of H, and apply the above argument to B? to show that there exists A such
that W(A"B) = W (B*(A")") is not an elliptical disk with 0 as a focus.

Now, suppose rs > 0. Let Hy be the subspace of H spanned by
{z,y, Bx, By}, which has dimension p € {2,3,4}. Suppose By € M, is
the compression of B on Hy. Then By = PU for some positive semi-definite
P ¢ S, with rank at least 2, and a unitary matrix U € M,. Let V € M, be a
unitary matrix such that V*UV is in diagonal form. Then V*PV is positive
semi-definite with rank at least 2. Note that the 2 x 2 principal minors of
V*PV are nonnegative, and their sum is the 2-elementary symmetric func-
tion of the eigenvalues of V* PV which is positive. So, at least one of the
2 x 2 principal minor of V*PV is nonzero. Since V*ByV is the product of
V*PV and the diagonal unitary matrix V*UV, the 2 x 2 principal minors
of V*ByV are unit multiples of those of V*PV. It follows that at least one
of the 2 x 2 principal minor of V*ByV is non-zero. Hence, there exists a
two dimensional subspace H; of H, such that the compression B; of B on
H, is invertible. Suppose {u,v} is an orthonormal basis of H; such that
By = auu® + buv* + cvv*. Then det(B;) = ac # 0. Let A = auu* + fov* so
that o"**a = 1 and 8" "*c = —1. Then A" BA® = uu* — vv* + o' #buv* and
W(A"BA?®) is an elliptical disk with foci 1, —1. |

Note that the analog of the above result for V.= S(H) does not hold
if H has dimension at least 3. For example, if Ax B = ABA and B =
uu® + vv* for some orthonormal set {u,v} in H, then W(ABA) is always a
line segment with 0 as an end point. To prove our main theorems, we need
a characterization of elements in R™ when V = S(H).

Lemma 2.3 Let r,s and m be nonnegative integers such that m — 1 =
r+s>0. Suppose X € S(H) is such that W(X™) = [0,1]. Then X € R™
if and only if the following holds:

(t) For any Y € S(H) satisfying W(Y™) =[0,1] = W(X"Y X*®), we have
{ZeSH):W(Z™)=[0,1], Y'ZY® =0y}
C{ZeSH):W(Zm™)=10,1], X"ZX®=0p}.



Proof. Since W(X™) = [0,1], X has an eigenvalue p satisfying pu™ = 1
with a unit eigenvector u. Assume that X # puu*. Then X = [u] & X5 on
H = span{u} & {u}*, where X, is non-zero. Let Y = [u] & Og,y.. Then
W(™) =[0,1] = W(X"YX?). Note that the operator Z = [0] & [+
satisfies W(Z™) = [0,1] and Y"ZY* = 0y but X" ZX* = [0] @ X" # 0p.

Conversely, suppose X = puu* on H = span{u} ® {u}*. For any
Y € S(H) satisfying W(Y™) = [0,1] = W(X"Y X®), we have Y = [u]| ® Y}

and W (Y{™) C [0, 1]. Suppose Z =

a2z
W(ZzZ™) =10,1] and Y"ZY*® = 0g. If rs > 0 then a = 0; if rs = 0 then

on span {u}®{u}t satisfying
21 ZQ
a =0 and z; = 0. In both cases, we see that X" ZX*® = 0y. [ |

3 Proofs of the main theorems

3.1 Proof of Theorem 1.2

We need the following lemma.

Lemma 3.1 Let V = M, or S,, and let ¢ : V — V be the map satisfying
(1.2). Then

P(R™) CR™. (3.1)

Proof. Each matrix A € R™ can be written as uU* E1,U for some unitary
matrix U and p € F with ™ = 1. It suffices to prove that ¢(E;) € R™.
For the other cases, we may replace the map ¢ by the map A — ¢(uU*AU).

We first consider the case when V = S,,. For ¢ = 1,...,n, let F; =
¢(Ey;). Since ELE;;ES = 0, for all i # j, we have

W(F FF7?) = W(EGEjE5) = W(0,) = {0}

It follows that F]F;F; =0, for all i # j.

We claim that F;F; = F;F; = 0, for all ¢ # j. If the claim holds, then
there are aq, ..., a, € R and a unitary matrix V such that F; = a;V*E; V.
Furthermore, as W (F™) = W(EZ) = [0,1], af* = 1. Therefore, ¢(E1;) =
F,=a;V*E;;V € R™ and the result follows.

When m is odd, as W(¢(I,)™) = W(I") = {1}, ¢(I,) = I,,. Then for
any 1 =1,...,n,

W(E) = W(o(1n) d(Eii)d(1n)") = WL, Euly) = W(Ei) = [0,1].

Thus, F; is positive semi-definite. Now for any ¢ # j, as F] [} F;’ = 0,, we
deduce that F;F; = F}F; = 0,.

When m is even, since W(¢(1,)™) = {1}, the eigenvalues of ¢(I,) can
be either 1 or —1 only. Write ¢(1,) = V*(I, & —1,)V for some unitary
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matrix V' and nonnegative integers p and ¢ such that p + ¢ = n. Then for
any i =1,...,n,

W(o(L)" o(Ei)p(1,)°) = W(I Eily) = W(E;) = [0, 1].

Since one of  and s is odd while the other one must be even, either ¢(1,,)F;
or F;p(1,,) is positive semi-definite. In both cases, we conclude that F; =
V*(P; & —Q;)V for some positive semi-definite matrices P, € H, and Q; €
H,. By the fact that F] F;F} = 0, we have P/ P; P} = 0, and Q;Q;Q; = 0,
for all ¢ # j. Then we conclude that P,P; = P;P; = 0, and Q;Q; = Q,Q; =
0, and hence F;F; = F;F; = 0,

So, our claim is proved and the lemma follows if V = S,,.

Next, we turn to the case when V = M,,. We divide the proof into a
sequence of assertions.

Assertion 1 Let D = diag (0,¢e?2, ..., e be such that 0 < 0 < --+ <
0, <m/m. Then

(D) =V (0] & T)V
for some unitary matrix V- € M, and invertible upper triangular matriz
TeM,;.

Proof. Note that D™ has n distinct eigenvalues and W (D™) is a polygon
with n vertices with zero as one of vertices. Since W(¢(D)™) = W (D™), it
follows that ¢(D)™ has n distinct eigenvalues, including one zero eigenvalue.
Then so as ¢(D). Therefore, we may write

¢(D):V*(8 :ET>V

for some x € C"~!, unitary matrix V and upper triangular matrix 7' € M,,_;
such that all eigenvalues of 7' are nonzero. Then T is invertible. Since
W(p(D)™) is a polygon with n vertices, ¢(D)™ is a normal matrix. Note
that an upper triangular matrix is normal if and only if it is diagonal.

Observe that )
m o [0 T

It follows that x = 0 as T is invertible, i.e., ¢(D) = V*([0] @ T)V. The
proof of the assertion is complete.

Assertion 2 The lemma holds if rs = 0.

Proof. Suppose r = 0. Then as E;;D° = 0,, where D is the matrix
defined in Assertion 1, ¢(Ey1)¢p(D)® = 0,. It follows that only the first
column of V*¢(E1;)V is nonzero, where V' is the unitary matrix defined in
Assertion 1. Hence, ¢(F1;) is a rank one matrix. Note that W (¢(E11)™) =
W(E®) = [0,1] and by the fact that a rank one matrix A € M, satisfies
W(A™) =0,1] if and only if A € R™, we conclude that ¢(F1;) € R™. The

proof is similar for s = 0. Thus, our assertion is true.
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Assertion 3 Suppose rs > 0. For any nonzero A = (Z Ow ) e M,,
n—1

(80 )=v (G ol)v

for some a € C and x,y € C*, where V is the unitary matriz defined in
Assertion 1. Furthermore, if A™ # 0, is Hermitian, then x = By for some
nonzero (3 € C.

Proof. Let D be the matrix defined in Assertion 1. Since D"AD?® = 0,
it follows that ¢(D)"¢(A)p(D)* = 0,. Thus

B

for some o« € C and z,y € C* !, where V is defined in Assertion 1. If
A™ is Hermitian, W (¢(A)™) = W(A™) C R. Hence, ¢(A)™ is Hermitian
too. Clearly, if one of  and y is the zero vector, say x = 0, then o« # 0
as A™ # 0,. Therefore, y must be the zero vector too. Then the assertion
holds.

Now we assume that both x and y are nonzero vectors. By induction,
we have

¢(A)’f =V* (aa’“J; aak:;x*> V forallk=1,2...,
k k—1

where the sequence {ay} satisfies a1 = aag + x*yar_1 with ag =0, a; =1
and as = «.

It is impossible to have both a,, and a,,_1 equal to zero, otherwise we
have a;,+1 = 0, and hence ¢(A)™ = 0,,. Then W(A™) = W(p(A)™) = {0},
which contradicts our assumption that A™ # 0,,. Thus, one of a,, or a,,_1
must be nonzero. In both cases, as A™ is Hermitian, we must have x = [y
for some nonzero [ € C. The proof of our assertion is complete.

Assertion 4 The lemma holds if rs > 0.

Proof. For i =1,...,n, let H; = 3(Ey; + Ej;). Then H™ is Hermitian
and H™ # 0,. By Assertion 3, we write

o) = v (2 )

Zi On—l

for some o, 3; € C and z; € C*! with 8; # 0. Denote by Z; the n x 2

matrix L0 and K; the 2 x 2 matrix @ b . Then
0 z 1 0

gb(HZ-):V*K(l) S) (O{ ﬁo) (é f)}vzvm(zv

1
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Observe that for any distinct ¢ < j, Hf H;H; = 0,,. Setting R;; = Z;Z;, we
have

On = ¢(H;) ¢(H;)p(H;)®
= V'Z(K.Ri)" ' K; [Ry K; R5] K (RulG)* Z;V.  (3.2)

Next we claim that for any 1 <7< j < n,

zizj =05 =0and z; #0 whenever z; # 0.

To see this, suppose z; # 0. Then the n x 2 matrix Z; has rank 2 and hence
the 2 x 2 matrix Z7Z; is invertible. Also both K; and K are invertible.
Then (3.2) holds only when

1 0 % ﬁj 1 0 _ *r7 . *r7 N __
(0 zf*zj) ( 1 0) (0 zz> = (ZiZ)R,(Z; %) = 0a

? J

Thus, we must have ;272 = z{z; = a; = 0. Finally, since W(¢(H;)™) =
W) # {0}, 2 0.

Now we must have z; = 0. Otherwise, o; = 2{z; = 0 and z; # 0 for
all j = 2,...,n. We can then further deduce that z;z; = 0 for all ¢ # j.
Thus, we have n nonzero orthogonal vectors zi,...,z2, in C*!, which is
impossible. Therefore, z; = 0 and hence ay # 0. Finally, as W (¢(H,)™) =
W(Hin) = [0, 1], OZT =1. So ¢(E11> = §Z§(H1) = Oélv*EHV € R™ and the
result follows. The proof of our assertion is complete.

Combining the assertions, we get the result for V. = M,, also. |

Proof of Theorem 1.2. First, consider the sufficiency part. If (a)
or (b) holds, then clearly ¢ satisfies (1.2). Suppose (c¢) holds. Then for
any A, B € Sy, there is a unitary V € M, such that V*AV = D is a real
diagonal matrix, and V*BV = (' is a real symmetric matrix. Thus,

$(A"BA®) = W(D'CD?) = W(D'CD?)

= W((D")'CY(D")") = W(¢(A)"¢(B)d(A)").

Next we turn to the necessity. Suppose V. = B(H) or S(H). Assume
that ¢ : V — V satisfies (1.2), and that ¢ is surjective if H is infinite
dimensional. We divide the proof into several steps.

Step 1. We show that ¢(R™) = R™ and ¢ is linear.

Suppose H is finite dimensional with no surjective assumption on ¢ is
assumed. By Lemma 3.1, ¢(R™) C R™. Suppose H is infinite dimensional.
For V = S(H), we have ¢(R™) = R™ by Lemma 2.3 and the surjectivity
of ¢. For V.= B(H), by Lemma 2.2 and the surjectivity of ¢, we see that ¢
maps the set of rank one operators onto itself; by the fact that a rank one
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operator A € B(H) satisfies W(A™) = [0, 1] if and only if A € R™, we also
have p(R™) = R™.

Now, for any A € R™ and B € V, both A"BA® and ¢(A)"¢(B)p(A)*
have rank at most one. As a result, W(A"BA®) is an elliptical disk with
foci tr (A"BA®) and 0, and W (¢p(A)"¢(B)p(A)*®) is an elliptical disk with
foci tr (¢p(A)"¢(B)p(A)*) and 0. Since W(A"BA®) = W(p(A) ¢(B)p(A)*),

we conclude that
tr (A" B) = tr (A"BA®) = tr (¢(A)"d(B)p(A)*) = tr (p(A) ™ d(B)) (3.3)

for all A € R™ and B € V. By Proposition 2.1, ¢ is linear. Moreover, if
H is finite dimensional, ¢ is invertible. Indeed, ¢! also satisfies (1.2), and
hence (3.1) and (3.3). So, p(R™) = R™.

Step 2. We show that ¢(Iy) = puly with ™ = 1.
For any * € H with (z,z) = 1, there are y € H and u € F with
(y,y) = p™ = 1 such that ¢(uyy*) = xzx*. Then by (3.3),

(O(In)z,x) = tr(za"¢(Iy)) = tr ((z2*)" ' o(In)) = tr (d(uyy" )" ¢(Ir))

= tr((pyy")" py) =" (y,y) = p

It follows that W(p(Iy)) C {p' : p™ = 1} = {u : p™ = 1}. By the
convexity of numerical range, W (¢(Iy)) is a singleton set. Thus, ¢(Ig) =
uly for some p™ = 1.

Step 3. We show that ¢ has the asserted form.
Using the result in Step 2, and replacing ¢ by the map A — u~1¢(A),
we have ¢(Iy) = Iy. Furthermore,

W(o(A)) =W(o(Iu) ¢(A)d(In)*) = W (I Aly) = W(A) forall A€ V.
Since ¢ is linear, by the results in [7, 8] ¢ has the form
A UAU or A UAU

for some unitary operator W € B(H).
Step 4. It remains to show that r = s when V # S5 and ¢ has the form
A U*A'U.
For any A,B € V,
W(ABA™) = W((A")" B'(A"®) = W(U*(A")" B*(A")*U)
= W(o(A)"¢(B)p(A)°) = W(A"BA®).

For V = B(H), let {u,v} be an orthonormal set in H, A = uu* 4+ uv* +
vv* and B = vv*. Then

W (suv* +vv*) = W(A’BA") = W(A"BA?®) = W (ruv® + vv™).

11



Thus, r = s and the result follows.

Now consider V = S(H), where H has dimension at least 3. Suppose

r # s. Without lose of generality, we assume that r > s. Let A, B € S(H)
be such that

A =D®0 and A°BA°=FE®QO,

1 1

where D = diag(3,2,1) and E=| 1 0

1

—1

with respect to a suitable

O = S,

orthonormal basis. Then

W(DE @ 0) = W(A"BA®) = W(A*BA") = W(ED @ 0)

~W(DE®0) = W(DE & 0).

Therefore, W (DE@&0) is symmetric about the real axis. But it is impossible

as the eigenvalues of DE — ED is 2i, \/‘5’2’12' and 7\/23711-. Hence {Imz : z €

W(DE®0,_3)} = [(—v/3—1)/2,2] so that the two horizontal support lines
of W(DE @®0) are {z : Imz = 2} and {2z : Imz = (—+/3 — 1)/2}, which is
a contradiction. Therefore, we must have r = s.

The proof of our theorem is complete. [ |

3.2 Proof of Theorem 1.1

If (a) holds then ¢ clearly satisfies (1.1). Suppose (b) holds. Then for any
Ay, ..., Ax € V, we have

W(p(Ar) * - -+ % ¢(Ar)) = W(o(As) - - - 0(As,))
= WAL AL U) = WA, A))
Suppose (c¢) holds. Note that X,Y € M, have the same numerical range if
and only if the two matrices have the same eigenvalues and the same Frobe-
nius norm, equivalently, tr X = trY, det(X) = det(Y) and tr (XX*) =
tr (YY*). One readily checks that these conditions are satisfied for X =
Ay s % Ay and Y = ¢(Aq) * -+ * ¢(Ay) for any Ay, ..., Ax € Sy if (¢)
holds. So, condition (1.1) follows.

Next, we turn to the necessity. Applying Theorem 1.2 with A; = B and
A;, = A for all other s # r, we conclude that there exist a unitary operator
U € B(H) and a scalar p € F with p™ = 1 such that one of the following
holds.

(a) A— pU*AU for all A€ V.
(b) r = (m+1)/2 and ¢ has the form A — pU*A'U.
(¢) V=5, and ¢ has the form A — pU*A'U.
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It remains to prove that (iy11, -« lmy i1y« « s br—1) = (Gt ooy 81, Gy -« -y G 1)

if (b) or (c¢) holds.

Evidently, the result holds for £ = 2 as we must have i1 = --- =1, =
lpy1 = -+ = i, in this case. Now we assume that k£ > 3. Then we have

W(A, - Ai,) = W(O(AL) - 6(A,,) = WU AL - AL U)
S WAL AL = WA, Ay).

By taking A; = R, where R is a Hermitian rank one idempotent, and
considering the foci of the elliptical disks for the above numerical ranges,
we conclude that

im

ivpr - Ay Aiy - Ay R) =tr (A - A;_ RA
A RA, - Ay) —tr(A

irer t Aiy)
o An Ay A R).

Tm Trg1 ip_1 ip—1
Since R can be arbitrary Hermitian rank one idempotent, by the fact that X
and Y are equal if tr (X R) = tr (Y R) for all Hermitian rank one idempotent

R, we deduce that

Ay A Aiy o Ay = Ay A A A (3.4)

for all choices of Ay, ..., As.

We now use a similar argument in the proof of in [1,Theorem 2.1].
We give the details for the sake of completeness. For simplify, we re-
name (4,41, .-+, 4m, 41, ---54—-1) by (J1,...,Jm—1) and we have to show that
(J1s- -+ Jm-1) = (Gm=1,--.,71). Suppose (3.4) is not true. Let 1 < p < m/2
be the smallest integer such that j, # jn—p. For any A > 0, let D =
diag (A, 1) and S be some 2 x 2 symmetric matrix with positive entries.
Fix a two dimensional subspace H; in H and take A; = D @ [ and
Aj, = S @ Iy, for all other j; # j, on H = H, © Hi. Then

A . Ajm—p — (Dd1 SS1 Dd2 SSQ . qussq) D IHIL

Jp

for positive integers d;, s;. Note that

s Nie;  Ndif; o Mg, f;
d; os; __ 7 % si Ndi __ ? ?
DS-(gi h) and SD-(Adigi )

for some positive numbers e;, f;, g; and h;. We check that the (1,2) entry
of D4 Ss1... D%S% is a polynomial of degree d; + - -- + d, in A, while the
(1,2) entry of S%D% ... S%1 D% is a polynomial of degree dy + - - - + d,. So,
there is A > 0 such that

Ay Ay, = (DBS* . DUS*) @ Iy

#(SD" - SUDR) @ Iy = Ay, A

13



It follows that A;, ---A; | # A, ---Aj, whichis a contradiction. Hence,

(J1s -+ Jm-1) = (Jm-1,--.,71) as asserted. |
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