THE JOINT ESSENTIAL NUMERICAL RANGE OF OPERATORS: CONVEXITY AND RELATED RESULTS

Chi-Kwong Li *and Yiu-Tung Poon[†]

Abstract

Let $W(\mathbf{A})$ and $W_e(\mathbf{A})$ be the joint numerical range and the joint essential numerical range of an m-tuple of self-adjoint operators $\mathbf{A} = (A_1, \dots, A_m)$ acting on an infinite dimensional Hilbert space, respectively. In this paper, it is shown that $W_e(\mathbf{A})$ is always convex and admits many equivalent formulations. In particular, for any fixed $i \in \{1, \dots, m\}$, $W_e(\mathbf{A})$ can be obtained as the intersection of all sets of the form

$$\mathbf{cl}(W(A_1,\ldots,A_{i+1},A_i+F,A_{i+1},\ldots,A_m)),$$

where $F = F^*$ has finite rank Moreover, it is shown that the closure $\mathbf{cl}(W(\mathbf{A}))$ of $W(\mathbf{A})$ is always star-shaped with the elements in $W_e(\mathbf{A})$ as star centers. Although $\mathbf{cl}(W(\mathbf{A}))$ is usually not convex, an analog of the separation theorem is obtained, namely, for any element $\mathbf{d} \notin \mathbf{cl}(W(\mathbf{A}))$, there is a linear functional f such that $f(\mathbf{d}) > \sup\{f(\mathbf{a}) : \mathbf{a} \in \mathbf{cl}(W(\tilde{\mathbf{A}}))\}$, where $\tilde{\mathbf{A}}$ is obtained from \mathbf{A} by perturbing one of the components A_i by a finite rank self-adjoint operator. Other results on $W(\mathbf{A})$ and $W_e(\mathbf{A})$ extending those on a single operator are obtained.

AMS Subject Classification 47A12, 47A13, 47A55.

Keywords Joint essential numerical range, self-adjoint operator, Hilbert space.

^{*}Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 23185, USA (ckli@math.wm.edu). Li is an honorary professor of the University of Hong Kong. His research was partially supported by an NSF grant and the William and Mary Plumeri Award

[†]Department of Mathematics, Iowa State University, Ames, IA (ytpoon@iastate.edu).

1 Introduction

Let $\mathcal{B}(\mathcal{H})$ denote the algebra of bounded linear operators acting on a complex Hilbert space \mathcal{H} . The numerical range of $A \in \mathcal{B}(\mathcal{H})$ is defined as

$$W(A) = \{ \langle A\mathbf{x}, \mathbf{x} \rangle : \mathbf{x} \in \mathcal{H}, \ \langle \mathbf{x}, \mathbf{x} \rangle = 1 \},$$

which is useful in studying operators; see [10, 11, 22, 24] and [25, Chapter 1]. Let $\mathcal{S}(\mathcal{H})$ denote the set of self-adjoint operators in $\mathcal{B}(\mathcal{H})$. Since every $A \in \mathcal{B}(\mathcal{H})$ admits a decomposition $A = A_1 + iA_2$ with $A_1, A_2 \in \mathcal{S}(\mathcal{H})$, we can identify W(A) with

$$\{(\langle A_1\mathbf{x}, \mathbf{x} \rangle, \langle A_2\mathbf{x}, \mathbf{x} \rangle) : \mathbf{x} \in \mathcal{H}, \ \langle \mathbf{x}, \mathbf{x} \rangle = 1\} \subseteq \mathbf{R}^2.$$

This leads to the *joint numerical range* of $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{S}(\mathcal{H})^m$,

$$W(\mathbf{A}) = \{(\langle A_1 \mathbf{x}, \mathbf{x} \rangle, \cdots, \langle A_m \mathbf{x}, \mathbf{x} \rangle) : \mathbf{x} \in \mathcal{H}, \ \langle \mathbf{x}, \mathbf{x} \rangle = 1\} \subseteq \mathbf{R}^m,$$

which has been studied by many researchers in order to understand the joint behavior of several operators A_1, \ldots, A_m . One may see [1, 5, 12, 14, 15, 16, 19, 23, 28, 31, 33, 35] and their references for the background and many applications of the joint numerical range.

Let $\mathcal{F}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ be the sets of finite rank and compact operators in $\mathcal{B}(\mathcal{H})$. In the study of finite rank or compact perturbations of operators, researchers consider the *joint essential numerical range* of $\mathbf{A} \in \mathcal{S}(\mathcal{H})^m$ defined by

$$W_e(\mathbf{A}) = \bigcap \{ \mathbf{cl}(W(\mathbf{A} + \mathbf{K})) : \mathbf{K} = (K_1, \dots, K_m) \in \mathcal{K}(\mathcal{H})^m \cap \mathcal{S}(\mathcal{H})^m \}.$$

Here $\mathbf{cl}(S)$ denotes the closure of the set S. For m=2, $W_e(\mathbf{A})$ can be identified with the essential numerical range of $A=A_1+iA_2\in\mathcal{B}(\mathcal{H})$ defined by

$$W_e(A) = \bigcap \{ \mathbf{cl}(W(A+K)) : K \in \mathcal{K}(\mathcal{H}) \}.$$

One may see [2, 3, 6, 7, 13, 18, 20, 21, 26, 27, 30, 32, 36, 37] for many interesting results on $W_e(A)$ and $W_e(A)$.

In theoretical study as well as applications, it is desirable to deal with \mathbf{A} such that $W(\mathbf{A})$ or $\mathbf{cl}(W(\mathbf{A}))$ is convex. For example, let $\mathbf{A} = (A_1, \dots, A_m)$. If $\mathbf{cl}(W(\mathbf{A}))$ is convex, one can apply the separation theorem to show that $\mathbf{0} \notin \mathbf{cl}(W(\mathbf{A}))$ if and only if there exist r > 0 and $\mathbf{c} = (c_1, \dots, c_m) \in \mathbf{R}^m$ such that $(\sum_{i=1}^m c_i A_i) > rI_{\mathcal{H}}$. Unfortunately, $\mathbf{cl}(W(\mathbf{A}))$ is not always convex. Here are some results concerning the convexity of $W(\mathbf{A})$ and $\mathbf{cl}(W(\mathbf{A}))$, and related to $W_e(\mathbf{A})$; for example, see [5, 10, 11, 36, 21, 29, 31] and their references.

- (P1) [31] $W(A_1, \ldots, A_m)$ is convex if
 - (a) span $\{I, A_1, \ldots, A_m\}$ has dimension at most 3, or
 - (b) dim $\mathcal{H} \geq 3$ and span $\{I, A_1, \dots, A_m\}$ has dimension at most 4.
- (P2) [31] For any $A_1, A_2, A_3 \in \mathcal{S}(\mathcal{H})$ such that span $\{I, A_1, A_2, A_3\}$ has dimension 4, there is always an $A_4 \in \mathcal{S}(\mathcal{H})$ for which $W(A_1, \ldots, A_4)$ is not convex.
- (P3) [31] If $m \geq 4$ then there exists $\mathbf{A} \in \mathcal{S}(\mathcal{H})^m$ such that $W(\mathbf{A})$ is non-convex.
- (P4) For any positive integer m and any $\mathbf{A} \in \mathcal{S}(\mathcal{H})^m$, $W_e(\mathbf{A})$ is a compact set contained in $W(\mathbf{A})$. If $\operatorname{span}\{I, A_1, \ldots, A_m\}$ has dimension at most 4, then $W_e(\mathbf{A})$ is convex.
- (P5) [36] For $S \subseteq \mathbf{R}^m$, let $\operatorname{Ext}(S)$ be the set of all points in S that does not lie in the open line segment joining two distinct points in S. Then $\operatorname{Ext}(\operatorname{\mathbf{cl}}(W(\mathbf{A}))) \subseteq \operatorname{Ext}(W(\mathbf{A})) \cup \operatorname{Ext}(W_e(\mathbf{A}))$.

We remark that (P1)-(P3) also hold if we replace $W(\mathbf{A})$ by $\mathbf{cl}(W(\mathbf{A}))$. In view of (P2) and (P3), if m > 3, then for $\mathbf{A} \in \mathcal{S}(\mathcal{H})^m$ and $\mathbf{K} \in \mathcal{K}(\mathcal{H})^m \cap \mathcal{S}(\mathcal{H})^m$ the set $\mathbf{cl}(W(\mathbf{A} + \mathbf{K}))$ is usually non-convex. Since $W_e(\mathbf{A})$ is the intersection of non-convex sets, one does not expect the set $W_e(\mathbf{A})$ to be convex. This might be the reason why the convexity of $W_e(\mathbf{A})$ is seldom discussed for m > 3. In fact, some researchers have studied different geometrical properties of $W_e(\mathbf{A})$ under the assumption that $W_e(\mathbf{A})$ is convex, and some researchers studied $W_e(\mathbf{A})$ for different classes of operators without discussing their convexity; for example, see [6, 26, 27, 30, 32].

In this paper, we prove the rather unexpected result that $W_e(\mathbf{A})$ is always convex. Moreover, it is shown that the closure $\mathbf{cl}(W(\mathbf{A}))$ of $W(\mathbf{A})$ is always star-shaped with the elements in $W_e(\mathbf{A})$ as star centers. Many results relating $W_e(\mathbf{A})$ and $W(\mathbf{A})$ are also obtained. Our paper is organized as follows.

In Section 2, we extend the results in [21] to establish several equivalent formulations of the essential joint numerical range for $\mathbf{A} \in \mathcal{S}(\mathcal{H})^m$. One key obstacle for such an extension is the fact that $W(\mathbf{A})$ may not be convex. To get around this problem, we show that $\mathbf{cl}(W(\mathbf{A}))$ is star-shaped. The star-shapedness of $\mathbf{cl}(W(\mathbf{A}))$ and the equivalent formulations of $W_e(\mathbf{A})$ in Section 2 lead to our main result that $W_e(\mathbf{A})$ is convex and its elements are

star centers of the set $\mathbf{cl}(W(\mathbf{A}))$, which is presented in Section 3. With the convexity theorem, we obtain additional descriptions of $W_e(\mathbf{A})$ in Section 4 in terms of the perturbations of one of the components of \mathbf{A} , and also in terms of linear combinations of the components of \mathbf{A} . For example, we show that $W_e(A_1, \ldots, A_m)$ is equal to the sets

$$\cap \{\mathbf{cl}(W(A_1,\ldots,A_{i-1},A_i+F,A_{i+1},\ldots,A_m): F \in \mathcal{F}(\mathcal{H}) \cap \mathcal{S}(\mathcal{H})\}$$

and

$$\left\{ (a_1, \dots, a_m) : \sum_{j=1}^m c_j a_j \in W_e \left(\sum_{j=1}^m c_j A_j \right) \text{ for all } (c_1, \dots, c_m) \in \Omega \right\},\,$$

where $\Omega = \left\{ (c_1, \dots, c_m) \in \mathbf{R}^m : \sum_{j=1}^m c_j^2 = 1 \right\}$. Also, we obtain an analog of the separation theorem for the not necessarily convex set $\mathbf{cl}(W(\mathbf{A}))$, namely, for any element $\mathbf{d} \notin \mathbf{cl}(W(\mathbf{A}))$, there is a linear functional f such that $f(\mathbf{d}) > \sup\{f(\mathbf{a}) : \mathbf{a} \in \mathbf{cl}(W(\tilde{\mathbf{A}}))\}$, where $\tilde{\mathbf{A}}$ is obtained from \mathbf{A} by perturbing one of the components A_j by a finite rank self-adjoint operator. In Section 5, we present additional results on $W(\mathbf{A})$ and $W_e(\mathbf{A})$. For instance, $W_e(\mathbf{A}) = \mathbf{cl}(W(\mathbf{A}))$ if and only if the extreme points of $W(\mathbf{A})$ are contained in $W_e(\mathbf{A})$; the convex hull of $\mathbf{cl}(W(\mathbf{A}))$ can always be realized the the joint essential numerical range of $(\tilde{A}_1, \dots, \tilde{A}_m)$ for linear operators $\tilde{A}_1, \dots, \tilde{A}_m$ acting on a separable Hilbert space.

In our discussion, we always assume that \mathcal{H} is infinite-dimensional. For any vector $\mathbf{x} \in \mathcal{H}$ and $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{S}(\mathcal{H})^m$, we will use the following notation

$$\langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle = (\langle A_1\mathbf{x}, \mathbf{x} \rangle, \dots, \langle A_m\mathbf{x}, \mathbf{x} \rangle).$$

Furthermore, \mathbf{R}^m will be used to denote the inner product space of $1 \times m$ real vectors with the usual inner product $\langle \mathbf{x}, \mathbf{y} \rangle$.

2 Equivalent formulations of $W_e(\mathbf{A})$

Following [21, Theorem 5.1] and its corollary on a single operator $A \in \mathcal{B}(\mathcal{H})$, we obtain several equivalent formulations of $W_e(\mathbf{A})$.

Theorem 2.1 Let $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{S}(\mathcal{H})^m$. The following conditions are equivalent for a real vector $\mathbf{a} = (a_1, \dots, a_m)$.

(1)
$$\mathbf{a} \in W_e(\mathbf{A}) = \bigcap \{ \mathbf{cl}(W(\mathbf{A} + \mathbf{K})) : \mathbf{K} \in \mathcal{K}(\mathcal{H})^m \cap \mathcal{S}(\mathcal{H})^m \}.$$

(2)
$$\mathbf{a} \in \cap \{\mathbf{cl}(W(\mathbf{A} + \mathbf{F})) : \mathbf{F} \in \mathcal{F}(\mathcal{H})^m \cap \mathcal{S}(\mathcal{H})^m\}.$$

(3) There is an orthonormal sequence of vectors $\{\mathbf{x}_n\}_{n=1}^{\infty} \in \mathcal{H}$ such that

$$\lim_{n\to\infty}\langle\mathbf{A}\mathbf{x}_n,\mathbf{x}_n\rangle=\mathbf{a}.$$

(4) There is a sequence of unit vectors $\{\mathbf{x}_n\}_{n=1}^{\infty} \in \mathcal{H}$ converging weakly to $\mathbf{0}$ in \mathcal{H} such that

$$\lim_{n\to\infty}\langle\mathbf{A}\mathbf{x}_n,\mathbf{x}_n\rangle=\mathbf{a}.$$

(5) There is an infinite-dimensional projection $P \in \mathcal{S}(\mathcal{H})$ such that

$$P(A_j - a_j I)P \in \mathcal{K}(\mathcal{H})$$
 for $j = 1, ..., k$.

Most of the argument in [21] can be applied here except for one crucial step, where the convexity of $W(\mathbf{A})$ for m=2 is needed. Since $W(\mathbf{A})$ may not be convex for m>3, we need the following auxiliary result to overcome the obstacle. As a byproduct, it shows that $\mathbf{cl}(W(\mathbf{A}))$ is star-shaped.

Theorem 2.2 Let \mathbf{A} satisfy the hypothesis of Theorem 2.1, and let $W_3(\mathbf{A})$ be the set of real vectors \mathbf{a} satisfying condition (3) of Theorem 2.1. Then $W_3(\mathbf{A})$ is non-empty and closed. Moreover, each element $\mathbf{a} \in W_3(\mathbf{A})$ is a star center of $\mathbf{cl}(W(\mathbf{A}))$, i.e., for any $\mathbf{b} \in \mathbf{cl}(W(\mathbf{A}))$ we have $(1-t)\mathbf{a}+t\mathbf{b} \in \mathbf{cl}(W(\mathbf{A}))$ for all $0 \le t \le 1$.

Proof. To prove that $W_3(\mathbf{A})$ is non-empty, let $\{\mathbf{x}_n\}_{n=1}^{\infty}$ be an orthonormal sequence of vectors in \mathcal{H} . Then the sequence $\{\langle \mathbf{A}\mathbf{x}_n, \mathbf{x}_n \rangle\}_{n=1}^{\infty}$ is bounded. By choosing a subsequence, if necessary, we can assume that $\langle \mathbf{A}\mathbf{x}_n, \mathbf{x}_n \rangle$ converges. Hence, $W_3(\mathbf{A})$ is non-empty.

Next, we show that $W_3(\mathbf{A})$ is closed. Suppose $\mathbf{a} \in \mathbf{cl}(W_3(\mathbf{A}))$. Then for each $n \geq 1$, there exists an orthonormal sequence $\{\mathbf{x}_k^n\}_{k=1}^{\infty}$ such that $\lim_{k \to \infty} \langle \mathbf{A} \mathbf{x}_k^n, \mathbf{x}_k^n \rangle = \mathbf{a}^n \in \mathbf{R}^m$ and $\lim_{n \to \infty} \mathbf{a}^n = \mathbf{a}$. Let $\delta_n = 1/(4n^2)$. By going to subsequences, if necessary, we may assume that $\|\langle \mathbf{A} \mathbf{x}_k^n, \mathbf{x}_k^n \rangle - \mathbf{a}\| < \delta_n$ for all n, k. We may also assume that $\|A_1\|^2 + \cdots + \|A_m\|^2 \leq 1$. Then $\|\langle \mathbf{A} \mathbf{x}, \mathbf{y} \rangle\| \leq \|\mathbf{x}\| \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{H}$.

Choose $\mathbf{x}_1 = \mathbf{x}_1^1$. Then we have $\|\langle \mathbf{A}\mathbf{x}_1, \mathbf{x}_1 \rangle - \mathbf{a}\| < 1$. Suppose we have chosen $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ orthonormal, with $\|\langle \mathbf{A}\mathbf{x}_k, \mathbf{x}_k \rangle - \mathbf{a}\| < 1/k$ for $1 \le k \le n$. Then choose N such that for all $1 \le k \le n$, we have

$$|\langle \mathbf{x}_k, \mathbf{x}_N^{n+1} \rangle|, \ \|\langle \mathbf{A}\mathbf{x}_k, \mathbf{x}_N^{n+1} \rangle\| < \delta_{n+1}.$$

Let
$$\mathbf{y} = \mathbf{x}_N^{n+1} - \sum_{k=1}^n \langle \mathbf{x}_N^{n+1}, \mathbf{x}_k \rangle \mathbf{x}_k$$
. Then

$$\|\mathbf{y} - \mathbf{x}_N^{n+1}\| \le n\delta_{n+1} \Rightarrow 1 - n\delta_{n+1} \le \|\mathbf{y}\| \le 1 + n\delta_{n+1}.$$

Therefore,

$$\begin{aligned} &\|\langle \mathbf{A}\mathbf{y}, \mathbf{y} \rangle - \mathbf{a}\| \\ &\leq &\|\langle \mathbf{A}\left(\mathbf{y} - \mathbf{x}_N^{n+1}\right), \mathbf{y} \rangle\| + \|\langle \mathbf{A}\mathbf{x}_N^{n+1}, \mathbf{y} - \mathbf{x}_N^{n+1} \rangle\| + \|\langle \mathbf{A}\mathbf{x}_N^{n+1}, \mathbf{x}_N^{n+1} \rangle - \mathbf{a}\| \\ &\leq &\|\mathbf{y} - \mathbf{x}_N^{n+1}\|(\|\mathbf{y}\| + \|\mathbf{x}_N^{n+1}\|) + \delta_{n+1} \\ &\leq &(2n+2)\delta_{n+1}. \end{aligned}$$

Let $\mathbf{x}_{n+1} = \mathbf{y}/\|\mathbf{y}\|$. Then

$$\|\mathbf{x}_{n+1} - \mathbf{y}\| = |1 - \|\mathbf{y}\|| \le n\delta_{n+1}.$$

Hence, $\{\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{x}_{n+1}\}$ is an orthonormal set and

$$\|\langle \mathbf{A}\mathbf{x}_{n+1}, \mathbf{x}_{n+1} \rangle - \mathbf{a}\| \le \|\mathbf{y} - \mathbf{x}_{n+1}\|(\|\mathbf{y}\| + \|\mathbf{x}_{n+1}\|) + (2n+2)\delta_{n+1} \le (4n+3)\delta_{n+1} < 1/(n+1).$$

To prove the last assertion, let $\mathbf{a} \in W_3(\mathbf{A})$ and $\mathbf{b} \in \mathbf{cl}(W(\mathbf{A}))$. Suppose $\{\mathbf{x}_n\}$ is an orthonormal sequence in \mathcal{H} such that $\langle A\mathbf{x}_n, \mathbf{x}_n \rangle \to \mathbf{a}$. For $0 \le t \le 1$, we are going to show that $(1-t)\mathbf{a}+t\mathbf{b} \in \mathbf{cl}(W(\mathbf{A}))$. Given $\varepsilon > 0$, let y be a unit vector in \mathcal{H} such that $\|\langle A\mathbf{y}, \mathbf{y} \rangle - \mathbf{b} \| < \varepsilon$. Choose n such that $\|\langle A\mathbf{x}_n, \mathbf{x}_n \rangle - \mathbf{a} \| < \varepsilon$ and $\|\langle A\mathbf{y}, \mathbf{x}_n \rangle \| < \varepsilon$. Choose $\theta \in \mathbf{R}$ such that $\langle e^{i\theta}\mathbf{y}, \mathbf{x}_n \rangle$ is imaginary. Let $\mathbf{z} = \sqrt{t}e^{i\theta}\mathbf{y} + \sqrt{1-t}\mathbf{x}_n$ Then we have

$$\langle \mathbf{z}, \mathbf{z} \rangle = t \langle \mathbf{y}, \mathbf{y} \rangle + (1 - t) \langle \mathbf{x}_n, \mathbf{x}_n \rangle + 2\sqrt{t}\sqrt{1 - t} \left(\langle e^{i\theta} \mathbf{y}, \mathbf{x}_n \rangle + \langle \mathbf{x}_n, e^{i\theta} \mathbf{y} \rangle \right) = 1$$

and

$$\|\langle \mathbf{A}\mathbf{z}, \mathbf{z} \rangle - ((1 - t)\mathbf{a} + t\mathbf{b}) \|$$

$$\leq (1 - t)\|\langle \mathbf{A}\mathbf{x}_{n}, \mathbf{x}_{n} \rangle - \mathbf{a}\| + t\|\langle \mathbf{A}\mathbf{y}, \mathbf{y} \rangle - \mathbf{b}\|$$

$$+ \sqrt{t}\sqrt{1 - t}\|\langle e^{i\theta}\mathbf{A}\mathbf{y}, \mathbf{x}_{n} \rangle + \langle \mathbf{A}\mathbf{x}_{n}, e^{i\theta}\mathbf{y} \rangle \|$$

$$\leq 2\varepsilon.$$

Therefore,
$$(1-t)\mathbf{a} + t\mathbf{b} \in \mathbf{cl}(W(\mathbf{A})).$$

The referee indicated that $W_3(\mathbf{A})$ is clearly closed, and a short proof is possible. We include the detailed proof for the sake of completeness and easy reference.

Proof of Theorem 2.1. For j = 2, 3, 4, 5, let $W_j(\mathbf{A})$ be the set of a satisfying condition (j). Clearly, we have

$$W_5(\mathbf{A}) \subseteq W_3(\mathbf{A}) \subseteq W_4(\mathbf{A}) \subseteq W_e(\mathbf{A}) \subseteq W_2(\mathbf{A}).$$

Suppose $\mathbf{a} \in W_2(\mathbf{A})$. We are going to show that $\mathbf{a} \in W_5(\mathbf{A})$. Without loss of generality, we may assume $\mathbf{a} = \mathbf{0}$.

Since $\mathbf{0} \in W_2(\mathbf{A}) \subseteq \mathbf{cl}(W(\mathbf{A}))$, there exists a unit vector $\mathbf{x}_1 \in \mathcal{H}$ such that $\|\langle \mathbf{A}\mathbf{x}_1, \mathbf{x}_1 \rangle\| < 1/2$. Suppose we have an orthonormal set of vectors $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ such that $\|\langle \mathbf{A}\mathbf{x}_n, \mathbf{x}_n \rangle\| < 1/2^n$. Let Q be the orthogonal projection of \mathcal{H} onto the subspace S spanned by $\mathbf{x}_1, \dots, \mathbf{x}_n$ and

$$\mathbf{B} = ((I - Q)A_1(I - Q)|_{S^{\perp}}, \dots, (I - Q)A_m(I - Q)|_{S^{\perp}}).$$

Let $\mathbf{b} = (b_1, \dots, b_m) \in W_3(\mathbf{B})$ and $\mathbf{b}I_S = (b_1I_S, \dots, b_mI_S)$. Then for $\overline{Q} = I - Q$, we have

$$\mathbf{b}I_S \oplus \mathbf{B} = (b_1Q + \overline{Q}A_1\overline{Q}, \dots, b_mQ + \overline{Q}A_m\overline{Q}) = \mathbf{A} + \mathbf{F}$$

for some $\mathbf{F} \in \mathcal{F}(\mathcal{H})^m \cap \mathcal{S}(\mathcal{H})^m$. Therefore, $\mathbf{0} \in \mathbf{cl}(W(\mathbf{b}I_S \oplus \mathbf{B}))$. Hence, there exists a unit vector $\mathbf{x} \in \mathcal{H}$ such that $\|\langle (\mathbf{A} + \mathbf{F})\mathbf{x}, \mathbf{x} \rangle\| < 1/(2^{n+2})$. Let $\mathbf{x} = \mathbf{y} + \mathbf{z}$, where $\mathbf{y} \in S$ and $\mathbf{z} \in S^{\perp}$. Then $\|\mathbf{y}\|^2 + \|\mathbf{z}\|^2 = \|\mathbf{x}\|^2 = 1$. If $\mathbf{z} = \mathbf{0}$, then $\langle (\mathbf{A} + \mathbf{F})\mathbf{x}, \mathbf{x} \rangle = \mathbf{b} \in W_3(\mathbf{B}) \subseteq \mathbf{cl}(W(\mathbf{B}))$. If $\mathbf{z} \neq \mathbf{0}$, then by Theorem 2.2, we have

$$\langle (\mathbf{A} + \mathbf{F})\mathbf{x}, \mathbf{x} \rangle = \|\mathbf{y}\|^2 \mathbf{b} + \|\mathbf{z}\|^2 \langle \mathbf{B} \left(\frac{\mathbf{z}}{\|\mathbf{z}\|} \right), \left(\frac{\mathbf{z}}{\|\mathbf{z}\|} \right) \rangle \in \mathbf{cl} \left(W(\mathbf{B}) \right).$$

So there exists a unit vector $\mathbf{x}_{n+1} \in S^{\perp}$ such that

$$\|\langle (\mathbf{A} + \mathbf{F})\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{B}\mathbf{x}_{n+1}, \mathbf{x}_{n+1} \rangle \| < \frac{1}{2^{n+2}}$$

$$\Rightarrow \|\langle \mathbf{A}\mathbf{x}_{n+1}, \mathbf{x}_{n+1} \rangle\| = \|\langle \mathbf{B}\mathbf{x}_{n+1}, \mathbf{x}_{n+1} \rangle\| < \frac{1}{2^{n+1}},$$

because $\langle \mathbf{F}\mathbf{x}_{n+1}, \mathbf{x}_{n+1} \rangle = \mathbf{0}$. Inductively, we can choose an orthonormal sequence of vectors $\{\mathbf{x}_n\}_{n=1}^{\infty}$ such that

$$\|\langle \mathbf{A}\mathbf{x}_n, \mathbf{x}_n \rangle\| < \frac{1}{2^n} \quad \text{for all } n \ge 1.$$
 (1)

Let $n_1 = 1$. For every $1 \le i \le m$, we have

$$\sum_{n=1}^{\infty} |\langle A_i \mathbf{x}_{n_1}, \mathbf{x}_n \rangle|^2 \le ||A_i \mathbf{x}_{n_1}||^2 \quad \text{and} \quad \sum_{n=1}^{\infty} |\langle A_i \mathbf{x}_n, \mathbf{x}_{n_1} \rangle|^2 \le ||A_i^* \mathbf{x}_{n_1}||^2.$$

Hence, there exists $n_2 > n_1$ such that

$$\sum_{n=n_2}^{\infty} |\langle A_i \mathbf{x}_{n_1}, \mathbf{x}_n \rangle|^2 < 1/2 \quad \text{and} \quad \sum_{n=n_2}^{\infty} |\langle A_i \mathbf{x}_n, \mathbf{x}_{n_1} \rangle|^2 < 1/2$$

for all $1 \le i \le m$. Repeating this procedure, we can get a strictly increasing sequence $\{n_k\}_{k=1}^{\infty}$ of positive integers such that for all $1 \le i \le m$, we have

$$\sum_{n=n_{k+1}}^{\infty} |\langle A_i \mathbf{x}_{n_k}, \mathbf{x}_n \rangle|^2 < 1/2^k \quad \text{and} \quad \sum_{n=n_{k+1}}^{\infty} |\langle A_i \mathbf{x}_n, \mathbf{x}_{n_k} \rangle|^2 < 1/2^k.$$
 (2)

(1) and (2) imply that

$$\sum_{k,\ell=1}^{\infty} |\langle A_i \mathbf{x}_{n_k}, \mathbf{x}_{n_\ell} \rangle|^2 < \infty.$$
 (3)

Let P be the orthogonal projection onto the subspace spanned by $\{\mathbf{x}_{n_k}\}_{k=1}^{\infty}$. Then it follows from (3) that PA_iP is compact for all $1 \leq i \leq m$.

3 Convexity and star-shapedness

Theorem 3.1 Let $\mathbf{A} \in \mathcal{S}(\mathcal{H})^m$. Then $W_e(\mathbf{A})$ is a compact convex subset of $\mathbf{cl}(W(\mathbf{A}))$. Moreover, each element in $W_e(\mathbf{A})$ is a star center of the star-shaped set $\mathbf{cl}(W(\mathbf{A}))$.

Proof. Because $W_e(\mathbf{A})$ is the intersection of compact sets, it is compact. To prove the convexity, let \mathbf{a} , $\mathbf{b} \in W_e(\mathbf{A})$ and $0 \le t \le 1$. Then for every $\mathbf{F} \in \mathcal{F}(\mathcal{H})^m \cap \mathcal{S}(\mathcal{H})^m$, we have $\mathbf{a} \in W_e(\mathbf{A}) = W_e(\mathbf{A} + \mathbf{F})$ and $\mathbf{b} \in W_e(\mathbf{A}) \subseteq \mathbf{cl}(W(\mathbf{A} + \mathbf{F}))$. So, by Theorem 2.2, we have $t\mathbf{a} + (1-t)\mathbf{b} \in \mathbf{cl}(W(\mathbf{A} + \mathbf{F}))$. Hence,

$$t\mathbf{a} + (1-t)\mathbf{b} \in \cap \{\mathbf{cl}(W(\mathbf{A} + \mathbf{F})) : \mathbf{F} \in \mathcal{F}(\mathcal{H})^m \cap \mathcal{S}(\mathcal{H})^m\} = W_e(\mathbf{A}).$$

By Theorem 2.1 and Theorem 2.2, we have the last assertion. \Box

Note that $W_e(\mathbf{A}) \cap W(\mathbf{A})$ may be empty. For example, if

$$A = \operatorname{diag}(1, 1/2, 1/3, \dots)$$

acts on ℓ^2 , then $W_e(A) = \{0\}$ and W(A) = (0, 1]. One may wonder whether a point $\mathbf{a} \in W_e(\mathbf{A}) \cap W(\mathbf{A})$ is a star center of $W(\mathbf{A})$. This is not true as shown by the following example. Moreover, the example shows that for $m \geq 4$ there exists $\mathbf{A} \in \mathcal{S}(\mathcal{H})^m$ such that $\mathbf{cl}(W(\mathbf{A}))$ is convex whereas $W(\mathbf{A})$ is not. Of course this is impossible for $m \leq 3$ as $W(\mathbf{A})$ is always convex.

Example 3.2 Consider $\mathcal{H} = \ell^2$ with canonical basis $\{e_n : n \geq 1\}$. Let $\mathbf{A} = (A_1, \ldots, A_4)$ with $A_1 = \operatorname{diag}(1, 0, 1/3, 1/4, \ldots), A_2 = \operatorname{diag}(1, 0) \oplus \mathbf{0}$,

$$A_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \oplus \mathbf{0} \quad and \quad A_4 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \oplus \mathbf{0}.$$

Then $(1, 1, 0, 0) \in W(\mathbf{A})$ and $(0, 0, 0, 0) \in W(\mathbf{A}) \cap W_e(\mathbf{A})$, but $(1/2, 1/2, 0, 0) \notin W(\mathbf{A})$. Hence, $W(\mathbf{A})$ is not convex. However, $\mathbf{cl}(W(\mathbf{A}))$ is convex.

Proof of the claims in the example. Note that $(1, 1, 0, 0) = \langle \mathbf{A}e_1, e_1 \rangle \in W(\mathbf{A})$ and

$$(0,0,0,0) = \langle \mathbf{A}e_2, e_2 \rangle = \lim_{n \to \infty} \langle \mathbf{A}e_n, e_n \rangle \in W(\mathbf{A}) \cap W_e(\mathbf{A}).$$

To show that $(1/2, 1/2, 0, 0) \notin W(\mathbf{A})$, consider a unit vector $\mathbf{x} = \sum x_j e_j$ such that $\sum_{n=1}^{\infty} |x_n|^2 = 1$. If $\langle A_1 \mathbf{x}, \mathbf{x} \rangle = \langle A_2 \mathbf{x}, \mathbf{x} \rangle = 1/2$, then

$$|x_1|^2 + \sum_{n=3}^{\infty} |x_n|^2 / n = |x_1|^2 = 1/2.$$

Thus, $x_n = 0$ for all $n \geq 3$ and $|x_1|^2 = |x_2|^2 = 1/2$. It then follows that $(\langle A_3 \mathbf{x}, \mathbf{x} \rangle, \langle A_4 \mathbf{x}, \mathbf{x} \rangle) \neq (0, 0)$. This proves that $(1/2, 1/2, 0, 0) \notin W(\mathbf{A})$. Hence, $(0, 0, 0, 0) \in W_e(\mathbf{A}) \cap W(\mathbf{A})$ is not a star center of $W(\mathbf{A})$ and $W(\mathbf{A})$ is not convex.

To see that $\mathbf{cl}(W(\mathbf{A}))$ is convex, note that $\mathbf{0} \in W_e(\mathbf{A})$. Thus, by Theorem 3.1, for every $\mathbf{b} \in \mathbf{cl}(W(\mathbf{A}))$ we have $t\mathbf{0} + (1-t)\mathbf{b} \in \mathbf{cl}(W(\mathbf{A}))$ for any $t \in [0,1]$.

Let $\mathbf{B} = (B_1, B_2, B_3, B_4)$, where $B_1 = \text{diag}(0, 1, 0)$, $B_2 = \text{diag}(0, 1, 0)$,

$$B_3 = [0] \oplus \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $B_4 = [0] \oplus \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$,

and $\mathbf{C} = (C_1, C_2, C_3, C_4)$, where $C_1 = \text{diag}(1/3, 1/4,) \oplus [0]$, $C_2 = C_3 = C_4 = \text{diag}(0, 0, ...) \oplus [0]$. Then it is easy to verify that

$$W(\mathbf{B}) = \{(r, r, s, t) \in \mathbf{R}^4 : 4(r - 1/2)^2 + s^2 + t^2 \le 1\}$$

and

$$W(\mathbf{C}) = \{(c, 0, 0, 0) : c \in [0, 1/3]\}$$

are both compact and convex. Hence, $W(\mathbf{B} \oplus \mathbf{C}) = \mathbf{conv}(W(\mathbf{B}) \cup W(\mathbf{C}))$ is compact and convex and

$$W(\mathbf{A}) \subseteq W(\mathbf{B} \oplus \mathbf{C}) \Rightarrow \mathbf{cl}(W(\mathbf{A})) \subseteq W(\mathbf{B} \oplus \mathbf{C})$$
.

On the other hand, $\mathbf{B} \oplus \mathbf{C} = [0] \oplus \mathbf{A} \oplus [0]$. Therefore,

$$W(\mathbf{B} \oplus \mathbf{C}) = \{t\mathbf{0} + (1-t)\mathbf{b} : \mathbf{b} \in W(\mathbf{A})\} \subseteq \mathbf{cl}(W(\mathbf{A})).$$

So,
$$\mathbf{cl}(W(\mathbf{A})) = W(\mathbf{B} \oplus \mathbf{C})$$
 is convex.

4 Other descriptions of $W_e(\mathbf{A})$

For $\mathbf{c} = (c_1, \dots, c_m) \in \mathbf{R}^m$ and $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{S}(\mathcal{H})^m$, let $\mathbf{c} \cdot \mathbf{A} = \sum_{i=1}^m c_i A_i$. Using the convexity of $W_e(\mathbf{A})$, we obtain additional equivalent formulations of $W_e(\mathbf{A})$ in terms of $\mathbf{c} \cdot \mathbf{A} \in \mathcal{S}(\mathcal{H})$ so that the joint behavior of A_1, \dots, A_m can be understood by their linear combinations. For $A \in \mathcal{S}(\mathcal{H})$ and a positive integer k, let

$$\lambda_k(A) = \inf\{\max \sigma(A+F) : F \in \mathcal{S}(\mathcal{H}) \text{ with } \operatorname{rank}(F) < k\}.$$

Theorem 4.1 Let $\mathbf{A} \in \mathcal{S}(\mathcal{H})^m$ and $\mathbf{a} = (a_1, \dots, a_m) \in \mathbf{R}^m$. Then $\mathbf{a} \in W_e(\mathbf{A})$ if and only if any one (and hence all) of the following conditions holds.

- (1) For every $\mathbf{c} \in \mathbf{R}^m$, $\mathbf{c} \cdot \mathbf{a} \in W_e(\mathbf{c} \cdot \mathbf{A})$.
- (2) For every $\mathbf{c} \in \mathbf{R}^m$, $\mathbf{c} \cdot \mathbf{a} \in \cap \{ \mathbf{cl}(W(\mathbf{c} \cdot \mathbf{A} + F)) : F \in \mathcal{F}(\mathcal{H}) \cap \mathcal{S}(\mathcal{H}) \}.$
- (3) For every $\mathbf{c} \in \mathbf{R}^m$, there is an orthonormal sequence of vectors

$$\{\mathbf{x}_n\}_{n=1}^{\infty} \in \mathcal{H} \quad such that \quad \lim_{n \to \infty} \langle \mathbf{c} \cdot \mathbf{A} \mathbf{x}_n, \mathbf{x}_n \rangle = \mathbf{c} \cdot \mathbf{a}.$$

(4) For every $\mathbf{c} \in \mathbf{R}^m$, there is a sequence of unit vectors $\{\mathbf{x}_n\}_{n=1}^{\infty} \in \mathcal{H}$ such that $\{\mathbf{x}_n\}_{n=1}^{\infty}$ converges weakly to $\mathbf{0}$ in \mathcal{H} and

$$\lim_{n\to\infty} \langle \mathbf{c} \cdot \mathbf{A} \mathbf{x}_n, \mathbf{x}_n \rangle = \mathbf{c} \cdot \mathbf{a}.$$

- (5) For every $\mathbf{c} \in \mathbf{R}^m$, there is an infinite-dimensional projection $P \in \mathcal{S}(\mathcal{H})$ such that $P(\mathbf{c} \cdot \mathbf{A} \mathbf{c} \cdot \mathbf{a}I)P \in \mathcal{K}(\mathcal{H})$.
- (6) For every $\mathbf{c} \in \mathbf{R}^m$ and $k \ge 1$, $\lambda_k (\mathbf{c} \cdot \mathbf{A} \mathbf{c} \cdot \mathbf{a}I) \ge 0$.

Proof. By the convexity of $W_e(\mathbf{A})$, we can apply the separation theorem to Theorem 2.1 to show that $\mathbf{a} \in W_e(\mathbf{A})$ if and only if any one of the conditions (1) to (5) holds.

To prove the equivalence of condition (6), suppose $\mathbf{a} \in \mathbf{R}^m$. Without loss of generality, we may assume that $\mathbf{a} = \mathbf{0}$. Suppose $\mathbf{0}$ satisfies condition (6). Then for every $\mathbf{c} \in \mathbf{R}^m$ and $F \in \mathcal{F}(\mathcal{H}) \cap \mathcal{S}(\mathcal{H})$ with rank F = k, we have

$$\lambda_1(\mathbf{c} \cdot \mathbf{A} + F) \ge \lambda_{k+1}(\mathbf{c} \cdot \mathbf{A}) \ge 0$$
 and $\lambda_1(-(\mathbf{c} \cdot \mathbf{A} + F)) \ge \lambda_{k+1}(-\mathbf{c} \cdot \mathbf{A}) \ge 0$.

Hence, $\mathbf{c} \cdot \mathbf{0} = 0 \in \mathbf{cl}(W(\mathbf{c} \cdot \mathbf{A} + F))$. Therefore, condition (2) is satisfied.

Conversely, if **0** does not satisfy condition (6), then there exist $\mathbf{c} \in \mathbf{R}^m$ and $k \geq 1$ such that $\lambda_k(\mathbf{c} \cdot \mathbf{A}) < 0$. Thus there exists $F \in \mathcal{F}(\mathcal{H}) \cap \mathcal{S}(\mathcal{H})$ such that $\mathbf{c} \cdot \mathbf{A} + F < 0$ and **0** does not satisfy condition (2).

Let $\mathbf{A} \in \mathcal{S}(\mathcal{H})^m$. Although the set $\mathbf{cl}(W(\mathbf{A}))$ may not be convex if $m \geq 4$, we have the following analog of the separation theorem for a convex set.

Theorem 4.2 Let $\mathbf{A} = (A_1, \ldots, A_m) \in \mathcal{S}(\mathcal{H})^m$ and $\mathbf{d} = (d_1, \ldots, d_m) \in \mathbf{R}^m$. Then $\mathbf{d} \notin W_e(\mathbf{A})$ if and only if any one (and hence all) of the following conditions holds..

- (a) There exists $\mathbf{K} \in \mathcal{K}(\mathcal{H})^m \cap \mathcal{S}(\mathcal{H})^m$ such that $\mathbf{d} \notin \mathbf{cl}(W(\mathbf{A} + \mathbf{K}))$.
- (b) There exists $\mathbf{F} \in \mathcal{F}(\mathcal{H})^m \cap \mathcal{S}(\mathcal{H})^m$ such that $\mathbf{d} \notin \mathbf{conv} (\mathbf{cl}(W(\mathbf{A} + \mathbf{F})))$.
- (c) There exist $F \in \mathcal{F}(\mathcal{H}) \cap \mathcal{S}(\mathcal{H})$, r > 0 and $\mathbf{c} = (c_1, \dots, c_m) \in \mathbf{R}^m$ such that

$$\left(\sum_{i=1}^{m} c_i (A_i - d_i I)\right) + F > rI_{\mathcal{H}}.\tag{4}$$

Proof. For simplicity, replace (A_1, \ldots, A_m) by $(A_1 - d_1 I, \ldots, A_m - d_m I)$ and assume that $\mathbf{d} = (0, \ldots, 0)$.

(c) \Rightarrow (b). Suppose (c) holds. We may perturb (c_1, \ldots, c_m) so that $c_j \neq 0$ for all $j \in \{1, \ldots, m\}$ so that condition (4) still holds true. In particular, we have $c_1 \neq 0$. Then let $\mathbf{F} = (F/c_1, 0, \ldots, 0)$. We have $\mathbf{c} \cdot \mathbf{a} > r > 0$ for all $\mathbf{a} \in W(\mathbf{A} + \mathbf{F})$. Therefore, $\mathbf{0} \notin \mathbf{conv} (\mathbf{cl}(W(\mathbf{A} + \mathbf{F})))$.

Clearly, we have (b) \Rightarrow (a), which implies that $\mathbf{0} \notin W_e(\mathbf{A})$.

Finally, suppose $\mathbf{0} \notin W_e(\mathbf{A})$. Then by Theorem 4.1 (2), there exist a real vector $\mathbf{c} = (c_1, \dots, c_m)$ and $F \in \mathcal{F}(\mathcal{H}) \cap \mathcal{S}(\mathcal{H})$ such that $0 = \mathbf{c} \cdot \mathbf{0} \notin \mathbf{cl}(W(\mathbf{c} \cdot \mathbf{A} + F))$. Since $\mathbf{cl}(W(\mathbf{c} \cdot \mathbf{A} + F))$ is a closed interval [s, t] of \mathbf{R} , we may assume that $0 < s \le t$. Let r = s/2, we have $(\sum_{i=1}^m c_i A_i) + F > rI_{\mathcal{H}}$. Hence, (c) holds.

Let $\Omega = \{ \mathbf{c} \in \mathbf{R}^m : \langle \mathbf{c}, \mathbf{c} \rangle = 1 \}$. By Theorem 4.2, we have the following result showing that $W_e(\mathbf{A})$ can be expressed as the intersection of half spaces.

Corollary 4.3 Let $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{S}(\mathcal{H})^m$. Then

$$W_e(\mathbf{A}) = \bigcap_{\mathbf{c} \in \Omega} \{ \mathbf{d} \in \mathbf{R}^m : \langle \mathbf{c}, \mathbf{d} \rangle \le \max W_e(\mathbf{c} \cdot \mathbf{A}) \}$$
$$= \{ \mathbf{d} \in \mathbf{R}^m : \langle \mathbf{c}, \mathbf{d} \rangle \in W_e(\mathbf{c} \cdot \mathbf{A}) \text{ for all } \mathbf{c} \in \Omega \}.$$

For $A \in \mathcal{B}(\mathcal{H})$, let $\sigma_e(A) = \bigcap \{ \sigma(A+K) : K \in \mathcal{K}(\mathcal{H}) \}$ bet the essential spectrum of A. Then for $A \in \mathcal{S}(\mathcal{H})$, we have

$$W_e(A) = \mathbf{conv}\sigma_e(A).$$

Thus, one may replace $\max W_e(\mathbf{c} \cdot \mathbf{A})$ by $\max \sigma_e(\mathbf{c} \cdot \mathbf{A})$ in Corollary 4.3.

Corollary 4.4 Let $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{S}(\mathcal{H})^m$. If $\mathbf{d} \notin \mathbf{cl}(W(\mathbf{A}))$, then for any $i \in \{1, \dots, m\}$ there exists $F \in \mathcal{F}(\mathcal{H}) \cap \mathcal{S}(\mathcal{H})$ such that $\mathbf{d} \notin \mathbf{conv}(\mathbf{cl}(W(\tilde{\mathbf{A}})))$, where $\tilde{\mathbf{A}} = (A_1, \dots, A_{i-1}, A_i + F, A_{i+1}, \dots, A_m)$.

Proof. If $\mathbf{d} \notin \mathbf{cl}(W(\mathbf{A}))$, then $\mathbf{d} \notin W_e(\mathbf{A})$. The result readily follows from the arguments in the last paragraph in proof of Theorem 4.2.

It follows from Theorem 2.1 that the intersection of the non-convex sets $\mathbf{cl}(W(\mathbf{A} + \mathbf{K}))$, which equals $W_e(\mathbf{A})$, is a convex set. By Theorem 4.2 and Corollary 4.4, we see that one can replace $\mathbf{cl}(W(\mathbf{A} + \mathbf{K}))$ by its convex hull for the intersection to obtain the same convex set $W_e(\mathbf{A})$. It is known that for any $\mathbf{B} = (B_1, \ldots, B_m) \in \mathcal{B}(\mathcal{H})^m$,

$$\mathbf{conv}(\mathbf{cl}(W(\mathbf{B}))) = \{ (f(B_1), \dots, f(B_m)) : f \in \Omega \},\$$

where Ω is the set of linear functionals f on $\mathcal{B}(\mathcal{H})$ satisfying $1 = f(I) = \max\{f(X) : X \in \mathcal{B}(\mathcal{H}), ||X|| \leq 1\}$; for example, see [10, 11]. So, it is easier to determine $\mathbf{conv}(\mathbf{cl}(W(\mathbf{A} + \mathbf{K})))$ than $\mathbf{cl}(W(\mathbf{A} + \mathbf{K}))$. In fact, we have the following.

Corollary 4.5 Let $A \in \mathcal{S}(\mathcal{H})^m$ and $i \in \{1, ..., m\}$. Then

$$W_e(\mathbf{A})$$

$$= \cap \{ \mathbf{cl}(W(\mathbf{A} + \mathbf{F})) : \mathbf{F} \in \{0\}^{i-1} \times (\mathcal{F}(\mathcal{H}) \cap \mathcal{S}(\mathcal{H})) \times \{0\}^{m-i} \}$$

$$= \bigcap \{ \mathbf{conv} \left(\mathbf{cl}(W(\mathbf{A} + \mathbf{F})) \right) : \mathbf{F} \in \{0\}^{i-1} \times (\mathcal{F}(\mathcal{H}) \cap \mathcal{S}(\mathcal{H})) \times \{0\}^{m-i} \}.$$

Proof. Let $\mathbf{F} \in \{0\}^{i-1} \times (\mathcal{F}(\mathcal{H}) \cap \mathcal{S}(\mathcal{H})) \times \{0\}^{m-i}$. Clearly, we have

$$W_e(\mathbf{A}) \subseteq \mathbf{cl}(W(\mathbf{A} + \mathbf{F})) \subseteq \mathbf{conv}(\mathbf{cl}(W(\mathbf{A} + \mathbf{F}))).$$

So, we may take the intersection of the second and third sets over all $\mathbf{F} \in \{0\}^{i-1} \times (\mathcal{F}(\mathcal{H}) \cap \mathcal{S}(\mathcal{H})) \times \{0\}^{m-i}$, and get a set inclusion relation involving the three sets in the corollary. Finally, if $\mathbf{d} \notin W_e(\mathbf{A})$, then \mathbf{d} will not belong to the third set by Corollary 4.4. So, the third set is a subset of $W_e(\mathbf{A})$. Hence, the three sets in the corollary are equal.

5 Additional Results

Thee following result shows that $W_e(\mathbf{A})$ is unchanged under certain operations on \mathbf{A} .

Theorem 5.1 Let $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{S}(\mathcal{H})^m$.

(a) Suppose \mathcal{H}_1 is a closed subspace of \mathcal{H} such that \mathcal{H}_1^{\perp} is finite dimensional. If $X:\mathcal{H}_1 \to \mathcal{H}$ is such that $X^*X = I_{\mathcal{H}_1}$, then

$$W_e(\mathbf{A}) = W_e(X^*A_1X, \dots, X^*A_mX).$$

(b) For each $j \in \{1, ..., m\}$, suppose $P_j : \mathcal{H} \to \mathcal{H}$ is an orthogonal projection such that $I - P_j$ has finite rank. Then

$$W_e(\mathbf{A}) = W_e(P_1 A_1 P_1, \dots, P_m A_m P_m).$$

Proof. Using the formulation of $W_e(\mathbf{A})$ in Theorem 2.1, one readily shows that the set equalities in (a) and (b) hold.

We will establish some additional relationships between the sets $W_e(\mathbf{A})$ and $W(\mathbf{A})$. The next theorem generalizes the results in [29] and [14].

Theorem 5.2 Let $\mathbf{A} \in \mathcal{S}(\mathcal{H})^m$. Then $W_e(\mathbf{A}) = \mathbf{cl}(W(\mathbf{A}))$ if and only if $\operatorname{Ext}(W(\mathbf{A})) \subseteq W_e(\mathbf{A})$.

Proof. If $W_e(\mathbf{A}) = \mathbf{cl}(W(\mathbf{A}))$, then we have

$$\operatorname{Ext}(W(\mathbf{A})) \subseteq W(\mathbf{A}) \subseteq W_e(\mathbf{A}).$$

Conversely, if $\operatorname{Ext}(W(\mathbf{A})) \subseteq W_e(\mathbf{A})$, then by (P6), we have

$$\operatorname{Ext}\left(\mathbf{cl}(W(\mathbf{A}))\right) \subseteq W_e(\mathbf{A}).$$

Hence,

$$\mathbf{cl}(W(\mathbf{A})) \subseteq \mathbf{conv} \left(\mathrm{Ext} \left(\mathbf{cl}(W(\mathbf{A})) \right) \right) \subseteq \mathbf{conv} \left(W_e(\mathbf{A}) \right) = W_e(\mathbf{A}).$$

Since
$$W_e(\mathbf{A}) \subseteq \mathbf{cl}(W(\mathbf{A}))$$
, we have $W_e(\mathbf{A}) = \mathbf{cl}(W(\mathbf{A}))$.

For $k \geq 1$, let I_k denotes the $k \times k$ identity matrix. Then for $\mathbf{A} = (A_1, \ldots, A_m) \in \mathcal{S}(\mathcal{H})^m$, we have $\mathbf{A} \otimes I_k = (A_1 \otimes I_k, \ldots, A_m \otimes I_k) \in \mathcal{S}(\mathcal{H} \oplus \cdots \oplus \mathcal{H})^m$.

k-copies

Similarly, let I_{∞} denotes the identity operator acting on ℓ_2 . Then for $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{S}(\mathcal{H})^m$, we have $\mathbf{A} \otimes I_{\infty} = (A_1 \otimes I_{\infty}, \dots, A_m \otimes I_{\infty}) \in \mathcal{S}(\mathcal{H} \oplus \mathcal{H} \oplus \cdots)^m$.

Theorem 5.3 Let $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{S}(\mathcal{H})^m$. Then for any positive integer $k > \sqrt{m} - 1$,

$$W(\mathbf{A} \otimes I_k) = \mathbf{conv}(W(\mathbf{A})).$$

Moreover, we have

$$W_e(\mathbf{A} \otimes I_{\infty}) = \mathbf{cl}(\mathbf{conv}(W(\mathbf{A}))).$$

Proof. Suppose $k > \sqrt{m}-1$. By the result in [34], every $\mathbf{a} \in \mathbf{conv}(W(\mathbf{A}))$ can be written as $\mathbf{a} = \sum_{j=1}^k t_j \langle \mathbf{A} \mathbf{x}_j, \mathbf{x}_j \rangle$ for some unit vectors $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathcal{H}$. Thus, for $\mathbf{x} = (\sqrt{t_1}\mathbf{x}_1, \dots, \sqrt{t_k}\mathbf{x}_k) \in \mathcal{H} \oplus \dots \oplus \mathcal{H}$, we have $\langle \mathbf{A} \otimes I_k \mathbf{x}, \mathbf{x} \rangle = \mathbf{a}$. Conversely, if $\mathbf{a} = \langle \mathbf{A} \otimes I_k \mathbf{x}, \mathbf{x} \rangle \in W(\mathbf{A} \otimes I_k)$, one can decompose the unit vector \mathbf{x} into k parts $\mathbf{y}_1, \dots, \mathbf{y}_k$ according to the structure of $\mathcal{H} \otimes I_k$. Then

$$\mathbf{a} = \sum_{j=1}^k \|\mathbf{y}_j\|^2 \langle A\mathbf{y}_j / \|\mathbf{y}_j\|, \mathbf{y}_j / \|\mathbf{y}_j\| \rangle \in \mathbf{conv}(W(\mathbf{A})) \}.$$

If $\mathbf{a} \in \mathbf{cl}(\mathbf{conv}(W(\mathbf{A})))$, then there is a sequence of unit vectors $\{\mathbf{x}_n\}$ in \mathcal{H} such that $\langle \mathbf{A}\mathbf{x}_n, \mathbf{x}_n \rangle \to \mathbf{a}$. Let

$$\tilde{\mathbf{x}}_n = \left(\underbrace{0,\dots,0}_{n-1 \text{ terms}}, \mathbf{x}_n, 0,\dots\right) \in \mathcal{H} \oplus \mathcal{H} \oplus \mathcal{H} \oplus \cdots$$

Then $\{\tilde{\mathbf{x}}_n\}$ is an orthonormal sequence in $\mathcal{H} \oplus \mathcal{H} \oplus \mathcal{H} \oplus \cdots$ such that $\langle \mathbf{A} \otimes I_{\infty} \tilde{\mathbf{x}}_n, \tilde{\mathbf{x}}_n \rangle \to \mathbf{a}$. Therefore, $\mathbf{a} \in W_e(\mathbf{A} \otimes I_{\infty})$. Since

$$W_{e}\left(\mathbf{A}\otimes I_{\infty}\right)\subseteq\mathbf{cl}\left(W\left(\mathbf{A}\otimes I_{\infty}\right)\right)$$

$$=\mathbf{cl}\left(\bigcup_{k=1}^{\infty}W\left(\mathbf{A}\otimes I_{k}\right)\right)\subseteq\mathbf{cl}(\mathbf{conv}(W(\mathbf{A}))),$$

we get the reverse inclusion.

Corollary 5.4 Let S be a compact convex subset of \mathbb{R}^m . Then there are $\mathbf{A}, \tilde{\mathbf{A}} \in \mathcal{S}(\mathcal{H})^m$ with $\mathcal{H} = \ell^2$ such that $W(\mathbf{A})$ is convex and

$$W(\mathbf{A}) \subseteq S = \mathbf{cl}(W(\mathbf{A})) = W_e(\tilde{\mathbf{A}}).$$

Proof. For j = 1, ..., m, let $A_j = \operatorname{diag}(a_{1j}, a_{2j}, ...)$ act on ℓ^2 with the standard canonical basis $\{e_n : n \geq 1\}$ such that $\{(a_{i1}, a_{i2}, ..., a_{im}) : i \geq 1\}$ is a dense subset of S. Then for $\mathbf{A} = (A_1, ..., A_m)$, we have

$$W(\mathbf{A}) = \mathbf{conv}\{(a_{i1}, a_{i2}, \dots, a_{im}) : i \ge 1\}$$

is convex, and $\tilde{\mathbf{A}} = \mathbf{A} \otimes I_{\infty}$ will satisfy the assertion by Theorem 5.3.

References

- [1] Y.S. Abramov, On the geometric properties of the joint spectrum of a family of self-adjoint operators, Studia Math. 61 (1977), 55-62.
- [2] J.A. Anderson, On compact perturbations of operators, Canad. J. Math. 26 (1974), 247–250.
- [3] S.C. Arora and R. Kumar, Joint essential numerical range, Glas. Mat. Ser. III 18(38) (1983), 317–320.
- [4] Y.H. Au-Yeung and Y.T. Poon, A Remark on the Convexity and Positive Definiteness Concerning Hermitian Matrices, SEA Bull. Math. 3 (1979), 85-92.
- [5] Y.H. Au-Yeung and N.K. Tsing, An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc. 89 (1983), 215–218.
- [6] M. Barraa, Essential numerical range of elementary operators, Proc. Amer. Math. Soc. 133 (2005), 1723–1726
- [7] M. Barraa and V. Müller, On the essential numerical range, Acta Sci. Math. (Szeged) 71 (2005), no. 1-2, 285–298.
- [8] S.K. Berberian and G.H. Orland, On the closure of the numerical range of an operator, Proc. Amer. Math. Soc. 18 (1967), 499-503.
- [9] P. Binding and C.K. Li, Joint ranges of Hermitian matrices and simultaneous diagonalization, Linear Algebra Appl. 151 (1991), 157-168.
- [10] F.F. Bonsall and J.Duncan, Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras, London Math. Soc. Lecture Notes Series 2, Cambridge University Press, Cambridge, 1971.
- [11] F.F. Bonsall and J. Duncan, Numerical ranges, II, Cambridge University Press, Cambridge, 1973.
- [12] J.J. Buoni and B.L. Wadhwa, On joint numerical ranges, Pacific J. Math 77 (1878), 303-306.

- [13] G.F. Cao, On the joint essential spectrum, the joint essential numerical range and the boundary of joint numerical range, J. Math. Res. Exposition 10 (1990), 25–31.
- [14] M. Cho and M. Takagunchi, Boundary points of joint numerical ranges, Pacific J. Math. 95 (1881), 27 -35.
- [15] A.T. Dash, Joint numerical range, Glasnik Mat. 7 (1972), 75-81.
- [16] A.T. Dash, Joint spectra, Studia Math 45 (1973), 225-237.
- [17] A.T. Dash, Joint spectrum in the Calkin algebra, Bulletin Amer. Math. Soc. 81 (1975), 1083-1085.
- [18] T.M., El-Adawy, M.Z. Abd-Alla and H.A. Atia, On the joint essential and joint maximal essential centre valued range, Proc. Math. Phys. Soc. Egypt No. 77 (2002), 29–49 (2003).
- [19] M.K.H. Fan and A.L. Tits, On the generalized numerical range, Linear and Multilinear Algebra 21 (1987), 313-320.
- [20] P. Fan and C.K. Fong and D.A. Herrero, On zero-diagonal operators and traces, Proc. Amer. Math. Soc. 99 (1987), 445–451.
- [21] P.A. Fillmore, J.G. Stampfli and J.P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179–192
- [22] K.E. Gustafson and D.K.M. Rao, Numerical ranges: The field of values of linear operators and matrices, Springer, New York, 1997.
- [23] E. Gutkin, E.A. Jonckheere and M. Karow, Convexity of the joint numerical range: topological and differential geometric viewpoints, Linear Algebra Appl. 376 (2004), 143–171.
- [24] P.R. Halmos, A Hilbert Space Problem Book, Second edition, Graduate Texts in Mathematics, 19, Encyclopedia of Mathematics and its Applications, Springer-Verlag, New York, 1982.
- [25] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
- [26] G. Ji, N. Liu, and Z. Li, Essential numerical range and maximal numerical range of the Aluthge transform, Linear and Multilinear Algebra 55 (2007), 315–322.

- [27] M.S. Jones and H.P. Rogosinski, Inclusion relations involving the k-numerical range and the essential numerical range. Special Issue: The numerical range and numerical radius, Linear and Multilinear Algebra 37 (1994), 161–173.
- [28] S.P. Juneja, On extreme points of the joint numerical range of commuting normal operators, Pacific J. Math. 67 (1976), 473-476.
- [29] J.S. Lancaster, The boundary of the numerical range, Proc. Amer. Math. Soc 49 (1975), 393-398.
- [30] D.A. Legg and D.W. Townsend, Essential numerical range in $B(l_1)$, Proc. Amer. Math. Soc. 81 (1981), 541–545.
- [31] C.K. Li and Y.T. Poon, Convexity of the joint numerical range, SIAM J. Matrix Analysis Appl. 21 (1999), 668-678.
- [32] B. Magajna, On the essential numerical range of a generalized derivation, Proc. Amer. Math. Soc. 99 (1987), 86–92.
- [33] Y. Ogata, Local distinguishability of quantum states in infinite-dimensional systems, J. Phys. A 39 (2006), no. 12, 3059–3069.
- [34] Y.T. Poon, On the convex hull of the multiform numerical range, Linear and Multilinear Algebra 37 (1994), 221-223.
- [35] Y.T. Poon, Generalized numerical ranges, joint positive definiteness and multiple eigenvalues, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1625–1634.
- [36] M. Takagunchi and M. Cho, The joint numerical range and the joint essential numerical range, Sci. Prp. Hirosaki Univ. 27 (1980), 6-8.
- [37] J.P. Williams, The numerical range and the essential numerical range, Proc. Amer. Math. Soc. 66 (1977), 185-186.