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Abstract
LetW (A) andWe(A) be the joint numerical range and the joint essential

numerical range of an m-tuple of self-adjoint operators A = (A1, . . . , Am)

acting on an infinite dimensional Hilbert space, respectively. In this paper,

it is shown that We(A) is always convex and admits many equivalent formu-

lations. In particular, for any fixed i ∈ {1, . . . ,m}, We(A) can be obtained

as the intersection of all sets of the form

cl(W (A1, . . . , Ai+1, Ai + F,Ai+1, . . . , Am)),

where F = F ∗ has finite rank Moreover, it is shown that the closure

cl(W (A)) of W (A) is always star-shaped with the elements in We(A) as

star centers. Although cl(W (A)) is usually not convex, an analog of the sep-

aration theorem is obtained, namely, for any element d /∈ cl(W (A)), there

is a linear functional f such that f(d) > sup{f(a) : a ∈ cl(W (Ã))}, where

Ã is obtained from A by perturbing one of the components Ai by a finite

rank self-adjoint operator. Other results on W (A) and We(A) extending

those on a single operator are obtained.
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1 Introduction

Let B(H) denote the algebra of bounded linear operators acting on a com-

plex Hilbert space H. The numerical range of A ∈ B(H) is defined as

W (A) = {〈Ax,x〉 : x ∈ H, 〈x,x〉 = 1},

which is useful in studying operators; see [10, 11, 22, 24] and [25, Chapter

1]. Let S(H) denote the set of self-adjoint operators in B(H). Since every

A ∈ B(H) admits a decomposition A = A1 + iA2 with A1, A2 ∈ S(H), we

can identify W (A) with

{(〈A1x,x〉, 〈A2x,x〉) : x ∈ H, 〈x,x〉 = 1} ⊆ R2.

This leads to the joint numerical range of A = (A1, . . . , Am) ∈ S(H)m,

W (A) = {(〈A1x,x〉, · · · , 〈Amx,x〉) : x ∈ H, 〈x,x〉 = 1} ⊆ Rm,

which has been studied by many researchers in order to understand the

joint behavior of several operators A1, . . . , Am. One may see [1, 5, 12, 14,

15, 16, 19, 23, 28, 31, 33, 35] and their references for the background and

many applications of the joint numerical range.

Let F(H) and K(H) be the sets of finite rank and compact operators

in B(H). In the study of finite rank or compact perturbations of opera-

tors, researchers consider the joint essential numerical range of A ∈ S(H)m

defined by

We(A) = ∩{cl(W (A + K)) : K = (K1, . . . , Km) ∈ K(H)m ∩ S(H)m}.

Here cl(S) denotes the closure of the set S. For m = 2, We(A) can be

identified with the essential numerical range of A = A1 + iA2 ∈ B(H)

defined by

We(A) = ∩{cl(W (A+K)) : K ∈ K(H)}.

One may see [2, 3, 6, 7, 13, 18, 20, 21, 26, 27, 30, 32, 36, 37] for many

interesting results on We(A) and We(A).

In theoretical study as well as applications, it is desirable to deal with A

such that W (A) or cl(W (A)) is convex. For example, let A = (A1, . . . , Am).

If cl(W (A)) is convex, one can apply the separation theorem to show that

0 /∈ cl(W (A)) if and only if there exist r > 0 and c = (c1, . . . , cm) ∈ Rm

such that (
∑m

i=1 ciAi) > rIH. Unfortunately, cl(W (A)) is not always con-

vex. Here are some results concerning the convexity ofW (A) and cl(W (A)),

and related to We(A); for example, see [5, 10, 11, 36, 21, 29, 31] and their

references.
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(P1) [31] W (A1, . . . , Am) is convex if

(a) span{I, A1, . . . , Am} has dimension at most 3, or

(b) dimH ≥ 3 and span{I, A1, . . . , Am} has dimension at most 4.

(P2) [31] For any A1, A2, A3 ∈ S(H) such that span{I, A1, A2, A3} has di-

mension 4, there is always an A4 ∈ S(H) for which W (A1, . . . , A4) is

not convex.

(P3) [31] If m ≥ 4 then there exists A ∈ S(H)m such that W (A) is non-

convex.

(P4) For any positive integer m and any A ∈ S(H)m, We(A) is a compact

set contained in W (A). If span{I, A1, . . . , Am} has dimension at most

4, then We(A) is convex.

(P5) [36] For S ⊆ Rm, let Ext(S) be the set of all points in S that does

not lie in the open line segment joining two distinct points in S. Then

Ext (cl(W (A))) ⊆ Ext(W (A)) ∪ Ext(We(A)).

We remark that (P1)-(P3) also hold if we replace W (A) by cl(W (A)).

In view of (P2) and (P3), if m > 3, then for A ∈ S(H)m and K ∈
K(H)m∩S(H)m the set cl(W (A+K)) is usually non-convex. Since We(A)

is the intersection of non-convex sets, one does not expect the set We(A)

to be convex. This might be the reason why the convexity of We(A) is

seldom discussed for m > 3. In fact, some researchers have studied different

geometrical properties of We(A) under the assumption that We(A) is con-

vex, and some researchers studied We(A) for different classes of operators

without discussing their convexity; for example, see [6, 26, 27, 30, 32].

In this paper, we prove the rather unexpected result that We(A) is

always convex. Moreover, it is shown that the closure cl(W (A)) of W (A)

is always star-shaped with the elements in We(A) as star centers. Many

results relating We(A) and W (A) are also obtained. Our paper is organized

as follows.

In Section 2, we extend the results in [21] to establish several equivalent

formulations of the essential joint numerical range for A ∈ S(H)m. One key

obstacle for such an extension is the fact that W (A) may not be convex.

To get around this problem, we show that cl(W (A)) is star-shaped. The

star-shapedness of cl(W (A)) and the equivalent formulations of We(A) in

Section 2 lead to our main result that We(A) is convex and its elements are
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star centers of the set cl(W (A)), which is presented in Section 3. With the

convexity theorem, we obtain additional descriptions of We(A) in Section

4 in terms of the perturbations of one of the components of A, and also

in terms of linear combinations of the components of A. For example, we

show that We(A1, . . . , Am) is equal to the sets

∩{cl(W (A1, . . . , Ai−1, Ai + F,Ai+1, . . . , Am) : F ∈ F(H) ∩ S(H)}

and{
(a1, . . . , am) :

m∑
j=1

cjaj ∈ We

(
m∑
j=1

cjAj

)
for all (c1, . . . , cm) ∈ Ω

}
,

where Ω =
{

(c1, . . . , cm) ∈ Rm :
∑m

j=1 c
2
j = 1

}
. Also, we obtain an ana-

log of the separation theorem for the not necessarily convex set cl(W (A)),

namely, for any element d /∈ cl(W (A)), there is a linear functional f such

that f(d) > sup{f(a) : a ∈ cl(W (Ã))}, where Ã is obtained from A by

perturbing one of the components Aj by a finite rank self-adjoint operator.

In Section 5, we present additional results on W (A) and We(A). For in-

stance, We(A) = cl(W (A)) if and only if the extreme points of W (A) are

contained in We(A); the convex hull of cl(W (A)) can always be realized

the the joint essential numerical range of (Ã1, . . . , Ãm) for linear operators

Ã1, . . . , Ãm acting on a separable Hilbert space.

In our discussion, we always assume that H is infinite-dimensional. For

any vector x ∈ H and A = (A1, . . . , Am) ∈ S(H)m, we will use the following

notation

〈Ax,x〉 = (〈A1x,x〉, . . . , 〈Amx,x〉).

Furthermore, Rm will be used to denote the inner product space of 1 ×m
real vectors with the usual inner product 〈x,y〉.

2 Equivalent formulations of We(A)

Following [21, Theorem 5.1] and its corollary on a single operator A ∈ B(H),

we obtain several equivalent formulations of We(A).

Theorem 2.1 Let A = (A1, . . . , Am) ∈ S(H)m. The following conditions

are equivalent for a real vector a = (a1, . . . , am).

(1) a ∈ We(A) = ∩{cl(W (A + K)) : K ∈ K(H)m ∩ S(H)m}.

(2) a ∈ ∩{cl(W (A + F)) : F ∈ F(H)m ∩ S(H)m}.
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(3) There is an orthonormal sequence of vectors {xn}∞n=1 ∈ H such that

lim
n→∞
〈Axn,xn〉 = a.

(4) There is a sequence of unit vectors {xn}∞n=1 ∈ H converging weakly to

0 in H such that

lim
n→∞
〈Axn,xn〉 = a.

(5) There is an infinite-dimensional projection P ∈ S(H) such that

P (Aj − ajI)P ∈ K(H) for j = 1, . . . , k.

Most of the argument in [21] can be applied here except for one crucial

step, where the convexity of W (A) for m = 2 is needed. Since W (A) may

not be convex for m > 3, we need the following auxiliary result to overcome

the obstacle. As a byproduct, it shows that cl(W (A)) is star-shaped.

Theorem 2.2 Let A satisfy the hypothesis of Theorem 2.1, and let W3(A)

be the set of real vectors a satisfying condition (3) of Theorem 2.1. Then

W3(A) is non-empty and closed. Moreover, each element a ∈ W3(A) is a

star center of cl(W (A)), i.e., for any b ∈ cl(W (A)) we have (1−t)a+tb ∈
cl(W (A)) for all 0 ≤ t ≤ 1.

Proof. To prove that W3(A) is non-empty, let {xn}∞n=1 be an orthonor-

mal sequence of vectors inH. Then the sequence {〈Axn,xn〉}∞n=1 is bounded.

By choosing a subsequence, if necessary, we can assume that 〈Axn,xn〉 con-

verges. Hence, W3(A) is non-empty.

Next, we show that W3(A) is closed. Suppose a ∈ cl(W3(A)). Then

for each n ≥ 1, there exists an orthonormal sequence {xnk}∞k=1 such that

lim
k→∞
〈Axnk ,x

n
k〉 = an ∈ Rm and lim

n→∞
an = a. Let δn = 1/(4n2). By going

to subsequences, if necessary, we may assume that ‖〈Axnk ,x
n
k〉 − a‖ < δn

for all n, k. We may also assume that ‖A1‖2 + · · · + ‖Am‖2 ≤ 1. Then

‖〈Ax,y〉‖ ≤ ‖x‖‖y‖ for all x, y ∈ H.

Choose x1 = x1
1. Then we have ‖〈Ax1,x1〉 − a‖ < 1. Suppose we have

chosen {x1, . . . ,xn} orthonormal, with ‖〈Axk,xk〉−a‖ < 1/k for 1 ≤ k ≤ n.

Then choose N such that for all 1 ≤ k ≤ n, we have

|〈xk,xn+1
N 〉|, ‖〈Axk,x

n+1
N 〉‖ < δn+1.

Let y = xn+1
N −

∑n
k=1 〈x

n+1
N ,xk〉xk. Then

‖y − xn+1
N ‖ ≤ nδn+1 ⇒ 1− nδn+1 ≤ ‖y‖ ≤ 1 + nδn+1.
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Therefore,

‖〈Ay,y〉 − a‖

≤ ‖〈A
(
y − xn+1

N

)
,y〉‖+ ‖〈Axn+1

N ,y − xn+1
N 〉‖+ ‖〈Axn+1

N ,xn+1
N 〉 − a‖

≤ ‖y − xn+1
N ‖(‖y‖+ ‖xn+1

N ‖) + δn+1

≤ (2n+ 2)δn+1.

Let xn+1 = y/‖y‖. Then

‖xn+1 − y‖ = |1− ‖y‖| ≤ nδn+1.

Hence, {x1, . . . ,xn,xn+1} is an orthonormal set and

‖〈Axn+1,xn+1〉 − a‖ ≤ ‖y − xn+1‖(‖y‖+ ‖xn+1‖) + (2n+ 2)δn+1

≤ (4n+ 3)δn+1 < 1/(n+ 1).

To prove the last assertion, let a ∈ W3(A) and b ∈ cl (W (A)). Suppose

{xn} is an orthonormal sequence in H such that 〈Axn,xn〉 → a. For 0 ≤
t ≤ 1, we are going to show that (1 − t)a + tb ∈ cl(W (A)). Given ε > 0,

let y be a unit vector in H such that ‖〈Ay,y〉 − b‖ < ε. Choose n such

that ‖〈Axn,xn〉 − a‖ < ε and ‖〈Ay,xn〉‖ < ε. Choose θ ∈ R such that

〈eiθy,xn〉 is imaginary. Let z =
√
teiθy +

√
1− txn Then we have

〈z, z〉 = t〈y,y〉+ (1− t)〈xn,xn〉+ 2
√
t
√

1− t
(
〈eiθy,xn〉+ 〈xn, eiθy〉

)
= 1

and

‖〈Az, z〉 − ((1− t)a + tb) ‖
≤ (1− t)‖〈Axn,xn〉 − a‖+ t‖〈Ay,y〉 − b‖

+
√
t
√

1− t‖〈eiθAy,xn〉+ 〈Axn, e
iθy〉‖

≤ 2ε.

Therefore, (1− t)a + tb ∈ cl(W (A)). �

The referee indicated that W3(A) is clearly closed, and a short proof is

possible. We include the detailed proof for the sake of completeness and

easy reference.

Proof of Theorem 2.1. For j = 2, 3, 4, 5, let Wj(A) be the set of a

satisfying condition (j). Clearly, we have

W5(A) ⊆ W3(A) ⊆ W4(A) ⊆ We(A) ⊆ W2(A).
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Suppose a ∈ W2(A). We are going to show that a ∈ W5(A). Without loss

of generality, we may assume a = 0.

Since 0 ∈ W2(A) ⊆ cl(W (A)), there exists a unit vector x1 ∈ H such

that ‖〈Ax1,x1〉‖ < 1/2. Suppose we have an orthonormal set of vectors

{x1, . . . ,xn} such that ‖〈Axn,xn〉‖ < 1/2n. Let Q be the orthogonal pro-

jection of H onto the subspace S spanned by x1, . . . ,xn and

B = ((I −Q)A1(I −Q)|S⊥ , . . . , (I −Q)Am(I −Q)|S⊥) .

Let b = (b1, . . . , bm) ∈ W3(B) and bIS = (b1IS, . . . , bmIS). Then for Q =

I −Q, we have

bIS ⊕B =
(
b1Q+QA1Q, . . . , bmQ+QAmQ

)
= A + F

for some F ∈ F(H)m ∩ S(H)m. Therefore, 0 ∈ cl (W (bIS ⊕B)). Hence,

there exists a unit vector x ∈ H such that ‖〈(A + F)x,x〉‖ < 1/(2n+2). Let

x = y + z, where y ∈ S and z ∈ S⊥. Then ‖y‖2 + ‖z‖2 = ‖x‖2 = 1. If

z = 0, then 〈(A + F)x,x〉 = b ∈ W3(B) ⊆ cl (W (B)). If z 6= 0, then by

Theorem 2.2, we have

〈(A + F)x,x〉 = ‖y‖2b + ‖z‖2〈B
(

z

‖z‖

)
,

(
z

‖z‖

)
〉 ∈ cl (W (B)) .

So there exists a unit vector xn+1 ∈ S⊥ such that

‖〈(A + F)x,x〉 − 〈Bxn+1,xn+1〉‖ <
1

2n+2

⇒ ‖〈Axn+1,xn+1〉‖ = ‖〈Bxn+1,xn+1〉‖ <
1

2n+1
,

because 〈Fxn+1,xn+1〉 = 0. Inductively, we can choose an orthonormal

sequence of vectors {xn}∞n=1 such that

‖〈Axn,xn〉‖ <
1

2n
for all n ≥ 1. (1)

Let n1 = 1. For every 1 ≤ i ≤ m, we have

∞∑
n=1

|〈Aixn1 ,xn〉|2 ≤ ‖Aixn1‖2 and
∞∑
n=1

|〈Aixn,xn1〉|2 ≤ ‖A∗ixn1‖2 .

Hence, there exists n2 > n1 such that

∞∑
n=n2

|〈Aixn1 ,xn〉|2 < 1/2 and
∞∑

n=n2

|〈Aixn,xn1〉|2 < 1/2
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for all 1 ≤ i ≤ m. Repeating this procedure, we can get a strictly increasing

sequence {nk}∞k=1 of positive integers such that for all 1 ≤ i ≤ m, we have

∞∑
n=nk+1

|〈Aixnk
,xn〉|2 < 1/2k and

∞∑
n=nk+1

|〈Aixn,xnk
〉|2 < 1/2k . (2)

(1) and (2) imply that

∞∑
k,`=1

|〈Aixnk
,xn`
〉|2 <∞ . (3)

Let P be the orthogonal projection onto the subspace spanned by {xnk
}∞k=1.

Then it follows from (3) that PAiP is compact for all 1 ≤ i ≤ m. �

3 Convexity and star-shapedness

Theorem 3.1 Let A ∈ S(H)m. Then We(A) is a compact convex subset

of cl(W (A)). Moreover, each element in We(A) is a star center of the

star-shaped set cl(W (A)).

Proof. Because We(A) is the intersection of compact sets, it is compact.

To prove the convexity, let a, b ∈ We(A) and 0 ≤ t ≤ 1. Then for every

F ∈ F(H)m ∩S(H)m, we have a ∈ We(A) = We(A + F) and b ∈ We(A) ⊆
cl (W (A + F)). So, by Theorem 2.2, we have ta+(1−t)b ∈ cl (W (A + F)).

Hence,

ta + (1− t)b ∈ ∩{cl (W (A + F)) : F ∈ F(H)m ∩ S(H)m} = We(A).

By Theorem 2.1 and Theorem 2.2, we have the last assertion. �

Note that We(A) ∩W (A) may be empty. For example, if

A = diag(1, 1/2, 1/3, . . . )

acts on `2, then We(A) = {0} and W (A) = (0, 1]. One may wonder whether

a point a ∈ We(A) ∩ W (A) is a star center of W (A). This is not true

as shown by the following example. Moreover, the example shows that for

m ≥ 4 there exists A ∈ S(H)m such that cl(W (A)) is convex whereas

W (A) is not. Of course this is impossible for m ≤ 3 as W (A) is always

convex.
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Example 3.2 Consider H = `2 with canonical basis {en : n ≥ 1}. Let

A = (A1, . . . , A4) with A1 = diag(1, 0, 1/3, 1/4, ....), A2 = diag(1, 0)⊕ 0,

A3 =

(
0 1
1 0

)
⊕ 0 and A4 =

(
0 i
−i 0

)
⊕ 0.

Then (1, 1, 0, 0) ∈ W (A) and (0, 0, 0, 0) ∈ W (A)∩We(A), but (1/2, 1/2, 0, 0) /∈
W (A). Hence, W (A) is not convex. However, cl(W (A)) is convex.

Proof of the claims in the example. Note that (1, 1, 0, 0) = 〈Ae1, e1〉 ∈
W (A) and

(0, 0, 0, 0) = 〈Ae2, e2〉 = lim
n→∞
〈Aen, en〉 ∈ W (A) ∩We(A).

To show that (1/2, 1/2, 0, 0) /∈ W (A), consider a unit vector x =
∑
xjej

such that
∑∞

n=1 |xn|2 = 1. If 〈A1x,x〉 = 〈A2x,x〉 = 1/2, then

|x1|2 +
∞∑
n=3

|xn|2/n = |x1|2 = 1/2.

Thus, xn = 0 for all n ≥ 3 and |x1|2 = |x2|2 = 1/2. It then follows

that (〈A3x,x〉, 〈A4x,x〉) 6= (0, 0). This proves that (1/2, 1/2, 0, 0) /∈ W (A).

Hence, (0, 0, 0, 0) ∈ We(A)∩W (A) is not a star center of W (A) and W (A)

is not convex.

To see that cl(W (A)) is convex, note that 0 ∈ We(A). Thus, by Theo-

rem 3.1, for every b ∈ cl(W (A)) we have t0 + (1− t)b ∈ cl(W (A)) for any

t ∈ [0, 1].

Let B = (B1, B2, B3, B4), where B1 = diag(0, 1, 0), B2 = diag(0, 1, 0),

B3 = [0]⊕
(

0 1
1 0

)
and B4 = [0]⊕

(
0 i
−i 0

)
,

and C = (C1, C2, C3, C4), where C1 = diag(1/3, 1/4, ....) ⊕ [0], C2 = C3 =

C4 = diag(0, 0, . . . )⊕ [0]. Then it is easy to verify that

W (B) = {(r, r, s, t) ∈ R4 : 4(r − 1/2)2 + s2 + t2 ≤ 1}

and

W (C) = {(c, 0, 0, 0) : c ∈ [0, 1/3]}

are both compact and convex. Hence, W (B⊕C) = conv(W (B) ∪W (C))

is compact and convex and

W (A) ⊆ W (B⊕C)⇒ cl(W (A)) ⊆ W (B⊕C) .

On the other hand, B⊕C = [0]⊕A⊕ [0]. Therefore,

W (B⊕C) = {t0 + (1− t)b : b ∈ W (A)} ⊆ cl(W (A)).

So, cl(W (A)) = W (B⊕C) is convex. �
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4 Other descriptions of We(A)

For c = (c1, . . . , cm) ∈ Rm and A = (A1, . . . , Am) ∈ S(H)m, let c · A =∑m
i=1 ciAi. Using the convexity of We(A), we obtain additional equivalent

formulations of We(A) in terms of c ·A ∈ S(H) so that the joint behavior of

A1, . . . , Am can be understood by their linear combinations. For A ∈ S(H)

and a positive integer k, let

λk(A) = inf{maxσ(A+ F ) : F ∈ S(H) with rank(F ) < k}.

Theorem 4.1 Let A ∈ S(H)m and a = (a1, . . . , am) ∈ Rm. Then a ∈
We(A) if and only if any one (and hence all) of the following conditions

holds.

(1) For every c ∈ Rm, c · a ∈ We (c ·A).

(2) For every c ∈ Rm, c · a ∈ ∩{cl(W (c ·A + F )) : F ∈ F(H) ∩ S(H)}.

(3) For every c ∈ Rm, there is an orthonormal sequence of vectors

{xn}∞n=1 ∈ H such that lim
n→∞
〈c ·Axn,xn〉 = c · a.

(4) For every c ∈ Rm, there is a sequence of unit vectors {xn}∞n=1 ∈ H
such that {xn}∞n=1 converges weakly to 0 in H and

lim
n→∞
〈c ·Axn,xn〉 = c · a.

(5) For every c ∈ Rm, there is an infinite-dimensional projection P ∈
S(H) such that P (c ·A− c · aI)P ∈ K(H).

(6) For every c ∈ Rm and k ≥ 1, λk (c ·A− c · aI) ≥ 0.

Proof. By the convexity of We(A), we can apply the separation theorem

to Theorem 2.1 to show that a ∈ We(A) if and only if any one of the

conditions (1) to (5) holds.

To prove the equivalence of condition (6), suppose a ∈ Rm. Without

loss of generality, we may assume that a = 0. Suppose 0 satisfies condition

(6). Then for every c ∈ Rm and F ∈ F(H) ∩ S(H) with rank F = k, we

have

λ1(c·A+F ) ≥ λk+1(c·A) ≥ 0 and λ1(−(c·A+F )) ≥ λk+1(−c·A) ≥ 0 .

Hence, c · 0 = 0 ∈ cl(W (c ·A + F )). Therefore, condition (2) is satisfied.
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Conversely, if 0 does not satisfy condition (6), then there exist c ∈ Rm

and k ≥ 1 such that λk (c ·A) < 0. Thus there exists F ∈ F(H) ∩ S(H)

such that c ·A + F < 0 and 0 does not satisfy condition (2). �

Let A ∈ S(H)m. Although the set cl(W (A)) may not be convex if

m ≥ 4, we have the following analog of the separation theorem for a convex

set.

Theorem 4.2 Let A = (A1, . . . , Am) ∈ S(H)m and d = (d1, . . . , dm) ∈
Rm. Then d /∈ We(A) if and only if any one (and hence all) of the following

conditions holds..

(a) There exists K ∈ K(H)m ∩ S(H)m such that d /∈ cl(W (A + K)).

(b) There exists F ∈ F(H)m∩S(H)m such that d /∈ conv (cl(W (A + F))).

(c) There exist F ∈ F(H)∩S(H), r > 0 and c = (c1, . . . , cm) ∈ Rm such

that (
m∑
i=1

ci(Ai − diI)

)
+ F > rIH. (4)

Proof. For simplicity, replace (A1, . . . , Am) by (A1− d1I, . . . , Am− dmI)

and assume that d = (0, . . . , 0).

(c)⇒ (b). Suppose (c) holds. We may perturb (c1, . . . , cm) so that cj 6= 0

for all j ∈ {1, . . . ,m} so that condition (4) still holds true. In particular,

we have c1 6= 0. Then let F = (F/c1, 0, . . . , 0). We have c · a > r > 0 for all

a ∈ W (A + F). Therefore, 0 /∈ conv (cl(W (A + F))).

Clearly, we have (b) ⇒ (a), which implies that 0 /∈ We(A).

Finally, suppose 0 /∈ We(A). Then by Theorem 4.1 (2), there exist a

real vector c = (c1, . . . , cm) and F ∈ F(H) ∩ S(H) such that 0 = c · 0 /∈
cl(W (c ·A +F )). Since cl(W (c ·A +F )) is a closed interval [s, t] of R, we

may assume that 0 < s ≤ t. Let r = s/2, we have (
∑m

i=1 ciAi) + F > rIH.

Hence, (c) holds. �

Let Ω = {c ∈ Rm : 〈c, c〉 = 1}. By Theorem 4.2, we have the follow-

ing result showing that We(A) can be expressed as the intersection of half

spaces.

Corollary 4.3 Let A = (A1, . . . , Am) ∈ S(H)m. Then

We(A) = ∩c∈Ω{d ∈ Rm : 〈c,d〉 ≤ maxWe(c ·A)}
= {d ∈ Rm : 〈c,d〉 ∈ We (c ·A) for all c ∈ Ω} .

11



For A ∈ B(H), let σe(A) = ∩{σ(A + K) : K ∈ K(H)} bet the essential

spectrum of A. Then for A ∈ S(H), we have

We(A) = convσe(A).

Thus, one may replace maxWe(c ·A) by max σe(c ·A) in Corollary 4.3.

Corollary 4.4 Let A = (A1, . . . , Am) ∈ S(H)m. If d /∈ cl(W (A)), then

for any i ∈ {1, . . . ,m} there exists F ∈ F(H) ∩ S(H) such that d 6∈
conv(cl(W (Ã))), where Ã = (A1, . . . , Ai−1, Ai + F,Ai+1, . . . , Am).

Proof. If d /∈ cl(W (A)), then d /∈ We(A). The result readily follows from

the arguments in the last paragraph in proof of Theorem 4.2. �

It follows from Theorem 2.1 that the intersection of the non-convex sets

cl(W (A + K)), which equals We(A), is a convex set. By Theorem 4.2 and

Corollary 4.4, we see that one can replace cl(W (A + K)) by its convex hull

for the intersection to obtain the same convex set We(A). It is known that

for any B = (B1, . . . , Bm) ∈ B(H)m,

conv(cl(W (B))) = {(f(B1), . . . , f(Bm)) : f ∈ Ω},

where Ω is the set of linear functionals f on B(H) satisfying 1 = f(I) =

max{f(X) : X ∈ B(H), ‖X‖ ≤ 1}; for example, see [10, 11]. So, it is easier

to determine conv(cl(W (A + K))) than cl(W (A + K)). In fact, we have

the following.

Corollary 4.5 Let A ∈ S(H)m and i ∈ {1, . . . ,m}. Then

We(A)

= ∩{cl(W (A + F)) : F ∈ {0}i−1 × (F(H) ∩ S(H))× {0}m−i}
= ∩{conv (cl(W (A + F))) : F ∈ {0}i−1 × (F(H) ∩ S(H))× {0}m−i}.

Proof. Let F ∈ {0}i−1 × (F(H) ∩ S(H))× {0}m−i. Clearly, we have

We(A) ⊆ cl(W (A + F)) ⊆ conv(cl(W (A + F))).

So, we may take the intersection of the second and third sets over all F ∈
{0}i−1× (F(H)∩S(H))×{0}m−i, and get a set inclusion relation involving

the three sets in the corollary. Finally, if d /∈ We(A), then d will not belong

to the third set by Corollary 4.4. So, the third set is a subset of We(A).

Hence, the three sets in the corollary are equal. �
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5 Additional Results

Thee following result shows that We(A) is unchanged under certain opera-

tions on A.

Theorem 5.1 Let A = (A1, . . . , Am) ∈ S(H)m.

(a) Suppose H1 is a closed subspace of H such that H⊥1 is finite dimen-

sional. If X : H1 → H is such that X∗X = IH1, then

We(A) = We(X
∗A1X, . . . , X

∗AmX).

(b) For each j ∈ {1, . . . ,m}, suppose Pj : H → H is an orthogonal

projection such that I − Pj has finite rank. Then

We(A) = We(P1A1P1, . . . , PmAmPm).

Proof. Using the formulation of We(A) in Theorem 2.1, one readily

shows that the set equalities in (a) and (b) hold. �

We will establish some additional relationships between the sets We(A)

and W (A). The next theorem generalizes the results in [29] and [14].

Theorem 5.2 Let A ∈ S(H)m. Then We(A) = cl(W (A)) if and only if

Ext(W (A)) ⊆ We(A).

Proof. If We(A) = cl(W (A)), then we have

Ext(W (A)) ⊆ W (A) ⊆ We(A).

Conversely, if Ext(W (A)) ⊆ We(A), then by (P6), we have

Ext (cl(W (A))) ⊆ We(A).

Hence,

cl(W (A)) ⊆ conv (Ext (cl(W (A)))) ⊆ conv (We(A)) = We(A).

Since We(A) ⊆ cl(W (A)), we have We(A) = cl(W (A)). �

For k ≥ 1, let Ik denotes the k × k identity matrix. Then for A =

(A1, . . . , Am) ∈ S(H)m, we have A ⊗ Ik = (A1 ⊗ Ik, . . . , Am ⊗ Ik) ∈
S(H⊕ · · · ⊕ H︸ ︷︷ ︸

k−copies

)m.

Similarly, let I∞ denotes the identity operator acting on `2. Then for

A = (A1, . . . , Am) ∈ S(H)m, we have A⊗ I∞ = (A1 ⊗ I∞, . . . , Am ⊗ I∞) ∈
S(H⊕H⊕ · · ·︸ ︷︷ ︸

infinite copies

)m.
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Theorem 5.3 Let A = (A1, . . . , Am) ∈ S(H)m. Then for any positive

integer k >
√
m− 1,

W (A⊗ Ik) = conv(W (A)).

Moreover, we have

We(A⊗ I∞) = cl(conv(W (A))).

Proof. Suppose k >
√
m−1. By the result in [34], every a ∈ conv(W (A))

can be written as a =
∑k

j=1 tj〈Axj,xj〉 for some unit vectors x1, . . . ,xk ∈
H. Thus, for x = (

√
t1x1, . . . ,

√
tkxk) ∈ H⊕· · ·⊕H, we have 〈A⊗Ikx,x〉 =

a. Conversely, if a = 〈A ⊗ Ikx,x〉 ∈ W (A ⊗ Ik), one can decompose the

unit vector x into k parts y1, . . . ,yk according to the structure of H ⊗ Ik.
Then

a =
k∑
j=1

‖yj‖2〈Ayj/‖yj‖,yj/‖yj‖〉 ∈ conv(W (A))}.

If a ∈ cl (conv(W (A))), then there is a sequence of unit vectors {xn}
in H such that 〈Axn,xn〉 → a. Let

x̃n =
(

0, . . . , 0︸ ︷︷ ︸
n−1 terms

,xn, 0, . . .
)
∈ H ⊕H⊕H⊕ · · · .

Then {x̃n} is an orthonormal sequence in H ⊕ H ⊕ H ⊕ · · · such that

〈A⊗ I∞x̃n, x̃n〉 → a. Therefore, a ∈ We(A⊗ I∞). Since

We (A⊗ I∞) ⊆ cl (W (A⊗ I∞))

= cl

(
∞⋃
k=1

W (A⊗ Ik)

)
⊆ cl(conv(W (A))) ,

we get the reverse inclusion. �

Corollary 5.4 Let S be a compact convex subset of Rm. Then there are

A, Ã ∈ S(H)m with H = `2 such that W (A) is convex and

W (A) ⊆ S = cl(W (A)) = We(Ã).

Proof. For j = 1, . . . ,m, let Aj = diag(a1j, a2j, . . . ) act on `2 with the

standard canonical basis {en : n ≥ 1} such that {(ai1, ai2, . . . , aim) : i ≥ 1}
is a dense subset of S. Then for A = (A1, . . . , Am), we have

W (A) = conv{(ai1, ai2, . . . , aim) : i ≥ 1}

is convex, and Ã = A⊗ I∞ will satisfy the assertion by Theorem 5.3. �
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