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Abstract

Denote the joint numerical radius of an m-tuple of bounded operators A = (A1, . . . , Am) by

w(A). We give a complete description of maps f satisfying w(A − B) = w(f(A) − f(B)) for

any two m-tuples of operators A = (A1, . . . , Am) and B = (B1, . . . , Bm). We also characterize

linear isometries for the joint numerical radius, and maps preserving the joint numerical range
of A.
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1 Introduction

Let B(H) be the set of bounded linear operators acting on the Hilbert space H equipped with the

inner product (x, y), and let S(H) be the set of self-adjoint operators in B(H). In this paper we

assume H has finite dimension n > 1, and identify H, B(H), and S(H) with the space Cn of n× 1

complex vectors, the set of n × n complex matrices Mn, and the set of Hermitian matrices Hn,

respectively. Let V be B(H) or S(H). For A = (A1, . . . , Am) ∈ Vm and any vector x ∈ H let

(Ax, x) = ((A1x, x), . . . , (Amx, x)).

Define the joint numerical range of A ∈ Vm by

W (A) = {(Ax, x) : x ∈ H, (x, x) = 1}

and the joint numerical radius of A by

w(A) = sup{`2(a1, . . . , am) : (a1, . . . , am) ∈W (A1, . . . , Am)},

where `2(x1, . . . , xm) =
(∑m

j=1 |xj |2
)1/2

is the usual Euclidean norm.
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The joint numerical range is a generalization of the classical numerical range of A ∈ B(H)

defined by

W (A) = {(Ax, x) : x ∈ H, (x, x) = 1}

and the joint numerical radius is a generalization of the classical numerical radius of A ∈ B(H)

defined by

w(A) = sup{|z| : z ∈W (A)}.

These concepts are useful in studying the joint behaviors of several operators, and have been studied

extensively; see for example [1, 4, 6, 9, 11] and their references.

The joint numerical radius, like its classical counterpart, is a norm, and as such its isometries

are of interest. In Section 2, we characterize linear isometries f : Vm → Vm such that

w(A) = w(f(A)) for all A ∈ Vm.

Using this result, we characterize distance-preserving maps f : Vm → Vm (without the linearity

assumption) such that

w(A−B) = w(f(A)− f(B)) for all A,B ∈ Vm.

From this, we derive a number of related results, including characterizations of additive isometries

and of maps preserving the joint numerical range.

Moreover, for certain other classes of norms ν on Fm (where F is R or C), we can extend our

results to the ν-joint numerical radius of A ∈ Vm defined by

wν(A) = sup{ν(a1, . . . , am) : (a1, . . . , am) ∈W (A1, . . . , Am)}.

In Section 3, we consider a fairly wide class of norms on Fm which includes smooth norms; in

Section 4, we investigate the case of oft-used symmetric norms.

2 Maps preserving the joint numerical radius distance

We first prove the result for linear isometries.

Theorem 2.1. Let (V,F) = (S(H),R) or (B(H),C). A F-linear map f : Vm → Vm satisfies

w(A) = w(f(A)) for all A ∈ Vm

if and only if there is a unitary operator U ∈ B(H) and a linear isometry Γ = (γij) ∈Mm(F) (that

is, `2(Γu) = `2(u) for all u ∈ Fm) such that f has the form

(A1, . . . , Am) 7→

 m∑
j=1

γ1jU
∗ψ(Aj)U, . . . ,

m∑
j=1

γmjU
∗ψ(Aj)U

 , (1)

with ψ taking the form X 7→ X or X 7→ Xt, where Xt is the transpose of X with respect to a fixed

orthonormal basis.
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We shall need the following two lemmas to prove this theorem. It will be convenient to introduce

some notation. Given X ∈ V and c = (c1, . . . , cm) ∈ Fm, we let c ⊗ X = (c1X, . . . , cmX) ∈ Vm.

More generally, if A ⊆ Fm and B ⊆ V, then A⊗ B = {a⊗ b : a ∈ A, b ∈ B}. We let P denote the

set of orthogonal rank one projections in B(H).

Lemma 2.2. Let (V,F) = (S(H),R) or (B(H),C). Let e be a nonzero vector in E ⊆ Fm. Suppose

g : Vm → Vm is an injective F-linear map such that g(e⊗P) ⊆ E⊗P. Then either g(e⊗V) = ê⊗V
for some ê ∈ E or g(e⊗ V) ⊆ Fm ⊗ P̂ for some P̂ ∈ P.

Proof. Let e ∈ E and let x ∈ H be a unit vector. Write g(e ⊗ xx∗) = ê ⊗ x̂x̂∗. Let y be any unit

vector orthogonal to x and write x(t) = (cos t)x+ (sin t)y. We see that

g(e⊗ x(t)x(t)∗) = (cos2 t)g(e⊗ xx∗) + (cos t sin t)g(e⊗ (xy∗ + yx∗)) + (sin2 t)g(e⊗ yy∗).

Note that xy∗ + yx∗ = [(x+ y)(x+ y)∗ − (x− y)(x− y)∗]/2. Thus,

g(e⊗ (xy∗ + yx∗)) = g(e⊗ (x+ y)(x+ y)∗/2)− g(e⊗ (x− y)(x− y)∗/2) = a⊗ uu∗ − b⊗ vv∗

and

g(e⊗ yy∗) = c⊗ ww∗

for some unit vectors u, v, w ∈ H and nonzero vectors a, b, c ∈ E. As a result,

g(e⊗ x(t)x(t)∗) = (cos2 t)ê⊗ x̂x̂∗ + (sin2 t)c⊗ ww∗ + (cos t sin t)[a⊗ uu∗ − b⊗ vv∗]

= d(t)⊗ z(t)z(t)∗ (2)

for some unit vector z(t) ∈ H and nonzero vector d(t) ∈ E. Choose an orthonormal basis for

Fm such that ê = (γ, 0, . . . , 0) for some nonzero γ ∈ F. Note that, with respect to this basis,

dj(t+ π) = dj(t) and dj(0) = 0 for all j > 1. There are two cases:

a) dj(t) = 0 for all t and all j > 1.

b) dj(t0) 6= 0 for some j > 1 and some t0 ∈ (0, π).

For the latter case, we may suppose, without loss of generality, that j = 2 and let Z = a2uu
∗−b2vv∗.

Consider the 2nd coordinate of (2):

d2(t)z(t)z(t)
∗ = c2(sin

2 t)ww∗ + (sin t cos t)Z.

There are three possibilities:

1. rank Z = 0: Since d2(t0) 6= 0, c2 6= 0, whence d2(t) 6= 0 for all t ∈ (0, π). Thus z(t)z(t)∗ = ww∗

for all t ∈ (0, π).

2. rank Z = 1: Either c2 = 0 and z(t)z(t)∗ = Z/‖Z‖ for t 6= π/2, or c2 6= 0 and Z = kww∗ for

some k 6= 0 (since the right side must have rank at most one). In the latter case, z(t)z(t)∗ =

ww∗ whenever d2(t) 6= 0, i.e., when cot t 6= −c2/k. In both cases, z(t)z(t)∗ = Z/‖Z‖ whenever

cot t 6= −c2/‖Z‖.
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3. rank Z = 2: This is not possible. If it was, Z would have a 2 × 2 compression Ẑ of rank 2.

Let Ŵ denote the corresponding 2× 2 compression of c2ww
∗. Then (sin2 t)Ŵ + (sin t cos t)Ẑ

has rank 2 for sufficiently small nonzero t, contradicting its equality with a compression of

d2(t)z(t)z(t)
∗.

Now consider the 1st coordinate of (2),

d1(t)z(t)z(t)
∗ = γ(cos2 t)x̂x̂∗ + (sin2 t)c1ww

∗ + (sin t cos t)(a1uu
∗ − b1vv∗),

and take the limit as t → 0+ of both sides. If rank Z = 0, then z(t)z(t)∗ = ww∗ = x̂x̂∗ for all

t ∈ (0, π). If rank Z = 1, then z(t)z(t)∗ = Z/‖Z‖ = x̂x̂∗ when cot t 6= −c2/‖Z‖. By continuity,

z(t)z(t)∗ = x̂x̂∗ for all t ∈ [0, π].

Thus we may conclude that either g(e ⊗ x(t)x(t)∗) = d(t) ⊗ x̂x̂∗ for all t in case (b), or else

g(e⊗ x(t)x(t)∗) = α(t)ê⊗ z(t)z(t)∗ for all t in case (a), where α(t) is an F-valued function.

Write P = xx∗ and P̂ = x̂x̂∗. We see that for any Q ∈ P, either g(e ⊗ Q) = ê ⊗ αR for some

R ∈ P and α ∈ F, or g(e ⊗ Q) = d ⊗ P̂ for some d ∈ E. Since P \ {P} is path-connected, so

is g(e ⊗ (P \ {P})) = A ⊗ P̂ ∪ ê ⊗ B, where A ⊆ E, B ⊆ FP. Since g is injective and no two

elements of P are linearly dependent, Fê /∈ A and FP̂ /∈ B, so one of A, B is empty to ensure

path-connectedness. It follows that g(e⊗P) ⊆ ê⊗FP or g(e⊗P) ⊆ E⊗P̂ , whence g(e⊗V) ⊆ ê⊗V
or g(e ⊗ V) ⊆ Fm ⊗ P̂ by linearity. In the former case, by comparing dimensions and using the

injectivity of g, the set inclusion must be an equality. �

Lemma 2.3. Let (V,F) = (S(H),R) or (B(H),C). Suppose g : Vm → Vm is a bijective F-linear

map such that

a) g(E ⊗ P) = E ⊗ P for some nonempty E ⊆ Fm such that if v ∈ E and |λ| 6= 1, λv /∈ E,

b) g(Fm ⊗ P) ⊆ Fm ⊗ P, and

c) there exists P ∈ P such that g(r ⊗ P ) = r ⊗ P for all r ∈ Fm.

Then there exists a unitary U ∈ B(H) such that

g(A1, . . . , Am) = (U∗ψ(A1)U, . . . , U
∗ψ(Am)U)

for all (A1, . . . , Am) ∈ Vm, with ψ taking the form X 7→ X or X 7→ Xt.

Proof. Let e be any nonzero vector in Fm. Applying Lemma 2.2 with E = Fm, we see that

g(e ⊗ V) = ê ⊗ V for some nonzero ê ∈ Fm or g(e ⊗ V) ⊆ Fm ⊗ P̂ for some P̂ ∈ P. Suppose

the latter case occurs. Since g(e ⊗ P ) = e ⊗ P by hypothesis, we have P̂ = P . But then for any

projection Q 6= P we have g(e⊗Q) = r ⊗ P = g(r ⊗ P ) for some r ∈ Fm, whence e⊗Q = r ⊗ P
by the injectivity of g, a contradiction. Thus g(e ⊗ V) = ê ⊗ V; since g(e ⊗ P ) = e ⊗ P , we have

ê = e. Hence g(e⊗ V) = e⊗ V for all e ∈ Fm.
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Writing ej for the jth row of the identity matrix Im, we see there exist F-linear maps φj : V → V,

1 ≤ j ≤ m, so that g(ej ⊗A) = ej ⊗ φj(A), whence

g(A1, . . . , Am) = (φ1(A1), . . . , φm(Am)).

Let e = e1 + · · ·+ em; then

(φ1(A), . . . , φm(A)) = g(e⊗A) = e⊗B

for some B ∈ V since g(e ⊗ V) = e ⊗ V. Thus φ1(A) = · · · = φm(A) for all A ∈ V, so φj = φ

for a common function φ. Now φ is bijective (since g is) and φ(P̃) = P̃ by hypothesis (a), where

P̃ = {µQ : µ ∈ F, |µ| = 1, Q ∈ P} is the set of extreme points of the unit norm ball for the dual

norm of the classical numerical radius. Thus φ∗ preserves the numerical radius and has the form

(see [8]) X 7→ ξU∗XU or X 7→ ξU∗XtU for some unitary U and ξ ∈ F with |ξ| = 1. It follows that

φ has the same form; since φ(P ) = P , ξ = 1 and the result follows. �

Proof of Theorem 2.1. Sufficiency is easy to check. For necessity, suppose f : Vm → Vm

is a F-linear map preserving the joint numerical radius. We define an inner product (A,B) =∑m
j=1 tr (AjB

∗
j ) for A = (A1, . . . , Am), B = (B1, . . . , Bm) in Vm and let

E = {(r1xx∗, . . . , rmxx∗) : x ∈ H and (r1, . . . , rm) ∈ Fm are unit vectors}.

Note that w(A) = sup{|(A,B)| : B ∈ E}, so w is the dual of a norm w∗ on Vm whose unit norm

ball is the closed convex hull of its extreme points E . But since Vm is reflexive, f preserves the

joint numerical radius on Vm if and only if it is the dual transformation of a bijective linear map

g preserving the induced norm w∗ on Vm, in which case g(E) = E . We will use this condition to

show that g has form (1), whence it follows that f = g∗ has the same form.

Fix a unit vector x ∈ H. Let X = (xx∗, 0, . . . , 0) ∈ E and write

g(X) = (s1yy
∗, . . . , smyy

∗) ∈ E .

Let U ∈ B(H) be a unitary satisfying Uy = x and let S = (sij) be a unitary (real orthogonal if

F = R) matrix whose first row is (s̄1, . . . , s̄m). Then g̃ = L1 ◦ g fixes X, where

L1(A1, . . . , Am) =

 m∑
j=1

s1jUAjU
∗, . . . ,

m∑
j=1

smjUAjU
∗

 .

Now consider X̂ = (0, r2xx
∗, . . . , rmxx

∗) ∈ E and write g̃(X̂) = (t1zz
∗, . . . , tmzz

∗) ∈ E . Since

aX+bX̂ ∈ E for any unit vector (a, b) ∈ R2, g̃(aX+bX̂) = aX+bg̃(X̂) ∈ E , whence zz∗ = xx∗. Thus

we can define a map h : Fm → Fm by h(a1, . . . , am) = (b1, . . . , bm) where g̃(a1xx
∗, . . . , amxx

∗) =

(b1xx
∗, . . . , bmxx

∗). Since g̃ is a bijective linear preserver of E , h is a linear isometry preserving the

5



`2-norm on Fm. Let T = h−1; then ĝ = L ◦ g̃ fixes (r1xx
∗, . . . , rmxx

∗) for all (r1, . . . , rm) ∈ Fm,

where

L(A1, . . . , Am) =

 m∑
j=1

t1jAj , . . . ,

m∑
j=1

tmjAj

 .

Note that ĝ still preserves E , and hence ĝ(Fm ⊗ P) ⊆ Fm ⊗ P. Thus by Lemma 2.3, ĝ has form

(1). Since g has form (1) if and only if ĝ does, we are done. �

Next we turn to the distance preserving maps. Note that linearity is not assumed.

Theorem 2.4. Let V = S(H) or B(H). A map f : Vm → Vm satisfies

w(A−B) = w(f(A)− f(B)) for all A,B ∈ Vm

if and only if there is a unitary operator U ∈ B(H), a linear isometry Γ = (γij) ∈ Mk(R) with

`2(Γu) = `2(u) for all u ∈ Rk, and R ∈ Vm such that f has the form

(A1, . . . , Am) 7→

 m∑
j=1

γ1jU
∗ψ(Aj)U, . . . ,

m∑
j=1

γmjU
∗ψ(Aj)U

+R,

with k = m if V = S(H), or the form

(A1 + iA2, . . . , A2m−1 + iA2m) 7→ 2m∑
j=1

U∗(γ1jψ(Aj) + iγ2jψ(Aj))U, . . . , U
∗(γ2m−1,jψ(Aj) + iγ2m,jψ(Aj))U

+R,

with k = 2m if V = B(H). In both cases, ψ has either the form X 7→ X or X 7→ Xt.

Note that maps like (B1, . . . , Bm) 7→ (B∗1 , . . . , B
∗
m) are just a special case of the second form.

Proof. Sufficiency is clear. For necessity, we see that the map A 7→ f(A) − f(0) is real linear

by the result in [3]. So, we can focus on the structure of real linear maps f preserving the joint

numerical radius. If V = S(H), then we are done. If V = B(H), the result immediately follows

from the real case by treating B(H) as a real space and noting that

w(A1 + iA2, . . . , A2m−1 + iA2m) = w(A1, A2, . . . , A2m)

for any self-adjoint operators A1, . . . , A2m. �

Here are some consequences of our results.

Corollary 2.5. Let V = S(H) or B(H). The following are equivalent for a map f : Vm → Vm:

(a) w(A + B) = w(f(A) + f(B)) for all A,B ∈ Vm.

(b) f is additive and satisfies w(A) = w(f(A)) for all A ∈ Vm.

6



(c) f is real linear and satisfies w(A) = w(f(A)) for all A ∈ Vm.

(d) There is a unitary operator U ∈ B(H), a linear isometry Γ = (γij) ∈ Mk(R) with `2(Γu) =

`2(u) for all u ∈ Rk such that f has the form

(A1, . . . , Am) 7→

 m∑
j=1

γ1jU
∗ψ(Aj)U, . . . ,

m∑
j=1

γmjU
∗ψ(Aj)U

 ,

with k = m if V = S(H), or the form

(A1 + iA2, . . . , A2m−1 + iA2m) 7→ 2m∑
j=1

U∗(γ1jψ(Aj) + iγ2jψ(Aj))U, . . . , U
∗(γ2m−1,jψ(Aj) + iγ2m,jψ(Aj))U

 ,

with k = 2m if V = B(H). In both cases, ψ has either the form X 7→ X or X 7→ Xt.

Proof. Clearly (d) =⇒ (c) =⇒ (b) =⇒ (a). On the other hand, if (a) holds then

0 = w(0) = w(A−A) = w(f(A) + f(−A)).

It follows that f(−A) = −f(A), whence (d) follows from Theorem 2.4. �

Corollary 2.6. Let (V,F) = (S(H),R) or (B(H),C). The following are equivalent for a map

f : Vm → Vm:

(a) f(0) = 0 and W (A−B) = W (f(A)− f(B)) for all A,B ∈ Vm.

(b) W (A + B) = W (f(A) + f(B)) for all A,B ∈ Vm.

(c) f is additive and satisfies W (A) = W (f(A)) for all A ∈ Vm.

(d) f is (F-)linear and satisfies W (A) = W (f(A)) for all A ∈ Vm.

(e) There is a unitary operator U ∈ B(H) such that f has the form

(A1, . . . , Am) 7→ (U∗A1U, . . . , U
∗AmU) or (A1, . . . , Am) 7→

(
U∗At1U, . . . , U

∗AtmU
)
,

where Xt is the transpose of X with respect to a fixed orthonormal basis.

Proof. The implications (e) =⇒ (d) =⇒ (c) =⇒ (b) =⇒ (a) are clear. If (a) holds, then f has

the form in Theorem 2.4 with R = 0. Since {(1, 0, . . . , 0)} = W ((I, 0, . . . , 0)) = W (f(I, 0, . . . , 0)),

it follows that the only nonzero γj1 is γ11 = 1. If we let Xj ∈ Vm have zero entries except for an

I in the jth position, applying this same argument to W (f(Xj)) (and to W (f(iXj)) if V = B(H))

shows that Γ = I, whence we have (e). �
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3 Joint numerical radius defined by smooth norms

For any function ν on Fm, one can define the ν-joint numerical radius of A ∈ Vm by

wν(A) = sup{ν(a1, . . . , am) : (a1, . . . , am) ∈W (A1, . . . , Am)}.

If ν is a norm on Fm, then wν will be a norm on Vm. Roughly speaking, if the unit norm ball for

the dual norm ν∗ has ‘enough’ extreme points, then we can characterize the linear isometries of wν

completely. We shall henceforth denote the unit norm ball for ν by Bν = {x ∈ Fm : ν(x) ≤ 1}.
Recall that, given any X ∈ V and c = (c1, . . . , cm) ∈ Fm, we let c⊗X = (c1X, . . . , cmX) ∈ Vm.

Theorem 3.1. Let (V,F) = (S(H),R) or (B(H),C). Let ν be a norm on Fm such that the set E

of extreme points of Bν∗ has the following property: There exist linearly independent v1, . . . , vm ∈ E
such that, for any j > 1, there is a uj ∈ E so that dim span (vj , uj) = 2 and span (v1, . . . , vj) =

span (v1, . . . , vj−1, uj). Then an F-linear map f : Vm → Vm satisfies

wν(A) = wν(f(A)) for all A ∈ Vm

if and only if there is a unitary operator U ∈ B(H) and a linear ν-isometry Γ = (γij) ∈ Mm(F)

with ν(Γu) = ν(u) for all u ∈ Fm such that f has the form

(A1, . . . , Am) 7→

 m∑
j=1

γ1jU
∗ψ(Aj)U, . . . ,

m∑
j=1

γmjU
∗ψ(Aj)U

 , (3)

with ψ taking the form X 7→ X or X 7→ Xt, where Xt is the transpose of X with respect to a fixed

orthonormal basis.

Proof. We shall mimic and closely follow the proof of Theorem 2.1. As before, sufficiency is easy to

check and we define an inner product (A,B) on Vm the same way. Since Fm is reflexive, ν = (ν∗)∗.

Let E denote the extreme points of Bν∗ . Then

wν(A) = sup{ν(a1, . . . , am) : (a1, . . . , am) ∈W (A1, . . . , Am)}

= sup{ν(trA1xx
∗, . . . , trAmxx

∗) : x ∈ H, (x, x) = 1}

= sup


∣∣∣∣∣∣
m∑
j=1

trAjxx
∗r̄j

∣∣∣∣∣∣ : x ∈ H, (x, x) = 1, r = (r1, . . . , rm) ∈ Bν∗


= sup {|(A,B)| : B ∈ E}

where

E = {(r1xx∗, . . . , rmxx∗) : x ∈ H, (x, x) = 1, r = (r1, . . . , rm) ∈ E}.

Thus wν is the dual of a norm w∗ν on Vm whose unit norm ball is the closed convex hull of its

extreme points E . Now let f : Vm → Vm be a F-linear map preserving wν ; it must be the dual of

a bijective linear map g preserving the induced norm w∗ν on Vm, in which case g(E) = E . We shall
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show that g has the form in (3) except with Γ being a ν∗-isometry instead. But note that if Q is a

ν-isometry on Fm (i.e. ν(Qx) = ν(x) for all x ∈ Fm), then Q∗ is a ν∗-isometry on Fm. It follows

that f has the desired form (3).

Fix a unit vector x ∈ H. By the hypotheses on E, there exist u2, . . . , um ∈ E and linearly

independent v1, . . . , vm ∈ E such that, for j = 2, . . . ,m, uj = αjvj + wj−1 for some nonzero scalar

αj and some nonzero vector wj−1 ∈ Vj−1 = span(v1, . . . , vj−1). Since v1 ⊗ xx∗ ∈ E , we may write

g(v1⊗ xx∗) = a⊗ yy∗ for some unit vector y ∈ H and some a ∈ E. By linearity, g(c⊗ xx∗) has the

form bc ⊗ yy∗ for any vector c ∈ V1. We shall use induction to show that, for any vector c ∈ Fm,

g(c⊗ xx∗) has the form bc ⊗ yy∗ for some vector bc ∈ Fm.

Suppose this statement is true for vectors c ∈ Vj−1. Let Z = wj−1 ⊗ xx∗ so we may write

g(Z) = r ⊗ R where R = yy∗ and r ∈ Fm is nonzero since g is bijective. Since uj , vj ∈ E,

X = uj⊗xx∗ ∈ E and Y = vj⊗xx∗ ∈ E , so we may write g(X) = p⊗P and g(Y) = q⊗Q for p, q ∈ E
and for some rank 1 (hermitian) projections P,Q. But X = αjY + Z, so g(X) = αjg(Y) + g(Z),

whence pkP = αjqkQ + rkR for all k = 1, . . . ,m. Since p, q, r are nonzero vectors, we must have

P = Q = R. Since g is linear, we see that g(c⊗ xx∗) must have the asserted form for any c ∈ Vj ,
and hence, by induction, for all c ∈ Fm.

Thus we can define a map h : Fm → Fm by h(a1, . . . , am) = (b1, . . . , bm) where

g(a1xx
∗, . . . , amxx

∗) = (b1yy
∗, . . . , bmyy

∗).

Since g is a bijective linear preserver of E , h is a linear ν∗-isometry. Let T = h−1 and let U ∈
B(H) be a unitary (real orthogonal if F = R) matrix satisfying Uy = x; then ĝ = L ◦ g fixes

(r1xx
∗, . . . , rmxx

∗) for all (r1, . . . , rm) ∈ Fm, where

L(A1, . . . , Am) =

 m∑
j=1

t1jUAjU
∗, . . . ,

m∑
j=1

tmjUAjU
∗

 .

Note that g has the desired form if and only if ĝ does, and that ĝ(E) = E . Moreover, since x was

arbitrary, we see that ĝ(Fm ⊗P) ⊆ Fm ⊗P, and can apply Lemma 2.3 to conclude that ĝ has the

desired form. �

Recall that a norm ν is smooth if every point x with ν(x) = 1 has precisely one supporting

functional f of norm one (that is, ν∗(f) = f(x) = 1). Some common examples of smooth norms

are the `p norms for 1 < p <∞.

Corollary 3.2. Let (V,F) = (S(H),R) or (B(H),C). Let ν be a smooth norm on Fm. A F-linear

map f : Vm → Vm satisfies

wν(A) = wν(f(A)) for all A ∈ Vm
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if and only if there is a unitary operator U ∈ B(H) and a linear isometry Γ = (γij) ∈Mm(F) with

ν(Γu) = ν(u) for all u ∈ Fm such that f has the form

(A1, . . . , Am) 7→

 m∑
j=1

γ1jU
∗ψ(Aj)U, . . . ,

m∑
j=1

γmjU
∗ψ(Aj)U

 , (4)

with ψ taking the form X 7→ X or X 7→ Xt, where Xt is the transpose of X with respect to a fixed

orthonormal basis.

Proof. This follows immediately from Theorem 3.1 by noting that:

1. If the dual norm ν∗ on X∗ is strictly convex (respectively smooth) then the norm ν on the

original Banach space X is smooth (respectively strictly convex).

2. The converse of the preceding statement obviously holds for reflexive spaces like Fm (but not

in general).

3. A norm ‖ · ‖ is strictly convex if and only if the unit norm ball for ‖ · ‖ has an extreme point

in every direction.

Hence a smooth norm satisfies the hypotheses of Theorem 3.1 and the conclusion follows. �

The results on distance-preserving maps and additive maps from Section 2 (Theorem 2.4 and

Corollary 2.5) generalize to the norms in this section, using the same arguments as before.

4 Joint numerical radius defined by symmetric norms

Recall that ν on Fm is a symmetric norm if it is a norm such that ν(x) = ν(Px) for any generalized

permutation matrix P , i.e., P = DQ for a permutation matrix Q and D = diag (d1, . . . , dn) with

|d1| = · · · = |dn| = 1. Commonly used symmetric norms on Fm include the `p norms defined by

`p(x1, . . . , xm) =

 m∑
j=1

|xj |p
1/p

p ∈ [1,∞),

and the k-norm defined by

‖x‖k = max {|xj1 |+ · · ·+ |xjk | : 1 ≤ j1 < j2 < · · · < jk ≤ m} .

It is known that (see [10] and also [2]) if ν is a symmetric norm not equal to a multiple of the

`2-norm, then the isometry group for ν must be one of the following:

(1) the group of generalized permutation matrices, or
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(2) Fm = R4, and the isometry group is generated by generalized permutation matrices and

the matrix A or B, where

A =
1

2


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 and B =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 , or

(3) Fm = R2, and the isometry group is a dihedral group with 8k elements for some positive

integer k.

We can extend the results in Section 2 to wν for some symmetric norms ν on Fm.

Theorem 4.1. Let (V,F) = (S(H),R) or (B(H),C). Let ν be a symmetric norm on Fm and

suppose Bν∗ has an extreme point of the form (γ, 0, . . . , 0). Then a linear map f : Vm → Vm

satisfies

wν(A) = wν(f(A)) for all A ∈ Vm

if and only if one of the following holds:

(a) ν is a multiple of the sup norm `∞, and there is a permutation (i1, . . . , im) of (1, . . . ,m)

such that f has the form

(A1, . . . , Am) 7→ (ψ1(Ai1), . . . , ψm(Aim)) ,

where for each j = 1, . . . ,m, there is a unitary matrix Uj ∈ B(H) and ξj ∈ F with |ξj | = 1 such

that ψj has the form

X 7→ ξjU
∗
jXUj or X 7→ ξjU

∗
jX

tUj .

(b) There is a unitary operator U ∈ B(H) and a linear isometry Γ = (γij) ∈ Mm(F) for the

norm ν such that f has the form

(A1, . . . , Am) 7→

 m∑
j=1

γ1jψ(Aj), . . . ,
m∑
j=1

γmjψ(Aj)

 ,

where ψ has either the form X 7→ U∗XU or X 7→ U∗XtU .

Remark 4.2. In the case where Fm 6= R4 or R2, and ν is a symmetric norm that is not a multiple

of the `2 or `∞ norms, we see that linear isometries of wν must have the form

(A1, . . . , Am) 7→ (ξ1ψ(Ai1), . . . , ξmψ(Aim))

where ψ has either the form X 7→ U∗XU or X 7→ U∗XtU , for some unitary operator U ∈ B(H), a

permutation (i1, . . . , im) of (1, . . . ,m), and ξ1, . . . , ξm ∈ F with |ξj | = 1.
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Proof. The sufficiency is clear. To prove the converse, we consider the dual norm w∗ν of wν . The

set of extreme points of Bw∗ν is

E = {(r1xx∗, . . . , rmxx∗) : x ∈ H, x∗x = 1, (r1, . . . , rm) ∈ E},

where E is the set of the extreme points of Bν∗ . Assume that (γ, 0, . . . , 0) ∈ E for some γ > 0. We

may assume that γ = 1; otherwise, replace ν∗ by γν∗.

Let P = {zz∗ : z ∈ H, z∗z = 1} and P̃ = {µQ : µ ∈ F, |µ| = 1, Q ∈ P}. Let ej denote

the jth row of the identity matrix Im, and recall that c ⊗ X = (c1X, . . . , cmX) for X ∈ Mn and

c = (c1, . . . , cm) ∈ Fm. In particular, let x ∈ H be a unit vector; since f∗ is a w∗ν-isometry

preserving E , f∗(ej ⊗ xx∗) = vj ⊗ yjy∗j for some vj ∈ E and unit vector yj ∈ H for j = 1, . . . ,m.

We consider two cases.

Case 1. Suppose ν is the sup norm. Then E = {ξei : |ξ| = 1}, and for j ∈ {1, . . . ,m}
we have f∗(ej ⊗ xx∗) = µjeτ(j) ⊗ yjy∗j , where τ is a permutation of (1, . . . ,m) and µj ∈ F with

|µj | = 1. We may compose f∗ with the map (X1, . . . , Xm) 7→ (µ̄1Xτ(1), . . . , µ̄mXτ(m)) and assume

that f∗(ej ⊗ xx∗) = (ej ⊗ yjy∗j ) for j ∈ {1, . . . ,m}. Applying Lemma 2.2 with g = f∗ and e = e1,

we see that either f∗(e1 ⊗ V) = e1 ⊗ V or f∗(e1 ⊗ V) ⊆ Fm ⊗ y1y∗1.

Suppose, by way of contradiction, that the latter case holds. Then f∗(e1 ⊗ A) = ψ(A) ⊗ y1y∗1
for some injective linear map ψ : V → Fm. Since f∗(e1 ⊗ P) ⊆ E ⊗ P, ψ(P) ⊆ E. Since P is

connected, ψ(P) is a connected subset of E, so ψ(P) ⊆ {µe1 : |µ| = 1}. But then ψ(V) ⊆ Fe1, so

ψ is a rank one injective map, which is impossible since dim V > 1. Hence f∗(e1 ⊗ V) = e1 ⊗ V.

We may write f∗(e1 ⊗ X) = e1 ⊗ ψ1(X) for some ψ1 : V → V. Since f∗ is bijective and

f∗(E ⊗ P) = E ⊗ P, ψ1 is bijective and ψ1(P̃) = P̃. As P̃ is the set of extreme points of Bw∗ , ψ∗1
preserves the numerical radius and has the form (see [8]) X 7→ ξU∗1XU1 or X 7→ ξU∗1X

tU1 for some

unitary U1 and ξ ∈ F with |ξ| = 1. It follows that ψ1 has the same form; since ψ1(xx
∗) = y1y

∗
1,

ξ = 1. Similarly, we can show that f∗(ej ⊗X) = ej ⊗ ψj(X), where both sides have the nonzero

component at the jth position, and that ψj has the form X 7→ U∗jXUj or X 7→ U∗jX
tUj for some

unitary Uj . Thus, case (a) of the Theorem holds.

Case 2. Suppose ν is not the sup norm. Let a = (α1, . . . , αm) be a vector in E with as few

zero entries as possible. Without loss of generality we may assume α1 ≥ · · · ≥ αk > 0 and αj = 0

for j > k ≥ 2. We shall show that the hypotheses of Theorem 3.1 apply.

Let v1 = a. For 2 ≤ j ≤ k, let vj be the vector in Fm having the same entries as a with the

exception of having −αj in the jth coordinate instead. For j > k, let vj be the vector in Fm whose

first k − 1 entries are α1, . . . , αk−1, jth entry is αk, and all other entries are zero. Thus v1, . . . , vm

are linearly independent extreme points of Bν∗ . Let Vj denote the span of v1, . . . , vj .

For j ≥ 2, let uj = ej ∈ E. If 2 ≤ j ≤ k, 2αjuj = v1−vj , so span (Vj−1, vj) = span (Vj−1, uj). If

j > k, then vj−αkuj ∈ Vk ⊆ Vj−1, so again span (Vj−1, vj) = span (Vj−1, uj). Thus the hypotheses

for Theorem 3.1 are satisfied and the conclusion follows. �
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Note that this result fails if ν is the `1 norm on R2. For example, the map

f(A,B) =
1

2
(A+B + U∗(A−B)U,A+B − U∗(A−B)U)

is a w`1 isometry on S(H)2 for any unitary U , but does not have the form asserted by the theorem.

Thus, the assumption that (γ, 0, . . . , 0) ∈ E is needed, at least when F = R. It turns out that this

assumption is not necessary when F = C however.

Theorem 4.3. Let ν be a symmetric norm on Cm not equal to a multiple of the sup norm `∞.

Then a linear map f : B(H)m → B(H)m satisfies

wν(A) = wν(f(A)) for all A ∈ Vm

if and only if there is a unitary operator U ∈ B(H) and a linear isometry Γ = (γij) ∈ Mm(F) for

the norm ν such that f has the form

(A1, . . . , Am) 7→

 m∑
j=1

γ1jψ(Aj), . . . ,
m∑
j=1

γmjψ(Aj)

 ,

where ψ has either the form X 7→ U∗XU or X 7→ U∗XtU .

Proof. Since ν is not a multiple of the sup norm, the norm ball Bν∗ has an extreme point of the

form (x1, . . . , xm) with x1 ≥ x2 ≥ · · · ≥ xk > 0, 2 ≤ k ≤ m, and xj = 0 for j > k. We shall show

that the hypotheses of Theorem 3.1 apply.

Since

det



x1 x2 x3 . . . xk

x1 wx2 x3
...

x1 x2 wx3
...

...
. . .

...
x1 . . . . . . . . . wxk


is a polynomial of degree k−1 in w, we may choose a nonreal w so that |w| = 1 and the determinant

is nonzero. For 1 ≤ j ≤ k, let vj denote the vector in Cm whose first k entries are given by the

jth row of the above matrix, and whose other entries are zero. For j > k, let vj be the vector in

Cm whose first k − 1 entries are x1, . . . , xk−1, jth entry is xk, and all other entries are zero. Thus

v1, . . . , vm are linearly independent extreme points of Bν∗ . Let Vj denote the span of v1, . . . , vj .

If 2 ≤ j ≤ k, let uj be the vector whose jth entry is wxj and whose other entries match those

of vj . Then uj is an extreme point and (w−w)v1 + (1−w)vj + (w− 1)uj = 0, so span (Vj−1, vj) =

span (Vj−1, uj). If j > k, let uj be the vector whose jth entry is wxk and whose other entries

match those of vj . Then uj is an extreme point and uj − wvj is a nonzero vector in Vk ⊂ Vj−1,

so span (Vj−1, vj) = span (Vj−1, uj). Thus the hypotheses for Theorem 3.1 are satisfied and the

conclusion follows. �
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As in Section 2, we may obtain results on

• distance-preserving maps f satisfying wν(A−B) = wν(f(A)− f(B)) for all A,B ∈ Vm, and

• additive maps f satisfying wν(A) = wν(f(A)) for all A ∈ Vm

generalizing Theorem 2.4 and Corollary 2.5 by using the same arguments as before. We omit their

discussion.
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