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ABSTRACT. For a noisy quantum channel, a quantum error correcting code of
dimension k exists if and only if the joint rank-k numerical range associated
with the error operators of the channel is non-empty. In this paper, geometric
properties of the joint rank k-numerical range are obtained and their implica-
tions to quantum computing are discussed. It is shown that for a given k if the
dimension of the underlying Hilbert space of the quantum states is sufficiently
large, then the joint rank k-numerical range of operators is always star-shaped
and contains the convex hull of the rank k̂-numerical range of the operators
for sufficiently large k̂. In case the operators are infinite dimensional, the joint
rank ∞-numerical range of the operators is a convex set closely related to the
joint essential numerical ranges of the operators.
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1. INTRODUCTION

In quantum computing, information is stored in quantum bits, abbreviated
as qubits. Mathematically, a qubit is represented by a 2 × 2 rank one Hermitian
matrix Q = vv∗, where v ∈ C2 is a unit vector. A state of N-qubits Q1, . . . , QN is
represented by their tensor products in Mn with n = 2N . A quantum channel for
states of N-qubits corresponds to a trace preserving completely positive linear map
Φ : Mn → Mn. By the structure theory of completely positive linear map [2],
there are T1, . . . , Tr ∈ Mn with ∑r

j=1 T∗j Tj = In such that

(1.1) Φ(X) =
r

∑
j=1

TjXT∗j .

In the context of quantum error correction, T1, . . . , Tr are known as the error oper-
ators.
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Let V be a k-dimensional subspace of Cn and P the orthogonal projection of
Cn onto V. Then V is a quantum error correcting code for the quantum channel Φ
if there exists another trace preserving completely positive linear map Ψ : Mn →
Mn such that Ψ ◦Φ(A) = A for all A ∈ PMnP. By the results in [9], this happens
if and only if there are scalars γij with 1 ≤ i, j ≤ r such that

PT∗i TjP = γijP.

Let Pk be the set of rank k orthogonal projections in Mn. Define the joint rank
k-numerical range of an m-tuple of matrices A = (A1, . . . , Am) ∈ Mm

n by

Λk(A) = {(a1, . . . , am) ∈ Cm : there is P ∈ Pk

such that PAjP = ajP for j = 1, . . . , m}.

Then the quantum channel Φ defined in (1.1) has an error correcting code of k-
dimension if and only if

Λk(T∗1 T1, T∗1 T2, . . . , T∗r Tr) 6= ∅.

Evidently, (a1, . . . , am) ∈ Λk(A) if and only if there exists an n× k matrix U such
that

U∗U = Ik, and U∗AjU = aj Ik for j = 1, . . . , m.

Let x, y ∈ Cn. Denote by 〈Ax, y〉 the vector (〈A1x, y〉, . . . , 〈Amx, y〉) ∈ Cm. Then
a ∈ Λk(A) if and only if there exists an orthonormal set {x1, . . . , xk} in Cn such
that 〈Axi, xj〉 = δija, where δij is the Kronecker delta. When k = 1, Λ1(A) reduces
to the (classical) joint numerical range

W(A) = {(x∗A1x, . . . , x∗Amx) : x ∈ Cn, x∗x = 1}
of A, which is quite well studied; see [11] and the references therein. It turns out
that even for a single matrix A ∈ Mn, the study of Λk(A) is highly non-trivial, and
the results are useful in quantum computing, say, in constructing binary unitary
channels; see [3, 4, 5, 6, 7, 13, 15, 18].

More generally, let B(H) be the algebra of bounded linear operators acting
on a Hilbert space H, which may be infinite dimensional. One can extend the de-
finition of Λk(A) to A ∈ B(H). If H is infinite dimensional, one may allow k = ∞
by letting Pk be the set of infinite rank orthogonal projections in B(H) in the de-
finition; see [14, 16]. There are a number of reasons to consider rank k-numerical
range of infinite dimensional operators. First, many quantum mechanical phe-
nomena are better described using infinite dimensional Hilbert spaces. Also, a
practical quantum computer must be able to handle a large number of qubits so
that the underlying Hilbert space must have a very large dimension. We will
also consider the joint rank k-numerical range of an m-tuple A = (A1, . . . , Am) of
infinite dimensional operators A1, . . . , Am for positive integers k and k = ∞. It
is interesting to note that Λ∞(A) has intimate connection with the joint essential
numerical range of A defined as

We(A) = ∩{cl (W(A + F)) : F ∈ F (H)m},
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where F (H) denotes the set of finite rank operators in B(H) and cl (S) denotes
the closure of the set S . Clearly, the joint essential numerical range is useful for
the study of the joint behaviors of operators under perturbations of finite rank (or
compact) operators.

The purpose of this paper is to study the joint rank k-numerical range of
A = (A1, . . . , Am) ∈ B(H)m. Understanding the properties of Λk(A) is useful for
constructing quantum error correcting codes and studying their properties such
as their stability under perturbation.

Our paper is organized as follows. In Section 2, we present some basic prop-
erties of Λk(A). Section 3 concerns the geometric properties of Λk(A). We show
that if dimH is sufficiently large, then Λk(A) is always star-shaped and contains
the convex hull of Λk̂(A) for sufficiently large k̂. In Section 4, we study the con-
nection between We(A), Λk(A) and its closure cl (Λk(A)). We show that Λ∞(A)
is always convex, and is a subset of the set of star centers of Λk(A) for each posi-
tive integer k. We also show that

We(A) = ∩k≥1cl (Λk(A)) .

Moreover, we obtain several equivalent formulations of Λ∞(A), including

Λ∞(A) = ∩{Λk(A + F) : F ∈ F (H)m}.

The results extend those in [1, 12].
Let S(H) be the real linear space of self-adjoint operators in B(H). Suppose

Aj = H2j−1 + iH2j with H2j−1, H2j ∈ S(H) f or j = 1, . . . , m.

Then Λk(A) ⊆ Cm can be identified with Λk(H1, . . . , H2m) ⊆ R2m. Thus, we
will focus on the joint rank k-numerical ranges of self-adjoint operators in our
discussion.

2. BASIC PROPERTIES OF Λk(A)

PROPOSITION 2.1. Suppose A = (A1, . . . , Am) ∈ S(H)m, and T =
(
tij
)

is an
m× n real matrix. If Bj = ∑m

i=1 tij Ai for j = 1, . . . , n, then

{aT : a ∈ Λk(A)} ⊆ Λk(B).

Equality holds if {A1, . . . , Am} is linearly independent and

span {A1, . . . , Am} = span {B1, . . . , Bn}.

Proof. The set inclusion follows readily from definitions. Evidently, the
equality holds if n = m and T is invertible.

Suppose {A1, . . . , Am} is linearly independent and

span {A1, . . . , Am} = span {B1, . . . , Bn}.
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First consider the special case when Ai = Bi for 1 ≤ i ≤ m. Then T = [Im|T1] for
some m× (n−m) matrix T1. Let (b1, . . . , bn) ∈ Λk(B). Then there exists a rank k
orthogonal projection P such that PBiP = biP for i = 1, . . . , n. Therefore, we have
(b1, . . . , bm) ∈ Λk(A) and for 1 ≤ j ≤ n,

bjP = PBjP = P

(
m

∑
i=1

tij Ai

)
P = P

(
m

∑
i=1

tijBi

)
P =

(
m

∑
i=1

tijbi

)
P

implying that bj =
(
∑m

i=1 tijbi
)

. Therefore, (b1, . . . , bn) = (b1, . . . , bm) T.
For the general case, by applying a permutation, if necessary, we may as-

sume that {B1, . . . , Bm} is a basis of span {B1, . . . , Bn}. Then there exists an m×m
invertible matrix S =

(
si j
)

such that Aj = ∑m
i=1 sijBi for j = 1, . . . , m. For

1 ≤ j ≤ m, we have

Bj =
m

∑
i=1

tij Ai =
m

∑
i=1

tij

(
m

∑
k=1

skiBk

)
=

m

∑
k=1

(
m

∑
i=1

skitij

)
Bk .

Therefore, ∑m
i=1 skitij = δk j and ST = [Im|T1] for some m × (n − m) matrix T1.

Hence, we have

Λk(B) = Λk (B1, . . . , Bm) [I|T1] = Λk (B1, . . . , Bm) ST = Λk (A1, . . . , Am) T. �

In view of the above proposition, in the study of the geometric properties of
Λk(A), we may always assume that A1, . . . , Am are linearly independent.

PROPOSITION 2.2. Let A = (A1, . . . , Am) ∈ S(H)m, and let k < dimH.
(a) For any real vector µµµ = (µ1, . . . , µm),

Λk(A1 − µ1 I, . . . , Am − µm I) = Λk(A)−µµµ.

(b) If (a1, . . . , am) ∈ Λk(A) then (a1, . . . , am−1) ∈ Λk(A1, . . . , Am−1).
(c) Λk+1(A) ⊆ Λk(A).

REMARK 2.3. By Proposition 2.2 (a), we can replace Aj by Aj − µj I for j =
1, . . . , m, without affecting the geometric properties of Λk(A1, . . . , Am).

Suppose dimH = n < 2k − 1 and A1 = diag (1, 2, . . . , n). Then Λk(A1) =
∅. By Proposition 2.2 (c), we see that Λk(A) = ∅ for any A2, . . . , Am. Thus, Λk(A)
can be empty if dimH is small. However, a result of Knill, Laflamme and Viola
[10] shows that Λk(A) is non-empty if dimH is sufficiently large. By modifying
the proof of Theorem 3 in [10], we can get a slightly better bound in the following
proposition. The proof given here is essentially the same as that of Theorem 3 and
4 in [10], except for the choice of x1. We include the details here for completeness.

PROPOSITION 2.4. Let A ∈ S(H)m. For m ≥ 1 and k > 1. If

dimH = n ≥ (k− 1)(m + 1)2,

then Λk(A) 6= ∅.
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Proof. We may assume that dimH = n = (k − 1)(m + 1)2. Otherwise,
replace each Aj by U∗AjU for some U such that U∗U = In. Let

q = (m + 1)(k− 1) + 1.

Choose an eigenvector x1 of A1 with ‖x1‖ = 1. Then choose a unit vector x2
orthogonal to x1, A2x1, . . . , Amx1. By the assumption on n, we can choose an or-
thonormal set {x1, x2, . . . , xq} of q vectors in Cn such that for 1 < r ≤ q, xr is
orthogonal to Ajxi for all 1 ≤ i < r and 1 ≤ j ≤ m. Let X be the n × q matrix
with xi as the i-th column. Then X∗AjX is a diagonal matrix for 1 ≤ j ≤ m. By
Tverberg’s Theorem [17], we can partition the set {i : 1 ≤ i ≤ q} into k disjoint
subset Rj, 1 ≤ j ≤ k such that R = ∩k

j=1conv {〈Axi, xi〉 : i ∈ Rj} 6= ∅. Suppose
a ∈ R. Then there exist non-negative numbers ti j, 1 ≤ j ≤ k, i ∈ Rj such that for
all 1 ≤ j ≤ k, ∑i∈Rj

ti j = 1 and ∑i∈Rj
ti j〈Axi, xi〉 = a. Let yj = ∑i∈Rj

√
ti jxi for

1 ≤ j ≤ k. Then {y1, . . . , yk} is orthonormal and 〈Ayj, yj〉 = a for all 1 ≤ j ≤ k. �

PROPOSITION 2.5. Suppose A ∈ S(H)m and 1 ≤ r < k ≤ dimH. Let Vr be
the set of operator X : H⊥

1 → H such that X∗X = IH⊥
1

for an r-dimensional subspace
H1 of H. Then

(2.1) Λk(A) ⊆ ∩{Λk−r(X∗A1X, . . . , X∗AmX) : X ∈ Vr}

and

(2.2) conv Λk(A) ⊆ conv (∩{Λk−r(X∗A1X, . . . , X∗AmX) : X ∈ Vr}) .

Proof. Suppose (a1, . . . , am) ∈ Λk(A). Let H2 be a k-dimensional subspace
and V : H2 → H such that V∗V = IH2 and V∗AjV = aj Ik for j = 1, . . . , m. Let
X ∈ Vr and X∗X = IH⊥

1
for an r-dimensional subspace H1 of H. Then

H0 = X∗
(

V (H2) ∩ X
(
H⊥

1

))
has dimension at least s = k − r. Let U : H0 ↪→ H be given by Ux = x for all
x ∈ H0. Then we have U∗U = IH0 and U∗ (X∗AjX

)
U = aj IH0 for j = 1, . . . , m.

Thus, (2.1) holds, and the inclusion (2.2) follows. �

Proposition 2.5 extends [14, Proposition 4.8] corresponding to the case when
m = 2. In such a case, the set inclusion (2.1) becomes a set equality if dimH < ∞
or if (A1, A2) is a commuting pair, i.e., A1 + iA2 is normal; see [14, Corollary 4.9].
The following example shows that the set equality in (2.1) may not hold even in
the finite dimensional case if m ≥ 3.

EXAMPLE 2.6. Let B1 =
(

1 0
0 −1

)
B2 =

(
0 1
1 0

)
B3 =

(
0 i
−i 0

)
. For

k > 1, let Aj = Bj ⊗ Ik for j = 1, 2, 3.
(a) We have Λk(A1, . . . , Am) = Λ1(B1, B2, B3) = {a ∈ R3 : ‖a|| = 1}, which

is not convex.
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(b) If r = k − 1 and X ∈ Vr and X∗X = IH⊥
1

for an r-dimensional subspace

H1, then dimH⊥
1 = 2k− r = k + 1 ≥ 3 so that

Λk−r (X∗A1X, X∗A2X, X∗A3X) = Λ1 (X∗A1X, X∗A2X, X∗A3X)

is convex [11].

Consequently, ∩{Λk−r (X∗A1X, X∗A2X, X∗A3X) : X ∈ Vr} is convex and cannot
be equal to Λk(A1, A2, A3).

For m > 3, we can take A1, A2, A3 as above and Aj = 02k for 3 < j ≤ m.
Then we have

Λk(A1, A2, A3) 6= ∩{Λk−r(X∗A1X, . . . , X∗AmX) : X ∈ Vr} .

To verify (a), suppose U =
(

U1
U2

)
is such that

U1, U2 ∈ Mk, U∗U = U∗
1 U1 + U∗

2 U2 = Ik and U∗AjU = aj Ik.

Then U∗
1 U1 −U∗

2 U2 = a1 Ik. It follows that

U∗
1 U1 = (1 + a1)Ik and U∗

2 U2 = (1− a1)Ik.

Thus, U1U∗
1 = (1 + a1)Ik and U2U∗

2 = (1− a1)Ik. As a result,

U∗
i UjU∗

j Ui = (1 + a1)(1− a1)I = U∗
i UiU∗

j Uj for (i, j) ∈ {(1, 2), (2, 1)},

and

(a2
1 + a2

2 + a2
3)Ik =

3

∑
j=1

(U∗AjU)2

= (U∗
1 U1 −U∗

2 U2)2 + (U∗
1 U2 + U∗

2 U1)2 + (iU∗
1 U2 − iU∗

2 U1)2

= (U∗
1 U1 + U∗

2 U2)2

= Ik.

Thus, Λk(A1, A2, A3) ⊆ {(a1, a2, a3) ∈ R3 : a2
1 + a2

2 + a2
3 = 1}.

Conversely, suppose (a1, a2, a3) ∈ R3 such that a2
1 + a2

2 + a2
3 = 1. Let

(α, β) =


(0, 1) i f a1 = −1,

(1 + a1, a2 − ia3)√
2(1 + a1)

otherwise.

Let U =
(

αIk
βIk

)
. Direct computation shows that U∗AjU = aj Ik for 1 ≤ j ≤ 3.

By a similar argument or putting k = 1, we see that Λ1(B1, B2, B3) has the
same form. �

It is natural to ask if the set equality in (2.2) can hold for for m > 2. Also,
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conv (∩{Λk−r(X∗A1X, . . . , X∗AmX) : X ∈ Vr})
⊆ ∩{conv Λk−r(X∗A1X, . . . , X∗AmX) : X ∈ Vr}.

It is interesting to determine whether the two sets are equal.

3. GEOMETRIC PROPERTIES OF Λk(A)

Let A = (A1, . . . , Am) ∈ S(H)m. Much is known about Λ1(A); for example
see [11] and its references. For instance, Λ1(A) is always convex if m ≤ 3 unless
(dimH, m) = (2, 3); If (dimH, m) = (2, 3) or n > 1, m ≥ 4, there are examples
A ∈ S(H)m such that Λ1(A) is not convex. Furthermore, for any A1, A2, A3 ∈
S(H) such that span {I, A1, A2, A3} has dimension 4, there is always an A4 ∈
S(H) for which Λ1(A1, . . . , A4) is not convex.

In the following, we show that Λk(A) is always star-shaped if dimH is
sufficiently large. Moreover, it always contains the convex hull of Λk̂(A) for
k̂ = (m + 2)k. If k = 1 and m > 2, we can lower the bound of the dimension
of the Hilbert space to get the star-shapedness result. We begin with the follow-
ing.

THEOREM 3.1. Let A = (A1, . . . , Am) ∈ S(H)m and k be a positive integer. If
Λk̂(A) 6= ∅ for some k̂ ≥ (m + 2)k, then Λk(A) is star-shaped and contains the convex
subset conv Λk̂(A) so that every element in conv Λk̂(A) is a star center of Λk(A).

Note that Λk̂(A) may be empty if dimH is small relative to k̂. Even if Λk̂(A)
is non-empty, it may be much smaller than its convex hull; for example, see Ex-
ample 2.6. So, the conclusion in Theorem 3.1 is rather remarkable.

Proof. We may assume a = 0 ∈ Λk̂(A). Then there exists Y such that Y∗Y =
I(m+2)k and Y∗AjY = 0 for all 1 ≤ j ≤ m.

Let b ∈ Λk(A). Then there exists X such that X∗X = Ik and

(X∗A1X, . . . , X∗AmX) = (b1 Ik, . . . , bm Ik).

Suppose X and Y are the range spaces of X and Y, respectively. Then we have

dim
(
Y ∩ (X + A1(X ) + · · ·+ Am(X ))⊥

)
≥ dimY − dim (X + A1(X ) + · · ·+ Am(X )) ≥ k.

Let Y1 be an k-dimensional subspace of Y ∩ (X + A1(X ) + · · ·+ Am(X ))⊥ and
Y2 = Y ∩ (X + Y1)

⊥. Set Z = [X|Y1|Y2], where Yi has columns forming an
orthonormal basis of Yi for i = 1, 2. Then we have Z∗Z = I(m+2)k and for 1 ≤ j ≤
m, Z∗AjZ has the form  bj Ik 0k ∗

0k 0k ∗
∗ ∗ ∗

 .
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Let Cj = bj Ik ⊕ 0k. For t ∈ [0, 1], we have

t(b1, . . . , bm) ∈ Λk(C1, . . . , Cm) ⊆ Λk(Z∗A1Z, . . . , Z∗AmZ) ⊆ Λk(A).

Clearly, Λk̂(A) ⊆ Λk(A). Since every element of Λk̂(A) is a star center of
Λk(A) and the set of star centers of a star-shaped set is convex, we see that every
element in conv Λk̂(A) is a star center of Λk(A). Hence, conv Λk̂(A) ⊆ Λk(A). �

If dimH is finite, then Λk(A) is always closed. But this may not be the
case if dimH is infinite. Using Theorem 3.1, we can prove the star-shapedness of
cl (Λk(A)).

COROLLARY 3.2. Let A = (A1, . . . , Am) ∈ S(H)m and k be a positive integer.
If cl (Λk̂(A)) 6= ∅ for some k̂ ≥ (m + 2)k, then cl (Λk(A)) is star-shaped and contains
the convex subset conv cl (Λk̂(A)) so that every element in conv cl (Λk̂(A)) is a star
center of cl (Λk(A)).

Proof. Suppose a ∈ cl (Λk̂(A)) and b ∈ Λk(A). Then for every ε there is
ã = (ã1, . . . , ãm) ∈ Λk̂(A) such that `1(ã − a) < ε. By Theorem 3.1, we see that
the line segment joining ã and b lies in Λk(A). Consequently, the line segment
joining a and b lies in cl (Λk(A)). The proof of the last assertion is similar to that
of Theorem 3.1. �

It is easy to see that a star center of Λk(A) is also a star center of cl (Λk(A)).
However, the converse may not hold. The following example from [12, Example
3.2] illustrates this.

EXAMPLE 3.3. Consider H = `2 with canonical basis {en : n ≥ 1}. Let
A = (A1, . . . , A4) with A1 = diag (1, 0, 1/3, 1/4, ....), A2 = diag (1, 0)⊕ 0,

A3 =
(

0 1
1 0

)
⊕ 0 and A4 =

(
0 i
−i 0

)
⊕ 0.

Then (1, 1, 0, 0) ∈ W(A) and (0, 0, 0, 0) ∈ W(A) ∩We(A) is a star-center of the
closure of W(A). However, (1/2, 1/2, 0, 0) /∈ W(A) so that (0, 0, 0, 0) is not a star-
center of W(A). In fact, W(A) is not convex even though cl (W(A)) is convex.

By Proposition 2.4, we see that Λk̂(A) is non-empty if dimH is sufficiently
large. So, Λk(A) is star-shaped and contains a convex set. The same comment
also holds for cl (Λk(A)). More specifically, we have the following.

THEOREM 3.4. Let A = (A1, . . . , Am) ∈ S(H)m. If

dimH ≥ ((m + 2)k− 1)(m + 1)2,

then both Λk(A) and cl (Λk(A)) are star-shaped.

In Theorem 3.7, we will show that the classical joint numerical range is star-
shaped with a much milder restriction on dimH comparing with that in Theorem
3.4. To demonstrate this, we need two related results.
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PROPOSITION 3.5. Suppose dimH = n and A = (A1, . . . , Am) ∈ S(H)m is
such that {A1, . . . , Am} is linearly independent. Assume that 0 ∈ Λn−1(A), i.e., there

is a basis such that Aj has operator matrix
(
∗ ∗
∗ 0n−1

)
for j = 1, . . . , m.

(a) If m = 2n− 1, then there is an invertible S ∈ Mm(R) such that

Λ1(A) =

{
(1 + u1, u2, . . . , um)S : u1, . . . , um ∈ R,

m

∑
j=1

u2
j = 1

}

so that Λ1(A) is not star-shaped.
(b) If m < 2n− 1, then Λ1(A) is star-shaped with 0 as a star center.

Proof. (a) If m = 2n − 1, there is an invertible m × m real matrix T = (tij)
such that for Bj = ∑i=1 tij Ai for j = 1, . . . , m with

B = (B1, . . . , Bm) = (E11, E12 + E21,−iE12 + iE21, . . . ,−iE1n + iEn1).

Let x = µ(cos t, sin t(v2 + iv3), . . . , sin t(vm−1 + ivm))t be a unit vector in Cn such
that |µ| = 1, t ∈ [0, π/2], and v2, . . . , vm ∈ R with ∑m

j=2 v2
j = 1. Then

〈Bx, x〉 = ((1 + cos(2t))/2, v2 sin(2t), v2 sin(2t), . . . , vm sin(2t))
= (1 + u1, u2, . . . , um)D,

where D = [1/2] ⊕ In−1, u1 = cos(2t) and uj = vj sin(2t) for j = 2, . . . , m. It
follows that

Λ1(B) =

{
(1 + u1, u2, . . . , um)D : u1, . . . , um ∈ R,

m

∑
j=1

u2
j = 1

}
.

By Proposition 2.1, Λ1(A) = {bT−1 : b ∈ Λ1(B)}. The result follows.
(b) Now, suppose m < 2n − 1. By adding more Aj, if necessary, we only

need to consider the case when m = 2n− 2. Let vj be the row vector obtained by
removing the first entry of the first row of Aj for j = 1, . . . , m.

Case 1 Suppose span {v1, . . . , vm} has real dimension m− 1 = 2n− 3. Then there
is a unitary matrix of the form U = [1]⊕U0 ∈ Mn such that the (1, n) entry of
U∗AjU is real for j = 1, . . . , m. Hence, there is an invertible m × m real matrix
T = (tij) such that for Bj = ∑i=1 tij Ai for j = 1, . . . , m with

B = (B1, . . . , Bm)
= (E11, E12 + E21,−iE12 + iE21, . . . ,−iE1,n−1 + iEn−1,1, E1n + En1).

Suppose b ∈ Λ1(B), b 6= 0. Then there exists a unit vector x = µ(u0, u1 +
iu2, . . . , um−1 + ium)t such that |µ| = 1 and u0 > 0, with

b = 〈Bx, x〉 = u0(u0, 2u1, . . . , 2um−1).
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For any t ∈ (0, 1), we can choose a unit vector of the form xt =
√

t(u0, u1 +
iu2, . . . , um−1 + iũm)t with tũ2

m = 1−∑m−1
j=0 tu2

j so that

〈Bxt, xt〉 = t〈Bx, x〉.

Case 2. Suppose {v1, . . . , vm} has real dimension m = 2n − 2. Then there is an
invertible m×m real matrix T = (tij) such that

B = (B1, . . . , Bm) =

(
m

∑
i=1

ti1 Ai, . . . ,
m

∑
i=1

tim Ai

)
= (a1E11, . . . , amE11) + (E12 + E21, iE12 + iE21, . . . , E1n + En1,−iE1n + iEn1)

with a1, . . . , am ∈ R. Suppose b ∈ Λ1(B), b 6= 0. Then there exists a unit vector
x = µ(u0, u1 + iu2, . . . , um−1 + ium)t such that |µ| = 1 and u0 > 0, with

b = 〈Bx, x〉 = u0(a1u0 + 2u1, a2u0 + 2u2, . . . , amu0 + 2um).

For any t ∈ (0, 1), consider a vector of the form

xξ = (ξu0, w1 + iw2, w3 + iw4, . . . , wm−1 + iwm)t,

where ξ ≥ t and wj = aju0(t− ξ2)/(2ξ) + tuj/ξ for j = 1, . . . , m. Then

ξu0(ajξu0 + 2wj) = tu0(aju0 + 2uj), j = 1, . . . , m,

so that
〈Bxξ , xξ〉 = t〈Bx, x〉.

If ξ =
√

t, then xξ =
√

t(u0, u1 + iu2, . . . , um−1 + ium)t has norm less than 1; if
ξ → ∞, then ‖xξ‖ ≥ |ξu0| → ∞. Thus, there is ξ > t such that xξ is a unit vector
satisfying 〈Bxξ , xξ〉 = t〈Bx, x〉. So, Λ1(B) is star-shaped with 0 as a star center. By
Proposition 2.1, Λ1(A) = {bT−1 : b ∈ Λ1(B)}. The result follows. �

THEOREM 3.6. Let A = (A1, . . . , Am) ∈ S(H)m. If Λk̂(A) 6= ∅ for some
k̂ > (m + 1)/2, then Λ1(A) is star-shaped and contains conv Λk̂(A) such that every
element in conv Λk̂(A) is a star center of Λ1(A).

Proof. We may assume a = 0 ∈ Λk̂(A) with k̂ > (m + 1)/2. Suppose x ∈ H
is a unit vector and b = 〈Ax, x〉 ∈ Λ1(A). Suppose X is such that X∗X = Ik̂
and X∗AjX = 0k̂ for j = 1, . . . , m. Let Y be such that Y∗Y = Ik̂+1, and the range
space of Y contains the range space of X and x. Suppose B = (B1, . . . , Bm) =

(Y∗A1Y, . . . , Y∗AmY). Then we may assume that Bj has the form
(
∗ ∗
∗ 0k̂

)
for

j = 1, . . . , m. Clearly, span {B1, . . . , Bm} has dimension at most m < 2k̂ − 1. By
Proposition 3.5, the line segment joining 0 and b lies entirely in Λ1(B) ⊆ Λ1(A).
Thus, 0 is a star center of Λ1(A). Since the set of star centers of Λ1(A) is convex,
we see that every element in conv Λk̂(A) is a star center of Λ1(A). �
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THEOREM 3.7. Let A = (A1, . . . , Am) ∈ S(H)m. If

dimH ≥
[

m + 1
2

]
(m + 1)2,

then Λ1(A) is star-shaped.

Proof. Let k̂ =
[

m + 1
2

]
+ 1 >

m + 1
2

. Then dimH ≥ (k̂ − 1)(m + 1)2 and

Λk̂(A) 6= ∅ by Proposition 2.4. The result then follows from Theorem 3.6. �

4. RESULTS ON Λ∞(A)

In this section, we always assume that H has infinite dimension. Denote by
P∞ the set of infinite rank orthogonal projections in S(H). For A ∈ S(H)m let

Λ∞(A) = {(γ1, . . . , γm) ∈ Rm : there is P ∈ P∞

such that PAiP = γiP for all 1 ≤ i ≤ m}.

By the result in Section 3, we have the following.

PROPOSITION 4.1. Suppose A ∈ S(H)m, where H is infinite-dimensional. Then
Λk(A) is star-shaped for each positive integer k. Moreover, if a ∈ Λ∞(A), then a is a
star center for Λk(A) for every positive integer k.

When m = 2, it was conjectured in [16] and confirmed in [14] that

Λ∞(A1, A2) =
⋂
k≥1

Λk(A1, A2);

in [1, Theorem 4], it was proven that

Λ∞(A1, A2) = ∩{W(A1 + F1, A2 + F2) : F1, F2 ∈ S(H) ∩ F (H)}.

In the following, we extend the above results to Λ∞(A1, . . . , Am) for m > 2. More-
over, we show that Λ∞(A) =

⋂
k≥1 Sk(A), where Sk(A) is the set of star centers

of Λk(A). Hence, Λ∞(A) is always convex.

THEOREM 4.2. Suppose A ∈ S(H)m, where H is infinite-dimensional. For each
k ≥ 1, let Sk(A) be the set of star-center of Λk(A). Then

(4.1) Λ∞(A) = ∩kSk(A) = ∩kΛk(A) = ∩{W(A + F) : F ∈ S(H)m ∩ F (H)m} .

Consequently, Λ∞(A) is convex.

Proof. It follows from definitions and Theorem 3.1 that

Λ∞(A) ⊆ ∩kSk(A) ⊆ ∩kΛk(A) .

We are going to prove that ∩kΛk(A) ⊆ ∩{W(A + F) : F ∈ S(H)m ∩ F (H)m}.
Suppose F = (F1, . . . , Fm) ∈ S(H)m ∩ F (H)m and K = ∑m

i=1 rank (Fi) + 1. Let
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µµµ = (µ1, . . . , µm) ∈ ∩kΛk(A). Then there exists a rank K orthogonal projection P
such that PAjP = µjP for 1 ≤ j ≤ m. Let

H0 = range P ∩ ker F1 ∩ ker F2 ∩ · · · ∩ ker Fm

= range P ∩ (range F1 + range F2 + · · ·+ range Fm)⊥ .

Then dim H0 ≥ 1. Let x be a unit vector in H0. Then we have 〈(A + F) x, x〉 =
〈Ax, x〉 = µµµ. Therefore, µµµ ∈ W(A + F). Hence, we have ∩kΛk(A) ⊆ ∩{W(A +
F) : F ∈ S(H)m ∩ F (H)m}.

Next, we prove that ∩{W(A + F) : F ∈ S(H)m ∩ F (H)m} ⊆ Λ∞(A). Sup-
pose

µµµ ∈ ∩{W(A + F) : F ∈ S(H)m ∩ F (H)m}.

By Remark 2.3, we may assume that µµµ = 0. Then 0 ∈ W(A) and there exists a
unit vector x1 such that 〈Ax1, x1〉 = 0. Suppose we have chosen an orthonormal
set of vectors {x1, . . . , xn} such that 〈Axi, xj〉 = 0 for all 1 ≤ i, j ≤ n. Let H0 be
the subspace spanned by

{xi : 1 ≤ i ≤ n} ∪ {Ajxi : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

and P the orthogonal projection of H onto H0. Suppose

B =
(

(I − P)A1(I − P)|H⊥
0

, . . . , (I − P)Am(I − P)|H⊥
0

)
.

Let b = (b1, . . . , bm) be a star-center of W(B). Then

bIH0 ⊕ B = (b1P + (I − P)A1(I − P), . . . , bmP + (I − P)Am(I − P)) = A + F

for some F ∈ S(H)m ∩ F (H)m. Therefore, 0 ∈ W(bIH0 ⊕ B). Hence, there exists
a unit vector x ∈ H such that 0 = 〈(A + F)x, x〉. Let x = y + z, where y ∈ H0 and
z ∈ H⊥

0 . Then ‖y‖2 + ‖z‖2 = ‖x‖2 = 1. If z = 0, then 0 = b ∈ W(B). If z 6= 0,
then by Proposition 4.1, we have

0 = 〈(A + F)x, x〉 = ‖y‖2b + ‖z‖2〈B
(

z
‖z‖

)
,
(

z
‖z‖

)
〉 ∈ W(B)

So there exists a unit vector xn+1 ∈ H⊥
0 such that

0 = 〈(A + F)xn+1, xn+1〉 = 〈Bxn+1, xn+1〉 = 〈Axn+1, xn+1〉

Hence, inductively, we can choose an orthonormal sequence of vectors {xn}∞
n=1

such that
〈Axi, xj〉 = 0 for all i, j .

Thus, we have

Λ∞(A) ⊆ ∩kSk(A) ⊆ ∩kΛk(A)
⊆ ∩{W(A + F) : F ∈ S(H)m ∩ F (H)m} ⊆ Λ∞(A).

Since Sk(A) is convex for all k ≥ 1, the last statement follows. �
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The last equality in (4.1) establishes a relationship between Λ∞(A) and the
joint numerical ranges of finite rank perturbation of A. The following result gives
an extension.

THEOREM 4.3. Suppose A = (A1, . . . , Am) ∈ S(H)m. Let n ≥ 1 and F0 ∈
S(H)m ∩ F (H)m. Then the following sets are equal.

(a) Λ∞(A).
(b) Λ∞ (A + F0).
(c) ∩{Λn(A + F) : F ∈ F (H)m ∩ S(H)m}.
(d) ∩k≥1

(
∩{Λk(A + F) : F ∈ F (H)m ∩ S(H)m}

)
.

Proof. By Theorem 4.2, we have

Λ∞ (A + F0)
= ∩{W(A + F0 + F) : F ∈ S(H)m ∩ F (H)m}
= ∩{W(A + F) : F ∈ S(H)m ∩ F (H)m}
= Λ∞ (A) .

This proves the equality of the sets in (a) and (b). For the equality of the sets of
(a) and (c), let F ∈ F (H)m ∩ S(H)m. Then we have

Λ∞ (A) = Λ∞ (A + F) ⊆ Λn (A + F) ⊆ W(A + F).

It follows that

Λ∞ (A) ⊆ ∩{Λn (A + F) : F ∈ S(H)m ∩ F (H)m}
⊆ ∩{W(A + F) : F ∈ S(H)m ∩ F (H)m} = Λ∞ (A) .

The equivalence of (a) and (d) follows immediately. �

Recall that Vr is the set of X : H⊥
1 → H such that dimH1 = r and X∗X =

IH⊥
1

. Then X∗AX is a compression of A to H⊥
1 . The next result is an analog to

Theorem 4.3 for Λk (X∗AX).

THEOREM 4.4. Suppose A = (A1, . . . , Am) ∈ S(H)m. Let n, r0 ≥ 1 and
X0 ∈ Vr0 . Then for X∗AX = (X∗A1X, . . . , X∗AmX), the following sets are equal.

(a) Λ∞(A).
(b) Λ∞ (X∗

0 AX0).
(c) ∩{Λn(X∗AX) : X ∈ ∪r≥1Vr}.
(d) ∩k≥1 (∩{Λk(X∗AX) : X ∈ ∪r≥1Vr}).

Proof. By (4.1) and (2.1), we have

Λ∞ (A) = ∩kΛk(A) = ∩kΛk+r(A) ⊆ ∩kΛk (X∗
0 AX0) = Λ∞ (X∗

0 AX0) ⊆ Λ∞(A).

This proves the equality of the sets in (a) and (b). For the equality of the sets of
(a) and (c), we will first show that

(4.2) ∩{Λ1(X∗AX) : X ∈ ∪r≥1Vr} ⊆ Λ∞(A).
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Let µµµ ∈ ∩{Λ1(X∗AX) : X ∈ ∪r≥1Vr}. By Remark 2.3, we may assume that
µµµ = 0. Then there exists a unit vector x1 such that 〈Ax1, x1〉 = 0. Suppose we
have chosen an orthonormal set of vectors {x1, . . . , xN} such that 〈Axi, xj〉 = 0
for all 1 ≤ i, j ≤ N. Let H1 be the subspace spanned by

{xi : 1 ≤ i ≤ N} ∪ {Ajxi : 1 ≤ i ≤ N, 1 ≤ j ≤ m}

and X : H⊥
1 → H be given by X(v) = v for all v ∈ H⊥

1 . Then 0 ∈ Λ1(X∗AX). So
there exists a unit vector xN+1 ∈ H⊥

1 such that

0 = 〈(X∗AX)xN+1, xN+1〉 = 〈AxN+1, xN+1〉 .

Inductively, we can find an orthonormal sequence {xi} in H such that 〈Axi, xj〉 =
0 for all i, j. Hence, 0 ∈ Λ∞(A).

To continue the proof of the equality of the sets of (a) and (c). Let X ∈
∪r≥1Vr. Then we have

Λ∞ (A) = Λ∞ (X∗AX) ⊆ Λn (X∗AX) ⊆ Λ1 (X∗AX) .

It follows that

Λ∞ (A) ⊆ ∩{Λ∞ (X∗AX) : X ∈ ∪r≥1Vr}
⊆ ∩{Λ1(X∗AX) : X ∈ ∪r≥1Vr} ⊆ Λ∞ (A) .

The equality of the sets of (a) and (d) follows immediately. �

Recall that the joint essential numerical range of A ∈ S(H)m is defined by

We(A) = ∩{cl (W(A + F)) : F ∈ S(H)m ∩ F (H)m}.

Using the last two theorems, we have the following.

COROLLARY 4.5. Let A ∈ S(H)m, where H is infinite dimensional. Denote by
S̃k(A) the set of star center of cl (Λk(A)). Then

We(A) =
⋂
k≥1

cl (Λk(A)) =
⋂
k≥1

S̃k(A).

In addition, let n ≥ 1 and F0 ∈ S(H)m ∩ F (H)m. Moreover, let V be a finite dimen-
sional subspace of H and X0 : V⊥ → H such that X∗

0 X0 = IV⊥ . Then the following sets
are equal.

(a) We(A).
(b) We (A + F0).
(c) We (X∗

0 AX0).
(d) ∩{cl (Λn(A + F)) : F ∈ F (H)m ∩ S(H)m}.
(e) ∩{cl (Λn(X∗AX)) : X ∈ ∪r≥1Vr}.
(f) ∩k≥1

(
∩{cl (Λk(A + F)) : F ∈ F (H)m ∩ S(H)m}

)
.

(g) ∩k≥1 (∩{cl ((Λk(X∗AX))) : X ∈ ∪r≥1Vr}).
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Let A ∈ S(H) and k be a positive integer. Denote by Uk the set of X : Ck →
H such that X∗X = Ik and

λk(A) = sup{min σ(X∗AX) : X ∈ Uk},

where σ(B) is the spectrum of the operator B. For c = (c1, . . . , cm) ∈ Rm and
A ∈ S(H)m, let c ·A = ∑m

i=1 ci Ai. Define

Ω∞(A) =
⋂

c∈Rm
{a ∈ Rm : c · a ≤ λk(c ·A) for all k ≥ 1} .

The following extends [14, Theorem 2.1].

THEOREM 4.6. Let A ∈ S(H)m, where H is infinite dimensional. Then

Λ∞(A) ⊆ Ω∞(A) = We(A).

Proof. For k ≥ 1, let

Ωk(A) =
⋂

c∈Rm
{a ∈ Rm : c · a ≤ λk(c ·A)} .

Clearly, Ω∞(A) =
⋂

k≥1 Ωk(A). Suppose k ≥ 1 and a = (a1, . . . , am) ∈ Λk(A).
Then there exists P ∈ Pk such that PAjP = ajP for all 1 ≤ j ≤ m. For every
c ∈ Rm, we have P(c ·A)P = (c · a)P. Hence,

c · a = λk(c · PAP) = λk(P(c ·A)P) ≤ λk(c ·A).

Therefore, Λk(A) ⊆ Ωk(A). Since Ωk(A) is closed, we have cl (Λk(A)) ⊆ Ωk(A).
Hence,

Λ∞(A) = ∩k≥1Λk(A) ⊆ ∩k≥1cl (Λk(A)) = We(A) ⊆ ∩k≥1Ωk(A) = Ω∞(A) .

To show that Ω∞(A) ⊆ We(A). Suppose a ∈ Ωk(A). By Remark 2.3, we
may assume that a = 0. So, λk(c · A) ≥ 0 for all k ≥ 1 and c ∈ Rm. For
F = (F1, . . . , Fm) ∈ S(H)m ∩ F (H)m, let K = ∑m

i=1 rank (Fi) + 1. Then

λ1(c · (A + F)) ≥ λK+1(c ·A) ≥ 0 and λ1(−(c · (A + F))) ≥ λK+1(−c ·A) ≥ 0 .

Therefore, c · 0 = 0 ∈ cl (W(c · (A + F))) = c · cl (W(A + F)). Hence, c · 0 ∈
c ·We(A) for all c ∈ Rm. By the convexity of We(A), we have 0 ∈ We(A). �

EXAMPLE 4.7. For n ≥ 1, let Bn =
[ 1

n 0
0 − 1

n

]
, Cn =

[ 1
n 0
0 0

]
, A1 =

⊕∞
n=1Bn, A2 = ⊕∞

n=1Cn and A = (A1, A2). Then (0, 0) ∈ Ω∞(A) but Λ∞(A) = ∅.
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