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A UNIFIED ELEMENTARY APPROACH TO CANONICAL FORMS
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Abstract. A unified elementary approach is used to obtain various canonical-form theorems for
complex and real matrices.
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1. Introduction. One of the most fruitful ideas in the theory of matrices is that
of a matrix decomposition or canonical form. In fact, this topic has applications to
many pure and applied subjects such as geometry, statistics, differential equations,
approximation theory, and control theory (e.g., see [L, Chapter 8], [G, Chapter 9],
[HJ1, Chapter 3], [HJ2, Chapter 3], [S], and their references).

While the canonical-form theorems for matrices are beautiful and have many
applications, they are usually not introduced to students in the first matrix theory
course. This is partly due to the fact that many of the standard proofs of the canonical-
form theorems are not simple and require a lot of background such as the theory
of eigenvalues, singular values, and eigenvectors. This is especially frustrating for
students of other disciplines such as engineering, physics, and statistics, who would
not be able to manage the canonical-form theorems needed in their study after a full
semester course of linear algebra.

The purpose of this note is to use a unified elementary approach, requiring only
some calculus theory and the fact that a continuous function attains its maximum on
a compact set, to prove various basic canonical-form theorems for matrices.

We shall illustrate our approach by proving several basic results in the next sec-
tion. Some additional techniques and results will be discussed in section 3. The
standard basis for R or C* will be denoted by {ey,...,e,}, and the standard basis
for m x n matrices will be denoted by {E11, E12,..., Fmn}-

2. Basic results. We first present the proof of the canonical-form theorem for
real symmetric matrices.

THEOREM 1. Suppose A is an n X n real symmetric matriz. Then there is an
orthogonal matriz U such that A =U(Y7_| NiEii)U" with Ay > -+ > Xy (M,..., A,
are the eigenvalues of A).

Proof. We divide the proof into three steps.

Step 1. For the given symmetric matrix A, let u € R” satisfy u'u = 1 and

u' Au = max{z' Az : x € R", z'z = 1}.

*Received by the editors May 11, 1995; accepted for publication (in revised form) October 11,
1995.

http://www.siam.org/journals/sirev/39-2/29486.html

tDepartment of Computer Science, University of Virginia, Charlottesville, VA 22903 (karro@
virginia.edu).

iDepartment of Mathematics, The College of William and Mary, Williamsburg, VA 23187
(ckli@math.wm.edu).

305



306 CLASSROOM NOTES

The existence of such a vector u is guaranteed by the fact that = — z'Az is a
continuous function and {z € R : z'x = 1} is a compact set.

Step 2. Extend u to an orthogonal matrix U with u as the first column. This
can be done by applying the Gram—Schmidt process to a basis for R” of the form
{u,€ej,,...,€;,}, where u is not in the linear span of {e;,,...,e; }. We claim that
B = U'AU is of the form [)61 fl], where Ay = u’Au and A; isan (n — 1) x (n— 1)
symmetric matrix. Note that B is symmetric and By; = A1 by our construction of U.

For 2 < k < n,let (0) = U(cosfe; +sinfex) and
f(0) = ;L‘(H)tACL‘(G) = cos?0 A1 + 2cosOsinf By + sin® 0 Biy

with § € R. Our assumption on A; implies that the real-valued function f attains a
maximum at @ = 0. Hence 0 = f/(0) = 2By, and our claim is proved.

Step 3. One can now apply an inductive argument to A; to complete the
proof. a0

It is worth mentioning that the unit vector u in Step 1 of the proof is a unit
eigenvector corresponding to the largest eigenvalue A; of the symmetric matrix A.
The fact that Ay = u’Au is the solution of the maximization problem in Step 1
follows from the Rayleigh principle (e.g., see [HJ1, Theorem 4.2.2]). Of course, this
knowledge is not required in our proof.

The theory of complex symmetric matrices is useful in the study of complex
function theory and physics (e.g., see [HJ1, section 4.4]). The proof of Theorem 1 can
be adapted to obtain the following canonical-form theorem for complex symmetric
matrices.

THEOREM 2. Suppose A is an n x n complex symmetric matriz. Then there is a
unitary matriz U such that A = U(Z?:1 5i Ei) U with s1 > -+ > 5, >0 (51,...,5n
are the singular values of A).

Proof. Again we divide the proof into three steps.

Step 1. For a given complex symmetric matrix A, let u € C” satisfy u*u = 1 and

u' Au = max{Re (z'Az) : 2 € C", z*z = 1}.

The existence of u is guaranteed by the fact that z + Re(z'Az) is a continuous
function and {z € C" : z*z = 1} is a compact set.

Step 2. Extend u to a unitary matrix U with u as the first column. We claim that
B = U'AU is of the form [} fl], where 51 = u'Au and A; isan (n — 1) x (n — 1)
symmetric matrix. Clearly, s; > 0; otherwise one may replace u by pu for a suitable
p € C with || = 1 such that Re(p?s1) = Re ((pu)® A(pu)) = |s1| > Re(s1). Note
that B is symmetric and B11 = s1 by our construction of U. For 2 < k < n and for
any p € C with |u| =1, let 2(0) = U(cosfeq + psinfex) and

f(6) = Re (2(0)" Az(0)) = cos® 0 s1 + 2 cosOsin @ Re (u Byx) + sin® 6 Re (1® Byy)

with # € R. Our assumption on s; implies that the real-valued function f attains a
maximum at # = 0. Hence 0 = f/(0) = 2Re (uB1x). Since this is true for all y € C
with |p| = 1, we have By = 0. Thus our claim is proved.

Step 3. One can now apply an inductive argument to A; to complete the
proof. o

The author in [Ho] gave a simple proof of the singular value decomposition theo-
rem which asserts the following:

Every real m x n matriz A can be written as U(Ele 5iEi;)V*', where U and V
are orthogonal matrices of appropriate sizes, k is the rank of A, and s1 > +--> s; > 0
(are the singular values of A).
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In fact, our approach uses some of the ideas in [Ho]. One can reorganize the proof
of Hoechsmann in terms of our three basic steps as follows.

Step 1. For a given real m x n matrix A, determine unit vectors u € R™ and
v € R” such that

u'Av = max{z’Ay: x € R™, y e R", 2’z = y'y = 1}.

The existence of such u and v is guaranteed by the fact that (z,y) — z'Ay is a
continuous function and {(z,y) € R™ x R™: z'z = y'y = 1} is a compact set.

Step 2. Extend u (respectively, v) to an orthogonal matrix U (respectively, V)
with u (respectively, v) as the first column. Show that U*AV is of the form [} [?1]
with 4; € R(m=1)x(n=1),

Step 3. Apply an inductive argument to A; to complete the proof.

Horn informed us that the idea of this type of variational proof of the singular
value decomposition theorem has also been used by other authors, including Jordan
in 1874 (see [HJ2, section 3.0]). It is worth mentioning that a different choice of the
function to be optimized in Step 1 may make a significant difference in the computa-
tions required in Step 2 (e.g., see [HJ2, Theorem 3.1.1], [Ho, Theorem 1], and [PS]).
That is why in each of our proofs we try to indicate clearly how to define the objective
function and reduce the problem to a lower dimension.

Hoechsmann [Ho] pointed out that his proof of the singular value decomposition
can be adapted to the complex case. Furthermore, after proving the singular value
decomposition theorem, he showed that a symmetric matrix has a one-dimensional
invariant subspace using elementary arguments and then obtained a proof for our
Theorem 1.

3. Additional techniques and results. Recall that a complex matrix is Her-
mitianif A = A*, where A* denotes the conjugate transpose of A. Complex Hermitian
matrices are always regarded as the analog of real symmetric matrices in the study of
operator theory and quadratic forms. Also, complex symmetric matrices do not seem
to occur in applications nearly as often as complex Hermitian matrices. We have the
following canonical-form theorem for complex Hermitian matrices.

THEOREM 3. Suppose A is an n x n complex Hermitian matriz. Then there is a
unitary matriz U such that A = U (Y ;_ MiEi)U* with Ay > -+ > Ay (A1,..., A, are
the eigenvalues of A).

Proof. Again we divide the proof into three steps.

Step 1. For a given complex Hermitian matrix A, let u € C* satisfy u*u = 1 and

v Au =max{z*Az :z € C", 2"z = 1}.

It is routine to check that z* Az = (z*Az)* = z*A*z = z* Az and hence z*Ax € R
for any = € C*, and the existence of u is guaranteed by the fact that z — z* Az is a
continuous function and {z € C* : z*z = 1} is a compact set.

Step 2. Extend u to a unitary matrix U with u as the first column. We claim that
B =U*AU is of the form [)E)l fl], where Ay = u*Au and Ay isan (n—1) x (n—1)
symmetric matrix. Note that B is hermitian and B1; = A1 € R by our construction
of U. For 2 < k < n and for any u € C with |u| =1, let 2(0) = U(cos O eq + pisin b e)
and

f(0) = x(0)* Az () = cos® O Ay + 2 cosOsind Re (1 Biy) + sin® 0 By,
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with § € R. Our assumption on A; implies that the real-valued function f attains a
maximum at 6 = 0. Hence 0 = f/(0) = 2Re (uB1x). Since this is true for all p € C
with |p| = 1, we have By = 0. Thus our claim is proved.

Step 3. One can now apply an inductive argument to A; to complete the
proof. O

As pointed out by Horn, once a “basic” canonical-form theorem is obtained one
may get additional canonical-form theorems for other classes of matrices using the spe-
cial structure of them (e.g., see [A]). We illustrate this idea by proving the canonical-
form theorem for normal matrices in Theorem 4. Recall that an n X n complex matrix
A is normal if AA* = A*A. f H=(A+ A*)/2 and G = (A — A*)/(21), then H and
G are Hermitian matrices such that A = H + iG. Moreover, A is normal if and only
if HG = GH.

THEOREM 4. Suppose A is an n X n complex normal matriz. Then there is a
unitary matriz U such that A = U(Y.!_, XiEi;)U* with \; € C (M1,..., A, are the
eigenvalues of A).

Proof. Let A = H 4+ iG with H = (A + A*)/2 and G = (A — A*)/(2i). By
Theorem 3, there is a unitary matrix W such that W*HW = a1l,, & -+ & axl,,,
where a1 > - -+ > ag and ny+- - -+ng = n. Since HG = GH, we see that H=W*HW
and G = W*GW also satisfy HG = GH. Tt follows that G = G1D---D Gy, where G
is an n; X n; Hermitian matrix for 1 <7 < k. By Theorem 3 again, there are unitary
matrices V; such that V*G;V; is in diagonal form for all i. Let U = W(V1 @ - --® V).
Then U*AU = U*(H +iG)U is in diagonal form as asserted. O

In [Ho] the author remarked that his elementary approach could also be used to
prove the spectral theorem of complex normal matrices. It is unclear to us whether
the method in their mind is the same as ours.

A less well-known and more involved result is the canonical-form theorem for
skew-symmetric matrices, those matrices A satisfying A = — A" (e.g., see [G, Chapter
9]). The canonical-form theorem for skew-symmetric matrices can also be proved by
our variational method, as shown in the following.

THEOREM 5. Suppose A is an n x n real skew-symmetric matriz. Then there
is an orthogonal matriz U such that A = U[Z:Kn/2 5i(F2i—1,2i — Fai 2i-1)]U", where
§1 > s9 > -+ are nonnegative real numbers (51,52, ..., are the singular values of A).

Proof. Again we divide the proof into three steps.

Step 1. For the given skew-symmetric matrix A, let u, v € R" satisfy ulu = v'v =
1, u'v =0, and

u' Av = max{z' Ay : z,y € R", z'x = y'y =1, 2'y = 0}.

The existence of the orthonormal pair (u,v) is guaranteed by the fact that (z,y) —
z'Ay is a continuous function and {(z,y) € R" x R" : 2z = y'y = 1,2’y = 0} is a
compact set. If A = 0, we can set s; = 0 for all ¢ < n/2 and we are done. If A # 0,
then

s1 = u'Av > max{A4;; : 1 <i,j <n} > 0.

Step 2. Extend u,v to an orthogonal matrix U with u and v as the first two
columns. We claim that B = U*AU is of the form [501 o1 @ A1, where A is an
(n —2) x (n — 2) skew-symmetric matrix. Since B is also skew-symmetric, B;; = 0
for all i. By our construction of U, we have By2 = sy, and hence By = —s;. For
2< k<n,let () =U(cosfey +sinfeg) and

f(0) = utA:L‘(G) = etlB(cosﬁeg +sinfeg) = cosf sy +sinf By
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with 8 € R. Our assumption on s; implies that the real-valued function f attains
a maximum at § = 0. Hence 0 = f/(0) = puByg. Since this is true for all p € C
with || = 1, we have By = 0. Similarly, for 2 < k£ < n, one may consider y(6) =
U(—cosfey +sinfe;) and

g(0) = v' Ay(0) = e, B(—cosfOeq +sinfeg) = cos @ 51 + sin 0 By

with @ € R and conclude that Bsg = 0. Thus our claim is proved.

Step 3. Apply an inductive argument to A; until we get a zero block or an empty
block to complete the proof. O

The same proof can be applied to the complex case if one modifies Step 1 to the
following.

Step 1. For a given complex skew-symmetric matrix 4, determine u,v € C* that
satisfy u*u = v*v = 1, u*v = 0, and

u'Av = max{Re (z'Ay) : 2,y € C", z*z = y*y =1, z*y = 0}

and consider complex unit vectors z(6) and y(#) in the proof of Step 2.

Note that Theorem 5 (and its complex version) implies that the singular values
of a skew-symmetric matrix always occur in pairs and the rank of a skew-symmetric
matrix must be even.

Acknowledgments. Thanks are due to Dr. R. Horn and Dr. B. S. Tam for their
helpful comments and suggestions.

REFERENCES

[A] L. AUTONNE, Sur les matrices hypohermitiennes et sur les matrices unitaires, Ann. Univ.
Lyon, Nouvelle Série I, Fasc., 38 (1915), pp. 1-77.

[G] F. R. GANTMACHER, The Theory of Matrices, 2 vols., Chelsea, New York, 1959.

[HJ1] R. A. HornN AND C. R. JOHNSON, Matriz Analysis, Cambridge University Press, New York,
1985.

[HJ2] R. A. HorN AND C. R. JouNsoON, Topics in Matriz Analysis, Cambridge University Press,
New York, 1991.

[Ho] K. HOECHSMANN, Singular values and the spectral theorem, AMS Monthly, 97 (1990),
pp. 413-414.

L] D. C. LAY, Linear Algebra and Its Applications, Addison—Wesley, New York, 1993.

[PS] C.-T. PAN AND K. SIGMON, A bottom-up inductive proof of the singular value decomposition,
SIAM J. Matrix Anal. Appl., 15 (1994), pp. 59-61.

[S] G. W. STEWART, On the early history of the singular value decomposition, SIAM Rev., 35
(1993), pp. 551-566.



