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Abstract. Norm preserver maps of Jordan product on the algebra Mn of n×n complex matrices
are studied, with respect to various norms. A description of such surjective maps with respect to the
Frobenius norm is obtained: Up to a suitable scaling and unitary similarity, they are given by one of
the four standard maps (identity, transposition, complex conjugation, and conjugate transposition)
on Mn, except for a set of normal matrices; on the exceptional set they are given by another standard
map. For many other norms, it is proved that, after a suitable reduction, norm preserver maps of
Jordan product transform every normal matrix to its scalar multiple, or to a scalar multiple of its
conjugate transpose.
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1. Introduction. Let Mn be the algebra of n×n complex matrices. We denote
by X ◦ Y the Jordan product: X ◦ Y = XY + Y X for X,Y ∈Mn.

In this paper we address the following general problem:

Problem 1.1. Suppose ‖ · ‖ is a norm on Mn. Characterize the norm preservers
of Jordan product, i.e. all maps f : Mn →Mn with the property that

‖f(A) ◦ f(B)‖ = ‖A ◦B‖

for all A,B ∈Mn.

Recently, preserver problems with respect to various algebraic operations on Mn,
including Jordan products, Jordan triple products and Lie products, attracted a lot
of attention of researchers in the field; we mention [4, 5] and [1] where certain Jordan
product preservers and Jordan triple product preservers, respectively, are studied.
Norm preserver problems for Lie products are studied in [7].

Note that the maps f in Problem 1.1 are not assumed linear or continuous. In
fact, our results show that there are many discontinuous norm preservers of Jordan
product. Perhaps because of this circumstance, a complete solution of Problem 1.1
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for large class of norms, even well-behaved ones such as unitarily invariant, seems to
be out of reach at present.

From now on we assume that n ≥ 3 throughout the rest of the paper.
In this paper, we focus on surjective norm preservers of Jordan product, and

obtain their complete characterization for the Frobenius norm (Theorem 5.1). In
particular, it turns out that discontinuities of such preservers (if any) are confined to
a subset of normal matrices.

A key feature of surjective norm preservers of Jordan product is that they preserve
the set of normal matrices, assuming the norm is sufficiently nice; moreover (after a
suitable reduction) they map a normal matrix to a unimodular multiple of itself or
of its conjugate transpose. We prove this property in Section 3 (Theorem 3.1). For
many unitarily invariant norms, including the Schatten p-norms with p 6∈ {1, 2,∞},
the second possibility when a normal matrix is mapped to a unimodular multiple of
its conjugate transpose, actually does not occur (except of course when the matrix is
a multiple of its conjugate transpose); see Theorem 4.1.

The following notation and terminology will be used throughout the paper: De-
note by C and T ⊂ C the complex field and the unit circle, respectively. A complex
number z is written as z = Re (z) + iIm (z), where Re (z) and Im (z) are the real and
imaginary parts of z, respectively. Cn is the vector space of complex column vectors
of length n; and e1, . . . , en is its standard orthonormal basis.

Let Eij := eie
∗
j , 1 ≤ i, j ≤ n, be the standard basis for Mn. The n × n identity

matrix is denoted In or I (if n is clear from context). diag (a1, . . . , an) is the diagonal
matrix with a1, . . . , an on the main diagonal (in this order). We let s1(A) ≥ s2(A) ≥
· · · ≥ sn(A) be the singular values of A ∈ Mn. Nn stands for the set of all complex
n × n normal matrices. Tn is the set of all matrices X ∈ Mn which are either
diagonalizable (by similarity) with spectrum σ(X) of the form {λ,−λ} for some λ ∈ C,
or of rank one.

A norm ‖ · ‖ on Mn is unitary invariant (UI) whenever ‖UAV ‖ = ‖A‖ for all
unitary U and V , and all matrices A ∈ Mn. It is unitary similarity invariant (USI)
whenever ‖UAU∗‖ = ‖A‖ for all unitary U and all A ∈Mn.

The following four standard bijective maps on Mn will be used:

X 7→ X identity map, X 7→ X complex conjugation, (1.1)

X 7→ Xtr transposition, X 7→ X∗ conjugate transposition. (1.2)

2. Surjective norm preservers and the test set. In this section we show
that surjective norm preservers, with respect to a large class of USI norms, are well
behaved on the test set of matrices Tn (defined in the introduction).

Our main result in this section is:
Theorem 2.1. Assume ‖ · ‖ is a USI norm such that

‖Z#‖ = ‖Z‖, ∀ Z ∈Mn, (2.1)

where # stands for any one of the four standard bijective maps on Mn.
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Let f : Mn →Mn be a surjective map with the property

‖A ◦B‖ = ‖f(A) ◦ f(B)‖ for all A,B ∈Mn. (2.2)

Then there exist:
(1) a unitary matrix T ;
(2) a map γ : Tn → T;
(3) a standard bijective map #;

such that

f(X) = γ(X)TX#T ∗, ∀ X ∈ Tn. (2.3)

We need some preliminaries for the proof of Theorem 2.1. The starting point is
the following particular case of a general result from [3].

Theorem 2.2. Let f : Mn →Mn be a surjective map such that

A ◦B = 0 ⇐⇒ f(A) ◦ f(B) = 0 for all A,B ∈Mn. (2.4)

Then there exist:
(1) an invertible matrix T ;
(2) a map γ from Mn into the set of nonzero complex numbers;
(3) a field isomorphism φ : C→ C;

such that

either f(X) = γ(X)TXφT−1, ∀ X ∈ Tn, or f(X) = γ(X)T (Xφ)trT−1, ∀ X ∈ Tn.
(2.5)

Here, Xφ is obtained by entrywise application of φ to the entries of X.

We record the following simple lemma:
Lemma 2.3. Let X 7→ X# be one of the four standard bijective maps. If X is a

rank one matrix with real trace, then X# is unitarily similar to X.
Proof. It is easy to see that every rank one matrix X is unitarily similar to

Y1 := (traceX)E11 +
√

trace (X∗X)− |traceX|2E12,

as well as to

Y2 := (traceX)E11 +
√

trace (X∗X)− |traceX|2E21.

Note that trace (X∗X) ≥ |traceX|2. If the trace is real, we obviously have Y #
1 equal

to either Y1 or Y2, and we are done. 2

Lemma 2.4. Let ‖·‖ be a USI norm on Mn. Suppose a not necessarily surjective
map f : Mn → Mn satisfies (2.5) (with γ(X), φ and T as in Theorem 2.2) and
‖A ◦ B‖ = ‖f(A) ◦ f(B)‖ for all A,B ∈ Tn. Then, φ is either trivial or the complex
conjugation. Moreover, the matrix T , which is defined up to a nonzero scalar multiple,
can be chosen to be unitary, and |γ(X)| = 1 for each X ∈ Tn.
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Proof. We proceed in three steps.

Step 1. φ is continuous, and γ0 := |γ(Eij)| is independent of (i, j).
To see this, fix distinct indices i, j. Given z ∈ C, consider

Az = Eii + zEij ; B := Eij ; C := Ejj .

Then

Az ◦B = B, Az ◦ C = zB,

and, assuming for example that the first alternative of (2.5) applies, we obtain

‖B‖ = ‖Az ◦B‖ = ‖f(Az) ◦ f(B)‖ = |γ(Az)||γ(B)| · ‖T ((Az)
φ ◦Bφ)T−1‖

= |γ(Az)||γ(B)| · ‖T ((Az) ◦B)φT−1‖
= |γ(Az)||γ(B)| · ‖TBφT−1‖,

(2.6)

and analogously

|z| · ‖B‖ = ‖Az ◦ C‖ = ‖f(Az) ◦ f(C)‖ = |γ(Az)||γ(C)| · ‖T ((Az)
φ ◦ Cφ)T−1‖

= |γ(Az)||γ(C)| · ‖T (zB)φT−1‖ = |γ(Az)||γ(C)||φ(z)| · ‖TBφT−1‖.
(2.7)

Comparing (2.7) and (2.6), we see that

|φ(z)| = |z||γ(B)||γ(C)|−1. (2.8)

It follows (using the property φ(z1 − z2) = φ(z1) − φ(z2) for all z1, z2 ∈ C) that φ is
continuous, therefore as is well known, φ is either trivial or the complex conjugation.
Then, however, |φ(z)| = |z|, so Eq. (2.8) gives |γ(Eij)| = |γ(Ejj)|. Note that (X ◦
Y )tr = Xtr ◦ Y tr. Hence, we may repeat the arguments with (Atr

z , B
tr, Ctr) in place

of (A,B,C) to get |γ(Eji)| = |γ(Ejj)|. By the arbitrariness of i 6= j, |γ(Eij)| is
constant.

We proceed similarly if the second alternative of (2.5) applies.

Step 2. We just saw that there exists a standard bijective map X 7→ X# such that

f(X) = γ(X)TX#T−1, ∀ X ∈ Tn, (2.9)

where γ maps into C \ {0}. We show next that T is a scalar multiple of a unitary
matrix, and therefore can be chosen to be unitary.

To verify this, let T = UDV be a singular value decomposition. That is, U, V are
unitary, and D := diag (s1, . . . , sn), where sj = sj(T ), j = 1, 2, . . . , n.

Consider the map f̂ : X 7→ U∗f((V #)∗XV #)U if # is the identity or conjuga-

tion, or the map f̂ : X 7→ U∗f(V #X(V #)∗)U if # is the transposition or conjugate

transposition. Since the norm is USI, ‖A ◦ B‖ = ‖f̂(A) ◦ f̂(B)‖ for all A,B ∈ Tn
remains valid. Moreover, a computation shows that

f̂(X) = γ̂(X)DX#D−1, ∀ X ∈ Tn,
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where γ̂ maps Mn into C \ {0}. If we could now infer D = λI then T = λUV will
indeed be a multiple of unitary.

To this end, note that Eii ◦ Eij = Eij for i 6= j. By the first step, applied to f̂ ,
γ̂0 := |γ̂(Eij)| is independent of (i, j). Therefore, for i 6= j we have

‖Eij‖ = ‖Eii ◦ Eij‖ = ‖f̂(Eii) ◦ f̂(Eij)‖ = γ̂20‖D(E#
ii ◦ E

#
ij )D−1‖

= γ̂20‖DE
#
ijD

−1‖ = γ̂20(sis
−1
j )±1‖E#

ij ‖,

where the sign ±1 depends on the standard bijective map #. However, by Lemma 2.3
a rank-one E#

ij is unitarily similar to Eij , so that ‖E#
ij ‖ = ‖Eij‖. We deduce sis

−1
j is

the same for all i 6= j. It follows that s1 = · · · = sn, so D is scalar.

Step 3. |γ(X)| = 1 for all X ∈ Tn.

In fact, by the second step, T = U is unitary and f(X) = γ(X)UX#U∗. We may
assume U = I in the sequel, otherwise, replace f by a mapping X 7→ U∗f(X)U .

Now, to demonstrate |γ(X)| = 1, suppose first X = λP ∈ Tn\{0} is a scalar
multiple of a rank-one idempotent P . Then,

2|λ|2 · ‖P‖ = ‖X ◦X‖ = ‖f(X) ◦ f(X)‖ = |γ(X)|2 · ‖(2λ2P )#‖.

By Lemma 2.3, a rank-one idempotent P# is unitarily similar to P . Therefore,

‖(2λ2P )#‖ = |2λ#|2 · ‖P‖ = 2|λ|2 · ‖P‖.

Since λ 6= 0, we deduce |γ(X)| = 1.

Suppose next X is a rank-one nilpotent. Then, there exists a unitary U such that
X = zUE12U

∗, z ∈ C \ {0}. Let P := U(E11 + E12)U∗ be a rank-one idempotent.
We have P ◦X = X, so that

‖X‖ = ‖P ◦X‖ = ‖f(P ) ◦ f(X)‖ = |γ(P )| |γ(X)| · ‖P# ◦X#‖
= 1 · |γ(X)| · ‖(P ◦X)#‖ = |γ(X)| · ‖X#‖.

By Lemma 2.3, X# is unitarily similar to X. Hence, |γ(X)| = 1.

Lastly, suppose X is a nonzero diagonalizable matrix with the spectrum equal to
{−λ, λ}. Then, X2 = λ2I, so

2|λ2|‖I‖ = ‖X ◦X‖ = ‖f(X) ◦ f(X)‖ = |γ(X)|2 · ‖X# ◦X#‖ = 2|γ(X)|2|λ2| · ‖I‖.

Yet again we deduce |γ(X)| = 1. Finally, if X = 0, then obviously f(X) = 0, and we
can take |γ(X)| = 1 as well. 2

Proof of Theorem 2.1. The proof follows by combining Theorem 2.2 and
Lemma 2.4. 2
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3. Reduced maps. We say that a map f : Mn → Mn is reduced (with respect
to the norm ‖ · ‖), notation f ∈ Rn, if the following properties are satisfied:

(1) ‖A ◦B‖ = ‖f(A) ◦ f(B)‖ for all A,B ∈Mn;
(2) f(X) = γ(X)X for every X ∈ Tn, where γ(X) ∈ T.
In view of Theorem 2.1, after a suitable unitary similarity transformation, there

is no essential loss of generality in assuming that our surjective norm preservers of
Jordan product are reduced (if the norm satisfies the hypotheses of Theorem 2.1).

The main result in this section asserts that, under appropriate hypotheses on
the norm, reduced maps transform a normal matrix to either its unimodular scalar
multiple, or to a unimodular scalar multiple of its conjugate transpose:

Theorem 3.1. Assume that ‖ · ‖ is a USI norm with the following properties:
(a) ‖Z#‖ = ‖Z‖ for every Z ∈Mn and for every standard bijective map #.
(b) For every block diagonal matrix B1⊕B2, we have ‖B1⊕B2‖ = ‖B1⊕(−B2)‖.
(c) Strict convexity: The equality

‖X + Y ‖ = ‖X‖+ ‖Y ‖, X, Y ∈Mn

implies that one of X and Y is a nonnegative multiple of the other.
Let f be any reduced map with respect to ‖ · ‖. Then for every normal matrix A ∈Mn

we have

f(A) = µA or f(A) = µA∗, (3.1)

where µ = µ(A) ∈ T.
We need a few lemmas for the proof.
The first is an elementary fact on complex numbers.
Lemma 3.2. Let a1, a2, . . . , an and b1, b2, . . . , bn, n ≥ 2, be complex numbers

such that

|ai| = |bi| , i = 1, 2, . . . , n, (3.2)

|ai + aj | = |bi + bj | , j 6= i, i, j = 1, 2, . . . , n. (3.3)

Then there exists a µ ∈ T such that at least one of the following two possibilities holds:
(1) (a1, a2, . . . , an) = µ (b1, b2, . . . , bn) ; (2) (a1, a2, . . . , an) = µ

(
b1, b2, . . . , bn

)
.

Proof. Without loss of generality, we assume that all a1, a2, . . . , an as well as
b1, b2, . . . , bn, n ≥ 2, are all nonzero. We prove the result by induction on n.

Let first n = 2. Scaling the given numbers, aj → αaj , bj → βbj , j = 1, 2, where
α, β ∈ C are such that |α| = |β| 6= 0, we may further assume that a1 = b1 = 1. Then,
|a2| = |b2| together with |1 +a2| = |1 + b2| imply that a2 and b2 lie in the intersection
of two circles, centered at origin and at −1, respectively, whence a2 = b2 or a2 = b2.

Assume now n ≥ 3 and that the Lemma holds true for any 2 ≤ k < n. Let aj ,
bj satisfy (3.2), (3.3). We may assume that the aj ’s and bj ’s are all nonzero. By
induction hypothesis and replacing b1, b2, . . . , bn with b1, b2, . . . , bn, if necessary, we
may assume that there exists a µ ∈ T such that

(a1, a2, . . . , an−1) = µ (b1, b2, . . . , bn−1) . (3.4)
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Applying induction hypothesis again, we have (a) (a2, . . . , an) = µ′ (b2, . . . , bn) or (b)
(a2, . . . , an) = µ′

(
b2, . . . , bn

)
for some µ′ ∈ T. If (a) holds true, from µb2 = µ′b2

follows that µ = µ′ and we are done. If (b) is satisfied, then there is a µ′′ ∈ T
such that either (a1, an) = µ′′ (b1, bn) or (a1, an) = µ′′

(
b1, bn

)
. The first possibility,

together with (3.4) implies that µ′′ = µ, and consequently, an = µ′′bn = µbn yields
(a1, a2, . . . , an) = µ (b1, b2, . . . , bn) . The case (a1, an) = µ′′

(
b1, bn

)
gives that µ′′ = µ′,

hence a1 = µ′′b1 = µ′b1 and (a1, a2, . . . , an) = µ′
(
b1, b2, . . . , bn

)
, which completes the

proof. 2

Note that every USI norm has the block monotonicity property:
Lemma 3.3. The following inequality holds:

‖
[
A B
C D

]
‖ ≥ ‖

[
A 0
0 D

]
‖,

where A, B, C, and D are arbitrary blocks of sizes k × k, k × (n − k), (n − k) × k,
and (n− k)× (n− k), respectively.

Proof. Letting P = Ik ⊕−In−k, note that X :=

[
A B
C D

]
and Y := PXP are

unitarily similar and hence ‖X‖ = ‖Y ‖. Then

Z :=

[
A 0
0 D

]
=

1

2
(X + Y )

and ‖Z‖ ≤ (‖X‖+ ‖Y ‖)/2 = ‖X‖. 2

Lemma 3.4. Suppose ‖ · ‖ is a USI norm. Then the equality ‖I ◦X‖ = ‖B ◦X‖
for all rank one X ∈Mn implies that B = µI with µ ∈ T.

Proof. Let U be unitary such that U∗BU = [bij ]
n
i,j=1 is in upper triangular form.

Then for X = UE1nU
∗ we have

2‖E1n‖ = ‖I ◦X‖ = ‖B ◦X‖ = ‖U∗BU ◦ E1n‖ = ‖(b11 + bnn)E1n‖.

Thus, |b11 + bnn| = 2. If b11 6= bnn then, by the triangle inequality, |b11| > 1 or
|bnn| > 1. If |bnn| > 1, then for Y = UEnnU

∗, we have

2‖Enn‖ = ‖I ◦ Y ‖ = ‖B ◦ Y ‖ = ‖U∗BU ◦ Enn‖ ≥ 2|bnn|‖Enn‖. (3.5)

In the last inequality, Lemma 3.3 was used. But (3.5) clearly contradicts |bnn| > 1.
Analogously, we prove that |b11| > 1 is impossible. Thus, b11 = bnn has modulus 1.
Since this is true for any unitary U such that U∗BU is in triangular form, and since
the eigenvalues of B can be arranged in any prescribed order on the main diagonal of
the upper triangular matrix U∗BU (for a suitable unitary U), we see that B has all
eigenvalues equal to µ with modulus 1. We may replace B by B/µ and assume that
µ = 1.

If B 6= I, there is a unitary U such that U∗BU has (1, 1) entry equal to d > 1 (this
is easily seen by considering the numerical range of B). Then for Z1 := U∗BU ◦ E11
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and Z2 := (I−2E11)Z1(I−2E11), we have ‖Z1‖ = ‖Z2‖ (because I−2E11 is unitary
and Hermitian), and (Z1 + Z2)/2 = 2dE11. Thus,

2‖E11‖ = ‖I ◦ UE11U
∗‖ = ‖B ◦ UE11U

∗‖ = ‖Z1‖
= ‖Z1‖/2 + ‖Z2‖/2 ≥ ‖(Z1 + Z2)/2‖ = 2d‖E11‖,

a contradiction. So, B = I. 2

Lemma 3.5. Assume ‖·‖ is a USI norm. If f is a reduced map with respect to
‖ · ‖, and if P is a Hermitian projection, then f(P ) = γP for some γ ∈ T.

Proof. For simplicity, assume P = 0k ⊕ In−k (the general case is easily reduced
to this one). If n−k = 1 or if n−k = 0 (i.e., P = 0) there is nothing to do: the result
follows from the definition of reduced maps. So, let n − k ≥ 2. From P ◦ Eii = 0,
i = 1, 2, . . . , k, it follows that B := f (P ) = 0k ⊕ B1 for some B1 ∈ Mn−k. For any
rank-one (n− k)× (n− k) matrix X we have

‖P ◦ (0k ⊕X)‖ = ‖B ◦ (0k ⊕X)‖

and consequently,

2 ‖X‖ = ‖B1 ◦X‖ , (3.6)

where ‖ · ‖ in (3.6) is the norm on Mn−k induced by the original norm ‖ · ‖ on Mn:

‖Z‖ = ‖
[

0 0
0 Z

]
‖, Z ∈Mn−k.

Lemma 3.4 gives that B1 = γI, |γ| = 1. 2

Proof of Theorem 3.1. Assume the hypotheses of Theorem 3.1, and let A ∈
Mn be normal. Let g1, . . . ,gn be an orthonormal basis of eigenvectors of A; thus,
Agj = ajgj for j = 1, 2, . . . , n, where a1, . . . , an are the corresponding eigenvalues.
Denote B := f(A). By Lemma 3.5, f(I) = γI for some γ ∈ T, therefore we have

2‖A‖ = ‖I ◦A‖ = ‖f(I) ◦ f(A)‖ = ‖I ◦B‖ = 2‖B‖. (3.7)

Consider next

X = −g1g
∗
1 + g2g

∗
2 + · · ·+ gng

∗
n.

Clearly,

A ◦X = −2a1g1g
∗
1 + 2a2g2g

∗
2 + · · ·+ 2angng

∗
n.

Therefore, by the property (b) of ‖ · ‖, we have

2‖A‖ = ‖A ◦X‖. (3.8)



Norm preservers of Jordan products 9

Since X ∈ Tn, we have f(X) = γ(X)X with γ(X) ∈ T. It will be convenient also to
introduce the unitary matrix U with the property that Ugj = ej , j = 1, 2, . . . , n, and
denote

UBU∗ = [bij ]
n
i,j=1 =

[
b11 b12
b21 B22

]
,

where B22 ∈Mn−1, b12 is an (n−1)-component row, and b21 is an (n−1)-component
column. Thus,

UAU∗ = diag (a1, . . . , an).

Now, using (3.7) and (3.8), as well as the property (b) of ‖ · ‖, we compute:

2‖B‖ = 2‖A‖ = ‖A ◦X‖ = ‖B f(X)‖
= ‖B ◦X‖ = ‖UBU∗ ◦ UXU∗‖ = 2‖(−b11)⊕B22‖

= 2‖b11 ⊕B22‖ = ‖
[
b11 b12
b21 B22

]
+

[
b11 −b12
−b21 B22

]
‖

≤ ‖UBU∗‖+ ‖
[

b11 −b12
−b21 B22

]
‖

= ‖UBU∗‖+ ‖(I ⊕ (−I))UBU∗(I ⊕ (−I))−1‖ = 2‖B‖, (3.9)

where the last equality follows by the unitary similarity invariance of the norm. Thus,
the inequality ≥ is actually equality in (3.9), and the strict convexity of the norm
yields b12 = 0 and b21 = 0.

We may proceed analogously with X := I − 2gjg
∗
j (j = 2, 3, . . . n) in place of

I − 2g1g
∗
1 to deduce that UBU∗ is diagonal, say,

UBU∗ = diag (b1, . . . , bn).

Now consider

‖diag (a1, . . . , an) ◦ Ejj‖ = ‖A ◦ U∗EjjU‖ =

(because U∗EjjU ∈ Tn) = ‖B ◦ U∗EjjU‖ = ‖diag (b1, . . . , bn) ◦ Ejj‖

to see that |aj | = |bj | for all j = 1, . . . , n. Analogous consideration with Eij , i 6= j,
in place of Ejj yields |ai + aj | = |bi + bj |. By Lemma 3.2 it follows that either
UBU∗ = µUAU∗ or UBU∗ = µ(UAU∗)∗ = U(µA∗)U∗, and (3.1) follows. 2

4. UI norms. In this section we continue our study of reduced maps, assuming
that the norm ‖ · ‖ is an UI norm. Note that every UI norm satisfies the properties
(a) and (b) of Theorem 3.1. If f is a reduced map with respect to a strictly convex
UI norm ‖ · ‖, then by Theorem 3.1, for every normal X either f(X) = γ(X)X or
else f(X) = γ(X)X∗, where |γ(X)| = 1. In particular, this property holds for every
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X which is a scalar multiple of a unitary matrix. However, for any unitary U , any
µ ∈ C, and any Y ∈Mn we have

‖µU ◦ Y ‖ = ‖µUY + µY U‖ = ‖µY + µU∗Y U‖
= ‖µY U∗ + µU∗Y ‖ = ‖µY U∗ + µU∗Y ‖ = ‖(µU)∗ ◦ Y ‖,

(in the second and third equality the UI property of the norm was used), and

‖Y ◦ Z‖ = ‖Y ∗ ◦ Z∗‖, ∀ Y, Z ∈Mn.

Thus, if f is a reduced map with respect to ‖ · ‖, the property of being reduced is not
affected if f(µU) is replaced with (f(µU))∗, for every pair (µ,U) ∈ W, where W is a
fixed (perhaps empty) subset of the set

{(µ,U) : µ ∈ C, U ∈Mn is unitary}.

Also, the reduced property is not affected if f(X) is replaced with δ(X)f(X), where
δ(X) ∈ T depends on X ∈ Mn. Using these replacements, starting with a given

reduced map f , we may obtain a new reduced map f̂ , with the following properties:
(a) ‖A ◦B‖ = ‖f̂(A) ◦ f̂(B)‖ for all A,B ∈Mn;

(b) f̂(X) = X for every X ∈ Tn and every scalar multiple of unitary X ∈Mn.

Maps f̂ with the properties (a) and (b) are said to belong to the class RRn (for
restricted reduced class).

For a quite wide class of strictly convex UI norms, we will see that the a map
f̂ ∈ RRn cannot send any normal A into a unimodular multiple of A∗ (unless of
course A∗ and A are proportional). It is well known that for every UI norm ‖ · ‖ on
Mn there exists a symmetric gauge function g such that

‖A‖ = g (s1 (A) , s2 (A) , . . . , sn (A)) , A ∈Mn.

Consider the following additional property of g:
(P) for every positive u and nonnegative s3, . . . , sn, the function

t 7→ hg (t) := g
(√
u+ t,

√
u− t, s3, . . . , sn

)
, 0 ≤ t ≤ u,

is injective.
For example, let

‖A‖p =


n∑
j=1

sj(A)p


1/p

, 1 ≤ p <∞; ‖A‖∞ = s1(A), A ∈Mn,

be the Schatten p-norm; 1 ≤ p ≤ ∞. Thus, ‖ · ‖2 is the Frobenius norm, and ‖ · ‖∞
is the operator norm. The Schatten p-norm has the property (P) if and only if p 6= 2,
since the function

t 7→

(
(u+ t)p/2 + (u− t)p/2 +

n∑
i=3

spi

)1/p

, 0 ≤ t ≤ u,
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is strictly monotone if p 6= 2. Note also that ‖ · ‖p is strictly convex (see Theorem
3.1(c)) if and only if 1 < p <∞. Indeed, for

X =

 1 0 0
0 0 0
0 0 1

 , Y =

 0 0 0
0 1 0
0 0 1



we have ‖X+Y ‖∞ = ‖X‖∞+‖Y ‖∞, thus ‖·‖∞ is not strictly convex. As ‖A+I‖1 =
‖A‖1 +‖I‖1 for any positive semidefinite matrix A, ‖ · ‖1 is not strictly convex either.
For the strict convexity of ‖ · ‖p, 1 < p <∞, see for example [8].

We show in the next theorem that restricted reduced maps with respect to strictly
convex UI norms having the property (P), leave normal matrices invariant (up to
scaling). Thus, under these hypotheses, the second alternative in (3.1) cannot occur.
In particular, the theorem is valid for all Schatten p-norms, p 6∈ {1, 2,∞}.

Theorem 4.1. Let ‖·‖ be a strictly convex UI norm with the property (P). Let

f̂ ∈ RRn. Then f̂ (A) = γ (A)A, where γ (A) ∈ T, for every normal A ∈Mn .

Proof. Fix a normal A 6= 0 (if A = 0, then f̂ (A) = 0, and the result is triv-
ial). There exist a unitary matrix U, and α, y3, . . . , yn ∈ C, x ∈ C \ {0}, such
that A = xUdiag (1, α, y3, . . . , yn)U∗ = xUDU∗. Split D = diag (1, α) ⊕ Y, Y =
diag (y3, . . . , yn) . If rank A is equal to one, or A is either a multiple of a unitary ma-

trix or a unimodular multiple of A∗, there is nothing to prove because f̂ ∈ RRn, and
in view of Theorem 3.1. So we assume that α 6∈ R and that |α| 6= 1. We already know

by Theorem 3.1 that either f̂ (A) = γ (A)A or f̂ (A) = γ (A)A∗, with γ (A) ∈ T. We
show that the latter is impossible.

On the contrary, assume that A is as above and f̂ (A) = γ (A)A∗. Then for every
X ∈ Tn:

|x| ‖D ◦X‖ = |x| ‖UDU∗ ◦ UXU∗‖ = ‖A ◦ UXU∗‖ =
∥∥∥f̂ (A) ◦ f̂ (UXU∗)

∥∥∥
= ‖γ (A)A∗ ◦ UXU∗‖ = |x|

∥∥UDU∗ ◦ UXU∗∥∥ = |x|
∥∥D ◦X∥∥ .

We will find a matrix X ∈ Tn such that ‖D ◦X‖ 6=
∥∥D ◦X∥∥ , thereby obtaining

a contradiction.

Let X = X1 ⊕ λIn−2, X1 =

[
1 r1
ir2 −1

]
, where λ ∈ σ (X1) and r1, r2 > 0. Note

that σ (X) = {λ,−λ} and X ∈ Tn. Let us compute the singular values of matrices
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D ◦X and D ◦X:

D ◦X =

[
2 (1 + α) r1

ir2 (1 + α) −2α

]
⊕ 2λY,

D ◦X =

[
2 (1 + α) r1

ir2 (1 + α) −2α

]
⊕ 2λY,

(D ◦X) (D ◦X)
∗

=

[
u (α) v (α)

v (α) w (α)

]
⊕ 4 |λ|2 diag

(
|y3|2 , . . . , |yn|2

)
,

(
D ◦X

) (
D ◦X

)∗
=

[
u (α) v (α)

v (α) w (α)

]
⊕ 4 |λ|2 diag

(
|y3|2 , . . . , |yn|2

)
,

u (α) := 4 + |1 + α|2 r21 = u (α) ,

w (α) := r22 |1 + α|2 + 4 |α|2 = w (α) ,

v (α) := −2ir2 (1 + α)− 2α (1 + α) r1.

It is easy to see that we can choose r1, r2 > 0 such that u (α) = w (α) . Let s1, s2
and q1, q2 be the singular values of the upper left 2× 2 corner of matrices D ◦X and
D ◦X, respectively. Then

s1 = (u (α) + |v (α)|)1/2 ,
s2 = (u (α)− |v (α)|)1/2 ,
q1 = (u (α) + |v (α)|)1/2 ,
q2 = (u (α)− |v (α)|)1/2 ,

and, denoting by g the symmetric gauge function associated with ‖ · ‖,

‖D ◦X‖ = g (s1, s2, 2 |λ| |y3| , . . . 2 |λ| |yn|)

= g
(√

u (α) + |v (α)|,
√
u (α)− |v (α)|, 2 |λ| |y3| , . . . 2 |λ| |yn|

)
= hg (|v (α)|) ,∥∥D ◦X∥∥ = g (q1, q2, 2 |λ| |y3| , . . . 2 |λ| |yn|)

= g
(√

u (α) + |v (α)|,
√
u (α)− |v (α)|, 2 |λ| |y3| , . . . 2 |λ| |yn|

)
= hg (|v (α)|) .

Finally, as |α|2 6= 1, α not real and r1, r2 > 0, we have

|v (α)|2 − |v (α)|2 = 16r1r2

(
|α|2 − 1

)
Im(α) 6= 0,

which implies that ‖D ◦X‖ = hg (|v (α)|) 6= hg (|v (α)|) =
∥∥D ◦X∥∥. 2

5. Frobenius norm. Throughout Sections 5 and 6, ‖·‖ stands for the Frobenius
norm.

In this section we state our main results that provide description of all surjective
Frobenius norm Jordan product preserving maps.
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Theorem 5.1. Let f : Mn →Mn be a surjective map such that

‖A ◦B‖ = ‖f(A) ◦ f(B)‖ for all A,B ∈Mn. (5.1)

Then there exist:

(1) a unitary matrix W ;
(2) a map γ : Mn → T;
(3) a standard map X 7→ X#;
(4) a subset N0, possibly empty, of Nn, the set of all n× n normal matrices;

such that

f(X) =

{
γ(X)WX#W ∗ if X ∈Mn \ N0,

γ(X)W (X#)∗W ∗ if X ∈ N0.
(5.2)

Theorem 5.1 admits a converse statement, as follows.

Theorem 5.2. If f : Mn →Mn is a not necessarily surjective map given by the
formula (5.2), subject to conditions (1) - (4) of Theorem 5.1, then f satisfies (5.1).

We relegate proofs of Theorems 5.1 and 5.2 to Section 6.

If f is assumed to be, in addition, continuous, then more can be said:

Theorem 5.3. Let f : Mn →Mn be a continuous surjective map such that (5.1)
holds. Then there exist:

(1′) a unitary matrix W ;
(2′) a map γ : Mn → T which is continuous on Mn \ {0};
(3′) a standard map X 7→ X#;

such that

f(X) = γ(X)WX#W ∗, ∀X ∈Mn. (5.3)

Conversely, if f : Mn → Mn is a not necessarily surjective map given by the
formula (5.3), subject to conditions (1′) - (3′), then f is continuous on Mn and satisfies
(5.1).

Proof. By Theorem 5.1, f has the form (5.2). It is easy to see that the set
Mn\N0 is dense in Mn. Fix X ∈ N0, and let {Xm}∞m=1 ⊂Mn\N0 be a sequence such
that limm→∞ Xm = X. Passing to a subsequence if necessary we may assume that
limm→∞ γ(Xm) = γ for some γ ∈ T. Now the continuity of f implies γWX#W ∗ =
γ(X)W (X#)∗W ∗, and therefore in the form (5.2) we may assume that N0 = ∅. Now
if the (i, j)th entry [X#]ij of X# is nonzero, then we have

γ(X) =
[W ∗f(X)W ]ij

[X#]ij
,

and the continuity of γ on Mn \ {0} follows. The converse statement is immediate
from Theorem 5.2. 2
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6. Proofs of Theorems 5.1 and 5.2. For the proof of Theorem 5.1 we need the
following preliminary result obtained in [6, Theorem 3.2]. We denote by diagv (X) =
[x11, . . . , xnn]tr ∈ Cn the diagonal vector of a matrix X = [xij ]

n
i,j=1.

Theorem 6.1. Let A,B ∈ Mn(C), where n ≥ 2. Then the following three
statements are equivalent:

(i)

|x∗Ax| = |x∗Bx| for all x ∈ Cn. (6.1)

(ii) For each unitary V there exists γ(V ) ∈ T such that

diagv (V BV ∗) = γ(V ) diagv (V AV ∗)hV ,

where hV : C → C is either identity or complex conjugation (which may
depend on V );

(iii) B = γ A or B = γ A∗ for some γ ∈ T.
Let f satisfy the hypotheses of Theorem 5.1. Obviously, f also satisfies the

hypotheses of Theorem 2.1. So we may assume that f has the form as in Theorem
2.1, thus (2.3) holds. Neither the assumptions of Theorem 5.1, nor the end result
will be affected if we replace f by Y 7→ (T ∗f(Y )T )#. This way, we may assume
f(X) = γ(X)X for X ∈ Tn. We may further adjust f on a subset of Tn so that

f(X) = X, ∀ X ∈ Tn. (6.2)

We assume therefore for the rest of this section that f is a surjective map that satisfies
(5.1) and (6.2).

Remark 6.2. By Lemma 3.5, f(I) = γ(I)I for some γ(I) ∈ T. It follows that

‖f(A)‖ = ‖f(A) ◦ f(I)‖/2 = ‖A ◦ I‖/2 = ‖A‖ ∀ A ∈Mn.

Observe that Frobenius norm is strictly convex and satisfies properties (a)–(c) of
Theorem 3.1. The following lemma therefore follows immediately from the conclusions
of Theorem 3.1.

Lemma 6.3. If A ∈ Mn is normal, then f(A) = γ(A)A or f(A) = γ(A)A∗ for
some γ(A) ∈ T. In particular, f maps the set Nn into itself.

Lemma 6.4.
(a) If A ∈Mn is normal, then ‖A ◦X‖ = ‖A∗ ◦X‖ for every X ∈Mn.
(b) If X ∈Mn is normal, then ‖B ◦X‖ = ‖B∗ ◦X‖ for every B ∈Mn.
Proof. Part (a). If ∆ is diagonal, one verifies easily that

‖∆ ◦X‖ = ‖∆ ◦X‖

for every X ∈ Mn. The general case is reduced to this: If A = U∗∆U , where U is
unitary and ∆ is diagonal, then

‖A ◦X‖ = ‖(U∗∆U) ◦X‖ = ‖∆ ◦ (UXU∗)‖ = ‖∆∗ ◦ (UXU∗)‖
= ‖(U∗∆∗U) ◦X‖ = ‖A∗ ◦X‖.
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Part (b). In view of part (a) we have

‖B ◦X‖ = ‖B ◦X∗‖ = ‖(B∗ ◦X)∗‖ = ‖B∗ ◦X‖.

In view of Lemma 6.4(a), if the map f is changed from f(X) = γ(X)X to
f(X) = γ(X)X∗ or vice versa, for X in any set of normal matrices, the property
(5.1) will not be affected. Therefore, and taking into account Lemma 6.3, the proof
of Theorem 5.1 will be completed once we verify the following statement:

Proposition 6.5. Let f : Mn →Mn be a map with the following properties:
(a) f(X) = γ(X)X for every normal X, where γ(X) ∈ T may depend on X.
(b) f(X) = X for every X ∈ Tn;
(c) ‖A ◦B‖ = ‖f(A) ◦ f(B)‖ for all A,B ∈Mn.

Then

f(X) = γ(X)X, γ(X) ∈ T, ∀ X ∈Mn. (6.3)

In turn, for the proof of Proposition 6.5 a lemma will be convenient.
Lemma 6.6. Let A = [aij ]

n
i,j=1 and B = [bij ]

n
i,j=1 be two n×n matrices with the

property that

‖A ◦X‖ = ‖B ◦X‖ (6.4)

for every normal matrix X ∈Mn. Then there exists γ ∈ T such that either

aii = γbii, i = 1, 2, . . . , n, (6.5)

or

aii = γbii, i = 1, 2, . . . , n. (6.6)

Proof. It will suffice to prove that

|aii| = |bii|, i = 1, 2, . . . , n, (6.7)

and

|aii + ajj | = |bii + bjj |, i 6= j. (6.8)

The result then follows by Lemma 3.2.
Using (6.4) with X = diag (d1, d2, . . . , dn), where d1, d2, . . . , dn are independent

real variables, we obtain

n∑
i,j=1

(di + dj)
2|aij |2 =

n∑
i,j=1

(di + dj)
2|bij |2. (6.9)

Equating coefficients of didj for a fixed pair of indices i 6= j in (6.9), we have

|aij |2 + |aji|2 = |bij |2 + |bji|2, i 6= j. (6.10)
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Equating coefficients of d2i for a fixed i in (6.9) yields

4|aii|2 +
∑
j 6=i

(|aij |2 + |aji|2) = 4|bii|2 +
∑
j 6=i

(|bij |2 + |bji|2), i = 1, 2, . . . , n,

and taking advantage of (6.10), the equalities (6.7) follow. Now use (6.4) with a
normal X = Eij + zEji, |z| = 1, for a fixed pair i 6= j. To simplify the notation, let
i = 1, j = 2. A computation shows that

‖A ◦X‖ =

(
n∑
k=3

(|ak,1|2 + |ak,2|2 + |a1,k|2 + |a2,k|2)

)

+ ‖
[

a21 + za12 a11 + a22
z(a11 + a22) za12 + a21

]
‖.

Equating with a similar expression for ‖B ◦X‖, and using (6.10), we obtain

|a11 + a22|2 + |za12 + a21|2 = |b11 + b22|2 + |zb12 + b21|2.

In turn, use (6.7) and (6.10) to obtain

Re (a11a22 + za12a21) = Re (b11b22 + zb12b21),

or

Re (a11a22 − b11b22) = Re
(
z(b12b21 − a12a21)

)
.

Since this equality holds for every z ∈ T, we must have

Re (a11a22 − b11b22) = 0.

But then |a11 + a22|2 = |b11 + b22|2. Analogously, |aii + ajj |2 = |bii + bjj |2 for any
pair of distinct indices i and j. Thus, (6.8) holds, and the proof is complete. 2

Lemma 6.7. Suppose A,B ∈ Mn are such that A is not normal. If ‖A ◦X‖ =
‖B ◦X‖ for every rank one X and every normal X, then A = γB for some γ ∈ T.

Proof. Note that if ‖A ◦ X‖ = ‖B ◦ X‖ for all rank one and for all normal
matrices X, then for any unitary matrix V , the matrix pair (C,D) = (V AV ∗, V BV ∗)
also satisfies ‖C ◦X‖ = ‖D ◦X‖ for all rank one and for all normal matrices X. In
view of Lemma 6.6, the matrices A and B satisfy the hypotheses of Theorem 6.1.
Thus, A = γB or A = γB∗ for some γ ∈ T. However, we show that the latter case is
impossible. Indeed, assume A = γB∗. Since A is not normal, it has an eigenvector w
such that span {w} is not an orthogonally reducing subspace of A. Therefore, there
is a unitary W such that WAW ∗ = W (γB∗)W ∗ = [αij ]

n
i,j=1 is upper triangular with

at least one nonzero off-diagonal entry in the first row. Consider X = E1n. Then

WAW ∗ ◦X = (α11 + αnn)E1n
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and

WBW ∗ ◦X = γ−1

 n∑
i=1

α1iEin +

n∑
j=1

αjnE1j

 .

As ‖WAW ∗ ◦X‖ = ‖WBW ∗ ◦X‖ , we see that α1i = 0, i 6= 1, a contradiction. 2

Now Proposition 6.5, and hence also Theorem 5.1, follows easily. Indeed, let A ∈
Mn be a nonnormal matrix, and let B = f(A). By the hypotheses of Proposition 6.5,
Lemma 6.7 is applicable to the pair A,B. Hence A = γB for some γ ∈ T, and the
proof is complete. 2

Proof of Theorem 5.2. Let A,B ∈Mn. Assume first A,B 6∈ N0. The unitary
invariance of norm then implies

‖f(A)◦f(B)‖ = ‖γ(A)γ(B)W (A◦B)#W ∗‖ = |γ(A)γ(B)| · ‖(A◦B)#‖ = ‖(A◦B)#‖.

However, each standard map is an isometry in Frobenius norm, so ‖(A ◦ B)#‖ =
‖A ◦B‖. We argue similarly if A,B ∈ N0.

Suppose lastly A ∈ N0 but B 6∈ N0. Then, A is normal, and we have

‖f(A) ◦ f(B)‖ = ‖γ(A)W (A#)∗W ∗ ◦ γ(B)WB#W ∗‖
= ‖(A#)∗ ◦B#‖ = ‖(A∗ ◦B)#‖ = ‖A∗ ◦B‖
= ‖A ◦B‖,

by (a) of Lemma 6.4. 2
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