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1. Introduction and main result. Let H be a complex Hilbert space with the inner product
〈·, ·〉, and let L(H) be the algebra of linear bounded operators on H. It will be assumed without further
notice that dimH ≥ 2. Denote by TrX the trace of a trace-class operator X ∈ L(H). We let R and
C stand for the real and complex field, respectively.

Given an operator T ∈ L(H), to what extent is it determined by its numerical range W (T ) =
{〈Tx, x〉 : x ∈ H, ‖x‖ = 1} ? In some rare situations, the numerical range alone can be used to
classify a special type of operator. For instance, the W (T ) = {µ} if and only if T = µI; W (T ) ⊆ R
if and only if T = T ∗; W (T ) ⊆ [0,∞) if and only if T is positive semidefinite. On the other hand,
it is a standard result that an operator on a complex Hilbert space is completely determined with
the quadratic form that defines its numerical range. Based on applications in preserver problems and
elsewhere, we asked in [5] to what extent an operator is determined if only partial information is known
about the quadratic form. More precisely, we showed that, given a number q ∈ [0, 1], the operators
A and B satisfy |〈Ax, y〉| = |〈Bx, y〉| for every pair of normalized vectors x, y ∈ H with 〈x, y〉 = q
only if A = µB + νI or A = µB∗ + νI for some scalars µ, ν with |µ| = 1. In effect, this covers the
modulus of quadratic form of classical numerical range (with q = 1) as well as of its generalization,
the q-numerical range, defined by Wq(T ) := {〈Tx, y〉 : ‖x‖ = 1 = ‖y‖, 〈x, y〉 = q}.

There are many more generalizations of classical numerical range which are extensively studied
(see [7] for a survey). Two examples are the k-numerical range Wk(T ) := {

∑k
i=1〈Txi, xi〉 : 〈xi, xj〉 =

δij} and the c-numerical range for a summable sequence c =
(
ci
)
i∈N given by Wc := {

∑
i ci〈Txi, xi〉 :

〈xi, xj〉 = δij}. The common extension of all these three types of numerical ranges is the C-numerical
range, defined for a trace-class operator C by WC(T ) = {Tr(CUTU∗) : UU∗ = I = U∗U}. For
example, the q-numerical range equals the C-numerical range given by a rank-one operator C =
q〈·, y〉y +

√
1− q2〈·, z〉y for a fixed orthonormal pair (y, z). In light of this, our result [5] is about C-

numerical ranges for rank-one operators C. Presently, we study the same kind of problem for general
normal trace-class or finite rank C, see Theorem 1.5 below.

The following conjecture was formulated in [5]. It will be convenient to use the marker ∆X = 1 if
TrX = 0; ∆X = 0 if TrX 6= 0; here X is a trace-class operator.

Conjecture 1.1. 1 Suppose C ∈ L(H) is a non-scalar trace-class operator. Then two operators
A,B ∈ L(H) have the property

|Tr(CU∗AU)| = |Tr(CU∗BU)| ∀ unitary U ∈ L(H) (1.1)
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1We use this opportunity to correct an inaccuracy in the formulation of [5, Conjecture 6.6]; C = C∗, resp. C 6= C∗,
was used there in place of “C and C∗ are linearly dependent”, resp. “C and C∗ are linearly independent”.
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if and only if one of the following conditions holds:
(1) C and C∗ are linearly dependent, and either A = µB + ν∆CI or A = µB∗ + ν∆CI for some

µ, ν ∈ C, |µ| = 1;
(2) C and C∗ are linearly independent, and A = µB + ν∆CI for some µ, ν ∈ C, |µ| = 1;
Note that we have dimH ≥ 2 in Conjecture 1.1 because of the hypothesis that C is non-scalar.

The example below shows that this hypothesis is vital:
Example 1.2. If dimH <∞ and C = zI, z ∈ C\{0}, then (1.1) is equivalent to |TrA| = |TrB|.

There is not much to say in this situation.
The “if” part of Conjecture 1.1 is clear. Indeed, assume for example that (1) holds with A =

µB∗ + ν∆CI, µ, ν ∈ C, |µ| = 1. Then necessarily C = αC∗ for some |α| = 1 and moreover ν∆C 6= 0
only if TrC = 0. Therefore

Tr(CU∗AU)=µTr(CU∗B∗U)=µαTr(C∗U∗B∗U)=µαTr(U∗BUC)=µαTr(CU∗BU)

for every unitary U ∈ L(H), so (1.1) holds.
Conjecture 1.1 was proven in [5] for the case when C has rank one. However, the conjecture

generally fails if C has rank larger than one, as the following examples show.
Example 1.3. Assume dimH <∞, and let the operators A,B,C have the following properties:
(a) C,C∗, I are linearly dependent;
(b) C,C∗ are linearly independent;
(c) B,B∗, I are linearly independent, and Tr(B) = 0.
(d) A = µB∗ + ν∆CI for some µ, ν ∈ C, |µ| = 1.

If Conjecture 1.1 would hold then we necessarily have C = αC∗ + βI, |α| = 1, β ∈ C (the hypothesis
that C is non-scalar is used here). Since ∆C · (TrC) = 0, we now obtain

Tr(CU∗AU) = Tr(CU∗(µB∗ + ν∆CI)U) = µTr(CU∗B∗U)

= µαTr(C∗U∗B∗U) = µαTr(CU∗BU).

Thus, (1.1) holds, but clearly neither (1) nor (2) holds. The property (c) is used to preclude the
possibility that A = µ′B + ν′∆CI for some µ′, ν′ ∈ C, |µ′| = 1.

Note that if C is non-scalar of rank-one, then it is easy to see that C,C∗, I are linearly dependent
only if C,C∗ are, and the situation of Example 1.3 cannot occur in this case.

Example 1.4. Let dimH = 2 (we identify H with C2), and

A =

[
−1− i 0

1 −i

]
, B =

[
1 i
0 1 + i

]
, C =

[
1 0
0 i

]
.

A computation shows that for every unitary U we have

Tr(CU∗AU) = Tr(CU∗BU) (1.2)

and so (1.1) holds. Indeed, to prove (1.2) we use the fact that every unitary U ∈ C2×2 has the form

U =

[
cos t eiξ sin t

−e−iξ sin t cos t

]
·
[
p 0
0 q

]
, for some ξ, t ∈ [0, 2π), p, q ∈ C, |p| = |q| = 1.

Then Tr(CU∗AU) is computed to be equal to

sin2 t− (sin ξ + cos ξ) sin t cos t− i(1 + sin2 t+ (sin ξ − cos ξ) sin t cos t),

and similarly

Tr(CU∗BU) = sin2 t− (sin ξ + cos ξ) sin t cos t+ i(1 + sin2 t+ (sin ξ − cos ξ) sin t cos t).
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Note that C,C∗, I are linearly dependent, C,C∗ are linearly independent, B,B∗, I are linearly in-
dependent, and A = iB∗ + (−1 − 2i)I. Note also that A is not of the form A = µB + ν∆CI or
A = µB∗ + ν∆CI for any µ, ν ∈ C.

We mention in passing that a related problem to characterize pairs of operators A,B ∈ L(H) for
which

Tr(CU∗AU) = Tr(CU∗BU) ∀ unitary U ∈ L(H) (1.3)

holds, has been resolved in [5]. Namely, assuming C is non-scalar trace-class, (1.3) holds if and only
if either (1) TrC 6= 0 and A = B, or (2) TrC = 0 and A−B is scalar.

In view of these examples, it is of interest to find out whether or not (1.1) implies that either
A = µB + νI or A = µB∗ + νI for some µ, ν ∈ C, |µ| = 1. We prove that this is indeed the case for
finite rank operators and for normal trace-class operators.

An operator X ∈ L(H) is said to be essentially selfadjoint if there is ν ∈ C such that X − νI is a
scalar multiple of a selfadjoint operator. Elementary calculations show that X is essentially selfadjoint
if and only if either one of the following equivalent statements holds:

(a) X,X∗, I are linearly dependent;
(b) X = µX∗ + νI for some µ, ν ∈ C, with |µ| = 1 and Re (νµ−1/2) = 0;
(c) X is normal with spectrum on a straight line.
Theorem 1.5. (1) Assume C is a non-scalar trace-class operator which is finite rank or normal.

If (1.1) holds for A,B ∈ L(H), then either A = µB + νI or A = µB∗ + νI for some µ, ν ∈ C, |µ| = 1.
(2) If in addition C is normal, and B, A, and C are not essentially selfadjoint, then

A = µB + ν∆CI or A = µB∗ + ν∆CI for some µ, ν ∈ C, |µ| = 1. (1.4)

It is easy to see (in view of the first part of Theorem 1.5) that under the hypotheses of the theorem
A and B either are both essentially selfadjoint or both are not essentially selfadjoint.

Note that

Tr(V ∗CV · U∗AU) = Tr(C · (UV ∗)∗A(UV ∗)),

for all unitary V ∈ L(H). Thus, we may replace C by any operator which is unitarily similar to C in
Conjecture 1.1 and Theorem 1.5. We will use this observation in the proof of Theorem 1.5.

The following notation will be used throughout: Cm×n stands for the vector space of m×n complex
matrices, with Cm×1 simplified to Cm; diag (X1, . . . , Xp) = X1 ⊕X2 ⊕ · · · ⊕Xp is the block diagonal
matrix with the diagonal blocks X1, . . . , Xp (in this order). We denote by Eij the matrix (or operator
with respect to a fixed orthonormal basis) having 1 in the (i, j)th position and zeros elsewhere; ej
stands for the unit coordinate vector with 1 in the jth position and zeros elsewhere. Thus, Eij = eie

∗
j .

Upon completion of our paper, we learned that Professor Fangyan Lu has studied Conjecture 1.1
independently with a different approach [9].

We conclude the introduction with a short overview of the next sections. Sections 2, 3, and 4 are
preparatory for the proof of Theorem 1.5. There, we recall basic properties of real-analytic functions,
study properties of linear dependence of operators on the whole space vs these properties on subspaces
of fixed dimension (these results are of independent interest), and provide some information on C-
numerical ranges. In Sections 5 and 6 we prove Theorem 1.1 for the cases when C is normal and
when C is finite rank, respectively. In latter case, the proof is reduced to a finite-dimensional H, and
then proceeds by induction on the dimension of H. Finally, in the last short section we indicate an
extension of Theorem 1.5 to a larger class of operators C.

2. Preliminaries on real-analytic functions. Here we collect several well-known facts on
real-analytic functions to be used in the sequel.
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Let W ⊆ Rk be open subset. A function f = f(x1, . . . , xk) : W → C is said to be real-analytic if
there exists an open neighborhood G ⊆ Ck with W ⊆ G and an analytic function F : G → C, which
extends f ; equivalently, for each point of W there is a polydisc contained in W with positive radii
such that f equals its Taylor series on this polydisc. Clearly, f is real-analytic if and only if the real
and imaginary parts of f are real-analytic.

Proposition 2.1.
(a) If f = f(x1, . . . , xk) : W → C is real-analytic, then so are f and |f |2 = ff .
(b) The zero set of any real-analytic function with the domain of definition W is either equal to

W or its complement is dense in W .
(c) A product of two nonzero real-analytic functions is itself nonzero real-analytic.
For part (b) see e.g. [11, I §3 Lemma 3.2]; (c) obviously follows from (b).
A subset M ⊆ Cn is a real-analytic manifold if it has an open cover with charts (fα(Wα), fα), with

Wα ⊆ Rk open and fα : Wα → f(Wα) a homeomorphism onto an open subset f(Wα) ⊆ M such that
(fβ)−1 ◦ fα : Wα ∩ f−1α (fβ(Wβ)) → Rk is real-analytic. If M is a real-analytic manifold then a map
F : M → C is real-analytic if F ◦ fα : Wα → C is real-analytic for every index α ([10, pp. 54]).

It is well-known (e.g. [12]) that the group Un of unitaries in Cn×n is a compact real-analytic
manifold. Moreover, it is pathwise connected with real-analytic paths (which take the form t 7→
ei(tH1+(1−t)H2) for appropriate hermitian H1, H2).

Proposition 2.2. Given two fixed vectors a,b, the map U 7→ a∗Ub, U ∈ Un, is real-analytic.
Also, given two matrices C and A, the function U 7→ Tr(CUAU∗), U ∈ Un, is real-analytic.

It easily follows from Proposition 2.1 that if F : M → C is a nonzero real-analytic map on a
compact, real-analytic, pathwise connected manifold M , then the set of points where F does not
vanish is dense in M .

3. Local vs global linear dependence of operators. In this section we prove results con-
cerning local (i.e. restricted to proper subspaces) vs global linear dependence of operators that will
be used in the proof of Theorem 1.5, and are of independent interest. We will consider the following
properties of two operators A,B ∈ L(H) frequently in our subsequent discussion.

(P1) There exist a unimodular number µ and some complex number ν such that B = µA+ νI or
B = µA∗ + νI.

(P2) There exist a unimodular number µ and some complex number ν such that B = µA+ νI.
Theorem 3.1. Fix a positive integer k > 1. Suppose dimH ≥ 2 and let A,B ∈ L(H).
(1) Assume that for every rank-k orthogonal projection P , the compressions A′ = PAP |ImP and

B′ = PBP |ImP of A and B onto ImP have property (P1). Then A and B have property (P1).
(2) Assume that for every rank-k orthogonal projection P , the compressions A′ = PAP |ImP and

B′ = PBP |ImP of A and B onto ImP have property (P2). Then A and B have property (P2).
We indicate an immediate corollary of Theorem 3.1.
Corollary 3.2. Fix cardinalities ℵ′, ℵ′′ such that ℵ′ + ℵ′′ coincides with the dimension (= cardi-

nality of an orthonormal basis) of H and ℵ′′ ≥ 2.
(1) Assume that for every orthogonal projection P ∈ L(H) with the image of dimension ℵ′′ and

the kernel of dimension ℵ′, the compressions A′ = PAP |ImP and B′ = PBP |ImP of A and B onto
ImP have property (P1). Then A and B have property (P1).

(2) Assume that for every orthogonal projection P ∈ L(H) with the image of dimension ℵ′′ and
the kernel of dimension ℵ′, the compressions A′ = PAP |ImP and B′ = PBP |ImP of A and B onto
ImP have property (P2). Then A and B have property (P2).

Proof. Indeed, the hypotheses of part (1) of Corollary 3.2 imply that for every rank-two orthogonal
projection Q the compressions of A and B to the range of Q have property (P1). Now apply Theorem
3.1. The proof of part (2) is analogous. 2

For the proof of Theorem 3.1 we need a lemma (presented in greater generality than is needed in
this paper.) Denote by Grk (Cn) (Grassmannian) the set of all k-dimensional subspaces of Cn with
the standard topology.
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Lemma 3.3. Let A1, . . . , Aq ∈ Cn×n. Fix an integer k, 1 ≤ k ≤ n. Then either PA1P, . . . , PAqP
are linearly dependent (over C) for every rank k orthogonal projection P , or the set of k-dimensional
subspaces M ⊆ Cn such that PMA1PM, . . . , PMAqPM are linearly independent, where PM ∈ Cn×n

stands for the orthogonal projection onto M, is dense in Grk (Cn).
Proof. We assume k2 ≥ q (if q > k2, then PMA1PM, . . . , PMAqPM are always linearly depen-

dent).
We consider Grk (Cn) as a manifold with the standard charts {Ci1,...,ik}, where

Ci1,...,ik :=

Column space of


x1
x2
...
xn

 , xj ∈ C1×k, j = 1, 2, . . . , n,


xi1
xi2
...
xik

 = Ik

 .

Here {i1, . . . , ik} is a selection of indices i1, . . . , ik ∈ {1, 2, . . . , n} such that i1 < i2 < · · · < ik.
Then Grk (Cn) is a real-analytic manifold whose charts are parametrized by 2k(n − k) real variables
t1, . . . , t2k(n−k) that represent the real and imaginary parts of the xj ’s for j 6∈ {i1, . . . , ik}.

Fix a chart Ci1,...,ik . Applying the Gram - Schmidt orthogonalization to the columns of
x1
x2
...
xn

 ,
we obtain an orthonormal basis in the subspaceM spanned by these orthonormal columns, which we
temporarily denote by c1, . . . , ck. Then, PM = c1c

∗
1 + · · · + ckc

∗
k. Note that the orthonormal basis

c1, . . . , ck is a real-analytic function of t1, . . . , t2k(n−k) (as readily follows from the formulas for the
Gram - Schmidt orthogonalization), and same then holds for the projections PM. So, we have

PMA1PM = B1, . . . , PMAqPM = Bq,

where B1, . . . , Bq are n×n matrices whose entries are analytic functions of real variables t1, . . . , t2k(n−k)
(as well as functions of the entries of A1, . . . , Aq which are assumed to be fixed). We write the entries
of each Bj as a n2-component column vector (in some fixed order of the entries), and collect these
column vectors in a n2 × q matrix Z. Clearly, PMA1PM, . . . , PMAqPM are linearly dependent if and
only if

Re (detQ1) = 0, Im (detQ1) = 0, . . . , Re (detQs) = 0, Re (detQs) = 0, (3.1)

where Q1, . . . , Qs are all q × q submatrices of Z. The equations (3.1) are of the form

f1(t1, . . . , t2k(n−k)) = 0, . . . , f2s(t1, . . . , t2k(n−k)) = 0, (3.2)

where f1, . . . , f2s are real valued real-analytic functions of t1, . . . , t2k(n−k). Note that the solutions
of equations (3.2) are exactly the zeros of F = |f1|2 + · · · + |f2s|2, which is an analytic function of
real variables (t1, . . . , t2k(n−k)). By Proposition 2.1, either the solution set of (3.2) comprises all of

R2k(n−k), or the complement of the solution set is dense in R2k(n−k). In the former case, using the
property that intersection of any two charts is open and non-empty in either one of the two charts,
we obtain that PA1P, . . . , PAqP are linearly dependent for every rank k orthogonal projection P (see
[11, I §1 Remark 1.20]), and in the latter case analogously we obtain that the set of subspaces M for
which PMA1PM, . . . , PMAqPM are linearly independent, is dense in Grk (Cn). 2

For convenience we state also the following easily verified fact.
Lemma 3.4. The following statements are equivalent for A ∈ L(H):
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(1) A is scalar;
(2) every nonzero x ∈ H is an eigenvector of H;
(3) the compression of A to any 2-dimensional subspace is scalar.

Proof. Obviously (1) implies (2) and (3). Assume (2) holds. Choose linearly independent x, y in
H and let Ax = λxx, Ay = λyy (λx, λy ∈ C). Since x+ y is also an eigenvector of A, we easily obtain
λx = λy. Thus, all eigenvalues of A are the same, and (1) holds. If (3) holds, then (2) holds as well,
otherwise for some nonzero x the compression of A to the 2-dimensional subspace spanned by x and
Ax would not be scalar. 2

Proof of Theorem 3.1. Evidently, we need only to prove the case k = 2. It will be assumed
therefore for the rest of the proof that k = 2. We also assume dimH > k (if dimH = k, the result is
trivial).

We dispose first of the easy case when A (or B) is scalar. If A is scalar, then by Lemma 3.4 (the
equivalence of (1) and (3)) it follows that B is scalar as well. Thus, we assume that neither A nor B
are scalar.

Proof of Statement (2). Let x, y be an orthonormal pair in H, and let M = Span {x, y}.
Then 〈Ay, x〉, resp. 〈By, x〉, is the (1, 2) entry in the matrix representation of PMAPM|ImPM , resp.
PMBPM|ImPM , with respect to the basis {x, y}. Since PMAPM|ImPM and PMBPM|ImPM satisfy the
property (P2) we have

|〈Ay, x〉| = |〈By, x〉|.

Since the orthonormal pair {x, y} is arbitrary, the result follows from [5, Theorem 2.2].

Proof of Statement (1). Assume first that dimH = n <∞.
We consider several cases.

Case 1. For some rank-2 orthogonal projection P , the compressions of B,A∗, I to the range of P
are linearly independent.

Then by Lemma 3.3 the set

Gr0 := {M ∈ Gr2(H) : compressions of B,A∗, I to M are linearly independent}

is dense in Gr2(H). By the hypotheses of Theorem 3.1 we have

PMBPM|M = µPMAPM|M + qIM, ∀M ∈ Gr0, (3.3)

where the unimodular number µ = µ(M) and q = qM ∈ C depend on M. If M ∈ Gr2(H) \
Gr0, then select a sequence {Mm}∞m=1 such that Mm ∈ Gr0 and limm→∞Mm = M (equivalently,
limm→∞ PMm

= PM), and upon selecting a convergent subsequence of {µ(Mm)}∞m=1, it is easy to see
that (3.3) holds also for M. Thus, A and B have property (P2) in view of Statement (2), and the
proof is completed in case 1.

Case 2. For some rank-2 orthogonal projection P , the compressions of B,A, I to the range of P
are linearly independent.

Then we argue as in the case 1, replacing B with B∗.

Case 3. For all rank-2 orthogonal projections P , the compressions of B,A, I to the range of P
are linearly dependent, and the compressions of B,A∗, I to the range of P are linearly dependent.

6



Since A and B are not scalar, by Lemma 3.4, there exist M′,M′′ ∈ Gr2 (H) such that the
compressions of A and I toM′, as well as the compressions of B and I toM′′, are linearly independent.
By a slight adaptation of the proof of Lemma 3.3, the set

Gr1 := {M ∈ Gr2(H) : compressions of A, I to M are linearly independent,

as well as those of B, I}

is dense in Gr2(H). PickM0 ∈ Gr1, and denote by B′, A′, I ′ the compressions of B,A, I, respectively,
to M0. We then have, in view of the hypotheses of Case 3 and selection of M0,

B′ = aA′ + bI ′, B′ = cA′∗ + dI ′, a, b, c, d ∈ C,

where a 6= 0, c 6= 0. Then

A′ = (c/a)A′∗ + ((d− b)/a)I ′. (3.4)

Taking adjoints, we have

A′∗ = (c/a)A′ + ((d− b)/a)I ′,

or, solving for A′,

A′ = (a/c)A′∗ − ((d− b)/c)I ′.

Comparing with (3.4) it follows from linear independence of A′ and I ′ that |a| = |c|. On the other hand,
since A′ and B′ satisfy the property (P1), at least one of the numbers a and c is unimodular, hence
both are. Thus, for every M0 ∈ Gr1, the compressions of A and B to M0 satisfy the property (P2).
Now argue as in the proof of case 1 to obtain that the compressions of A and B to any 2-dimensional
subspace of H have property (P2), and application of Statement (2) of Theorem 3.1 completes the
proof of case 3.

This completes the proof of Statement (1) for finite-dimensional H.
Now assume H is infinite-dimensional. By replacing, if necessary, A with A∗ we easily deduce,

from the above considerations, that all the compressions of A and B onto any 2-dimensional subspace
of H simultaneously have property (P2). Indeed, otherwise, there would be rank-two projections P,Q
such that the compressed triples (A′, I ′, B′) = (PAP |ImP , P |ImP , PBP |ImP ) and ((A′′)∗, I ′′, B′′) =
(QA∗Q|ImQ, Q|ImQ, QBQ|ImQ) are linearly independent. Consider the compressions A′′′ and B′′′ to
the finite-dimensional subspace H′′′ = ImP + ImQ. Clearly, they still satisfy the assumption (1) of
Theorem 3.1, with k = 2. Hence, by the above argument, either A′′′ and B′′′ enjoy property (P2) or
else (A′′′)∗ = (A∗)′′′ and B′′′ enjoy property (P2). Either case contradicts the erroneous assumption
that A′ = PA′′′P |ImP , I

′, B′ = PB′′′P |ImP (A′′)∗ = Q(A′′′)∗Q|ImQ, I
′′, B′′ = QB′′′Q|ImQ are two

linearly independent triples. The result now follows from the already proven Statement (2). 2

4. C-numerical range. In what follows, we will use the concept of the C-numerical range of an
operator X ∈ L(H) defined as follows:

WC(X) := {Tr(CU∗XU) : U is unitary}.

Lemma 4.1. If C ∈ L(H) is trace-class, then the closure clWC(X) of WC(X) is star-shaped for
every X ∈ L(H); moreover, if TrC = 0, then zero is a star-center of clWC(X).

Proof. In the case H is finite-dimensional, the result is proved in [2]. Now assume H is infinite-
dimensional. Let {Cm}∞m=1 be a sequence of finite rank operators such that limm→∞ Cm = C in the
trace norm, denoted ‖ · ‖1, and TrCm = TrC for all m = 1, 2, . . .. By a result of Jones [4], clWCm

(X)
is star-shaped with a star-center at (TrC)z0, where z0 is any element in the essential numerical range
of X. Arguing by contradiction, assume (TrC)z0 is not a star-center of clWC(X), and let d > 0 be
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the distance from some point y0 := α(TrC)z0 + (1− α)y, where y ∈ clWC(X) and 0 < α < 1, to the
closure of WC(X). Using the standard norm inequalities

|Tr(CU∗XU)− Tr(CmU
∗XU)| ≤ ‖CmU∗XU − CU∗XU‖1

≤ ‖Cm − C‖1‖U∗XU‖ = ‖Cm − C‖1‖X‖, ∀ unitary U, (4.1)

we see that there is a sequence {ym}∞m=1 such that ym ∈ clWCm(X) and limm→∞ ym = y. By [4],
α(TrC)z0 + (1− α)ym ∈ clWCm

(X), and obviously

lim
m→∞

(α(TrC)z0 + (1− α)ym) = y0.

So, there exists a sequence of unitary operators {Um}∞m=1 such that

lim
m→∞

(Tr(CmU
∗
mXUm)) = y0.

Now, using (4.1) again, we have

lim
m→∞

|Tr(CU∗mXUm)− Tr(CmU
∗
mXUm)| = 0,

a contradiction with the choice of y0. 2

Lemma 4.2. Assume C ∈ L(H) is a trace-class operator. Then:
(a) WC(X) is a nondegenerate line segment, with or without one or both endpoints, if and only if

both C and X are essentially selfadjoint non-scalar operators.
(b) WC(X) is a singleton if and only if C or X is a scalar operator.
Proof. Part (b) follows from [5, Theorem 6.1]. For the case of finite-dimensional H, part (a) is

stated in [7, property (7.3.a)]; a proof (again in finite dimensions) is found in [6].
Consider now part (a) for the case of infinite-dimensional H. By the definition of essentially

selfadjoint operators, as well as part (b), the “if” statement is easily verified. We prove the “only if”
statement. Thus, assume that WC(X) is a nondegenerate line segment. By (b), we know that C and
X are non-scalars.

Suppose first that C has finite rank. Recall that the operator X is essentially selfadjoint if and
only if X,X∗, I are linearly dependent, which, by using (2) of Corollary 3.2 on (A,B) = (X∗, X), is
equivalent to the fact that all the compressions of X to k-dimensional subspaces of H are essentially
selfadjoint; here k ≥ 2 is a fixed integer. Assume erroneously that some finite-dimensional compression
of X is not essentially selfadjoint. Since the rank of C is finite, we can then find a suitable choice of

orthonormal basis in H so that C and X have operator matrices C = C1 ⊕ 0 and X =

[
X11 X12

X21 X22

]
with C1, X11 ∈ Ck×k, where k ≥ 2 is fixed, and X11 is not essentially selfadjoint. Now, WC(X) =
WC1

(X11) and by [7, property (7.3.a)] we know that X11 must be essentially selfadjoint, a desired
contradiction. Suppose now C has infinite rank. Then let V ∈ L(H) be a unitary such that V ∗CV −C
is of finite rank and non-scalar (choose V so that V − I is of finite rank). We have

Tr((V ∗CV − C)U∗XU) = Tr(C · (V U∗)X(UV ∗))− Tr(CU∗XU) ∀ unitary U ∈ L(H).

Therefore, WV ∗CV−C(X) is contained in a line, and is in fact a nondegenerate line segment (because
V ∗CV −C and X are non-scalars). By the already proved case of part (a), we obtain that X is again
essentially selfadjoint.

To prove that C is essentially selfadjoint, we repeat the arguments in the preceding paragraph
with the roles of X and C interchanged. 2

Using Lemma 4.1 we can prove another (easy) case of Conjecture 1.1:
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Proposition 4.3. Assume C ∈ L(H) is non-scalar trace-class, and (1.1) holds for A,B ∈ L(H).
If one of A and B is scalar, then Conjecture 1.1 holds true for A and B.

Proof. Say, B = αI, α ∈ C. Then WC(A) is contained in the circle of radius |αTrC| centered
at the origin. Since the closure of WC(A) is star-shaped by Lemma 4.1, we must have that WC(A) is
a singleton. But then A is scalar by Lemma 4.2(b). Thus A = βI, where β ∈ C satisfies |β TrC| =
|αTrC|. Obviously, at least one of the two conditions (1), (2) in Conjecture 1.1 holds. 2

5. Proof of Theorem 1.5, the case of normal C. Throughout this section it will be assumed
that C ∈ L(H) is a non-scalar trace class normal operator (not necessarily of finite rank).

5.1. Proof of the first part of Theorem 1.5. We divide the proof into two cases: one for
finite-dimensional H and the other for infinite-dimensional. We start with the finite-dimensional case.

Lemma 5.1. Let n ≥ 2 be an integer. If (1.1) holds for matrices A,B ∈ Cn×n then A = µB + νI
or A = µB∗ + νI for some µ, ν ∈ C, |µ| = 1.

Proof. Induction on rank of C. For rankC = 1 this was proven in [5]. Assume the Lemma holds
for every normal non-scalar C of rank at most k. If k = n, then there is nothing to prove. If k < n, pick
any normal non-scalar C ∈ Cn×n with rank k + 1 ≤ n. Then, C has at least two distinct eigenvalues
and we may clearly pick one, name it γ such that C ′ := C − γI is normal, with rankC ′ ≤ k, and
moreover TrC ′ 6= 0. Then,

Tr(CUXU∗) = Tr(C ′UXU∗ + γUXU∗) = Tr
(
C ′U

(
X + ((TrC ′)−1γ TrX)I

)
U∗
)
,

for every X ∈ Cn×n and for every unitary U ∈ Cn×n. So, from identity (1.1) we derive that for
A′ = A+ ((TrC ′)−1γ TrA)I and B′ = B + ((TrC ′)−1γ TrB)I it holds

|Tr(C ′UA′U∗)| = |Tr(C ′UB′U∗)|, ∀ unitary U ∈ Cn×n.

By induction, A′ and B′ enjoy property (P1) and we are done. 2

It remains to consider infinite-dimensional H. We consider two cases separately.

Case 1. C has distinct eigenvalues c1, c2 such that c1 + c2 6= 0. Let x1, x2 be any orthonormal
pair of vectors in H. Applying a suitable unitary similarity to C, we may assume that x1, x2 are
eigenvectors of C corresponding to the eigenvalues c1, c2, respectively. Write operators as 2× 2 block
matrices with respect to the orthogonal decomposition H = (Span {x1, x2})⊥ ⊕ (Span {x1, x2}):

C =

[
C1 0
0 C ′

]
; A =

[
A1 ∗
∗ A′

]
; B =

[
B1 ∗
∗ B′

]
; C ′ = diag (c1, c2).

We restrict ourselves to consider unitaries U having the block diagonal form

U =

[
I 0

0 Û

]
;

here Û is any unitary on Span {x1, x2}. Note that our hypothesis guarantees that C ′ is not a scalar
operator. Now

Tr(CU∗AU) = Tr(C1A1) + Tr(C ′Û∗A′Û) = Tr(C ′Û∗(A′ + Tr(C1A1)(TrC ′)−1I)Û),

and similarly for B. Then, the assumptions of the Theorem give

|Tr(C ′Û∗(A′ + Tr(C1A1)(TrC ′)−1I)Û)| = |Tr(C ′Û∗(B′ + Tr(C1B1)(TrC ′)−1I)Û)|.

Since this holds for all unitaries Û , by Lemma 5.1 the operators A′ and B′ have property (P1). In view
of the arbitrariness of x1, x2, all compressions of A and B to 2-dimensional subspaces have property
(P1), and by Corollary 3.2, A and B have property (P1).
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Case 2. There is no pair of distinct eigenvalues of C that sum up to a nonzero number. It is easy
to see that C must have exactly two distinct eigenvalues a and −a (the case when C has all eigenvalues
equal is excluded by the hypothesis that C is non-scalar). Because C is of trace-class, both a and
−a 6= a have finite multiplicities. Then KerC = 0 implies dimH <∞, and Lemma 5.1 applies. 2

5.2. Proof of the second part of Theorem 1.5. Here, we prove (1.4) under additional hy-
potheses that C,C∗, I are linearly independent and A and B are not essentially selfadjoint. It will be
convenient to have a lemma first.

Lemma 5.2. Let B,C ∈ L(H) be such that C is a trace-class normal operator and B and C are
not essentially selfadjoint. If γ ∈ C is such that |Tr(CU∗BU) + γ| = |Tr(CU∗B∗U)| for all unitary
operators U ∈ L(H), then γ = 0.

Proof. We necessarily have dimH ≥ 3 as every normal operator in L(C2) is essentially selfadjoint.
With respect to a suitable orthogonal decomposition of H, we may assume that C = C1 ⊕ C2 is

such that

C1 = diag (c1, c2), C2 = diag (c3, C3),

where c1, c2, c3 ∈ C and c1 − c2 = r 6= 0. We also assume that c1 − c2 = 1. Otherwise, replace (C, γ)
by (C/r, γ/r). Also, we assume that

c2 − c2 − c3 + c3 6= 0; (5.1)

this choice of c3 is possible in view of non-essential selfadjointness of C . By Corollary 3.2 (indeed, the
pair of operatorsB∗, B does not have property (P2), therefore there exists a 2-dimensional compression
of B∗, B that does not have property (P2)), we may replace B by V ∗BV for a suitable unitary

V ∈ L(H) and assume that B =

[
B1 ∗
∗ B2

]
so that B1 ∈ C2×2 is not essentially selfadjoint. Then

the trace condition of the lemma implies that

|Tr(C(U∗ ⊕ I)B(U ⊕ I)) + γ| = |Tr(C(U∗ ⊕ I)B∗(U ⊕ I))|

for any unitary U ∈ C2×2. Let E11 be the rank-one operator with 1 in the top left corner and zeros
elsewhere (with respect to the same orthogonal decomposition of H). It follows that

|(c1 − c2) Tr(E11U
∗B1U) + c2 TrB1 + Tr(C2B2) + γ| = |Tr(CU∗BU) + γ|

= |Tr(C1U
∗B∗1U) + Tr(C2B

∗
2)| = |(c1 − c2) Tr(E11U

∗B∗1U) + c2 TrB∗1 + Tr(C2B
∗
2)|.

(5.2)

Let

c2 TrB1 + Tr(C2B2) = f + ig, c2 TrB∗1 + Tr(C2B
∗
2) = f ′ + ig′, and γ = α+ iβ,

where f, g, f ′, g′, α, β are real. If Tr(E11U
∗B1U) = x + iy, then Tr(E11U

∗B∗1U) = x − iy. Together
with the assumption that c1 − c2 = 1, equality (5.2) becomes

|(x+ iy) + (f + ig) + (α+ iβ)| = |(x− iy) + (f ′ + ig′)|,

equivalently,

(x+ f + α)2 + (y + g + β)2 = (x+ f ′)2 + (g′ − y)2. (5.3)

Since B1 is not essentially selfadjoint, the set of numbers x+ iy = Tr(E11U
∗B1U) is just the numerical

range W (B1) of B1, which has non-empty interior. Thus, (5.3) holds for infinitely many x + iy0 for
a fixed y0 and infinitely many x0 + iy for a fixed x0. Thus, comparing the coefficients of x and y, we
have

(f + α, g + β) = (f ′,−g′). (5.4)
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We can assume that

B =

[
(bij)

3
i,j=1

∗

∗ ∗

]

and B1 is in triangular form. Since B1 is not essentially selfadjoint, we see that B1 =

[
b11 b12
0 b22

]
and

b12 6= 0. Thus, b11 is an interior point of W (B1). For any nonzero ε1 with sufficiently small modulus,

there is U1 ∈ C2×2 such that B̂ = (U∗1 ⊕ In−2)B(U1⊕ In−2) has diagonal entries b11 + ε1, b22− ε1 with
b22 − ε1 6= b33. Then we can find a unitary U2 ∈ C2×2 such that

B̃ = ([1]⊕ U∗2 ⊕ In−3)B̂([1]⊕ U2 ⊕ In−3)

has its first three diagonal entries equal to b11 + ε1, b22 − ε2, b33 − ε3 with nonzero ε2, ε3 satisfying

ε2 + ε3 = ε1. Thus, we can choose nonzero εj for j = 1, 2, 3 such that for B̃ =

[
B̃1 ∗
∗ B̃2

]
the

following holds:

(a) the matrix B̃1 ∈ C2×2 is still not essentially selfadjoint;
(b) if

f̃ + ig̃ := c2 Tr B̃1 + Tr(C2B̃2) = c2 TrB1 + Tr(C2B2) + c2(ε1 − ε2)− c3ε3
= f + ig + c2(ε1 − ε2)− c3ε3, (5.5)

and

f̃ ′ + ig̃′ := c2 Tr B̃∗1 + Tr(C2B̃
∗
2) = c2 TrB∗1 + Tr(C2B

∗
2) + c2(ε1 − ε2)− c3ε3

= f ′ + ig′ + c2(ε1 − ε2)− c3ε3, (5.6)

where f̃ , g̃, f̃ ′, g̃′ are real, then adding α+ iβ to (5.5) and subtracting the complex conjugate
of (5.6) yields (in view of (5.4))

(f̃ + ig̃) + (α+ iβ)− (f̃ ′ − ig̃′) = (c2 − c2)(ε1 − ε2)− (c3 − c3)ε3 = (c2 − c2 − c3 + c3)ε3 6= 0.

[(a) is possible because the set of non-essentially selfadjoint matrices is open, and (b) is possible in
view of (5.1).] Consequently,

(f̃ + α, g̃ + β) 6= (f̃ ′,−g̃′). (5.7)

Now, similar to the derivation of equalities (5.2), (5.3), (5.4), if Tr(E11U
∗B̃1U) = x + iy ∈ W (B̃1),

then Tr(E11U
∗B̃∗1U) = x− iy, and

|(x+ iy) + (f̃ + ig̃) + (α+ iβ)| = |(x− iy) + (f̃ ′ + ig̃′)|.

Thus, we have (f̃ + α, g̃ + β) = (f̃ ′,−g̃′), contradicting (5.7). 2

Proof of part 2 of Theorem 1.5. By the first part of the theorem, we assume that (1.1) holds,
and in addition A = µB+νI or A = µB∗+νI for some µ, ν ∈ C, |µ| = 1, and Tr(C) 6= 0. We consider
two cases separately:

(1) A = µB + νI holds;
(2) A = µB∗ + νI holds.
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Case (1). Under the hypotheses of case (1), we have

|x+ z| = |x|, ∀ x ∈WC(B), (5.8)

where z = νµ−1 TrC. Arguing by contradiction, suppose z 6= 0. Then the set of complex numbers
Γz = {x : |x+ z| = |x|} is a line and WC(B) ⊆ Γz. But B is assumed to be not essentially selfadjoint,
a contradiction with Lemma 4.2(a). Therefore, z = 0 = ν and A = µB.

Case (2). We have

Tr(CU∗AU) = µTr(CU∗B∗U) + ν Tr(C),

and therefore by (1.1),

|Tr(CU∗B∗U) + νµ−1 Tr(C)| = |Tr(CU∗BU)|

for every unitary U . By Lemma 5.2, we must have ν = 0, as required. 2

6. Proof of Theorem 1.5, the case of finite rank C.

6.1. Preliminary results. In this subsection we present several lemmas needed for the proof.
The following was proven by Brešar and Šemrl [1, Theorem 2.4].
Lemma 6.1. Let U and V be vector spaces over an infinite field F , charF 6= 2, and let Ri : U → V

, i = 1, 2, 3, be linear operators. Then the following two statements are equivalent.
(i) The vectors R1u, R2u, and R3u are linearly dependent for every u ∈ U .

(ii) One of (a) - (d) holds:
(a) R1, R2, R3 are linearly dependent;
(b) there exist v, w ∈ V such that RiU ∈ Span{v, w}, i = 1, 2, 3;
(c) there exist linearly independent vectors v1, v2, v3 ∈ V , 3 × 3 invertible matrices Q1 and

Q2, a linear mapping R from U into the space of all 3× 3 skew-symmetric matrices such
that Ri : u 7→

∑3
k=1[Q1(Ru)Q2]kivk, i = 1, 2, 3, where [Q1(Ru)Q2]ki stands for the (k, i)

entry of the matrix Q1(Ru)Q2;
(d) there exists an idempotent P : V → V of rank one such that

dim Span{(IV − P )R1, (IV − P )R2, (IV − P )R3} = 1.

Here, IV denotes the identity operator on V .
Remark 6.2. Lemma 6.1 will be applied on at least 3-dimensional V = U = Cn, and operators

R1 = A, R2 = B, R3 = I, the identity operator. Then options (b), (c) are not possible because both (b)
and (c) imply that rankRi ≤ 2. The conclusion is that either A,B, I are linearly dependent or, under
(d), A = λAI + xf∗ and B = λBI + xg∗ for some vectors x, f ,g ∈ Cn and scalars λA, λB.

Lemma 6.3. Let n ≥ 2 and let the nonzero vectors a, c1, c2,b ∈ Cn be such that c∗1Ua = 0 implies
c∗2Ub = 0 for every unitary U ∈ Cn×n. Then, there exists a unitary V such that c1 ∈ Span{V a} and
c2 ∈ Span{V b}. Moreover, if n = 2 then c1 and c2 are linearly dependent or orthogonal, and if n ≥ 3
then c1 and c2 are always linearly dependent.

Proof. There exist unitary W1,W2 such that W1c1 = λe1 and W2a = µe1 for some nonzero
scalars λ, µ, where e1 belongs to the standard basis of Cn. We may assume the two vectors c1 and
a are already a scalar multiple of e1, otherwise we would regard unitary W ∗1UW2 in place of U , and
thus replace (c1,a; c2,b) with (W1c1,W2a;W1c2,W2b). Using unitary matrices that fix e1, we may
further assume b = β1e1 + β2e2 and c2 = γ1e1 + γ2e2 + γ3e3 for some scalars βi, γj where we agreed

upon that γ3 is absent when n = 2. Use the unitaries Ut :=

[
0 1
eit 0

]
⊕ In−2 for t ∈ R. Clearly,

c∗1Uta = λµeite∗1e2 = 0 for every t, hence also

0 = c∗2Utb = γ2e
itβ1 + γ1β2
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for every t. This is possible only if

γ2β1 = 0 = γ1β2.

If n = 2 we have from b 6= 0 6= c2 that either β1 = 0 = γ1 or γ2 = 0 = β2. In each case, b is a scalar
multiple of c2, and both are either orthogonal to c1 (equivalently, to a) or are a scalar multiple of a.

If n ≥ 3 we also use unitaries

U ′t :=

0 0 1
0 eit 0
1 0 0

⊕ In−3, t ∈ R,

to derive additionally γ3β1 + eitγ2β2 = 0 for every t ∈ R, which further gives

γ3β1 = 0 = γ2β2.

Combined with the previously obtained identities gives either (i) β1 = 0 which forces γ1 = 0 = γ2, or
(ii) β2 = 0 which forces γ3 = 0 = γ2. The second option gives that b and c2 are both scalar multiple
of a and c1. The first option is contradictory, because then, a unitary

U =

0 0 1
1 0 0
0 1 0

⊕ In−3
would satisfy c∗1Ua = 0 6= c∗2Ub. Clearly, the unitary V := W ∗1W2 finishes the proof. 2

Lemma 6.4. Let n ≥ 2 and suppose x,y,x2,y2,x3,y3 ∈ Cn are nonzero vectors. If x∗Uy = 0
implies (x∗2Uy2) · (x∗3Uy3) = 0 for every unitary U ∈ Cn×n then there exists an index i ∈ {2, 3} such
that already x∗Uy = 0 implies x∗iUyi = 0 for all unitary U .

Proof. Without loss of generality we can suppose that x,y are both scalar multiple of e1, otherwise
we replace U by V ∗UW for suitably chosen unitaries V,W . Assume erroneously that there is no such
index. Then, there would exist unitary U1, U2 such that x∗U1y = 0 = x∗U2y and (x∗2U1y2)·(x∗3U2y3) 6=
0.

We will show that there exists a real-analytic path f : [0, 1]→ Un, which connects U1 with U2 in
the set of those unitaries that satisfy x∗Uy = 0. Once we verify this, the assumptions of the Lemma
would imply (x∗2f(t)y2) · (x∗3f(t)y3) = 0 for every 0 ≤ t ≤ 1. This would contradict Proposition 2.1(c).

To verify the existence of the path with the above properties, we start by choosing f1(t) =
(1 − t)U1 + te−iα(t)U2 where α : [0, 1] → R is any real-analytic function such that α(1) = 0 and
eiα(1/2) /∈ Sp (−U−11 U2). Then, f1(t), 0 ≤ t ≤ 1 is never singular because otherwise,

eiα(t)

t
U−11 f1(t) =

1− t
t

eiα(t)I + U−11 U2

would be singular and hence 1−t
t e

iα(t) would be an eigenvalue of a unitary −U−11 U2. As the eigenvalues
of unitary matrix are unimodular, this would imply that t = 1/2, a contradiction. Hence, f1(t) is
invertible matrix for 0 ≤ t ≤ 1. Then, the Gram-Schmidt orthogonalization performed on columns of
f1(t) gives a real-analytic function f(t) that connects U1 and U2 in the set of unitaries. Due to

x∗f(t)y ∈ Ce∗1f1(t)e1 = C(1− t)e∗1U1e1 + te−iα(t)e∗1U2e1 = 0 + 0 = 0,

the constructed path has all the desired properties. 2

Lemma 6.5. Let n ≥ 3 and let C ∈ Cn×n be a non-scalar matrix. Then there exists a unitary

U ∈ Cn×n such that for UCU∗ :=

[
c11 c∗12
c21 Ĉ

]
the following holds:
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• Column vectors c12, c21 ∈ Cn−1 are both nonzero.
• When n = 3, c12 and c21 are not orthogonal.
• Ĉ is a non-scalar matrix with Tr Ĉ 6= 0.

Proof. Let us first find U such that c12, c21 are nonzero. Since C is non-scalar there exists
a normalized vector x such that x and Cx are linearly independent. Write Cx = αx + βy where
normalized y is orthogonal to x, and enlarge it to orthonormal basis (z1 = x, z2 = y, z3, . . . , zn).
Clearly, z∗2Cz1 = β 6= 0. Consequently, there exists a unitary V1, which maps (z1, . . . , zn) onto the
standard basis, and for which e∗2(V1CV

∗
1 )e1 6= 0. Considering orthonormal basis (z2, z1, z3, . . . , zn) in

place of (z1, . . . , zn) we further see that for some unitary V2 we have e∗1(V2CV
∗
2 )e2 6= 0. There exists

hermitian Hk such that Vk = eiHk , k = 1, 2. Note that

t 7→ e∗1 exp(i(tH1 + (1− t)H2)) · C · exp(−i(tH1 + (1− t)H2))e2

and

t 7→ e∗2 exp(i(tH1 + (1− t)H2)) · C · exp(−i(tH1 + (1− t)H2))e1

are two real-analytic nonzero functions of t ∈ [0, 1]. By Proposition 2.1(c) we can find some t = t0 ∈
[0, 1] such that both functions are nonzero. Consequently, the unitary V3 = ei(t0H1+(1−t0)H2) forces
(e∗2V3CV

∗
3 e1) · (e∗1V3CV ∗3 e2) 6= 0. Clearly we can assume V3 = I for the rest of the proof.

We next achieve that also Tr Ĉ 6= 0. Since C is non-scalar its numerical range is not a singleton.
So, there exists a unitary V4 such that e∗1V4CV

∗
4 e1 6= TrC. With this V4 we have

Tr(C) = Tr(V4CV
∗
4 ) = e∗1V4CV

∗
4 e1 + Tr

(
(I − E11)V4UV

∗
4 (I − E11)

)
,

so that Tr Ĉ 6= 0. Again, writing V3 = eiH3 and V4 = eiH4 for hermitian H3 = 0, H4, and forming a
real-analytic function

f : t 7→ exp(i(tH3 + (1− t)H4))C exp(−i(tH3 + (1− t)H4))

we find that the two functions t 7→ (e∗2f(t)e1) · (e∗1f(t)e2), and t 7→ Tr(I − E11)f(t), which are both
nonzero real-analytic functions of t, are simultaneously nonzero at some t = t0 ∈ [0, 1]. Hence, with

the unitary V5 := exp(i(t0H3 + (1 − t0)H4)) we have c12, c21 6= 0 and Tr Ĉ 6= 0. Again we can
assume V5 = I. Since C is non-scalar there exists a permutation matrix V6 such that the lower-right
(n − 1) × (n − 1) block of V6CV

∗
6 is non-scalar. Again, the real-analytic path that connects V5 with

V6 in the set of unitaries must contain a unitary V7 such that V7CV
∗
7 satisfies all the claims, with the

sole exception that, when n = 3, c12, c21 might be orthogonal.
So suppose n = 3. If c12, c21 ∈ C2 are not orthogonal we are done. If they are orthogonal, we

can use unitary V8 = [1]⊕ V̂8 ∈ C⊕ C2×2 such that the two off-diagonal blocks of C ′ := V8CV
∗
8 equal

c∗12V̂
∗
8 = λe∗1 6= 0 and V̂8c21 = µe2 6= 0, respectively. We then use a unitary of the form

V9 =

[
cos t eiφ sin t
− sin t eiφ cos t

]
⊕ [1], t, φ ∈ R,

to achieve that the corresponding off-diagonal vectors c′12 and c′21 of

V9C
′V ∗9 :=

[
c′11 (c′12)∗

c′21 C ′22

]
are not orthogonal vectors. In fact, if the entries of C ′ at positions (2, 3) and (3, 2) are both nonzero
we can set t = π

2 , and if either of the entries (2, 3) or (3, 2) is zero, we use t = π
4 and appropriate φ ∈ R.

Having found a unitary V10 = V9V8 such that the two side blocks of V10CV
∗
10 are not orthogonal, we

connect V10CV
∗
10 with a real-analytic path to V7CV

∗
7 and complete the proof as before. 2

14



We will also need a well known result (see e.g. [3]) on rational functions that take unimodular
values on the unit circle:

Lemma 6.6. If a rational function r(λ) = p(λ)
q(λ) , where p(λ) and q(λ) are polynomials, satisfies

|r(eiξ)| = 1 for every ξ ∈ R, then there exists a unimodular number µ and integers d ≥ 0 and k such
that

r(λ) = µλk
a0 + a1λ+ a2λ

2 + · · ·+ adλ
d

ad + ad−1λ+ ad−2λ2 + · · ·+ a0λd
, a0, . . . , ad ∈ C, (6.1)

where the numerator and denominator in (6.1) have no zeros in common, and a0 6= 0, ad 6= 0.

Proof. For the reader’s convenience we supply a proof. We may clearly assume that numerator,

p(λ) and denominator, q(λ) share no common zeros. Let B(λ) = λs
∏m
i=1

αi−λ
1−αiλ

|αi|
αi

be a Blaschke
product containing all the zeros of denominator of r(λ) which lie inside the unit disc (no zero lies on
the boundary, because |p(eiξ)| = |q(eiξ)| implies that every zero on the boundary is removable). Then,
r(λ)B(λ) is a rational function, unimodular on the boundary of a unit disc and without poles inside
unit disc. Hence, it is holomorphic inside the unit disc, and |r(eiξ)B(eiξ)| = 1. Therefore, also

lim
ρ↗1

∫ π

−π
| ln |r(ρeiξ)B(ρeiξ)|| dξ = 0.

By [13, Exercise 17.22, p.353] we obtain that r(λ)B(λ) is a Blaschke product, up to a unimodular
constant. Therefore, r(λ) = µB1(λ)/B(λ) is a quotient of two Blaschke products, up to unimodular
constant µ. Observe that, in Blaschke product, the zeros of numerator lie inside the unit disc while the
zeros of denominator lie outside it. Hence, numerator and denominator in B1(λ) and in B(λ) share
no zeros in common. Moreover, if numerators of B1(λ) and B(λ) share a common factor, say λ − α,
then also denominators of B1(λ) and B(λ) share a common factor 1 − αλ. We may cancel out such

factors to obtain that r(λ) = µB̃1(λ)/B̃(λ), where B̃1(λ) and B̃(λ) are again Blaschke products but

with no factors in common. So B̃1(λ)/B̃(λ) is irreducible. Now observe that each Blaschke product
may be written as r0(λ)/µmr0(1/µ), µ := λ, where m is the degree of its numerator. Finally, a0 6= 0,
ad 6= 0 can be guaranteed by adjusting k, if necessary. 2

6.2. Inductive step and basis for induction. When dimH < ∞, the operators are repre-
sented by matrices, and we prove Theorem 1.5 for finite dimensional H by induction on the size n of
matrices. The lemma below is the inductive step.

Lemma 6.7. Suppose the first part of Theorem 1.5 holds for every non-scalar 2 × 2 matrix C.
Let n ≥ 3. Assume

|Tr(CUAU∗)| = |Tr(CUBU∗)| ∀ unitary U ∈ Cn×n (6.2)

holds for a fixed non-scalar C ∈ Cn×n, and fixed A,B ∈ Cn×n. Then A and B have property (P1).

Proof. In view of Theorem 3.1 it suffices to show that for every corank-one projection P , the
compressions PAP and PBP have property (P1).

There exists a unitary similarity UP such that UPPU
∗
P = I − E11. We may assume that already

P = I − E11, otherwise we would regard the matrices

(UPPU
∗
P ; UPAU

∗
P , UPBU

∗
P , UPCU

∗
P )

in place of (P ;A,B,C). This reduction is possible because of

Tr(UPCU
∗
P · U(UPXU

∗
P )U∗)=Tr(CU∗P · U(UPXU

∗
P )U∗UP )=Tr(C · (U∗PUUP )X(U∗PUUP )∗),

for every unitary U .
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Using Proposition 4.3, we may (and do) assume that both A and B are non-scalar. It is easy to
see that then there exists a unitary U ′ ∈ Cn×n such that writing

U ′A(U ′)∗ =

[
a11 a∗12
a21 A22

]
, U ′B(U ′)∗ =

[
b11 b∗12
b21 B22

]
with respect to decomposition Cn = C⊕ Cn−1, we have that

a12 6= 0, a21 6= 0, b12 6= 0, b21 6= 0. (6.3)

Indeed, by Propositions 2.2 and 2.1(c), we need only show that a12 6= 0, a21 6= 0 for some unitary U ′.
By Lemma 3.4 the proof is reduced to the case of 2×2 matrices, in which case elementary calculations
(using the assumed hypothesis that A is not scalar) yield the result. Replacing A and B with U ′A(U ′)∗

and U ′B(U ′)∗, respectively, we assume in the sequel that

A =

[
a11 a∗12
a21 A22

]
, B =

[
b11 b∗12
b21 B22

]
, a12 6= 0, a21 6= 0, b12 6= 0, b21 6= 0. (6.4)

Denote temporarily

X21(U) := (I − E11)U∗XUE11, X12(U) := E11U
∗XU(I − E11), X ∈ Cn×n,

and assume, to continue, that for every unitary U the two matrices

A21(U) and B21(U), (6.5)

are linearly dependent (some or both could also be zero) and that the same holds for

A12(U) and B12(U). (6.6)

Multiplying both matrices in (6.5) on the left with U and on the right with U∗, we see that this is
equivalent to the fact that

(I − xx∗)Axx∗ =
(
Ax− (x∗Ax)x

)
x∗ and (I − xx∗)Bxx∗ =

(
Bx− (x∗Bx)x

)
x∗

are linearly dependent for every unit vector x ∈ Cn. This implies that Ax, Ix, Bx are linearly depen-
dent for every vector x. By Remark 6.2, either A, I,B are linearly dependent or else A = λAI + xf∗

and B = λBI + xg∗. In the second case we use the same arguments on the conjugate transpose of
(6.6), to see that A∗, I, B∗ are also locally linearly dependent. Thus, by the same Remark 6.2, f = µg,
µ ∈ C, and so A,B, I are linearly dependent.

Likewise we argue when A∗21(V ) and B21(V ) as well as A∗12(V ) and B12(V ) are linearly dependent
for every unitary V ; in this case, A∗, B, I are linearly dependent.

In the sequel, we can thus assume that there exists unitaries U1 = eiH1 , U2 = eiH1 for some
HermitianH1, H2 so that at least one of the following four conditions holds (indeed, if all four conditions
fail, then we are in the situation taken care of in one of the two preceding paragraphs):

(α) A21(U1) and B21(U1) are linearly independent, and A∗21(U2) and B21(U2) are linearly inde-
pendent;

(β) A12(U1) and B12(U1) are linearly independent, and A∗21(U2) and B21(U2) are linearly inde-
pendent;

(γ) A12(U1) and B12(U1) are linearly independent, and A∗12(U2) and B12(U2) are linearly inde-
pendent;

(δ) A21(U1) and B21(U1) are linearly independent, and A∗12(U2) and B12(U2) are linearly inde-
pendent.
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We will consider only the case (α); other cases can be dealt with similarly. Actually we may assume that
U1 = U2. Namely, since linear independence of two matrices is equivalent to nonvanishing at least one
of a certain finite collection of 2–by–2 minors, which are polynomials in coefficients of both matrices,
we can then find a unitary UA = ei(tH1+(1−t)H2) for some t ∈ [0, 1] such that the corresponding minors
do not vanish. Having found UA we may assume that already

(I − E11)AE11, (I − E11)BE11 are linearly independent, (6.7)

(I − E11)A∗E11, (I − E11)BE11 are linearly independent, (6.8)

and simultaneously (6.4) holds, otherwise we replace (A,B) by (V ∗AV, V ∗BV ), for some suitable
unitary V .

Now we choose a unitary UC so that UCCU
∗
C satisfies the claims in Lemma 6.5. Since

Tr(UCCU
∗
C · UXU∗) = Tr(C(U∗CU)X(U∗CU)∗), X ∈ Cn×n,

we can also assume with no loss of generality that already C satisfy the claims of Lemma 6.5. In

particular, with C =

[
c11 c∗12
c21 Ĉ

]
we have that Ĉ is non-scalar with nonzero trace. Moreover, c12, c21

are nonzero and, if n = 3, they are not orthogonal. Now we use unitaries U = [eiφ]⊕ Û to derive that
|Tr(CUAU∗)| = |Tr(CUBU∗)| is equivalent to∣∣Tr

(
ĈÛ(A22 + c11a11(Tr Ĉ)−1I)Û∗

)
+ e−iφc∗12Ûa21 + eiφ(Ûa12)∗c21

∣∣
=
∣∣Tr
(
ĈÛ
(
B22 + c11b11(Tr Ĉ)−1I

)
Û∗
)

+ e−iφc∗12Ûb21 + eiφ(Ûb12)∗c21
∣∣.

Multiply both sides with 1 = |eiφ| and rewrite into∣∣c∗12Ûa21 + eiφ Tr
(
ĈÛ(A22 + c11a11(Tr Ĉ)−1I)Û∗

)
+ e2iφ(Ûa12)∗c21

∣∣
=
∣∣c∗12Ûb21 + eiφ Tr

(
ĈÛ(B22 + c11b11(Tr Ĉ)−1I)Û∗

)
+ e2iφ(Ûb12)∗c21

∣∣. (6.9)

Clearly there exists unitary Û with

c∗12Ûa21 6= 0, (Ûa12)∗c21 6= 0, c∗12Ûb21 6= 0, (Ûb12)∗c21 6= 0, (6.10)

because all left hand sides in inequalities (6.10) are nonzero real-analytic functions of Û ∈ Un−1. In

the following, we will restrict Û to the open dense (in the real-analytic manifold Un−1) subset Ω of

those unitary Û for which (6.10) holds.

With each fixed Û ∈ Ω, the equality (6.9) takes the form

|pÛ (eiξ)| = |qÛ (eiξ)|, ξ ∈ R, (6.11)

where pÛ (λ) and qÛ (λ) are quadratic and at most quadratic polynomials, respectively, and pÛ (0) =

c∗12Ûa21 6= 0. At each fixed Û ∈ Ω we have three possibilities as regards their quotient rÛ (λ) :=
pÛ (λ)

qÛ (λ) ,

namely: (i) rÛ (λ) = µÛ is constant, (ii) rÛ (λ) is a linear rational function, i.e. pÛ (λ) and qÛ (λ) share
a common zero, and (iii) rÛ (λ) is a quadratic rational function, i.e. pÛ (λ) and qÛ (λ) share no common
zero.

By Lemma 6.6 we have under (i) that rÛ (λ) = µÛ , |µÛ | = 1, is constant. Comparing the
coefficients at λ, we get from Eq. (6.9) that∣∣Tr

(
ĈÛ(A22 + c11a11(Tr Ĉ)−1I)Û∗

)∣∣2 =
∣∣Tr
(
ĈÛ(B22 + c11b11(Tr Ĉ)−1I)Û∗

)∣∣2 (6.12)
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By the same Lemma 6.6, under (iii) we have

rÛ (λ) = µÛλ
k a0 + a1λ+ a2λ

2

a2 + a1λ+ a0λ2
; (|µÛ | = 1),

(clearly, in Lemma 6.6, d ≤ 2, otherwise, rÛ (λ) would have more than two zeros, counted with
multiplicities). Moreover, pÛ (0) 6= 0 implies rÛ (0) 6= 0 which forces k ≤ 0, and hence d = 2. Actually,
k = 0, otherwise rÛ (λ) would have at least three poles in the complex plane, including the pole at the
origin, which is not possible in view of the form of qÛ (λ). It is easy to see that

pÛ (λ) = α(a0 + a1λ+ a2λ
2), qÛ (λ) = β(a2 + a1λ+ a0λ

2)

for some (nonzero) constants α and β. Now (6.11) gives |α| = |β|, and we obtain (6.12) again. Both

sides of (6.12) are real-analytic functions of Û (Propositions 2.1 and 2.2), on the real-analytic, pathwise
connected manifold Un−1. Thus (Proposition 2.1(c)), the two sides are either equal identically or they
differ on an open dense subset of unitaries. In the first case we are done by induction on n. In the
second case, possibility (ii) holds on an open dense subset of unitaries (because (i) and (iii) imply
equation (6.12), which presently holds only outside some open dense subset of the unitaries). We show
this contradicts the assumption that C satisfies Lemma 6.5.

Now, polynomial pÛ (λ) is of degree two, and shares a common zero with qÛ (λ) if and only if its
leading coefficient is nonzero, and the resultant between pÛ (λ) and qÛ (λ) vanishes. Since the resultant
of pÛ (λ) and qÛ (λ) is a polynomial in their coefficients, which themselves are real-analytic functions

of Û , we see that the resultant vanishes identically (otherwise (ii) would not hold on a dense subset).
Consequently, pÛ (λ) is of degree two, does not vanish at λ = 0, and differs from any scalar multiple

of qÛ (λ) but shares a common zero with it for every Û from a dense subset Ω1 of unitaries. Hence, at

fixed Û ∈ Ω1 we can write

pÛ (λ) = (a+ λ)(c+ bλ), qÛ (λ) = (a+ λ)(d+ fλ)

for some nonzero scalars a, b, c, d, f which depend on coefficients of the two polynomials. Due to (6.11),
we must have

|c+ beiφ| = |d+ feiφ|, ∀ real φ.

Since pÛ and qÛ are not scalar multiple of each other, a straightforward computation shows that

(d, f) = µ(b, c) for some unimodular µ = µÛ ∈ C. This gives that

pÛ (λ) = bλ2 + (ab+ c)λ+ ac, qÛ (λ) = µÛ (cλ2 +
(
b+ ac

)
λ+ ab).

Comparing the coefficients of λ in pÛ (λ) qÛ (λ) and in (6.9) we get that, for Û ∈ Ω1,

b = (Ûa12)∗c21, µÛab = c∗12Ûb21, ac = c∗12Ûa21, µÛc = (Ûb12)∗c21. (6.13)

Now,

c∗12Ûb21

c∗21(Ûa12)
=
µÛab

b
= µÛa =

a

µÛ
=

ac

µÛc
=

c∗12Ûa21

c∗21(Ûb12)
,

which we rewrite into (
c∗12Ûb21

)
·
(
c∗21Ûb12

)
=
(
c∗12Ûa21

)
·
(
c∗21Ûa12

)
. (6.14)

By Propositions 2.2 and 2.1(c), the above identity holds for any unitary Û ∈ C(n−1)×(n−1).
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Given a unitary Û such that c∗12Ûa21 = 0 then at least one among c∗12Ûb21 and c∗21Ûb12 vanishes.
By Lemma 6.4 we have two options:

Option 1. c∗12Ûa21 = 0 always implies c∗21Ûb12 = 0. Then, by Lemma 6.3 we see that there is

a unitary V̂ such that c12 ∈ Span{V̂ a21} and c21 ∈ Span{V̂ b12}, and either c12, c21 ∈ Cn−1 must be
linearly dependent for n ≥ 4 or, if n = 3, they are either linearly dependent or orthogonal. The second
option (when n = 3) contradicts Lemma 6.5 for C. The first option implies a21 and b12 are linearly
dependent, so (I − E11)A∗E11 and (I − E11)BE11 are linearly dependent, a contradiction with (6.8).

Option 2. c∗12Ûa21 = 0 always implies c∗12Ûb21 = 0. As Û runs over all unitaries, this implies
that every vector x, orthogonal to a21, is also orthogonal to b21, and so a21 and b21 are linearly
dependent. Thus, we may divide (6.14) by c∗12Ûa21 on both sides and deduce by the same arguments
that a12 and b12 are also linearly dependent, contradicting (6.7). 2

Our last lemma gives the basis of the induction to prove Theorem 1.5 for finite-dimensional H.
Lemma 6.8. Suppose 2 × 2 matrices A,B,C satisfy (6.2) with C non-scalar. Then, A,B enjoy

property (P1).
Proof. Since rankC = 1 was already proven in [5], we only need to consider the option when

rankC = 2.
Case 1. C is diagonalizable. Let γ be an eigenvalue of C. Then, C ′ := C − γI is of rank-one,

and TrC ′ 6= 0. Then,

Tr(CUXU∗) = Tr(C ′UXU∗ + γUXU∗) = Tr
(
C ′U

(
X + ((TrC ′)−1γ TrX)I

)
U∗
)
,

for every X ∈ C2×2. So, from identity (6.2) we derive that for

A′ := A+ ((TrC ′)−1γ TrA)I, B′ := B + ((TrC ′)−1γ TrB)I

it holds

|Tr(C ′UA′U∗)| = |Tr(C ′UB′U∗)|, ∀ unitary U ∈ C2×2.

By [5], A′ and B′ enjoy property (P1) and we are done.
Case 2. C is nondiagonalizable. By multiplying both sides in (6.2) with a suitable positive

scalar and using unitary similarity on C we may assume without loss of generality that C = γI2 +E12

for some nonzero γ. Also, replacing (A,B) by (µ1A,µ2B) for some suitable unimodular complex
numbers, we may assume that both γ TrA = 2αγ and γ TrB = 2βγ are nonnegative. Then, any
unitary U ∈ C2×2 satisfies

|Tr(CUAU∗)| = |2αγ + Tr(E12UAU
∗)|.

Note that the off-diagonal entries of UAU∗ and of U(A − αI2)U∗ are the same. Since A − αI2 has
trace zero, we can find a unitary V such that

V (A− αI2)V ∗ =

[
0 a2e

it

a1 0

]
with a1 ≥ a2 ≥ 0. Clearly, a1, a2 are the singular values of A − αI2. Thus, the maximal modulus of
the (2, 1) entry of UAU∗, i.e. of (UAU∗)21 = (U(A− αI2)U∗)21 is a1. As a result,

|Tr(CUAU∗)| ≤ |2αγ|+ |Tr(E12UAU
∗)| ≤ 2αγ + a1. (6.15)

Since the inequality holds for every unitary U and since the equality in (6.15) is also possible (say,
when U = V ), we have that the right hand side satisfies 2αγ + a1 = rC(A) with

rC(X) := max{|Tr(CUXU∗)| : U unitary}
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the C-numerical radius of X ∈ C2×2. Moreover, the equality in (6.15) holds only if |(UAU∗)21| =
|(U(A− αI2)U∗)21| = a1 in which case U(A− αI2)U∗ has zero diagonal. Similarly,

|Tr(CUAU∗)| ≤ 2βγ + b1 = rC(B),

where b1 is the largest singular value of B−βI2, and the equality holds only if |(UBU∗)21| = |(U(B−
βI2)U∗)21| = b1, in which case U(B − βI2)U∗ has zero diagonal.

Suppose αγ ≥ βγ ≥ 0. Otherwise, interchange the roles of A and B. Replacing (A,B) by

(V AV ∗, V BV ∗) for a suitable unitary V ∈ C2×2, we may assume that A =

[
α α12

a1 α

]
. Then

|Tr(CB)| = |Tr(CA)| = rC(A) = rC(B)

implies that B − βI2 has zero diagonal and, for its (2, 1) entry, |B21| = b1. We assume in the sequel
a1 > 0, else A is scalar and we are done by Proposition 4.3. Now, for D = diag (1, eiξ),

|2αγ + a1e
iξ| = |Tr(CDAD∗)| = |Tr(CDBD∗)| = |2βγ +B21e

iξ|, ξ ∈ [0, 2π).

This implies one of the three options (taking into account a1 > 0): (1) 2αγ = 2βγ = 0 and a1 = |B21|;
(2) 2αγ 6= 2βγ > 0, B21 = 2αγ and a1 = 2βγ; (3) B21 = a1 and 2αγ = 2βγ > 0.

Subcase 1 Assume that αγ = βγ. If β 6= 0, then B21 = a1. If β = 0, then βγ = αγ = 0, and we
may replace B by µ3B for a suitable unimodular complex number µ3 and assume that B21 = a1 also
in this case (note that this transformation does not change TrB). For U = (cos ξ)I2 + sin ξ(eisE12 −
e−isE21) with ξ, s ∈ [0, 2π), we have

|a1 cos2 ξ − α12e
−i2s sin2 ξ| = |2αγ + a1 cos2 ξ − α12e

−i2s sin2 ξ| = |Tr(CUAU∗)|

= |Tr(CUBU∗)| = |2αγ + a1 cos2 ξ −B12e
−i2s sin2 ξ| = |a1 cos2 ξ −B12e

−i2s sin2 ξ|.

We conclude that α12 = B12.
Subcase 2 Assume that αγ > βγ. Then 2βγ = a1 > 0 and B21 = 2αγ = b1 (the second equality

follows from |B21| = b1). For U = E12 + E21e
is with s ∈ [0, 2π),

|2αγ + α12e
is| = |Tr(CUAU∗)| = |Tr(CUBU∗)| = |2βγ +B12e

is|.

A straightforward calculation using the equality

(2αγ + α12e
is)(2αγ + α12eis) = (2βγ +B12e

is)(2βγ +B12eis), s ∈ [0, 2π),

shows that b1 = 2αγ = µ2B12 and a1 = 2βγ = µ−12 α12. Thus, there is ν ∈ [0, 2π) such that

A = αI2 + 2βγ(E21 + eiνE12), and B = βI2 + 2αγ(E21 + eiνE12).

Now for the unitary U = cos ξI2 + sin ξ(eisE12 − e−isE21) with ξ, s ∈ [0, 2π), we have

2 · |(αγ + βγ cos2 ξ)− βγei(ν−2s) sin2 ξ| = |Tr(CUAU∗)|

= |Tr(CUBU∗)| = 2|(βγ + αγ cos2 ξ)− αγei(ν−2s) sin2 ξ|.

We conclude that α = β, which is a contradiction. 2
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6.3. Proof of Theorem 1.5, assuming C is finite rank. If H is finite-dimensional, we argue
inductively on the dimension. Lemma 6.8 is the basis, while Lemma 6.7 is the inductive step. If H is
infinite-dimensional, we reduce to the finite-dimensional case as follows. Assume erroneously that A,B
do not have property (P1). Then, already some 2-dimensional compression of A, B does not have
property (P1). Since also rankC < ∞ we can find a unitary operator U such that UCU∗ = C1 ⊕ 0
where C1 acts on finite-dimensional subspace H′ ≤ H and the compressions of UAU∗ and UBU∗ to H′
do not satisfy property (P1). This contradicts the already proven result for finite-dimensional H′. 2

7. A more general class of operators C. The techniques used to prove Theorem 1.5 allow us
to extend the result to a more general class (although less succinctly defined) of operators C. Namely,
assume that a trace-class operator C ∈ L(H) has an orthogonally reducing invariant subspace M such
that the restriction C|M is non-scalar, either normal or finite rank, and has nonzero trace; if (1.1)
holds for two operators A,B ∈ L(H), then A,B must satisfy A = µB + νI or A = µB∗ + νI for some
µ, ν ∈ C, |µ| = 1. The proof follows the pattern of subsection 5.1.
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