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Abstract

We discuss some applications of generalized interlacing inequalities of Ky Fan to the study of
(a) some classical matrix inequalities and (b) matrix problems in quantum information science.
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1 Introduction

Professor Ky Fan was a great scholar and educator. Not only did he obtain many interesting and

useful results, he was also eager to help young colleagues and shared his insights and experience

about mathematical research and education. The first author met him in several occasions and

received valuable advice from him. For instance, he emphasized that “One should keep an open

mind about research.” “Interesting mathematical results often build on simple assumptions but

have deep implications.” Professor Fan had many results of this nature. For example, he and Pall

[7] obtained the following generalized interlacing inequalities for eigenvalues of complex Hermitian

(real symmetric) matrices that have many applications as shown in later sections.

Theorem 1.1 Let a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bk be real numbers and 1 ≤ k < n. There exists

an n× n Hermitian matrix A with a k× k principal submatrix B having eigenvalues a1 ≥ · · · ≥ an
and b1 ≥ · · · ≥ bk, respectively, if and only if

aj ≥ bj ≥ an−k+j , j = 1, . . . , k. (1)

Here, we present a proof for completeness. Denote by Mn the set of n × n complex matrices

and Hn the set of Hermitian matrices in Mn.

∗Department of Mathematics, The College of William and Mary, Williamsburg, Virginia 23187, USA
(ckli@math.wm.edu). This research was done when Li was visiting the Department of Mathematics, Hong Kong
University of Science and Technology under a Fulbright Fellowship in 2011. Li is an honorary professor of the Univer-
sity of Hong Kong, Taiyuan University of Technology, Shanghai University. His research was supported by an NSF
grant, a HK RGC grant, and the Shanxi 100 talent program.
†Department of Mathematics, Iowa State University, Ames, IA 50011 (ytpoon@iastate.edu). Research of Poon

was supported by an NSF grant.
‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (ray-

mond.sze@inet.polyu.edu.hk). Research of Sze was supported by a HK RGC grant.

1



Proof of Theorem 1.1. First consider the case when k = n − 1, and B is obtained from A

by deleting its first row and first column. We need only address the case bj ∈ (aj+1, aj) for

j = 1, . . . , n− 1, since the general case bj ∈ [aj+1, aj ] follows by a continuity argument.

Let U be unitary such that A = U∗diag (a1, . . . , an)U . If u = (u1, . . . , un)t is the first column

of U , then the (1, 1) entry of (tI −A)−1 = U∗diag (t− a1, . . . , t− an)−1U equals

f(t) =
n∑
j=1

|uj |2(t− aj)−1,

which is continuous in each interval (aj+1, aj) for j = 1, . . . , n− 1, and satisfies limt→a+j+1
f(t) =∞

and limt→a−j
f(t) = −∞. Thus, f has at least one zero in (aj+1, aj) for j = 1, . . . , n− 1. Now, by

the adjoint formula for the inverse, it is the same as

f(t) = det(tI −B)/ det(tI −A) =

n−1∏
j=1

(t− bj)

 /

 n∏
j=1

(t− aj)

 .

We conclude that bj is the unique zero in (aj+1, aj) for j = 1, . . . , n− 1.

If k < n− 1, we can repeat the above argument n− k times on a sequence of submatrices of A

by removing one row and one column each time to get the desired inequalities.

To prove the converse, we first consider the case k = n − 1. We use the proof by Mirsky [19]

described in Marshall and Olkin [18].

We aim at constructing A =

[
D v
vt vn

]
, where D = diag (b1, . . . , bn−1) is a diagonal matrix

and v = (v1, . . . , vn−1)
t is a real vector. Then for f(t) = det(tI − A) =

∏n
j=1(t − aj) and g(t) =

det(tI −D) =
∏n−1
j=1 (t− bj) we have

f(t) = g(t)
(
t− vn − vt(tI −D)−1v

)
= g(t)

t− vn − n−1∑
j=1

v2j
t− bj

 .

Let vn =
∑n

j=1 aj −
∑n−1

j=1 bj , and for j = 1, . . . , n− 1, vj ≥ 0 such that

v2j = −f(bj)/g
′(bj) = −

∏n
r=1(bj − ar)∏
r 6=j(bj − br)

,

which is positive because br − an > 0, br − ar < 0, and (bj − ar)/(bj − br) > 0 for all j 6= r, by our

assumption. Then the polynomial f(t)−g(t)(t−vn−
∑n−1

j=1 v
2
j /(t−bj)) must be the zero polynomial

because it has degree n− 2, and has zeros at b1, . . . , bn−1. Thus, we get the desired matrix A.

Now, suppose k < n − 1. We can use induction on n − k. One can find ã1 ≥ · · · ≥ ãn−1 such

that

min{aj , bk−n+j+1} ≥ ãj ≥ max{aj+1, bj}, j = 1, . . . , n− 1,

here bk−n+j+1 = aj if k − n+ j + 1 ≤ 0. For instance, one can define

ãj =

{
max{aj+1, bj} 1 ≤ j ≤ k,
min{aj , bk−n+j+1} k < j < n.
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Then

a1 ≥ ã1 ≥ a2 ≥ · · · ≥ an−1 ≥ ãn−1 ≥ an,

and

ãj ≥ bj ≥ ãn−k−1+j , j = 1, . . . , k.

By the induction assumption, we can construct a matrix Ã ∈ Hn−1 with eigenvalues ã1 ≥ · · · ≥
ãn−1, whose k × k leading principal submatrix has eigenvalues b1 ≥ · · · ≥ bk, and Ã is a principal

submatrix of A ∈ Hn such that A has eigenvalues a1 ≥ · · · ≥ an. �

2 Some applications to matrix inequalities

The generalized interlacing inequalities have many nice applications to matrix inequalities.

Theorem 2.1 Suppose A is an n×n Hermitian matrix with eigenvalues a1 ≥ · · · ≥ an and diagonal

entries d1 ≥ · · · ≥ dn. Then (d1, . . . , dn) ≺ (a1, . . . , an), i.e.,
∑k

j=1 dj ≤
∑k

j=1 aj for k = 1, . . . , n,

and the equality holds when k = n.

Proof. Consider the k × k submatrix B of A with diagonal entries d1, . . . , dk. Suppose B has

eigenvalues b1 ≥ · · · ≥ bk. Then
∑k

j=1 dj =
∑k

j=1 bj ≤
∑k

j=1 aj by the interlacing inequalities. �

Denote by λ1(A) ≥ · · · ≥ λn(A) the eigenvalues of an n × n Hermitian matrix A. Suppose E

is a small perturbation of A due to numerical errors and measuring errors, etc. We can compare

the eigenvalues of A+E and those of A. By the result of Liskii, Mirsky, and Wielandt, see e.g. [1,

Theorem 9.4] or [22, Theorem IV.4.8], we have

k∑
j=1

λn−j+k(E) ≤
k∑
j=1

(
λij (A+ E)− λij (A)

)
≤

k∑
j=1

λj(E) for any 1 ≤ i1 < · · · < ik ≤ n.

One can see [13] for a simple proof, and [12] for results on perturbation on structured Hermitian

matrices, where the generalized interlacing inequalities also play key roles in the proof. Here, we

present the results and proofs of the Thompson’s inequalities, which are important special cases

for the complete set of inequalities by Horn, Klyascho, Fulton, etc., see e.g., [8].

Theorem 2.2 Suppose A,B and C = A+B are Hermitian matrices. Then for any 1 ≤ i1 < · · · <
ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n with ik + jk − k ≤ n, we have

k∑
r=1

λir(A) +
k∑
r=1

λjr(B) ≥
k∑
r=1

λir+jr−r(C).

Proof. We prove by induction on n. Clearly, the result holds when n = 1. Assume n > 1. First

the result is clear if k = n. Let p be the largest integer such that it = t for t = 1, . . . , p, and let q

be the largest integer such that jt = t for t = 1, . . . , q. Notice that p ≤ k and q ≤ k. Exchanging A

and B if necessary, we may assume that q ≤ p. We can further assume that ik < n. Suppose not.
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Then ik = n and ik + jk − k ≤ n imply that jk = k and hence p = q = k. So, one can exchange A

and B again so that ik = k < n.

For simplicity, let aj = λj(A), bj = λj(B), and cj = λj(C) for j = 1, . . . , n. Let {u1, . . . , un}
and {v1, . . . , vn} be orthonormal sets of eigenvectors of B and C such that

Buj = bjuj and Cvj = cjvj , j = 1, . . . , n.

Let S be an (n− 1)-dimensional subspace containing the vectors v1, . . . , vq, uq+2, . . . , un and P be

the orthogonal projection of Cn onto S. Identify Ã = PAP , B̃ = PBP and C̃ = PCP as matrices

in Hn−1. Then their eigenvalues ã1 ≥ · · · ≥ ãn−1, b̃1 ≥ · · · ≥ b̃n−1, c̃1 ≥ · · · ≥ c̃n−1, interlace,

respectively, those of A,B and C. By the induction assumption on C̃ = Ã+ B̃ with the sequences

1 ≤ i1 < · · · < ik ≤ n− 1 and 1 ≤ j1 < · · · < jq < jq+1 − 1 < · · · < jk − 1 ≤ n− 1, we have

q∑
s=1

c̃is+js−s +

k∑
s=q+1

c̃is+js−s−1 ≤
k∑
s=1

ãis +

q∑
s=1

b̃js +
k∑

j=q+1

b̃js−1. (2)

By the interlacing inequality, we see that ãis ≤ ais for s = 1, . . . , k; b̃js ≤ bjs for s = 1, . . . , q;

c̃is+js−s−1 ≥ cis+js−s for s = q + 1, . . . , k. Since S contains v1, . . . , vq, it follows that c1, . . . , cq are

eigenvalues of C̃, and by interlacing ct = c̃t for t = 1, . . . , q. Moreover, for s = 1, . . . , q, we have

is = js = s, and thus, is + js − s = s. It follows that

q∑
s=1

c̃is+js−s =

q∑
s=1

cis+js−s.

Since S contains uq+2, . . . , un, it follows that bq+2, . . . , bn are eigenvalues of B̃, and by interlacing

bt = b̃t−1 for t = q + 2, . . . , n. As jq+1 > q + 1, bjs = b̃js−1 for s ≥ q + 1. Thus,

k∑
s=q+1

b̃js−1 =
k∑

s=q+1

bjs .

Combining these facts with (2), we get the desired inequalities. �

3 Applications in quantum information science

In this section, we describe some applications of the generalized interlacing inequalities to problems

in quantum information science. Here, we briefly describe the background and refer the readers to

[4] for details.

Quantum states are represented as density matrices in Mn, i.e., positive semidefinite matrices

with trace one. A quantum channel is represented as a completely positive linear map on Mn with

an operator sum representation

L(X) =
r∑
j=1

FjXF
∗
j (3)
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for some matrices F1, . . . , Fr known as the error operators. A map L is said to be a completely

positive map if the map Ik⊗L is a positive map for all k, see [3]. One would like to find a recovery

channel T such that T ◦ L(X) = X whenever PXP = X for some orthogonal projection P . The

range space of P is known as a quantum error correction code of the channel L. One would like

to find P with a maximum rank for the given channel L. For a given channel L with the operator

sum representation described in (3), it is known that the range space of an orthogonal projection

P is a quantum error correction code corresponding to L if and only if there are scalars γij ∈ C
such that

PF ∗i FjP = γijP for all 1 ≤ i, j ≤ r,

see, e.g., [20, Chapter 10]. This leads to the study of the rank-k numerical range of A ∈Mn defined

by

Λk(A) =

{
γ ∈ C : U∗AU =

[
γIk ∗
∗ ∗

]
for some unitary U

}
.

When k = 1, the definition reduces to the classical numerical range

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1}

of A ∈Mn, which is very useful in the study of matrices and operators; see [9, Chapter 1].

3.1 Higher rank numerical ranges

In [15], the following theorem was proved which confirmed some conjectures in [4].

Theorem 3.1 Let A ∈Mn. Then

Λk(A) =
{
γ ∈ C : eiξγ + e−iξγ̄ ≤ λk(eiξA+ e−iξA∗) for all ξ ∈ [0, 2π)

}
. (4)

Consequently, Λk(A) is always convex. If A is normal with eigenvalues a1, . . . , an, then

Λk(A) =
⋂

1≤j1<···<jn−k+1≤n
conv {aj1 , . . . , ajn−k+1

}.

A key step of the proofs of (4) is the use of the generalized interlacing inequalities. To be

precise, in the proof one has to show that zero is in the rank-k numerical range of a matrix B with

eigenvalues 1 + iµ1, . . . , 1 + iµk and −1 + iµk+1, . . . ,−1 + iµn, where µ1, . . . , µn are real numbers

satisfying

−µn > µ1, −µn−1 > µ2, . . . , −µn−k+2 > µk−1, −µn−k+1 > µk,

and

−µk+1 ≤ µk, −µk+2 ≤ µk−1, . . . , −µ2k−1 ≤ µ2, −µ2k ≤ µ1.

To complete the proof, one has to apply Theorem 1.1 and conclude that there is a unitary U such

that U∗BU has a principal submatrix 0k, and hence 0 ∈ Λk(B).

The following result gives the optimal bound on n for Λk(A) to be non-empty.
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Theorem 3.2 The set Λk(A) is non-empty if one of the following conditions is satisfied.

(I) A ∈ Hn, with n ≥ 2k − 1. (II) A ∈Mn, with n ≥ 3k − 2.

Furthermore, the bounds in (I) and (II) are optimal.

Proof. The condition (I) was proved in [6]. Here we give a proof using Theorem 1.1. Suppose

A ∈ Hn, with n ≥ 2k−1. We may assume that A has eigenvalues a1 ≥ a2 ≥ · · · ≥ an. By Theorem

1.1, there is a unitary U such that U∗AU has a leading principal submatrix equal to akIk.

Suppose n < 2k − 1. Let A = diag (1, 2, . . . , n). If U∗AU has a leading principal submatrix

equal to bIk, then aj ≥ b ≥ an−j+1 for j = 1, . . . , k, which is impossible. Thus, Λk(A) is empty.

The condition (II) was proved in [14, Theorems 1 and 3]. �

3.2 (p, k) numerical range

In [5], for a better error correction scheme, the authors consider a special decomposition of the

matrix space. Given a quantum channel L with the operator sum representation in (3), they would

like to find a recovery channel R such that for each B ∈Mk,

R ◦ L ((Ip ⊗B)⊕ 0n−pk) = (AB ⊗B)⊕ 0n−pk for some AB ∈Mp.

Fixed an arbitrary orthonormal basis {e1, . . . , ep} in Cp. The authors showed that such recovery

channel R exists if and only if there are scalars γijrs ∈ C such that

PkkF
∗
i FjP`` = γijrsPk` for all 1 ≤ i, j ≤ r and 1 ≤ k, ` ≤ p,

where Pk` = (eke
∗
`⊗Ik)⊕0n−pk; see [11] and also [5]. This leads to an extension of rank-k numerical

range to the (p, k) numerical range of A ∈Mn defined by

Λp,k(A) =

{
B ∈Mp : U∗AU =

[
B ⊗ Ik ∗
∗ ∗

]
for some unitary U

}
.

It is easy to see that

Λp,k(A) = {B ∈Mp : there is X such that X∗X = Ipk and X∗AX = B ⊗ Ik}.

When p = 1, we get the rank-k numerical range; when k = 1, we get the pth matricial range (see

[16]); when p = k = 1, we get the classical numerical range (see [9]).

The following theorem is easy to verify.

Theorem 3.3 Let A ∈Mn.

(a) Λp,k(αA+ βIn) = αΛp,k(A) + βIp for any α, β ∈ C.

(b) Λp,k(X
∗AX) ⊆ Λp,k(A) for any n×m matrix X with X∗X = Im, and the equality holds if

m = n.

(c) A matrix B ∈ Mp satisfies B ∈ Λp,k(A) if and only if V ∗BV ∈ Λp,k(A) for any unitary

V ∈Mp. So, Λp,k(A) is a union of unitary similarity orbits {V ∗BV : V is unitary} in Mp.
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The following theorem gives a necessary condition for B ∈ Λp,k(A).

Theorem 3.4 Let A ∈Mn. If B ∈ Λp,k(A), then

Λn−pk+1(A) ⊆ Λ1(B) ⊆ Λk(A).

Proof. Suppose there is a unitary U such that U∗AU has a principal submatrix of the form

B̃ = B ⊗ Ik with B ∈Mp. Then for each ξ ∈ [0, 2π), we can apply Theorem 1.1 to conclude that

λk(e
iξA+ e−iξA∗) ≥ λk(e

iξB̃ + e−iξB̃∗) = λ1(e
iξB + e−iξB∗)

= λ1(e
iξB̃ + e−iξB̃∗) ≥ λn−kp+1(e

iξA+ e−iξA∗).

Consequently, if we obtain convex sets Λn−kp+1(A), Λ1(B), and Λk(A) using the half spaces de-

scribed in Theorem 3.1, then the half space containing Λn−kp+1(A) will be a subset of the half

space containing Λ1(B), which in turns will be a subset of the half space containing Λk(A). Taking

the intersection, we get the asserted inclusion relations. �

For a general matrix A ∈Mn, it is difficult to check whether a given matrix B ∈Mp belongs to

Λp,k(A). If A is Hermitian, we have a necessary and sufficient condition for B ∈ Λp,k(A) in terms

of the eigenvalues of A and those of B.

Theorem 3.5 Let A ∈ Hn and pk ≤ n. Then B ∈ Λp,k(A) if and only if the eigenvalues of B⊗ Ik
and A satisfy the generalized interlacing inequalities. In other words, B ∈ Λp,k(A) if and only if

λn−(p−j+1)k+1(A) ≤ λj(B) ≤ λjk(A) for all j = 1, . . . , p.

Consequently, Λp,k(A) 6= ∅ if and only if

λjk(A) ≥ λn−(p−j+1)k+1(A) for all j = 1, . . . , p.

If n ≥ (p+ 1)k− 1, then the above inequalities always hold and hence Λp,k(A) is always non-empty.

If n < (p + 1)k − 1, then the above inequalities hold if and only if all of the inequalities become

equalities so that Λp,k(A) consists of matrices in Hp with eigenvalues ak, a2k, . . . , apk.

Proof. Notice that B ∈ Λp,k(A) if and only if U∗AU has a principal submatrix with eigenvalues

λ1(B), . . . , λ1(B)︸ ︷︷ ︸
k

, λ2(B), . . . , λ2(B)︸ ︷︷ ︸
k

, . . . , λp(B), . . . , λp(B)︸ ︷︷ ︸
k

.

By Theorem 1.1, the first assertion follows. The last two assertions can be verified readily. �

The following result provides bounds on n ensuring that Λp,k(A) is non-empty for any A ∈Mn.

Theorem 3.6 If n ≥ 2(p+ 1)k − 3, then Λp,k(A) is non-empty for any A ∈Mn.
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Proof. Suppose n ≥ 2(p+ 1)k− 3 = 2((p+ 1)k− 1)− 1. Let A = A1 + iA2, with A1, A2 ∈ Hn.

Then by Theorem 3.2, there exists a unitary U ∈ Mn such that U∗A1U =

[
aI(p+1)k−1 ∗
∗ ∗

]
for

some a ∈ R. Let U∗A2U =

[
B ∗
∗ ∗

]
with B ∈ H(p+1)k−1. By Theorem 3.5, Λp,k(B) 6= ∅. Therefore,

Λp,k(A) 6= ∅. �

One may improve the bound n if A ∈Mn has some special structure.

Theorem 3.7 Suppose A ∈Mn is unitarily similar to A1 ⊕ . . .⊕Ap such that Λk(Aj) 6= ∅ for all

j. Then Λp,k(A) is nonempty. Consequently, if each Aj has dimension at least 3k−2, then Λp,k(A)

is nonempty. In particular, if A ∈Mn is normal with n ≥ (3k − 2)p, then Λp,k(A) is non-empty.

Proof. The given assumption ensures that each Aj is unitarily similar to

[
bjIk ∗
∗ ∗

]
. Thus,

diag (b1, . . . , bk) ∈ Λp,k(A). By Theorem 3.2, Aj has dimension at least 3k − 2 ensuring that

Λk(A) 6= ∅. The last assertion follows. �

If A ∈ Hn and n ≤ (p+ 1)k − 1, it follows from Theorem 3.5 that Λp,k(A) consists of matrices

in Hp with eigenvalues ak, a2k, . . . , apk. Therefore, Λp,k(A) is convex if and only if ak = apk. If

n ≥ (p+ 1)k, we have the following.

Theorem 3.8 Suppose n ≥ (p+ 1)k and A ∈ Hn. Then Λp,k(A) is convex if and only if

λk(A) = λpk(A) and λn−pk+1(A) = λn−k+1(A).

Proof. Suppose λk(A) = λpk(A) and λn−pk+1(A) = λn−k+1(A). Then by Theorem 3.5,

Λp,k(A) = {B ∈ Hp : λn−k+1(A) ≤ λj(B) ≤ λk(A) for all 1 ≤ j ≤ p},

which is clearly convex.

We will prove the converse by contradiction. Suppose first that λpk(A) < λk(A). Let B =

diag (λk(A), λ2k(A), . . . , λpk(A)) and R = [rij ]
p
i,j=1 where rij = 1 if i ≡ j + 1 mod(p), and rij = 0

otherwise. For 1 ≤ j ≤ p, let Bj = Rj−1B(Rt)j−1. Then Bj ∈ Λp,k(A) for all 1 ≤ j ≤ p but

(
∑p

j=1Bj)/p = diag (b, . . . , b), where b = (λk(A) + λ2k(A) + · · ·+ λpk(A))/p > λpk(A). Therefore,

diag (b, . . . , b) 6∈ Λp,k(A) and Λp,k(A) is not convex. The proof for the case when λn−pk+1(A) >

λn−k+1(A) is similar. �

We have obtained only some basic results for the (p, k) numerical range. There are many

problems that deserve further study. We mention some of them in the next section.

4 Further research

In [7], Fan and Pall study the conditions on which a k×k normal matrix B can be imbedded into an

n×n normal matrix with prescribed eigenvalues. They give a necessary and sufficient condition for

the case when k = n− 1. Since then, the problem has attracted the attention of many researchers,
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e.g. see [2, 10, 17, 21, 23] but, the question for 1 < k < n − 1 remains open. More specifically, it

would be interesting to solve the following.

Problem 4.1 Determine all possible k×k principal submatrices of U∗AU for a given n×n matrix

A. Equivalently, we want to find all compressions of A.

When A is Hermitian, Theorem 1.1 provides the answer. We can also study the above problem

for general A ∈ Mn. Suppose B ∈ Mk is a principal submatrix of A. Let A = A1 + iA2 and

B = B1 + iB2 be the Hermitian decomposition of A and B. Then cos tB1 + sin tB2 is a submatrix

of cos tA1 + sin tA2 for all t ∈ R so that their eigenvalues satisfy the interlacing inequalities (1).

Thus, we have an infinite family of inequalities. But the converse is not true as shown by the

following example.

Example 4.2 Let A =


1 0 0 0
0 1 0 0
0 0 i 0
0 0 0 −i

 and B =

[
0
√

2
0 0

]
. Then direct computation shows that

for every t ∈ R, the eigenvalues of cos tB1 + sin tB2 and cos tA1 + sin tA2 satisfy the interlacing

inequalities (1). Since ‖B‖ =
√

2 > 1 = ‖A‖, B cannot be a principal submatrix of U∗AU for any

unitary U .

A principal submatrix of a normal matrix may not be normal. Nevertheless, it would be

interesting to determine all k× k normal principal submatrices of U∗AU for a given normal matrix

A ∈Mn.

The results in Section 3 are motivated by problems in quantum information science. In connec-

tion to Theorem 3.6, it would be interesting to answer the following.

Problem 4.3 Determine the optimal n so that Λp,k(A) is non-empty for any A ∈Mn.

It is known that Λk(A) is always convex, and Theorem 3.8 gives the condition for Λp,k(A) to

be convex for Hermitian A. It is natural to ask the following.

Problem 4.4 Determine A ∈Mn such that Λp,k(A) is convex.

Note that even for the special case when A is normal, the problems 4.3 and 4.4 are still open

and highly nontrivial.
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